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Abstract
Treating the nonlinear term of the Gross—Pitaevskii nonlinear Schrodinger
equation as a perturbation of an isolated discrete eigenvalue of the linear prob-
lem one obtains a Rayleigh—Schrodinger power series. This power series is
proved to be convergent when the parameter representing the intensity of the
nonlinear term is less in absolute value than a threshold value, and it gives a
stationary solution to the nonlinear Schrédinger equation.

Keywords: nonlinear Schrodinger equation, perturbation theory,
Rayleigh—Schrodinger power series

Mathematics Subject Classification numbers: 35Q55, 81Q15

1. Introduction

Nonlinear Schrodinger equation (hereafter NLS) is a research topic with a large variety of
applications [24]: from problems in nonlinear optics to the analysis of quantum dynamics
of Bose—Einstein condensates. In particular, the study of its stationary solutions has attracted
increasing attention, and, apart from the few cases in which the solution exists in explicit form,
the analysis has mainly focused variational methods or on approximation methods based on
both semiclassical and perturbative techniques.

Variational methods are widely used in order to construct bound states for NLS with a linear
potential, typically by solving a minimisation problem; for instance, this is done by [18] where
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they proved the existence of a small amplitude stationary solution that bifurcates from the zero
solution (see also [21, 22] where nonlinear scattering is considered for NLS with, respectively,
one and two nonlinear bound states and the references there in). Similarly, in [S] variational
methods have been applied to prove that for the minimiser of the nonlinear Hartree energy
functional a symmetry breaking effect occurs.

For what concerns semiclassical methods, they have been successfully used in this frame-
work where several authors have been able to demonstrate the existence, in the semiclassical
limit using variational techniques, of stationary solution concentrated around the critical points
of the potential [1, 13, 16, 27]. Also the occurrence of bifurcation phenomena has been dis-
cussed in the semiclassical limit [19].

On the other side, the perturbative approach takes up the underlying idea of Rayleigh-
Schrodinger series expansion, where the solution is written as a formal series of powers whose
coefficients are determined recursively and where the convergence of the series is under invest-
igation. Typically in these cases the perturbation is represented by the nonlinear term, and the
unperturbed Schrédinger equation, where the nonlinear term is absent, admits isolated eigen-
values. Several applications of this idea have been developed over the years [2, 3, 8, 12, 25, 26]
limited, in general, to a formal analysis of the series without proving its convergence. In fact,
we should emphasise that the problem of convergence of the power series has been solved for
some kind of nonlinear Schrodinger equations; more precisely, the spinless real Hartree—Fock
model and the Thomas—Fermi—Von-Weizsédcker model has been considered by [8] proving, in
particular, that in the first model the Rayleigh—Schrédinger perturbation series has a positive
convergence radius.

Finally, it should be mentioned that numerical methods based on discrete Galerkin approx-
imations or spectral splitting methods are widely and effectively used for the study of time-
dependent NLS (see [4, 6, 7, 20, 23] and references therein).

In this paper we aim to give a rigorous basis to the perturbative approach for computing
the stationary solution of the NLS by going so far as to demonstrate, under fairly general
assumptions, the convergence of the Rayleigh—Schrodinger series when the perturbative para-
meter, which measures the intensity of the nonlinear perturbation, is less in absolute value
than a given threshold. In this way it is shown that the steady states associated with isolated
and nondegenerate eigenvalues of the linear operator transform into stationary solutions of the
NLS when nonlinearity is switched on, and the latter can be computed very efficiently through
the convergent perturbative series. Finally, it is also possible to give a lower estimate of the
radius of convergence of the power series.

The paper is organised as follows. In section 2 we describe the model, we write the formal
power series of the stationary solutions and we state the convergence result in theorem 1. In
section 3 we state and prove some technical preliminary results. In section 4 we obtain the
convergence of the perturbative series proving thus theorem 1. In sections 5 and 6 we discuss
a couple of one-dimensional examples: namely in section 5 we consider the case of an infinite
well potential, in this case we are also able to compare the perturbative results with the exact
ones; in section 6 we compute the perturbative series in the case where the potential is the
harmonic one. The discussion of these two models is, in some sense, ‘pedagogical’; indeed,
by means of numerical experiments it is possible to see that the coefficients of the power series
expansion rapidly decreases and then one can guess the convergence radius of the power series.
Finally, in section 7 we draw some closing comments. A small technical appendix closes the

paper.
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2. Main results

2.1. Assumptions

We consider the time-independent nonlinear Schrédinger equation

HY + vl P =By, ¢ € L (RY) M
where H = —A + Vis a linear operator formally defined on L?(R¢). The nonlinear term plays

the role of perturbation and its strength v € C is a small perturbative parameter.

Hypothesis 1. The potential V is assumed to be a real-valued piecewise continuous function
bounded from below:

V(x) >T,VxeR?, )
for some I' € R.
Remark 1. We assume that the potential V(x) is a piecewise continuous function bounded
from below for the sake of simplicity. In fact, we must remark that one could extend our
treatment to the case where some milder conditions on V(x) are assumed; however, we do
not dwell on those details here. On the other side, it might be interesting to consider the case

in which V(x) is given by means of an attractive Dirac’s § [11]; this case does not fall under the
hypothesis 1.

Hence, H admits a self-adjoint extension, still denoted by H, on a self-adjointness domain
D(H) C Lz(Rd).

Hypothesis 2. The discrete spectrum of H is not empty: o4(H) # (), and admits a non degen-
erate eigenvalue ey € o4(H) with associated eigenvector ¢y € D(H):

Heo = eggo, o € L* (RY) . A3)

Hereafter we can assume, for simplicity’s sake and without loss in generality, that the unper-
turbed eigenvector ¢y is normalised to one, i.e.:

ol

In the following we denote
A = dist [0’ (H) \ {80} ,60] >0.

Remark 2. Since ¢y € D(H) and the potential V is bounded from below then it follows that
¢o € H' because

IV ol|7> = (= Ao, do) 12 = eol|pol|7> — (Voo, do) < (eo —T) || dol7> -

L2:1.

Thus
¢o € D(H)NL® (RY)
follows from this fact and from the Gagliardo—Nirenberg inequality [9]
d d

Iflle < CpallVAVIA 0= 5 =2 @
for some positive constant C, 4 and where
[2,400]if d=1;
pe [2,400)if d=2; , )

2,2d/(d—2)]if d> 2.
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2.2. Formal solutions

We look for a formal stationary solution to (1) close to the solution to the linear problem (3)
by means of a formal power series

E:=E(v)= NETOOEN(V) and ¢ ;== (x,v) = NE{II}oowN (x,v), (6)
where
Z Ve, and Yy (x,v) Z V' (x @)
n=0 n=0

and where ¢, and ¢, are defined by induction as follows. In fact, £ and  depend on the
perturbative parameter v; sometimes, for simplicity, we will omit this dependence when this
fact does not cause misunderstanding.

Remark 3. We should underline that the following formulas make sense provided that the
vectors u, and v, below belongs to L*(R¢) and ¢,, € D(H) N L% (RY); we will discuss this point
in section 3.

Let ey and ¢, be defined for any £=0,1,...,n— 1, where (¢o,d¢);2 =0 for any ¢ =
1,2,...,n—1, and let

n—1ln—1—m

Vn— I*Z Z ¢m¢/¢n 1—m—£ s Un = Zem(ybn m-

m=0 (=0

We define

en = (0, Vu—1)12 (3)
and

On = €no + Uy — Vn—1.
By construction it follows that

(tn, @0)12 = 0 and (pn, o)1z = 0

that is ¢, € II*+L?, where IT+ = 1 — IT and II is the projection operator on the space spanned
by ¢o. Hence, the resolvent operator [H — e] ~! is bounded on IT-1? and we can define

bn=[H—eo] " @n=[H—eo) ' I, =TI [H—ey)] 0, eIITL2.  (9)

Lemma 1. Let e, and ¢, € II-L? be defined by induction for any n > 1 as in (8) and (9). Let
En and 1y be defined as in (7). Let

ry 1= Hpy + v|y "y — Extdy, (10)

Then ry is a power series in v with finitely many terms where all the coefficients of the powers
V", with n < N, are exactly zero.

Remark 4. Since ¢ is a simple and isolated eigenvalue of the selfadjoint operator H and since
©n L IIL? for any n > 1 then:

1
| Pnllzz < KH%HU- (11)
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Proof. By formally substituting (7) and ( 6) in (1) we then have to check that
S VHG AV Von Y V"bmy Vide=Y Ven Y 1V én. (12)
n=0 n=0 m=0 =0 m=0 n=0
This equation can be written as
Z VnH¢n + Zyn+lvn = Zyn [60¢n +u, + en¢0]
n=0 n=0 n=0

where u, and v, are defined above. By equating the term with the same power of the perturb-
ative parameter v we have that

Hoog = egdg, for n=0, (13)
which is satisfied by assumption, and

Hy +vn—1 = €0 + €0 +uy, for n>1.
If we multiply both side by ¢ then

(G0, Hn)iz + (90, va1)12 = enll b0l 72 + eo(o, n)12 + (G0, un).2

from which it follows that

o — <¢)0,Vn—l>L2 — <¢0,u,,>Lz _ <¢0,V11—1>L2 _ <¢0,Vn—1>L2’

||¢0Hi2 ||¢0Hiz

since ¢g L u, and ||¢y|

12 = 1. If we denote now

©On = €yPo + Uy — Vp_1

then ¢, L ¢o and thus we get

¢n = [H_eO]ilson'

2.3. Main result
Here we state our main result.

Theorem 1. Let d =1,2,3 and let Hypotheses 1 and 2 be satisfied. Then, there exists v* >
0 such that for any v such that |v| < v* the nonlinear Schrédinger equation (1) admits a
stationary solution v (x,v) € D(H) N L%(RY), associated to an energy E(v), given by means
of the strong-convergent power series

P (x,v) = ZV"@ (x) and E(v) = Zunen, (14)
=0

n=0

where ¢, (x) and e, are given in lemma 1.

6052



Nonlinearity 36 (2023) 6048 A Sacchetti

Remark 5. It is worth noting that the stationary solution v given by (14) is not normalised to
one, that is, to the value of the norm of the unperturbed eigenvector ¢, which is assumed, for
convenience of argument, to be equal to 1. In fact, a simple calculation gives that

n

[¥]7: = Zz/"rﬂ where r, = Z<¢n,m,¢m>.

n=0 m=0

In particular

ro = ||oll> = 1

ri = (b0, 1)+ (¢1,¢0) = 0,since ¢ € IHL?,

and

ra = (o, 82) + (¢1,01) + (¢2,00) = ||$1]72 > 0,since ¢, € TI+L*.
Thus

0] =1+ 17g(v)

where g(v) is the analytic function obtained by means of the perturbative procedure for v in
a neighbourhood of v =0 and such that g(0) > 0. If one looks for a normalised solution may
act as follows. Let

P

112

be the normalised stationary solution to the equation
H + 213 24 = E0
where E is still given by (14) and where
vi=0(v)=v|¢lp=v[1+g)]. (15)

Such a relation is invertible with inverse function

vi=v(D).
In conclusion, if one look for the normalised solution to the equation
H + | P = Ey (16)

for a given value of the parameter v let v* be such that 7(v*) = v, let ¢ and E be the perturb-
ative solutions given by (14) corresponding to such a value of v*; then ¢ /||¢|| ;> and E are the
normalised solution to (16).

In addition, by means of the scaling v» = v 2w then (1) takes the form of the v-normalised
equation

Hw + |w|*w = Ew (17)
where we have just seen that
iz = vl =v (1 +vg (v)].

Thus, for v in a neighbourhood of 0, we can find a continuous curve (E(v), ||w||;2), near the
point (eg, 0), for solution to (17). Recall that the analysis of the slope of this curve is important
in the stability analysis of the stationary state (see, e.g. the ‘slope condition’ in [14]).
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3. LP estimates

As anticipated in remark 3 it turns out that formulas (8) and (9) make sense provided that
v, and ¢, belongs to L?. Hence, we have to prove that ¢, belongs to L> N L® for any n. In
order to obtain a I”-norm estimate of the vectors ¢, we make use of the Gagliardo—Nirenberg
inequality (4).

Lemma 2. Let V(x) be a potential bounded from below (2); let p and C, 4 as given in (4)
and (5). Concerning the H' and L norms of ¢, we have that

||¢'1HH‘ < H‘»OVIHL2

and
[6nllr < 2 (p,d) [|pnll12
for some constants
11 e-T7" 1 [1 e—T7""
=5 + XJr A and i (p,d) := Cp,dAl_p A + A2 (18)
independent of n.

Proof. From remark 4 we have (11). Then, we have to estimate

IVGullz = IV [H = o] a2
Since V(x) is bounded from below, V > T', then
IV [H = eo) ™ pull7> = ([H—eo] " pu, —A[H—e0] " )2
([H—eo] ™ pnspudiz = ([H —eo] ™ pu, (V—e0) [H—eo] " o)z
([H — o] puspu)iz + (o —T) | [H = eo] ' a7

since —A = H— ¢y — (V—¢p). Hence

/N

1/2
- 1 6()7].1
IVE- el ol < [+ 25| el

Therefore, we can conclude that
6nllr < Coal Vullfallbnll 1> °

1 o1 ep—T77?
<Gugsloll |3+ 25| ol

< p2llonllee
where p;(p,d) is the constant (18) dependent on p and d but independent of 7. 0
Lemma 3. Let V(x) be a potential bounded from below: V>T. Let d=1,2,3 and let ¢; €
D(H)NLS forj =0,...,n— 1, then ¢, € D(H) N LS.

Proof. Indeed, u; € L2, Jj =0,...,n, by construction. Concerning v; we have that it belong
to L? for any j =0,...,n— 1 from the Holder inequality. Hence E, is well defined and
¢; belongs to L* for any j =1,...,n. From this fact and since ¢; L ¢, j =1,...,n, then
¢n = [H—eo] " ¢, € D(H). Finally, by lemma 2 then ¢, € LS where we apply the Gagliardo-
Nirenberg inequality (4) with p =6. O

6054



Nonlinearity 36 (2023) 6048 A Sacchetti

Remark 6. Infact, ¢; € L” forany p € [1,+o0]ifd=1,p € [1,+00)if d=2and p < 2d/(d —
2)ifd>2.

Remark 7. From lemma 3 and from remark 2 then we have proved that ¢, € D(H) N L® for
anyn=0,1,2,....,and u,, v,_ € L>foranyn=1,2,. ...

4. Are the formal series (7) convergent as N goes to infinity? Proof of
theorem 1

In order to prove the convergence of the perturbation series we give the following results.
Lemma 4. Let
Cn = ||Gullr2 ,dn := || @Pnlls and by, :=|en|, n=0,1,2,...,

then

n—1l—m

de Z dedy_1—¢—m
n; n—1—m
< 2de Z dydy—1—¢— m+zbmcn m]
n—1—m
d 6d [szm Z dédn 1—4— m+zbmcn m]
m=0

Proof. In order to prove the result above we remark that

by = |en| < [[Va-illz,cn = | @nllre < XHS@n”L2
and

d, = H(bn s S M2 (6’d) ||<,0n||L2,

from lemma 2, where

enlle < lenl + [Va-tlle + lalle < 20vallez + llunl] 2 (19)

Hence, the above result follows since

n—ln—1—m

et € 33 omlshonhieln1-1-ls

m=0 ¢=0
n—ln—1—m
=YY didpdp_i—t-m (20)
m=0 ¢=0
and
n—1
||unHL2 < mecn7m~ (21)
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Lemma 5. Let us assume that

d; < 6e* ,,Jj=0,....n—1, (22)
j T 1)2
for some o > 0 and where
6 =do=||ol1z-
Then
n—1—m
dm dZdn 1—0—m \ C1§3 o= ___—__ (23)
Z 2 = 1)
for any n > 1 and some C; < 4-4.7°.
Remark 8. By construction, (22) holds true for j = 0.
Proof. Indeed, from (22) it turns out that
n—1 n—1l—m
de Z dfdnflféfm < 6Sea(n—l)1
m=0 £=0
where we set
i: 2 nim 2 1 2° 24)
—m+1)" = ((+1) (n—m—1)
A simple estimate proves that
n—1—m
2 4.7
> - T T P
P (n—m—10>  (n—m) (n—m)
where J(n) has been defined and estimated in appendix. Therefore,
n—1
1< _—
Z (n—m)* (m+1)*
2-47 470 47 1)’ 4.47
< — TI(n—1)< — < 2(n+2) S 2
n (n+1) n (n+1)
from which the statement follows. O
Remark 9. From lemma 5 and from (20) it follows that
1
||V,_1 || » < C153€a(n71) .
i (n+1)*
In fact, 6 = 1 because we have chosen the normalisation condition ||¢gl;> = 1.
Lemma 6. Let us assume that
. 1
b; < Be*l=D j=1,....n—1, (25)
' (+1)°
and
c; < e ! j=1,...,n—1 (26)
IS (J N 1)2 ) ) ) )
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for some B > 4by = 4|e|| and where
v =max[4ci, 1], c1 =41l
and where a > 0 has been introduced in lemma 5. Then
n—1
a(n—1) 1
mecnfm < CZB’Ye 20 (27)
m=1 (l’l + 1)
for some Cy < 2.7.
Remark 10. By construction, (25) and (26) hold true for j = 1.
Proof. The proof immediately follows since

n—1

mecnfm < ﬁ’yea(n_l)'](n)
m=1

where J(n) < ﬁ (see appendix). O

Remark 11. In fact, the estimate of the constants C| and C; are far to be optimal. Numerical
analysis suggests that a sharp estimate for the term / defined in (24) has the form

_ 8 - where g(n) < g (10) = 10.44589874,
(n+1)
that is
C; <10.45.
Concerning C; from appendix numerical analysis proves that
Cy; <1.52.
Remark 12. From lemma 6 and from (21) it follows that
1
litn]| > < CoByec =Y :
(n+1)°
Remark 13. From remarks 9 and 12 and from (19) it follows that
1
nllrz < C3e*"7Y :
where
C3=[2C18 + Gy .
Collecting lemmas 4-6, we have that
1
by < G0 (28)
(n+1)
e(l/n e—(X
N s el O (29)
(n41)*> A
an 6 d —OéC
e lu2< ) )e 3 (30)

(n+1)° )
if (22), (25) and (26) hold true.
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In particular, if we choose
[ = max [4b1,C153]
and o > 0 large enough such that

o 6,d)e *C
¢ e < 1and 209G
~A 1
then we have that (22), (25) and (26) hold true for j = n, too.
In conclusion, we have proved that

1 €29

Lemma 7. There exists four positive constants o> 0 large enough, >0, v>0 and § >0
independent of n such that the following estimates

R P N —
(n+1)
1
cn g ,_Yeozn 5
(n+1)
1
dn <6ea’1727
(n+1)

hold true for anyn=1,2,....
Remark 14. From remark 13 and from lemma 2 it follows that ¢ is norm convergent in H'.
Finally:

Theorem 2. Let d =1,2,3 and let v be such that |v| < e~® where o> 0 is large enough as
given in lemma 7. Then the power series Ey is absolutely convergent, and the power series )y
is norm convergent in L? and L°, and the power series Hiy = er:’:() V"Ho,, is norm convergent
inl?.

Proof. Convergence of Ey and 1)y directly comes from lemma 7. Concerning the convergence
of SV v"He, we simply remark that

-1 —1
|Honllz = |H[H — eo]  @allz < ll@nllz + leol [ [H —eo] " @nllz2
< (14 |eo]A™! Onllrz < Cqe™”
< (1A ™) onlls < Coe™ s
for some C; > 0, and thus the formal power series
>V Ho,
n
is norm convergent in the space L? if |v| < e=®. O

So far we have proved that there exists vectors u, w, ¢ € L?, v € L% and z € H' such that
Yy — uin L?
Yy —vin L°
Hipy — win L?

le—)Zin Hl
N

ZV"(pn —@in L?

n=1
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as N goes to oo. First of all we remark that
o0 (o] o]
—1
u:Zynfbn:¢0+Zyn¢n:¢0+ZV’l[H_ed ©n
n=0 n=1 n=1

= o+ [H—eo) '

since [H —eg] ! is a bounded operator on the eigenspace orthogonal to ¢y, and where the
convergence of the infinite sum has to be intended in the space L%. Hence

ueD(H).
Furthermore, we immediately have that
[l =zllz2 < llu = Uwllz + llz — Pwll2
< lu=vnllz + llz = ¥nllm — 0,
hence u = z. Similarly, from (4) for some p € [0, 1] we have that
1o < v —twlles + llz—¥w
< v = twllae + Coalle = wnlialle— il
<=l + lle = ol [lelloe + lwll2) =" =0,
hence v = z. In conclusion, there exists a vector ¢p € D(H) such that

Yy —1pin L*, L% and H',

1

lv—2z Ls

and
H = [H—eo] ¥ +eo> = [H—eo] (60 -+ [H—eo] ') +eot
=e) +¢
N N N
Hyy=HY V'¢,=Hdo+ » v'Hp,=Hoo+» v'H[H—eo] ' ¢,
n=0 n=1 n=1
N N
—e0 ) V't Y Vo eqth +¢ = Hy
n=0 n=1
as N — oo.

Thus we have proved the following result.
Lemma 8. Yy — ¢ € D(H) in L?, LS and H', and Hyy — Hy in L.

Finally, it is not hard to see that 1 is a stationary solution associated to the energy E to (1).
Indeed:

Lemma9. Let
ry := Hoy + v|ooy [y — Exthy
then
Jim[rvllz2 = 0. (32)
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Proof. A simple straightforward calculation gives that

N N N
ry = Z VnH(bn + Z Vn+m+€+] ¢n¢m¢3£ _ Z th+mem¢n
n=0

n,m =0 n,m=0
N 3N+1 n—ln—1-—m 2N n
= ZVRH(Z)H + Z v Z Z ¢m¢€¢n—m—€—11 _Zy” Zem¢n—m‘|
n=0 n=1 m=0 (=0 n=0 =0
3N+1 2N
= Z Vv, — Z V"u,
n=N+1 n=N+1

where the two power series Y~ v"v,_1 and >~ | v"u, are norm-L? convergent for v small

enough. Then (32) follows. O
Now, we are ready to complete the proof of theorem 1.
Indeed, let
ri=Hi + v’ —Ep =ay+by+cey+ry
where

ay = Hy — Hipy — 0in L?
by =v [|¢[*¢ — |¢n|*by] — 0 in L?
cv= —[EY — Eyyoy] — 0in L%,
From the above results immediately follows that
lan||> = 0 and [|en]l2 — O
as N goes to infinity. Concerning by one notes that
bwllzz <N (0 =) [ Plle + 1 (0 = vow) bowlle + | (¥ —ow) [nlll e

<Pl = onllzs + 19 = dnllzelld dulles + 1w 11 = wles
< [Pl + P wnle + HewPlle] 19 = valles =0

as N goes to infinity. From these facts and since (32) then theorem 1 is proved.

Remark 15. Since the constants 3, v, d, A, Cy, C,, C3, C4 and p(6,d) can be estimated then
one can obtain the value of the parameter « solution to (31). Hence, the estimate v* < e~ of
the radius of convergence follows.

5. A Toy model—infinite well potential

Let us consider, in dimension one, the infinite well potential of the form:

Cfoif x <7
V(x)—{ +ooif x| =7

5.1. Linear time-independent Schrédinger equation
The linear operator H is formally defined as follows:

H¢ :_1/1//, RS (—7T,+7T) ) /(/) GLZ((_Wv—’_ﬂ-))
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with Dirichlet boundary conditions

¥ (=m)=¢ (+7)=0. (33)

By means of a straightforward calculation it follows that the spectrum of H is purely discrete
and it is given by means of simple eigenvalues

1, .
A]'21.127‘]:1727"'7

with associated normalised eigenvectors

1 cos(jx/2), oddj
9 (x) = \/7?{ sin(jx/2) , evenj

The resolvent operator is given by

(127" 0) ) =3 () (o (34
j=1"

5.2. Perturbation theory

By making use of the perturbation formula we compute now the coefficients of the formal

power series (7) where
1
ey = Al = Z

is the first unperturbed eigenvalue with associated unperturbed eigenvector

60(2) = a1 () = = cos(x/2).

Remark 16. Here, we have considered, for argument’s sake, the formal power series (7) asso-
ciated to the first eigenvalue A;. Similarly, the same method may be applied to the unperturbed
eigenvalues ); for any j > 1.

The perturbation theory exploited in lemma 1 gives that

3 gl _ 3
= :O = = —
vo =y, u1 =0, e N
and
P11 =eigo— B
Finally
) =1
— ([H=— N 4
h1 ([ €] @1) (x) .;_2 N e (%) (gj 1)1,

Sp— o1 (3
= /\3_605]3(X)<5]37¢0>L2— 8[W}3/2005<2x),

By means of a straightforward calculation the other terms follow; for instance

R L e
2T 7302 BT 25603 4T T 204802
75 1257
€s 6 — =

T 40967 0T T 13107209 T

6061



Nonlinearity 36 (2023) 6048

A Sacchetti

Table 1. Infinite well potential—table of values corresponding to the case of defocusing
nonlinearities when v =0.1 and v = +1.

vr=0.1 v=1

N Ey [1Yowll 22 ll7wllz2 Ey llvwllze [l7wllz2

0 025 1 0.25-107"  0.25 1 0.25-10°
1 0.273873 1.000007916 0.16-107° 0.488732 1.000791259 0.16-10~"
2 0273778 1.000007728 0.30-107° 0.479234 1.000614941 0.28-10~2
3 0.273780 1.000007730 0.52-10~7 0.481123 1.000634507 0.48-1073
4 0.273780 1.000007730 0.88-10° 0.480777 1.000632165 0.81-107*
5 0.273780 1.000007730 0.15-107'° 0.480837 1.000632442 0.13-10~*
6 0.273780 1.000007730 0.24-10~'2 0.480827 1.000632410 0.22-107°

Table 2. Infinite well potential—table of values corresponding to the case of focusing
nonlinearities when v = —0.1 and v = —1.

v=-0.1

v=-—1

En

(9wl

w2

Ey

l[4wllz2

llrallce

0.25

0.226168
0.226032
0.226030
0.226030
0.226030
0.226030

AN N R W= O 2

1

1.000007916
1.000008 160
1.000008 108
1.000008 108
1.000008 108
1.000008 108

107!
1073
107
1077

0.25-
0.17 -
0.30 -
0.53 -
0.90-107°
0.15-1071°
0.25-10712

0.25
0.011268
0.001769
—0.000121
—0.000467
—0.000527
—0.000537

1

1.000791259
1.000992585
1.001018592
1.001021 668
1.001022048
1.001022093

10°
107!

0.25-
0.17-
0.32-
0.58-
1.00 -
0.17-
0.28 -

and
2 (x) =
¢3(x) =
¢ (x) =

¢s (x) =

6475/2

C512A7/2
1
4906772

1

9x
+9cos (2>
1 S5x Tx
{243cos < > ) +275cos ( > ) + 154 cos ( > > +
Ox 11x 13x
+54cos(2)+11 os( > )+c ( > )}

Pe (x) =

¢7(x):

262144713/2

{9 cos

[27 cos

pen(3) (3
(5)+
() (3] 70 (2) (2]
! {8100( ) 75cos< )+35cos(72x>+

3276871172

~(7))

)

o(3) reos(5)]

In tables 1 and 2 we compute the values of Ey, ||yl 2 and ||ry|| 2, where ry is the remainder
term defined by (10), for different values of N and for » = 0.1 and v = %1. It turns out that
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the formal power series (7) rapidly converges and that the norm of the remainder term ry
rapidly decreases when N increases.

5.3. Nonlinear time-independent Schrédinger equation

The nonlinear time-independent equation (1) becomes
" vy =By, x € (—m +m), (35)

with Dirichlet boundary conditions (33). If we restrict our attention to the case of v € R and
E € R then we known that the stationary solution is, up to a constant phase factor, a real-valued
function. The proof of this result is quite similar to the one of lemma 3.7 given by [17]. Indeed,
if we multiply both sides of (35) by v, we obtain that

—0" P+t =By
and similarly
—0"y + vyl = Elp[.

Hence
- !

0=0"9 =" = (V' —9")
from which follows that

V' —p'p =C,¥x € (—m,+7),
for some constant C. Recalling that 1) (+7) = 0 then C = 0 and thus § = arg()) is a constant
terI"i"lﬁerefore, stationary solutions v to (35) may be assumed to be real-valued and they satisfy
to the equation

"+ =FE, x€(—m,+7). (36)
The general solution to such an equation has the form [10]
P (x)=xsn[¢(x—x0),k], x €R,

where x( and ( are arbitrary constants and where

_ 2 )
k2:E < and X2:2E C.
¢ v

The Dirichlet boundary conditions imply that xo = —7 and that 2{7 is a zero of the Jacobian
Elliptic function sn(x, k), i.e.:

2 =2K(kym, m=1,2,...,

where K(k) and E(k) are the complete elliptic integral of first and second kind. The norm of
the wavefunction ¢ is given by

+m 2 _
61— [ st et m) s =2 KL ED
2K —EW®
=27 x? KWR

Hence
2 K (k)

1
—gmﬂwﬁb

X

6063



Nonlinearity 36 (2023) 6048 A Sacchetti

In order to find the stationary solutions to (36) the quantisation conditions read

2 el R =B e (=K i

v 2w K (k) — E (k)

5.3.1. Defocusing nonlinearity: v>0. When v >0 then stationary solutions there exist
provided that E — ¢? > 0 and & is a real-valued solution to the equation

vm
K(k) (K (k) = E(0)] = 7072 (37)
If we remark that the function K(k)[K(k) — E(k)] is a monotone increasing function such that

kgrghK(k) [K (k) — E (k)] = 0 and kgril K (k) [K (k) — E(k)] = +o0

then the equation above (37) has a unique solution k,, € (0,1), forany m = 1,2, ... fixed, and
then there exists a family of values of the parameter E:

2
E:[W] [1+R], m=12,.... (38)

5.3.2. Focusing nonlinearity: v<0. On the other hands if v <0 then stationary solutions
there exist provided that E — (> < Oand k = i, k € R, is a purely imaginary complex number;
in such a case we recall that

ky
sn (x, ik) klsd( xV 14 K2, kl) where sd (x,k;) = snixki)
d ( 7k1)
and where
1
ki=r/vV1+kr2and k| = — k=
1=/ 1 T

Hence, equation (37) becomes

K(ir) [K (ir) — E(ir)] = ruw Iz (39)

If we remark that the function K(ix)[K(ix) — E(ix)] is a monotone real-valued decreasing
function for k € [0,+00) such that

RE,%LK(M) [K(ik) —E(ix)]=0and lim K(ix)[K(ix)—E(ik)] = —00

K——+00

then the equation above (39) has a unique solution x,, € (0,+00) for any m = 1,2,... fixed,
and also in this case there exists a family of values of the parameter E:

™

) 2
E:[K(m’")m] (=], m=1,2,.... 0

5.4. Comparison between the perturbative result and the exact one

From table 1 the perturbative result gives that the stationary solution to (1) for ¥ =0.1 and
N =6 has energy

E = 0.273780 41)
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with associated wavefunction with norm
14 ||z = |6l 2 = 1.000007730. 42)

The value of the solution & to (37), where m = 1 and where the value of ||4 | ;2 is the one in (42),
is given by

k=0.2474031338
and the associated energy E is given by (38)
E =0.273780
in full agreement with (41). Similarly, For » =1 and N = 6 then table 1 gives that
E¢ = 0.480827 43)
with associated wavefunction with norm
1 ||z =~ ||¥6ll2 = 1.000632410.
From (37) and (38) then (where m=1)
k =0.6682383718 and E = 0.480829

in good agreement with (43).
From table 2 the perturbative result gives that the stationary solution forv = —0.1 and N =6
has energy

E¢ =0.226030 (44)
with associated wavefunction with norm

14122 2 [[sl2 = 1.000008108.
From (39) and (40) then (where m=1)

Kk =10.2574471610 and E = 0.226030
in full agreement with (44). Similarly, For v = —1 and N = 6 then table 2 gives that

Ec = —0.000537 (45)
with associated wavefunction with norm

[ 12 = ||l 2 = 1.001022099.
From (39) and (40) then (where m=1)

Kk =1.001546564 and E = —0.000540

in very good agreement with (45).

6. Harmonic oscillator

Let us consider, in dimension one, the harmonic oscillator with potential
V(x) =x*, x€R.

That is, the linear operator H is defined as follows:
HY) =" +x*), xR, ¢ € *(R).
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Table 3. Harmonic oscillator potential—table of values corresponding to the case of
defocusing nonlinearities when v =0.1 and v = +1.

v=+0.1 v=-+I

N Ey 19wl [l7nlz2 Ey 1wl llrnllz2

0 1 1 0.43-107" 1 1 0.43-10°

1 1.039894228 1.000006539 0.24-10~3  1.398942280 1.000653715 0.23-10"!
2 1.039728699 1.000006483 0.25-10—5  1.382389419 1.000599885 0.24-102
3 1.039730376 1.000006484 0.24-10~7 1.384066368 1.000602159 0.23-10—3
4 1.039730361 1.000006484 0.22-10~% 1.383909162 1.000602036 0.21-10—*
5 1.039730361 1.000006484 0.21-10—'" 1.383923548 1.000602043 0.18-10
6 1.039730361 1.000006484 0.43-10~'2 1.383922248 1.000602043 0.17-10=°

It is well known that the spectrum of H is purely discrete and it is given by simple eigenvalues
A=2—-1,j=12,...,

with associated normalised eigenvectors

1 R AREEYA
()= — = /2.
0= (3) A,
where
i 2 dj 2
Hi(x) = (-1)e o

are the Hermite’s polynomials.
By making use of the perturbation formula we compute now the coefficients of the formal
power series (7) associated to the first unperturbed eigenvalue

60:)\121

with associated unperturbed normalised eigenvector

Po(x) =q1 (x) = 1 e 2,

N&s
In such a case the perturbative procedure gives that
B U
||¢0Hiz \/T
Furthermore,
o R |
¢r=[H—e] 1= ]Zz N e (x) (gj, 01)12
WA
~ Z mq_i (xX){gj, 1)1z
j=2"

where () = e;¢p — @3 and where the resolvent operator is given by a with infinitely many
terms. In numerical calculation we truncate the series for j up to a some large enough positive
integer N,; in numerical experiments we observe that N, = 60 is a suitable value. Iterating such
a procedure we can obtain in tables 3 and 4 the numerical values of Ey, ||¢n||;2 and ||ry||2
for N=1,2,...,6, where ry is the remainder term defined by (10), for v = £0.1 and v = +1.
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Table 4. Harmonic oscillator potential—table of values corresponding to the case of

focusing nonlinearities when v = —0.1 and v = —1.

v=—0.1 v=-—1
N En llbwllz2 lIallze Ey 9wl lIrallze
0 1 1 0.43-107" 1 1 0.43-10°
1 0.9601057720 1.000006539 0.24-10=3 0.6010577196 1.0006537148 0.25-10~!
2 0.9599402433 1.000006596 0.25-107° 0.5845048581 1.0007119732 0.26-1072
3 0.9599385664 1.000006596 0.24-10~7 0.5828279087 1.0007147627 0.25-1073
4 0.9599385507 1.000006596 0.22-10~° 0.5826707021 1.0007149164 0.24-10—*
5 0.9599385505 1.000006596 0.20-10~' 0.5826563161 1.0007149254 0.22-107°
6 0.9599385505 1.000006596 0.28-10~'2 0.5826550168 1.0007 149260 0.20-10~°

As in the toy model discussed in section 5 it turns out that the formal power series seems to
rapidly converges for |v| < 1.

7. Conclusions

In this paper we have applied the Rayleigh—Schrédinger perturbation theory when the unper-
turbed linear operator has an isolated nondegenerate eigenvalue and where the nonlinear term
plays the role of the perturbation. The power series has coefficients that can be iteratively
obtained and such a series is proved to be convergent when the strength v of the nonlinear
term has absolute value less than a threshold value v*, for some v* > 0.

From the numerical experiments resumed in tables 1, 2 and tables 3, 4 one has evidence that
the formal power series (7) rapidly converges for |v| small enough when N goes to infinity.
In particular, from figure 1 one can see that |e,| and ||¢,||;> behaves like C" for some positive
constant C > 0 that can be numerically estimated, and then one can conclude that the power
series (7) converges when |v| < v* := C~!.

For instance, concerning the convergence of the power series for Ey in the model with an
infinite well potential we observe that

ay
8"

e, =(—1)"4
where

a, ~a"
for large n and where

a<4.

Thus, we expect that the power series Ey is absolutely convergent for any v such that |v| < v*
where v* = 877; > 2m. Similarly, a numerical estimate of the radius of convergence for the
harmonic potential case could be obtained.
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10-16

10-204

Figure 1. In the two figures are respectively plotted the values of |e,| (full lines) and
ldnllz2 (broken lines) for the infinite well potential case (left hand side plot) and for the
harmonic potential case (right hand side plot).
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Appendix. A simple estimate

Let

A simple inequality gives that

(n+1)/2 2
() <2/ 1 a2 1+2nIn(n)  f(n)
1 x2(

n+1-x)7° (n+1)n (n+1)°
where

n? — 1+ 2nln(n)

< 2.70.
(n+1)n

f(n):=2
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In fact, such an estimate is not optimal. A simple numerical experiment shows that
n) = &)2 where g (n) < g(19) = 1.517 106 786.
(n+1)

Furthermore, a closed expression for J(n) could be given by means of Polygamma functions;
however, we do not dwell here on this detail.
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