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Abstract
Treating the nonlinear term of the Gross–Pitaevskii nonlinear Schrödinger
equation as a perturbation of an isolated discrete eigenvalue of the linear prob-
lem one obtains a Rayleigh–Schrödinger power series. This power series is
proved to be convergent when the parameter representing the intensity of the
nonlinear term is less in absolute value than a threshold value, and it gives a
stationary solution to the nonlinear Schrödinger equation.
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1. Introduction

Nonlinear Schrödinger equation (hereafter NLS) is a research topic with a large variety of
applications [24]: from problems in nonlinear optics to the analysis of quantum dynamics
of Bose–Einstein condensates. In particular, the study of its stationary solutions has attracted
increasing attention, and, apart from the few cases in which the solution exists in explicit form,
the analysis has mainly focused variational methods or on approximation methods based on
both semiclassical and perturbative techniques.

Variational methods are widely used in order to construct bound states for NLSwith a linear
potential, typically by solving a minimisation problem; for instance, this is done by [18] where
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they proved the existence of a small amplitude stationary solution that bifurcates from the zero
solution (see also [21, 22] where nonlinear scattering is considered for NLS with, respectively,
one and two nonlinear bound states and the references there in). Similarly, in [5] variational
methods have been applied to prove that for the minimiser of the nonlinear Hartree energy
functional a symmetry breaking effect occurs.

For what concerns semiclassical methods, they have been successfully used in this frame-
work where several authors have been able to demonstrate the existence, in the semiclassical
limit using variational techniques, of stationary solution concentrated around the critical points
of the potential [1, 13, 16, 27]. Also the occurrence of bifurcation phenomena has been dis-
cussed in the semiclassical limit [19].

On the other side, the perturbative approach takes up the underlying idea of Rayleigh-
Schrödinger series expansion, where the solution is written as a formal series of powers whose
coefficients are determined recursively and where the convergence of the series is under invest-
igation. Typically in these cases the perturbation is represented by the nonlinear term, and the
unperturbed Schrödinger equation, where the nonlinear term is absent, admits isolated eigen-
values. Several applications of this idea have been developed over the years [2, 3, 8, 12, 25, 26]
limited, in general, to a formal analysis of the series without proving its convergence. In fact,
we should emphasise that the problem of convergence of the power series has been solved for
some kind of nonlinear Schrödinger equations; more precisely, the spinless real Hartree–Fock
model and the Thomas–Fermi–Von-Weizsäcker model has been considered by [8] proving, in
particular, that in the first model the Rayleigh–Schrödinger perturbation series has a positive
convergence radius.

Finally, it should be mentioned that numerical methods based on discrete Galerkin approx-
imations or spectral splitting methods are widely and effectively used for the study of time-
dependent NLS (see [4, 6, 7, 20, 23] and references therein).

In this paper we aim to give a rigorous basis to the perturbative approach for computing
the stationary solution of the NLS by going so far as to demonstrate, under fairly general
assumptions, the convergence of the Rayleigh–Schrödinger series when the perturbative para-
meter, which measures the intensity of the nonlinear perturbation, is less in absolute value
than a given threshold. In this way it is shown that the steady states associated with isolated
and nondegenerate eigenvalues of the linear operator transform into stationary solutions of the
NLS when nonlinearity is switched on, and the latter can be computed very efficiently through
the convergent perturbative series. Finally, it is also possible to give a lower estimate of the
radius of convergence of the power series.

The paper is organised as follows. In section 2 we describe the model, we write the formal
power series of the stationary solutions and we state the convergence result in theorem 1. In
section 3 we state and prove some technical preliminary results. In section 4 we obtain the
convergence of the perturbative series proving thus theorem 1. In sections 5 and 6 we discuss
a couple of one-dimensional examples: namely in section 5 we consider the case of an infinite
well potential, in this case we are also able to compare the perturbative results with the exact
ones; in section 6 we compute the perturbative series in the case where the potential is the
harmonic one. The discussion of these two models is, in some sense, ‘pedagogical’; indeed,
by means of numerical experiments it is possible to see that the coefficients of the power series
expansion rapidly decreases and then one can guess the convergence radius of the power series.
Finally, in section 7 we draw some closing comments. A small technical appendix closes the
paper.
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2. Main results

2.1. Assumptions

We consider the time-independent nonlinear Schrödinger equation

Hψ + ν|ψ |2ψ = Eψ , ψ ∈ L2
(
Rd

)
, (1)

where H=−∆+V is a linear operator formally defined on L2(Rd). The nonlinear term plays
the role of perturbation and its strength ν ∈ C is a small perturbative parameter.

Hypothesis 1. The potential V is assumed to be a real-valued piecewise continuous function
bounded from below:

V(x)⩾ Γ ,∀x ∈ Rd , (2)

for some Γ ∈ R.

Remark 1. We assume that the potential V(x) is a piecewise continuous function bounded
from below for the sake of simplicity. In fact, we must remark that one could extend our
treatment to the case where some milder conditions on V(x) are assumed; however, we do
not dwell on those details here. On the other side, it might be interesting to consider the case
in which V(x) is given by means of an attractive Dirac’s δ [11]; this case does not fall under the
hypothesis 1.

Hence, H admits a self-adjoint extension, still denoted by H, on a self-adjointness domain
D(H)⊂ L2(Rd).

Hypothesis 2. The discrete spectrum of H is not empty: σd(H) ̸= ∅, and admits a non degen-
erate eigenvalue e0 ∈ σd(H) with associated eigenvector ϕ0 ∈ D(H):

Hϕ0 = e0ϕ0,ϕ0 ∈ L2
(
Rd

)
. (3)

Hereafter we can assume, for simplicity’s sake and without loss in generality, that the unper-
turbed eigenvector ϕ0 is normalised to one, i.e.:

∥ϕ0∥L2 = 1 .

In the following we denote

Λ = dist [σ (H) \ {e0} ,e0]> 0 .

Remark 2. Since ϕ0 ∈ D(H) and the potential V is bounded from below then it follows that
ϕ0 ∈ H1 because

∥∇ϕ0∥2L2 = ⟨−∆ϕ0,ϕ0⟩L2 = e0∥ϕ0∥2L2 −⟨Vϕ0,ϕ0⟩⩽ (e0 −Γ)∥ϕ0∥2L2 .

Thus

ϕ0 ∈ D (H)∩L6
(
Rd

)
follows from this fact and from the Gagliardo–Nirenberg inequality [9]

∥ f∥Lp ⩽ Cp,d∥∇f∥ρ∥ f∥1−ρ ,ρ=
d
2
− d
p

(4)

for some positive constant Cp,d and where

p ∈

 [2,+∞] if d= 1;
[2,+∞) if d= 2;
[2,2d/(d− 2)] if d> 2.

. (5)
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2.2. Formal solutions

We look for a formal stationary solution to (1) close to the solution to the linear problem (3)
by means of a formal power series

E := E(ν) = lim
N→+∞

EN (ν) and ψ := ψ (x,ν) = lim
N→+∞

ψN (x,ν) , (6)

where

EN (ν) =
N∑
n=0

νnen and ψN (x,ν) =
N∑
n=0

νnϕn (x) (7)

and where en and ϕn are defined by induction as follows. In fact, E and ψ depend on the
perturbative parameter ν; sometimes, for simplicity, we will omit this dependence when this
fact does not cause misunderstanding.

Remark 3. We should underline that the following formulas make sense provided that the
vectors un and vn below belongs to L2(Rd) and ϕn ∈ D(H)∩L6(Rd); we will discuss this point
in section 3.

Let eℓ and ϕℓ be defined for any ℓ= 0,1, . . . ,n− 1, where ⟨ϕ0,ϕℓ⟩L2 = 0 for any ℓ=
1,2, . . . ,n− 1, and let

vn−1 =
n−1∑
m=0

n−1−m∑
ℓ=0

ϕmϕ̄ℓϕn−1−m−ℓ ,un =
n−1∑
m=1

emϕn−m .

We define

en = ⟨ϕ0,vn−1⟩L2 (8)

and

φn = enϕ0 + un− vn−1 .

By construction it follows that

⟨un,ϕ0⟩L2 = 0 and ⟨φn,ϕ0⟩L2 = 0 ,

that is φn ∈Π⊥L2, where Π⊥ = 1−Π and Π is the projection operator on the space spanned
by ϕ0. Hence, the resolvent operator [H− e0]−1 is bounded on Π⊥L2 and we can define

ϕn = [H− e0]
−1
φn = [H− e0]

−1
Π⊥φn =Π⊥ [H− e0]

−1
φn ∈Π⊥L2 . (9)

Lemma 1. Let en and ϕn ∈Π⊥L2 be defined by induction for any n⩾ 1 as in (8) and (9). Let
EN and ψN be defined as in (7). Let

rN := HψN+ ν|ψN|2ψN−ENψN , (10)

Then rN is a power series in ν with finitely many terms where all the coefficients of the powers
νn, with n⩽ N, are exactly zero.

Remark 4. Since e0 is a simple and isolated eigenvalue of the selfadjoint operatorH and since
φn ⊥ΠL2 for any n⩾ 1 then:

∥ϕn∥L2 ⩽
1
Λ
∥φn∥L2 . (11)
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Proof. By formally substituting (7) and ( 6) in (1) we then have to check that

∞∑
n=0

νnHϕn+ ν
∞∑
n=0

νnϕn

∞∑
m=0

νmϕm

∞∑
ℓ=0

νℓϕ̄ℓ =
∞∑
m=0

νmem

∞∑
n=0

νnϕn. (12)

This equation can be written as

∞∑
n=0

νnHϕn+
∞∑
n=0

νn+1vn =
∞∑
n=0

νn [e0ϕn+ un+ enϕ0]

where un and vn are defined above. By equating the term with the same power of the perturb-
ative parameter ν we have that

Hϕ0 = e0ϕ0 , for n= 0 , (13)

which is satisfied by assumption, and

Hϕn+ vn−1 = enϕ0 + e0ϕn+ un , for n⩾ 1 .

If we multiply both side by ϕ0 then

⟨ϕ0,Hϕn⟩L2 + ⟨ϕ0,vn−1⟩L2 = en∥ϕ0∥2L2 + e0⟨ϕ0,ϕn⟩L2 + ⟨ϕ0,un⟩L2

from which it follows that

en =
⟨ϕ0,vn−1⟩L2 −⟨ϕ0,un⟩L2

∥ϕ0∥2L2
=

⟨ϕ0,vn−1⟩L2
∥ϕ0∥2L2

= ⟨ϕ0,vn−1⟩L2 ,

since ϕ0 ⊥ un and ∥ϕ0∥L2 = 1. If we denote now

φn = enϕ0 + un− vn−1

then φn ⊥ ϕ0 and thus we get

ϕn = [H− e0]
−1
φn .

2.3. Main result

Here we state our main result.

Theorem 1. Let d= 1,2,3 and let Hypotheses 1 and 2 be satisfied. Then, there exists ν⋆ >
0 such that for any ν such that |ν|< ν⋆ the nonlinear Schrödinger equation (1) admits a
stationary solution ψ (x,ν) ∈ D(H)∩L6(Rd), associated to an energy E(ν), given by means
of the strong-convergent power series

ψ (x,ν) =
∞∑
n=0

νnϕn (x) and E(ν) =
∞∑
n=0

νnen , (14)

where ϕn(x) and en are given in lemma 1.
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Remark 5. It is worth noting that the stationary solution ψ given by (14) is not normalised to
one, that is, to the value of the norm of the unperturbed eigenvector ϕ0, which is assumed, for
convenience of argument, to be equal to 1. In fact, a simple calculation gives that

∥ψ∥2L2 =
∞∑
n=0

νnrn where rn =
n∑

m=0

⟨ϕn−m,ϕm⟩ .

In particular

r0 = ∥ϕ0∥2L2 = 1

r1 = ⟨ϕ0,ϕ1⟩+ ⟨ϕ1,ϕ0⟩= 0 ,since ϕ1 ∈Π⊥L2 ,

and

r2 = ⟨ϕ0,ϕ2⟩+ ⟨ϕ1,ϕ1⟩+ ⟨ϕ2,ϕ0⟩= ∥ϕ1∥2L2 > 0 ,since ϕ2 ∈Π⊥L2 .

Thus

∥ψ∥2L2 = 1+ ν2g(ν)

where g(ν) is the analytic function obtained by means of the perturbative procedure for ν in
a neighbourhood of ν= 0 and such that g(0)> 0. If one looks for a normalised solution may
act as follows. Let

ψ̃ =
ψ

∥ψ∥L2
be the normalised stationary solution to the equation

Hψ̃ + ν̃|ψ̃ |2ψ̃ = Eψ̃

where E is still given by (14) and where

ν̃ := ν̃ (ν) = ν∥ψ∥2L2 = ν
[
1+ ν2g(ν)

]
. (15)

Such a relation is invertible with inverse function

ν := ν (ν̃) .

In conclusion, if one look for the normalised solution to the equation

Hψ + ν|ψ |2ψ = Eψ (16)

for a given value of the parameter ν let ν⋆ be such that ν̃(ν⋆) = ν, let ψ and E be the perturb-
ative solutions given by (14) corresponding to such a value of ν⋆; then ψ/∥ψ∥L2 and E are the
normalised solution to (16).

In addition, by means of the scaling ψ = ν−2ω then (1) takes the form of the ν-normalised
equation

Hω+ |ω|2ω = Eω (17)

where we have just seen that

∥ω∥2L2 = ν∥ψ∥2L2 = ν [1+ νg(ν)] .

Thus, for ν in a neighbourhood of 0, we can find a continuous curve (E(ν),∥ω∥L2), near the
point (e0,0), for solution to (17). Recall that the analysis of the slope of this curve is important
in the stability analysis of the stationary state (see, e.g. the ‘slope condition’ in [14]).
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3. Lp estimates

As anticipated in remark 3 it turns out that formulas (8) and (9) make sense provided that
vn and φn belongs to L2. Hence, we have to prove that ϕn belongs to L2 ∩L6 for any n. In
order to obtain a Lp-norm estimate of the vectors ϕn we make use of the Gagliardo–Nirenberg
inequality (4).

Lemma 2. Let V(x) be a potential bounded from below (2); let p and Cp,d as given in (4)
and (5). Concerning the H1 and Lp norms of ϕn we have that

∥ϕn∥H1 ⩽ µ1∥φn∥L2

and

∥ϕn∥Lp ⩽ µ2 (p,d)∥φn∥L2

for some constants

µ1 =

[
1
Λ2

+
1
Λ
+
e0 −Γ

Λ2

]1/2
and µ2 (p,d) := Cp,d

1
Λ1−ρ

[
1
Λ
+
e0 −Γ

Λ2

]ρ/2
(18)

independent of n.

Proof. From remark 4 we have (11). Then, we have to estimate

∥∇ϕn∥L2 = ∥∇ [H− e0]
−1
φn∥L2 .

Since V(x) is bounded from below, V⩾ Γ, then

∥∇ [H− e0]
−1
φn∥2L2 = ⟨[H− e0]

−1
φn,−∆[H− e0]

−1
φn⟩L2

= ⟨[H− e0]
−1
φn,φn⟩L2 −⟨[H− e0]

−1
φn,(V− e0) [H− e0]

−1
φn⟩L2

⩽ ⟨[H− e0]
−1
φn,φn⟩L2 +(e0 −Γ)∥ [H− e0]

−1
φn∥2L2

since −∆= H− e0 − (V− e0). Hence

∥∇ [H− e0]
−1
φn∥L2 ⩽

[
1
Λ
+
e0 −Γ

Λ2

]1/2
∥φn∥L2 .

Therefore, we can conclude that

∥ϕn∥Lp ⩽ Cp,d∥∇ϕn∥ρL2∥ϕn∥
1−ρ
L2

⩽ Cp,d
1

Λ1−ρ
∥φn∥1−ρ

L2

[
1
Λ
+
e0 −Γ

Λ2

]ρ/2
∥φn∥ρL2

⩽ µ2∥φn∥L2

where µ2(p,d) is the constant (18) dependent on p and d but independent of n.

Lemma 3. Let V(x) be a potential bounded from below: V⩾ Γ. Let d= 1,2,3 and let ϕj ∈
D(H)∩L6 for j = 0, . . . ,n− 1; then ϕn ∈ D(H)∩L6.

Proof. Indeed, uj ∈ L2, j = 0, . . . ,n, by construction. Concerning vj we have that it belong
to L2 for any j = 0, . . . ,n− 1 from the Hölder inequality. Hence En is well defined and
φj belongs to L2 for any j = 1, . . . ,n. From this fact and since φj ⊥ ϕ0, j = 1, . . . ,n, then
ϕn = [H− e0]

−1
φn ∈ D(H). Finally, by lemma 2 then ϕn ∈ L6 where we apply the Gagliardo-

Nirenberg inequality (4) with p= 6.
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Remark 6. In fact, ϕj ∈ Lp for any p ∈ [1,+∞] if d= 1, p ∈ [1,+∞) if d= 2 and p⩽ 2d/(d−
2) if d> 2.

Remark 7. From lemma 3 and from remark 2 then we have proved that ϕn ∈ D(H)∩L6 for
any n= 0,1,2, . . ., and un, vn−1 ∈ L2 for any n= 1,2, . . ..

4. Are the formal series (7) convergent as N goes to infinity? Proof of
theorem 1

In order to prove the convergence of the perturbation series we give the following results.

Lemma 4. Let

cn := ∥ϕn∥L2 ,dn := ∥ϕn∥L6 and bn := |en| , n= 0,1,2, . . . ,

then

bn ⩽
n−1∑
m=0

dm

n−1−m∑
ℓ=0

dℓdn−1−ℓ−m

cn ⩽
1
Λ

[
2
n−1∑
m=0

dm

n−1−m∑
ℓ=0

dℓdn−1−ℓ−m+
n−1∑
m=1

bmcn−m

]

dn ⩽ µ2 (6,d)

[
2
n−1∑
m=0

dm

n−1−m∑
ℓ=0

dℓdn−1−ℓ−m+
n−1∑
m=1

bmcn−m

]
Proof. In order to prove the result above we remark that

bn = |en|⩽ ∥vn−1∥L2 ,cn = ∥ϕn∥L2 ⩽
1
Λ
∥φn∥L2

and

dn = ∥ϕn∥L6 ⩽ µ2 (6,d)∥φn∥L2 ,

from lemma 2, where

∥φn∥L2 ⩽ |en|+ ∥vn−1∥L2 + ∥un∥L2 ⩽ 2∥vn−1∥L2 + ∥un∥L2 . (19)

Hence, the above result follows since

∥vn−1∥L2 ⩽
n−1∑
m=0

n−1−m∑
ℓ=0

∥ϕm∥L6∥ϕℓ∥L6∥ϕn−1−ℓ−m∥L6

=
n−1∑
m=0

n−1−m∑
ℓ=0

dℓdmdn−1−ℓ−m (20)

and

∥un∥L2 ⩽
n−1∑
m=1

bmcn−m . (21)
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Lemma 5. Let us assume that

dj ⩽ δeαj
1

( j+ 1)2
, , j = 0, . . . ,n− 1 , (22)

for some α> 0 and where

δ = d0 = ∥ϕ0∥L2 .

Then
n−1∑
m=0

dm

n−1−m∑
ℓ=0

dℓdn−1−ℓ−m ⩽ C1δ
3eα(n−1) 1

(n+ 1)2
(23)

for any n⩾ 1 and some C1 ⩽ 4 · 4.72.

Remark 8. By construction, (22) holds true for j= 0.

Proof. Indeed, from (22) it turns out that

n−1∑
m=0

dm

n−1−m∑
ℓ=0

dℓdn−1−ℓ−m ⩽ δ3eα(n−1)I

where we set

I :=
n−1∑
m=0

1

(m+ 1)2

n−1−m∑
ℓ=0

1

(ℓ+ 1)2 (n−m− ℓ)
2 . (24)

A simple estimate proves that

n−1−m∑
ℓ=0

1

(ℓ+ 1)2 (n−m− ℓ)
2 =

2

(n−m)2
+ J(n− 1−m)⩽ 4.7

(n−m)2

where J(n) has been defined and estimated in appendix. Therefore,

I⩽
n−1∑
m=0

4.7

(n−m)2 (m+ 1)2

⩽ 2 · 4.7
n2

+ 4.7J(n− 1)⩽ 4.72

n2
⩽ 4.72

(n+ 1)2
(n+ 1)2

n2
⩽ 4 · 4.72

(n+ 1)2

from which the statement follows.

Remark 9. From lemma 5 and from (20) it follows that

∥vn−1∥L2 ⩽ C1δ
3eα(n−1) 1

(n+ 1)2
.

In fact, δ= 1 because we have chosen the normalisation condition ∥ϕ0∥L2 = 1.

Lemma 6. Let us assume that

bj ⩽ βeα( j−1) 1

( j+ 1)2
, j = 1, . . . ,n− 1 , (25)

and

cj ⩽ γeαj
1

( j+ 1)2
, j = 1, . . . ,n− 1 , (26)
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for some β ⩾ 4b1 = 4|e1| and where

γ =max [4c1,1] , c1 = 4∥ϕ1∥L2

and where α> 0 has been introduced in lemma 5. Then
n−1∑
m=1

bmcn−m ⩽ C2βγe
α(n−1) 1

(n+ 1)2
, (27)

for some C2 ⩽ 2.7.

Remark 10. By construction, (25) and (26) hold true for j= 1.

Proof. The proof immediately follows since

n−1∑
m=1

bmcn−m ⩽ βγeα(n−1)J(n)

where J(n)⩽ 2.7
(n+1)2 (see appendix).

Remark 11. In fact, the estimate of the constants C1 and C2 are far to be optimal. Numerical
analysis suggests that a sharp estimate for the term I defined in (24) has the form

I=
g(n)

(n+ 1)2
where g(n)⩽ g(10) = 10.44589874 ,

that is

C1 ⩽ 10.45 .

Concerning C2 from appendix numerical analysis proves that

C2 ⩽ 1.52 .

Remark 12. From lemma 6 and from (21) it follows that

∥un∥L2 ⩽ C2βγe
α(n−1) 1

(n+ 1)2
.

Remark 13. From remarks 9 and 12 and from (19) it follows that

∥φn∥L2 ⩽ C3e
α(n−1) 1

(n+ 1)2
,

where

C3 =
[
2C1δ

3 +C2βγ
]
.

Collecting lemmas 4–6, we have that

bn ⩽ C1δ
3eα(n−1) 1

(n+ 1)2
(28)

cn ⩽ γ
eαn

(n+ 1)2
e−α

γΛ
C3 (29)

dn ⩽ δ
eαn

(n+ 1)2
µ2 (6,d)e−αC3

δ
(30)

if (22), (25) and (26) hold true.
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In particular, if we choose

β =max
[
4b1,C1δ

3
]

and α> 0 large enough such that

e−α

γΛ
C3 ⩽ 1 and

µ2 (6,d)e−αC3

δ
⩽ 1 (31)

then we have that (22), (25) and (26) hold true for j= n, too.
In conclusion, we have proved that

Lemma 7. There exists four positive constants α> 0 large enough, β > 0, γ > 0 and δ > 0
independent of n such that the following estimates

bn ⩽ βeα(n−1) 1

(n+ 1)2
,

cn ⩽ γeαn
1

(n+ 1)2
,

dn ⩽ δeαn
1

(n+ 1)2
,

hold true for any n= 1,2, . . ..

Remark 14. From remark 13 and from lemma 2 it follows that ψN is norm convergent in H1.

Finally:

Theorem 2. Let d= 1,2,3 and let ν be such that |ν|< e−α where α> 0 is large enough as
given in lemma 7. Then the power series EN is absolutely convergent, and the power series ψN
is norm convergent in L2 and L6, and the power series HψN =

∑N
n=0 ν

nHϕn is norm convergent
in L2 .

Proof. Convergence of EN and ψN directly comes from lemma 7. Concerning the convergence
of

∑N
n=0 ν

nHϕn we simply remark that

∥Hϕn∥L2 = ∥H [H− e0]
−1
φn∥L2 ⩽ ∥φn∥L2 + |e0|∥ [H− e0]

−1
φn∥L2

⩽
(
1+ |e0|Λ−1

)
∥φn∥L2 ⩽ C4e

αn 1

(n+ 1)2

for some C4 > 0, and thus the formal power series∑
n

νnHϕn

is norm convergent in the space L2 if |ν|< e−α.

So far we have proved that there exists vectors u , w , φ ∈ L2, v ∈ L6 and z ∈ H1 such that

ψN → u in L2

ψN → v in L6

HψN → w in L2

ψN → z in H1

N∑
n=1

νnφn → φ in L2
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as N goes to ∞. First of all we remark that

u=
∞∑
n=0

νnϕn = ϕ0 +
∞∑
n=1

νnϕn = ϕ0 +
∞∑
n=1

νn [H− e0]
−1
φn

= ϕ0 + [H− e0]
−1
φ

since [H− e0]−1 is a bounded operator on the eigenspace orthogonal to ϕ0, and where the
convergence of the infinite sum has to be intended in the space L2. Hence

u ∈ D (H) .

Furthermore, we immediately have that

∥u− z∥L2 ⩽ ∥u−ψN∥L2 + ∥z−ψN∥L2
⩽ ∥u−ψN∥L2 + ∥z−ψN∥H1 → 0 ,

hence u= z. Similarly, from (4) for some ρ ∈ [0,1] we have that

∥v− z∥L6 ⩽ ∥v−ψN∥L6 + ∥z−ψN∥L6
⩽ ∥v−ψN∥L6 +C6,d∥z−ψN∥ρH1∥z−ψN∥(1−ρ)

L2

⩽ ∥v−ψN∥L6 + ∥z−ψN∥ρH1 [∥z∥L2 + ∥ψN∥L2 ]
(1−ρ) → 0 ,

hence v= z. In conclusion, there exists a vector ψ ∈ D(H) such that

ψN → ψ in L2 , L6 and H1 ,

and

Hψ = [H− e0]ψ + e0ψ = [H− e0]
(
ϕ0 + [H− e0]

−1
φ
)
+ e0ψ

= e0ψ +φ

HψN = H
N∑
n=0

νnϕn = Hϕ0 +
N∑
n=1

νnHϕn = Hϕ0 +
N∑
n=1

νnH [H− e0]
−1
φn

= e0

N∑
n=0

νnϕn+
N∑
n=1

νnφn → e0ψ +φ = Hψ

as N→∞.
Thus we have proved the following result.

Lemma 8. ψN → ψ ∈ D(H) in L2, L6 and H1, and HψN → Hψ in L2.

Finally, it is not hard to see that ψ is a stationary solution associated to the energy E to (1).
Indeed:

Lemma 9. Let

rN := HψN+ ν|ψN|2ψN−ENψN

then

lim
N→∞

∥rN∥L2 = 0 . (32)
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Proof. A simple straightforward calculation gives that

rN =
N∑
n=0

νnHϕn+
N∑

n,m,ℓ=0

νn+m+ℓ+1ϕnϕmϕ̄ℓ −
N∑

n,m=0

νn+memϕn

=
N∑
n=0

νnHϕn+
3N+1∑
n=1

νn

[
n−1∑
m=0

n−1−m∑
ℓ=0

ϕmϕ̄ℓϕn−m−ℓ−1

]
−

2N∑
n=0

νn

[
n∑

m=0

emϕn−m

]

=
3N+1∑
n=N+1

νnvn−1 −
2N∑

n=N+1

νnun

where the two power series
∑∞

n=0 ν
nvn−1 and

∑∞
n=1 ν

nun are norm-L2 convergent for ν small
enough. Then (32) follows.

Now, we are ready to complete the proof of theorem 1.
Indeed, let

r := Hψ + ν|ψ |2ψ −Eψ = aN+ bN+ cN+ rN

where

aN = Hψ −HψN → 0 in L2

bN = ν
[
|ψ |2ψ − |ψN|2ψN

]
→ 0 in L2

cN = − [Eψ −ENψN]→ 0 in L2.

From the above results immediately follows that

∥aN∥L2 → 0 and ∥cN∥L2 → 0

as N goes to infinity. Concerning bN one notes that

∥bN∥L2 ⩽ ∥(ψ −ψN) |ψ |2∥L2 + ∥(ψ −ψN) ψ̄ψN∥L2 + ∥
(
ψ̄ − ψ̄N

)
|ψN|2∥L2

⩽ ∥|ψ |2∥L3∥ψ −ψN∥L6 + ∥ψ −ψN∥L6∥ψ̄ψN∥L3 + ∥|ψN|2∥L3∥ψ −ψN∥L6
⩽

[
∥|ψ |2∥L3 + ∥ψ̄ ψN∥L3 + ∥|ψN|2∥L3

]
∥ψ −ψN∥L6 → 0

as N goes to infinity. From these facts and since (32) then theorem 1 is proved.

Remark 15. Since the constants β, γ, δ, Λ, C1, C2, C3, C4 and µ2(6,d) can be estimated then
one can obtain the value of the parameter α solution to (31). Hence, the estimate ν⋆ < e−α of
the radius of convergence follows.

5. A Toy model—infinite well potential

Let us consider, in dimension one, the infinite well potential of the form:

V(x) =

{
0 if |x|< π
+∞ if |x|⩾ π

.

5.1. Linear time-independent Schrödinger equation

The linear operator H is formally defined as follows:

Hψ =−ψ ′ ′ , x ∈ (−π ,+π ) , ψ ∈ L2 ((−π ,+π ))
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with Dirichlet boundary conditions

ψ (−π ) = ψ (+π ) = 0 . (33)

By means of a straightforward calculation it follows that the spectrum of H is purely discrete
and it is given by means of simple eigenvalues

λj =
1
4
j2 , j = 1,2, . . . ,

with associated normalised eigenvectors

qj (x) =
1√
π

{
cos( j x/2) , odd j
sin( j x/2) , even j

.

The resolvent operator is given by(
[H− z]−1

ψ
)
(x) =

∞∑
j=1

1
λj− z

qj (x)⟨qj,ψ ⟩L2 . (34)

5.2. Perturbation theory

By making use of the perturbation formula we compute now the coefficients of the formal
power series (7) where

e0 = λ1 =
1
4

is the first unperturbed eigenvalue with associated unperturbed eigenvector

ϕ0 (x) = q1 (x) =
1√
π
cos(x/2) .

Remark 16. Here, we have considered, for argument’s sake, the formal power series (7) asso-
ciated to the first eigenvalue λ1. Similarly, the same method may be applied to the unperturbed
eigenvalues λj for any j> 1.

The perturbation theory exploited in lemma 1 gives that

v0 = ϕ30 , u1 = 0 , e1 =
∥ϕ20∥2

∥ϕ0∥2
=

3
4π

and

φ1 = e1ϕ0 −ϕ30 .

Finally

ϕ1 =
(
[H− e0]

−1
φ1

)
(x) =

∞∑
j=2

1
λj− e0

qj (x)⟨qj,φ1⟩L2

= − 1
λ3 − e0

q3 (x)⟨q3,ϕ30⟩L2 =− 1

8 [π]3/2
cos

(
3
2
x

)
.

By means of a straightforward calculation the other terms follow; for instance

e2 =− 3
32π2

, e3 =
15

256π3
, e4 =− 69

2048π4

e5 =
75

4096π5
, e6 =− 1257

131072π6
, e7 = . . .
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Table 1. Infinite well potential—table of values corresponding to the case of defocusing
nonlinearities when ν= 0.1 and ν =+1.

ν= 0.1 ν= 1

N EN ∥ψN∥L2 ∥rN∥L2 EN ∥ψN∥L2 ∥rN∥L2

0 0.25 1 0.25 · 10−1 0.25 1 0.25 · 100
1 0.273873 1.000007916 0.16 · 10−3 0.488732 1.000791259 0.16 · 10−1

2 0.273778 1.000007728 0.30 · 10−5 0.479234 1.000614941 0.28 · 10−2

3 0.273780 1.000007730 0.52 · 10−7 0.481123 1.000634507 0.48 · 10−3

4 0.273780 1.000007730 0.88 · 10−9 0.480777 1.000632165 0.81 · 10−4

5 0.273780 1.000007730 0.15 · 10−10 0.480837 1.000632442 0.13 · 10−4

6 0.273780 1.000007730 0.24 · 10−12 0.480827 1.000632410 0.22 · 10−5

Table 2. Infinite well potential—table of values corresponding to the case of focusing
nonlinearities when ν =−0.1 and ν =−1.

ν =−0.1 ν =−1

N EN ∥ψN∥L2 ∥rN∥L2 EN ∥ψN∥L2 ∥rN∥L2

0 0.25 1 0.25 · 10−1 0.25 1 0.25 · 100
1 0.226168 1.000007916 0.17 · 10−3 0.011268 1.000791259 0.17 · 10−1

2 0.226032 1.000008160 0.30 · 10−5 0.001769 1.000992585 0.32 · 10−2

3 0.226030 1.000008108 0.53 · 10−7 −0.000121 1.001018592 0.58 · 10−3

4 0.226030 1.000008108 0.90 · 10−9 −0.000467 1.001021668 1.00 · 10−4

5 0.226030 1.000008108 0.15 · 10−10 −0.000527 1.001022048 0.17 · 10−4

6 0.226030 1.000008108 0.25 · 10−12 −0.000537 1.001022093 0.28 · 10−5

and

ϕ2 (x) =
1

64π5/2

[
3cos

(
3x
2

)
+ cos

(
5x
2

)]
ϕ3 (x) = − 1

512π7/2

[
9cos

(
3x
2

)
+ 5cos

(
5x
2

)
+ cos

(
7x
2

)]
ϕ4 (x) =

1
4906π9/2

[
27cos

(
3x
2

)
+ 20cos

(
5x
2

)
+ 7cos

(
7x
2

)
+ cos

(
9x
2

)]
ϕ5 (x) = − 1

32768π11/2

[
81cos

(
3x
2

)
+ 75cos

(
5x
2

)
+ 35cos

(
7x
2

)
+

+9cos

(
9x
2

)
+ cos

(
11x
2

)]
ϕ6 (x) =

1
262144π13/2

[
243cos

(
3x
2

)
+ 275cos

(
5x
2

)
+ 154cos

(
7x
2

)
+

+54cos

(
9x
2

)
+ 11cos

(
11x
2

)
+ cos

(
13x
2

)]
ϕ7(x) = . . . .

In tables 1 and 2we compute the values ofEN, ∥ψN∥L2 and ∥rN∥L2 , where rN is the remainder
term defined by (10), for different values of N and for ν =±0.1 and ν =±1. It turns out that
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the formal power series (7) rapidly converges and that the norm of the remainder term rN
rapidly decreases when N increases.

5.3. Nonlinear time-independent Schrödinger equation

The nonlinear time-independent equation (1) becomes

−ψ ′ ′ + ν|ψ |2ψ = Eψ , x ∈ (−π ,+π ) , (35)

with Dirichlet boundary conditions (33). If we restrict our attention to the case of ν ∈ R and
E ∈ R then we known that the stationary solution is, up to a constant phase factor, a real-valued
function. The proof of this result is quite similar to the one of lemma 3.7 given by [17]. Indeed,
if we multiply both sides of (35) by ψ̄, we obtain that

−ψ ′ ′ψ̄ + ν|ψ |4 = E|ψ |2

and similarly

−ψ̄ ′ ′ψ + ν|ψ |4 = E|ψ |2 .

Hence

0= ψ ′ ′ψ̄ − ψ̄ ′ ′ψ =
(
ψ ′ψ̄ − ψ̄ ′ψ

) ′
from which follows that

ψ ′ψ̄ − ψ̄ ′ψ = C ,∀x ∈ (−π ,+π ) ,

for some constant C. Recalling that ψ (±π ) = 0 then C= 0 and thus θ = arg(ψ ) is a constant
term.

Therefore, stationary solutions ψ to (35) may be assumed to be real-valued and they satisfy
to the equation

−ψ ′ ′ + νψ3 = Eψ , x ∈ (−π ,+π ) . (36)

The general solution to such an equation has the form [10]

ψ (x) = χsn [ζ (x− x0) ,k] , χ ∈ R ,

where x0 and ζ are arbitrary constants and where

k2 =
E− ζ2

ζ2
and χ2 = 2

E− ζ2

ν
.

The Dirichlet boundary conditions imply that x0 =−π and that 2ζπ is a zero of the Jacobian
Elliptic function sn(x,k), i.e.:

2ζπ = 2K(k)m, m= 1,2, . . . ,

where K(k) and E(k) are the complete elliptic integral of first and second kind. The norm of
the wavefunction ψ is given by

∥ψ∥2L2 = χ2
ˆ +π

−π

sn2 [ζ (x+π) ,k]dx= 2m
χ2

ζ

K(k)−E(k)
k2

= 2πχ2K(k)−E(k)
K(k)k2

.

Hence

χ2 =
1
2π

K(k)k2

K(k)−E(k)
∥ψ∥2L2 .
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In order to find the stationary solutions to (36) the quantisation conditions read

2
E− ζ2

ν
=

1
2π

K(k)k2

K(k)−E(k)
∥ψ∥2L2 , k

2 =
E− ζ2

ζ2
and ζ =

K(k)
π

m , m= 1,2, . . . .

5.3.1. Defocusing nonlinearity: ν > 0. When ν > 0 then stationary solutions there exist
provided that E− ζ2 ⩾ 0 and k is a real-valued solution to the equation

K(k) [K(k)−E(k)] =
νπ

4m2
∥ψ∥2L2 . (37)

If we remark that the function K(k)[K(k)−E(k)] is a monotone increasing function such that

lim
k→0+

K(k) [K(k)−E(k)] = 0 and lim
k→1−

K(k) [K(k)−E(k)] = +∞

then the equation above (37) has a unique solution km ∈ (0,1), for any m= 1,2, . . . fixed, and
then there exists a family of values of the parameter E:

E=

[
K(km)m

π

]2 [
1+ k2m

]
, m= 1,2, . . . . (38)

5.3.2. Focusing nonlinearity: ν < 0. On the other hands if ν < 0 then stationary solutions
there exist provided that E− ζ2 ⩽ 0 and k= iκ, κ ∈ R, is a purely imaginary complex number;
in such a case we recall that

sn(x, iκ) = k ′1sd
(
x
√
1+κ2,k1

)
where sd(x,k1) =

sn(x,k1)
dn(x,k1)

and where

k1 = κ/
√
1+κ2 and k ′1 =

√
1− k21 =

1√
1+κ2

.

Hence, equation (37) becomes

K(iκ) [K(iκ)−E(iκ)] =
νπ

4m2
∥ψ∥2L2 . (39)

If we remark that the function K(iκ)[K(iκ)−E(iκ)] is a monotone real-valued decreasing
function for κ ∈ [0,+∞) such that

lim
κ→0+

K(iκ) [K(iκ)−E(iκ)] = 0 and lim
κ→+∞

K(iκ) [K(iκ)−E(iκ)] =−∞

then the equation above (39) has a unique solution κm ∈ (0,+∞) for any m= 1,2, . . . fixed,
and also in this case there exists a family of values of the parameter E:

E=

[
K(iκm)m

π

]2 [
1−κ2m

]
, m= 1,2, . . . . (40)

5.4. Comparison between the perturbative result and the exact one

From table 1 the perturbative result gives that the stationary solution to (1) for ν= 0.1 and
N= 6 has energy

E6 = 0.273780 (41)
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with associated wavefunction with norm

∥ψ∥L2 ≈ ∥ψ6∥L2 = 1.000007730 . (42)

The value of the solution k to (37), wherem= 1 andwhere the value of ∥ψ∥L2 is the one in (42),
is given by

k= 0.2474031338

and the associated energy E is given by (38)

E= 0.273780

in full agreement with (41). Similarly, For ν= 1 and N= 6 then table 1 gives that

E6 = 0.480827 (43)

with associated wavefunction with norm

∥ψ∥L2 ≈ ∥ψ6∥L2 = 1.000632410 .

From (37) and (38) then (where m= 1)

k= 0.6682383718 and E= 0.480829

in good agreement with (43).
From table 2 the perturbative result gives that the stationary solution for ν =−0.1 andN= 6

has energy

E6 = 0.226030 (44)

with associated wavefunction with norm

∥ψ∥L2 ≈ ∥ψ6∥L2 = 1.000008108 .

From (39) and (40) then (where m= 1)

κ= 0.2574471610 and E= 0.226030

in full agreement with (44). Similarly, For ν =−1 and N= 6 then table 2 gives that

E6 =−0.000537 (45)

with associated wavefunction with norm

∥ψ∥L2 ≈ ∥ψ6∥L2 = 1.001022099 .

From (39) and (40) then (where m= 1)

κ= 1.001546564 and E=−0.000540

in very good agreement with (45).

6. Harmonic oscillator

Let us consider, in dimension one, the harmonic oscillator with potential

V(x) = x2 , x ∈ R .

That is, the linear operator H is defined as follows:

Hψ =−ψ ′ ′ + x2ψ , x ∈ R , ψ ∈ L2 (R) .
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Table 3. Harmonic oscillator potential—table of values corresponding to the case of
defocusing nonlinearities when ν= 0.1 and ν =+1.

ν =+0.1 ν =+1

N EN ∥ψN∥L2 ∥rN∥L2 EN ∥ψN∥L2 ∥rN∥L2

0 1 1 0.43 · 10−1 1 1 0.43 · 100
1 1.039894228 1.000006539 0.24 · 10−3 1.398942280 1.000653715 0.23 · 10−1

2 1.039728699 1.000006483 0.25 · 10−5 1.382389419 1.000599885 0.24 · 10−2

3 1.039730376 1.000006484 0.24 · 10−7 1.384066368 1.000602159 0.23 · 10−3

4 1.039730361 1.000006484 0.22 · 10−9 1.383909162 1.000602036 0.21 · 10−4

5 1.039730361 1.000006484 0.21 · 10−11 1.383923548 1.000602043 0.18 · 10−5

6 1.039730361 1.000006484 0.43 · 10−12 1.383922248 1.000602043 0.17 · 10−6

It is well known that the spectrum of H is purely discrete and it is given by simple eigenvalues

λj = 2j− 1 , j = 1,2, . . . ,

with associated normalised eigenvectors

qj (x) =
1√

2j−1 ( j− 1)!

(
1
π

)1/4

e−x2/2Hj−1 (x) ,

where

Hj (x) = (−1)j ex
2 d j

dxj
e−x2

are the Hermite’s polynomials.
By making use of the perturbation formula we compute now the coefficients of the formal

power series (7) associated to the first unperturbed eigenvalue

e0 = λ1 = 1

with associated unperturbed normalised eigenvector

ϕ0 (x) = q1 (x) =
1
4
√
π
e−x2/2 .

In such a case the perturbative procedure gives that

e1 =
∥ϕ20∥2L2
∥ϕ0∥2L2

=
1√
2π

.

Furthermore,

ϕ1 = [H− e0]
−1
φ1 =

+∞∑
j=2

1
λj− e0

qj (x)⟨qj,φ1⟩L2

≈
N2∑
j=2

1
λj− e0

qj (x)⟨qj,φ1⟩L2 ,

where φ1 = e1ϕ0 −ϕ30 and where the resolvent operator is given by a with infinitely many
terms. In numerical calculation we truncate the series for j up to a some large enough positive
integerN2; in numerical experiments we observe thatN2 = 60 is a suitable value. Iterating such
a procedure we can obtain in tables 3 and 4 the numerical values of EN, ∥ψN∥L2 and ∥rN∥L2
for N= 1,2, . . . ,6, where rN is the remainder term defined by (10), for ν =±0.1 and ν =±1.
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Table 4. Harmonic oscillator potential—table of values corresponding to the case of
focusing nonlinearities when ν =−0.1 and ν =−1.

ν =−0.1 ν =−1

N EN ∥ψN∥L2 ∥rN∥L2 EN ∥ψN∥L2 ∥rN∥L2

0 1 1 0.43 · 10−1 1 1 0.43 · 100
1 0.9601057720 1.000006539 0.24 · 10−3 0.6010577196 1.0006537148 0.25 · 10−1

2 0.9599402433 1.000006596 0.25 · 10−5 0.5845048581 1.0007119732 0.26 · 10−2

3 0.9599385664 1.000006596 0.24 · 10−7 0.5828279087 1.0007147627 0.25 · 10−3

4 0.9599385507 1.000006596 0.22 · 10−9 0.5826707021 1.0007149164 0.24 · 10−4

5 0.9599385505 1.000006596 0.20 · 10−11 0.5826563161 1.0007149254 0.22 · 10−5

6 0.9599385505 1.000006596 0.28 · 10−12 0.5826550168 1.0007149260 0.20 · 10−6

As in the toy model discussed in section 5 it turns out that the formal power series seems to
rapidly converges for |ν|⩽ 1.

7. Conclusions

In this paper we have applied the Rayleigh–Schrödinger perturbation theory when the unper-
turbed linear operator has an isolated nondegenerate eigenvalue and where the nonlinear term
plays the role of the perturbation. The power series has coefficients that can be iteratively
obtained and such a series is proved to be convergent when the strength ν of the nonlinear
term has absolute value less than a threshold value ν⋆, for some ν⋆ > 0.

From the numerical experiments resumed in tables 1, 2 and tables 3, 4 one has evidence that
the formal power series (7) rapidly converges for |ν| small enough when N goes to infinity.
In particular, from figure 1 one can see that |en| and ∥ϕn∥L2 behaves like Cn for some positive
constant C> 0 that can be numerically estimated, and then one can conclude that the power
series (7) converges when |ν|< ν⋆ := C−1.

For instance, concerning the convergence of the power series for EN in the model with an
infinite well potential we observe that

en = (−1)n 4
an
πn8n

where

an ∼ an

for large n and where

a⩽ 4 .

Thus, we expect that the power series EN is absolutely convergent for any ν such that |ν|< ν⋆

where ν⋆ = 8π
a ⩾ 2π. Similarly, a numerical estimate of the radius of convergence for the

harmonic potential case could be obtained.
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Figure 1. In the two figures are respectively plotted the values of |en| (full lines) and
∥ϕn∥L2 (broken lines) for the infinite well potential case (left hand side plot) and for the
harmonic potential case (right hand side plot).
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Appendix. A simple estimate

Let

J := J(n) =
n−1∑
m=1

1

(m+ 1)2 (n−m+ 1)2
, n> 2 .

A simple inequality gives that

J(n)⩽ 2
ˆ (n+1)/2

1

1

x2 (n+ 1− x)2
dx= 2

n2 − 1+ 2n ln(n)

(n+ 1)3 n
=

f(n)

(n+ 1)2

where

f(n) := 2
n2 − 1+ 2n ln(n)

(n+ 1)n
⩽ 2.70.
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In fact, such an estimate is not optimal. A simple numerical experiment shows that

J(n) =
g(n)

(n+ 1)2
where g(n)⩽ g(19) = 1.517 106 786 .

Furthermore, a closed expression for J(n) could be given by means of Polygamma functions;
however, we do not dwell here on this detail.
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