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1. Introduction

In the AdS/CFT correspondence local gauge invariant operators are matched with bulk

supergravity fields evaluated at the boundary of the AdS space [1 – 3]. An important role in

the correspondence is also played by non local gauge invariant operators, the most notable

example being the Wilson loop.

In N = 4 super Yang-Mills theory Wilson loops are defined (in Euclidean signature) as

WR(C) =
1

dimRTrRP exp

∮

C
dτ

[

iAµ(τ)ẋµ + ΦI(τ)θI |ẋ|
]

(1.1)

where Aµ is the gauge field and ΦI are the six scalars of the N = 4 multiplet, and θI is a con-

stant unit vector in R
6. The data which characterize the Wilson loop are the shape of the in-

tegration contour C and the representation R of the gauge group. Supersymmetry restricts
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C to be a straight line or a circle [4],1 while R may be arbitrary. It is a well-established part

of the AdS/CFT correspondence that Wilson loops in the fundamental representation are

associated with a classical string surface of minimal area landing on the loop [7, 8]. The

worldsheet area, being the string infinitely long, is formally infinite but the string action

can nevertheless be made finite by adding suitable counterterms [9]. The expectation value

of the Wilson loop is then the partition function of the regularized string associated to it.

Recently circular Wilson loops in representations other than the fundamental have

been a very active field of investigation. A holographic dictionary has emerged, where

probe branes in the bulk are related to higher rank Wilson loops in the boundary [12 –

15].2 In particular, D3 branes with AdS2 × S2 worldvolume and k units of fundamental

string charge dissolved on them have been proved to compute expectation values of Wilson

loops in the rank k symmetric representation.3 This picture is the natural generalization

to the AdS5 × S5 background of the idea that a fundamental string ending on a D3 brane

in flat space can be described in terms of a curved D3 brane with a localized spike carrying

a unit of electric flux, as first proposed by Callan and Maldacena [18]. On the other hand,

D5 branes with AdS2 ×S4 worldvolume and k units of string charge correspond to Wilson

loops in the rank k antisymmetric representation. Both these branes are half-BPS and

preserve the same isometries of (1.1), namely SO(2, 1)× SO(3)× SO(5). They pinch off at

the boundary of AdS5 landing on the curve that defines the Wilson loop.

The intuitive reason for considering these objects is that, to build a Wilson loop in

the rank k representation, one would start with considering k coincident fundamental

strings. The D3k and D5k branes can then be thought of as coming from an Emparan-

Myers polarization effect [19, 20], which, for k sufficiently large, blows up a S2 ⊂ AdS5

or a S4 ⊂ S5 from the worldsheet of the k coincident strings. This is reminiscent of the

interpretation of gravitons with large momenta as D3 branes wrapping a S3 ⊂ S5 (giant

gravitons) or a S3 ⊂ AdS5 (dual giant gravitons). We can then regard the D3k and D5k

branes as dual giant and giant Wilson loops, respectively.

This brane picture has the advantage of automatically encoding the interactions be-

tween the coincident strings [21] and yields all non planar contributions to the expectation

value of the higher rank Wilson loop [12].

It is well-known that the expectation value of circular Wilson loops in the fundamen-

tal representation can be computed with a quadratic Hermitian matrix model [22, 23]. It

has been conjectured that this can be extended to higher rank loops and matrix model

computations have provided a successful check of the holographic dictionary just dis-

cussed [12, 24, 25].

1In this paper we consider only half-BPS operators. For loops preserving less supersymmetry see [4 – 6].
2For ’t Hooft loops see [12, 16], and for applications to finite temperature see [17].
3The brane probe approximation breaks down for k much larger than N . In this limit the branes

backreact deforming the geometry into the supergravity solutions studied in [10] and [11].
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A small circular Wilson loop, when probed from a distance much larger than its char-

acteristic size, can be expanded in a series of local operators of different conformal di-

mension [26]. The operators which are allowed to appear in the expansions must preserve

the same symmetries of (1.1) and therefore must be bosonic, gauge invariant and SO(5)

invariant. The conformal dimension of some of these operators is not protected by the

superconformal algebra and therefore they receive large anomalous dimensions and decou-

ple in the strong coupling regime. An important class of operators which have protected

dimensions and appear in the operator product expansion are the chiral primary operators.

The correlator with a local operator can then be read off from the expansion of the Wilson

loop [26].4

In this paper, we use the D3k and D5k branes to compute the correlation function

between a circular Wilson loop in a higher representation and a chiral primary operator in

the fundamental representation. We do this by studying the coupling to the brane world-

volume of the supergravity modes dual to the chiral primaries. These modes propagate

from the insertion of the local operator on the boundary to the brane worldvolume in the

bulk.

The paper is organized as follows. In sections 2 and 3 we review the operator product

expansion of the Wilson loop and how to compute correlation functions when the Wilson

loop is described in terms of a fundamental string worldsheet. To evaluate this one needs

to study the harmonic expansion on S5 of the bulk fields which couple to the worldsheet.

Following the philosophy outlined before, we then replace the fundamental string with

the D3k and D5k branes. We start by investigating the symmetric case in section 4. We

expand the brane action to linear order in the fluctuations of the bulk fields and find how it

couples to the relevant supergravity modes. Using the procedure reviewed in section 3 we

compute the correlation function. In the limit of small k we recover the previously known

result derived using the fundamental string.

We then move on to the analysis of the antisymmetric case. The D5k brane now

extends also in the S5 directions. Also in this case we compute the correlator between the

Wilson loop and a chiral primary operator and check that it yields the correct string limit.

As a further check, in section 5, we compare our results against the expressions coming

from the normal matrix model introduced in this context in [24] and find perfect agreement

both in the symmetric and antisymmetric case.

In the appendix we collect some facts about spherical harmonics and orthogonal poly-

nomials that we have used in the paper.

2. Kaluza-Klein expansion

In this section we review the expansion in spherical harmonics for type IIB supergravity on

4For a nice review see [27].
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AdS5 ×S5 [28], and identify the bulk excitations associated to turning on a chiral primary

operator in the dual N = 4 gauge theory [29]. These will be later used to construct the

coupling of the various supergravity modes to the D3k and D5k branes.

The Einstein equations read 5

Rmn =
1

96
FmijklF

ijkl
n (2.1)

where the 5-form field strength F(5) is self-dual. In the Poincare patch, the AdS5 × S5

solution reads

ds2 =
1

z2

(

dz2 + d~x 2
)

+ dΩ2
5 (2.2)

F̄µ1µ2µ3µ4µ5 = −4εµ1µ2µ3µ4µ5 , F̄α1α2α3α4α5 = −4εα1α2α3α4α5 . (2.3)

The fluctuations around the background geometry can be parametrized as follows

Gmn = gmn + hmn (2.4)

hαβ = h(αβ) +
h2

5
gαβ , gαβh(αβ) = 0 (2.5)

hµν = h′
µν − h2

3
gµν , gµνh′

(µν) = 0 (2.6)

F = F̄ + δF, δFijklm = 5∇[iajklm] (2.7)

where h2 is the trace of the metric on the five-sphere, h2 ≡ hαβgαβ . Note that the fields

hµν and h′
µν are related by a d = 5 Weyl shift. To identify the bulk excitation in AdS5 we

expand the fluctuations as follows 6

h′
µν =

∑

h′I
µν(x)Y I(y) (2.8)

h2 =
∑

hI
2(x)Y I(y) (2.9)

aµ1µ2µ3µ4 =
∑

aI
µ1µ2µ3µ4

(x)Y I(y) (2.10)

aα1α2α3α4 = −4
∑

εαα1α2α3α4b
I(x)∇αY I(y) (2.11)

where x and y refer to the AdS5 and S5 coordinates respectively, and Y I are scalar spherical

harmonics on the 5-sphere which satisfy 7

∇α∇αY I = −∆(∆ + 4)Y I . (2.12)

Spherical harmonics on S5 can be classified in terms of the SO(6) ' SU(4) R-symmetry

group. In particular scalar harmonics belong to the [0,∆, 0] representation. The fields

5In our conventions Latin indices run over the whole 10 dimensional manifold while Greek indices µ, ν, . . .

and α, β, . . . run over AdS5 and S5 respectively. We also choose units in which RAdS5
= RS5 = 1.

6We do not consider the harmonic expansion of h(αβ) as this fluctuation is related to Q2Q̄2 descendants

of chiral primaries in the dual super Yang-Mills theory.
7We include a brief review of spherical harmonics in the appendix.
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h2 and b appear coupled in the linearized equation of motions. Their equations can be

diagonalized introducing the linear combinations [29]

sI =
1

20(∆ + 2)
[hI

2 − 10(∆ + 4)bI ] (2.13)

tI =
1

20(∆ + 2)
[hI

2 + 10∆bI ] (2.14)

which obey the equations of motion

∇µ∇µ sI = ∆(∆ − 4) sI (2.15)

∇µ∇µ tI = (∆ + 4)(∆ + 8) tI . (2.16)

A scalar field in AdS with m2 = ∆(∆ − 4) (with ∆ ≥ 2) transforming in the [0,∆, 0]

representation corresponds to a chiral primary operator O∆ of conformal dimension ∆.

Therefore, to linear order, the scalar field sI corresponds to chiral primaries in the dual

gauge theory. On the other hand, the scalars tI are associated to their descendants, which

we do not consider in the paper.

The linear solutions to the equations of motion turn out to be [29]

hµν = −6

5
∆ s gµν +

4

∆ + 1
∇(µ∇ν)s (2.17)

hαβ = 2∆ s gαβ (2.18)

aµ1µ2µ3µ4 = 4εµ1µ2µ3µ4µ5∇µ5b (2.19)

aα1α2α3α4 = −4
∑

I

εαα1α2α3α4b
I(x)∇αY I(y) (2.20)

where s =
∑

sIY I and b =
∑

bIY I . Using (2.5) and the solution (2.18) one can identify

h2 = 10∆ s. Setting tI = 0 in (2.14), one can then deduce s = −b.

3. Operator product expansion of Wilson loops

The Wilson loop operator can be expanded in terms of local operators when probed from

distances much larger than its characteristic size a. For the circular Wilson loop with

radius a we can write [26]

W (C) = 〈W (C)〉
(

1 +
∑

n

c(n)a
∆(n)O(n)

)

. (3.1)

In this expression O(n) is a local gauge invariant operator with conformal dimension ∆(n),

and the sum over n runs over both the primary operators and their descendants. This

operator product expansion must be invariant under the symmetries preserved by the

Wilson loop. The half-BPS circular loop has θI(τ) = θI = const. and therefore preserves a

SO(5) subgroup of the original SO(6) R-symmetry group. The operators appearing in the

– 5 –
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OPE expansion must therefore contain SO(5) singlets in the SO(6) → SO(5) decomposition.

For example, at level ∆ = 2 we can consider the chiral primary operator OA
2 = CA

IJTrΦIΦJ ,

where CA
IJ is a SO(6) symmetric traceless tensor. Under SO(6) → SO(5) it decomposes

as 20 → 1 + 5 + 14 and therefore, containing a singlet, it will appear in the OPE of

the Wilson operator. A similar analysis can be performed for higher dimension operators,

which in general will contain covariant derivatives, gauge field-strenghts and the fermions

of the N = 4 multiplet. Some of them will get large anomalous dimension in the strong

coupling limit and therefore will decouple. The generic expansion looks as follows

W (C)

〈W (C)〉 = 1 + c(2) a2 Y
(2)
A (θ)N2C

A
IJTr

(

ΦIΦJ
)

+

+c(3) a3 Y
(3)
A (θ)N3C

A
IJKTr

(

ΦIΦJΦK
)

+ c(4) a3Tr
(

θIXIF+

)

+ · · ·
(3.2)

where Y
(n)
A (θ) are spherical harmonics and Nn are normalization constants.

The coefficients appearing in the OPE expansion can be read off from the large distance

behavior of the two point correlator of the Wilson loop and the local operators

〈W (C)O(n)(x)〉
〈W (C)〉 = c(n)

a∆(n)

L2∆(n)
+ · · · (3.3)

where it is assumed that the loop radius a is much smaller than the distance L from the

point of insertion of the local operator. In this paper we will focus only on chiral primaries

operators OA
∆ = CA

I1···I∆Tr(ΦI1 . . . ΦI∆).8 These belong to short representations of the

superconformal algebra, have protected conformal dimensions, and appear at all orders in

the expansion (3.2).

In the AdS/CFT correspondence the chiral primary operators are dual to supergravity

modes: O∆ corresponds to a scalar of mass m2 = ∆(∆− 4), which is a combination of the

trace of the metric and the RR 4-form over S5, as we reviewed in the previous section.

We now briefly discuss the procedure for computing the correlation function of these

operators with a Wilson loop in the strong coupling regime. The coupling to the string

worldsheet of the supergravity mode dual to O∆ is given by a vertex operator V∆, which

can be determined by expanding the string action to linear order in the fluctuation hµν

S =
1

2πα′

∫

d2σ
√

det (Gµν∂αxµ∂βxν)

=
1

2πα′

∫

d2σ
√

det (gµν∂αxµ∂βxν)

(

1 +
1

2
(gµν∂αxµ∂βxν)−1hµν∂αxµ∂βxν + · · ·

)

.

(3.4)

The fluctuation of the metric hµν on AdS5 is given in eq. (2.17). We write the scalar sI in

terms of a source sI
0 located at the boundary

sI(~x, z) =

∫

d4~x ′G∆(~x ′; ~x, z)sI
0(~x

′) (3.5)

8We take the traces of the chiral primaries in the fundamental representation.
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where G∆(~x ′; ~x, z) is the bulk-to-boundary propagator which describes the propagation of

the supergravity mode from the insertion point ~x ′ of the chiral primary operator to the

point (~x, z) on the string worldsheet

G∆(~x ′; ~x, z) = c

(

z

z2 + |~x − ~x ′|2
)∆

. (3.6)

The constant c = ∆+1
22−∆/2N

√
∆

is fixed by requiring the unit normalization of the 2-point

function [26]. Since we are probing the Wilson loop from a distance L much larger than

its radius a we can approximate

G∆(~x ′; ~x, z) ' c
z∆

L2∆
, ∂zs

I ' ∆

z
sI , ∂2

zsI ' ∆(∆ − 1)

z2
sI . (3.7)

The relevant Christoffel symbols are readily computed to be

Γz
µν = zgµν − 2

z
δz
µδz

ν (3.8)

so that one finally has

hI
µν ' −2∆ gµνsI +

4∆

z2
δz
µδz

νs
I . (3.9)

Inserting this result into (3.4), the coupling to the worldsheet is found to be [26]

1

2πα′

∫

dA (−2∆ s)
z2

a2
≡ 1

2πα′

∫

dAV∆ s. (3.10)

In this expression dA is the area element of the classical string. The correlation function is

obtained from functionally differentiating the previous formula with respect to the source

s0

〈W (C)O∆(~x0)〉
〈W (C)〉 = −Y I(θ)

δ

δs0(~x0)

1

2πα′

∫

dA d4x′ V∆ G∆(~x ′; ~x, z)sI
0(~x

′)

= −Y I(θ)
1

2πα′

∫

dA V ∆G∆(~x0; ~x, z). (3.11)

One obtains in the approximations of eq. (3.7)

〈W (C)O∆(~x0)〉
〈W (C)〉 = 2∆/2−1

√
∆λ

N

a∆

L2∆
. (3.12)

We now move on to studying the operator product expansion of Wilson loops in higher

dimensional representations. We analyze the rank k symmetric representation first. In the

bulk this is described by a D3k brane.

– 7 –
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4. Brane computation

4.1 The D3 brane

We consider a small circular Wilson loop of radius a placed on the boundary of AdS5. The

metric on AdS5 can be written in polar coordinates as

ds2
AdS =

1

z2

(

dz2 + dr2
1 + r2

1dψ2 + dr2
2 + r2

2dφ2
)

. (4.1)

The position of the loop is defined by r1 = a and z = r2 = 0. We take a D3 brane which

pinches off on this circle as z → 0 and preserves a SO(2, 1)× SO(3)× SO(5) isometry [12].

The bulk action includes a DBI part and a Wess-Zumino term, which captures the

coupling of the background Ramond-Ramond field to the brane

SD3 = TD3

∫

√

det(γ + 2πα′F ) − TD3

∫

P [C(4)] (4.2)

where TD3 = N
2π2 is the tension of the brane, γ is the induced metric, F the electromagnetic

field strenght, and P [C(4)] is the pull-back of the 4-form

C(4) =
r1r2

z4
dr1 ∧ dψ ∧ dr2 ∧ dφ (4.3)

to the brane worldvolume.

We review the brane solution found in [12]. It turns out to be more convenient to use

a new set of coordinates obtained by transforming {z, r1, r2} into

z =
a sin η

cosh ρ − sinh ρ cos θ
, r1 =

a cos η

cosh ρ − sinh ρ cos θ
, r2 =

a sinh ρ sin θ

cosh ρ − sinh ρ cos θ
. (4.4)

In this coordinate system the metric on AdS5 reads

ds2
AdS =

1

sin2 η

(

dη2 + cos2 η dψ2 + dρ2 + sinh2 ρ (dθ2 + sin2 θ dφ2)
)

(4.5)

where ρ ∈ [0,∞), θ ∈ [0, π], and η ∈ [0, π/2]. The Wilson loop is located at η = ρ = 0. One

can pick a static gauge in which the worldvolume coordinates of the brane are identified

with {ψ , ρ , θ , φ} and the brane sits at a fixed point of the S5 determined by the constant

unit vector θI ∈ R
6. The remaining coordinate can be seen as a scalar field, η = η(ρ).

Because of the symmetries of the problem the electromagnetic field has only one component,

Fψρ(ρ). In this coordinates the DBI action in (4.2) reads

SDBI = 2N

∫

dρdθ
sin θ sinh2 ρ

sin4 η

√

cos2 η(1 + η′2) + (2πα′)2 sin4 ηF 2
ψρ (4.6)

while the Wess-Zumino term is

SWZ = −2N

∫

dρdθ
cos η sin θ sinh2 ρ

sin4 η

(

cos η + η′ sin η
sinh ρ − cosh ρ cos θ

cosh ρ − sinh ρ cos θ

)

. (4.7)

– 8 –
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The solution to the equations of motion reads [12]

sin η =
1

κ
sinh ρ , Fψρ =

ikλ

8πN sinh2 ρ
, κ =

k
√

λ

4N
. (4.8)

The bulk action has to be complemented with boundary terms for the worldvolume

scalar η and for the electric field Fψρ [12]. These terms do not change the solution but

alter the final value of the on-shell action which reads

SD3 = SDBI + SWZ + Sbdy = −2N(κ
√

1 + κ2 + sinh−1 κ). (4.9)

The expectation value of a Wilson loop in the rank k symmetric 9 representation is then

〈WSk
〉 = exp

(

2N(κ
√

1 + κ2 + sinh−1 κ)
)

. (4.10)

For small κ this expression reproduces the result of k fundamental strings

〈WSk
〉 ' ek

√
λ. (4.11)

4.1.1 Coupling to chiral primaries

The linearized coupling of the scalar sI to the brane worldvolume can be found by expanding

the induced metric on the brane around the AdS5 × S5 background gmn and keeping the

first order term in the fluctuation hmn. Since the brane lies completely in AdS5 we can

write

SDBI = TD3

∫

d4σ
√

det (Gµν∂aXµ∂bXν + 2πα′Fab)

= TD3

∫

d4σ
√

det (gµν∂aXµ∂bXν + 2πα′Fab) ·

·
(

1 +
1

2

(

gµν∂aX
µ∂bX

ν + 2πα′Fab

)−1
hρσ∂aX

ρ∂bX
σ + · · ·

)

. (4.12)

Here a, b are the brane worldvolume indices.

The coupling of sI to the 4-form in the Wess-Zumino term is obtained by replacing

C(4) → C(4) +a(4) where, using eq. (2.19) and the approximation (3.7), the fluctuation a(4)

is

aµ1...µ4 ' −4εµ1...µ4z∂
zsI ' −4∆ z εµ1...µ4zs

I (4.13)

so that

S
(1)
WZ = −TD3

∫

P [a(4)] = 4TD3 ∆

∫

P [C(4)]s
I . (4.14)

9In the limit of N → ∞ and λ → ∞ the symmetric representation coincides with the multiply wound

Wilson loop [24, 25].

– 9 –
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We use now the explicit solution to the equations of motion (4.8) to evaluate the on-

shell value of the fluctuations (4.12) and (4.14). The first order in the fluctuation in (4.12)

turns out to be

S
(1)
DBI = 4N∆κ2

∫

dρdθ
sin θ

sinh2 ρ

(

−1 − 2κ2 +
1 − sinh2 ρ(κ−2 − sin2 θ)

(cosh ρ − sinh ρ cos θ)2

)

sI . (4.15)

Similarly, the Wess-Zumino term reads

S
(1)
WZ = 8N∆κ4

∫

dρdθ
sin θ

sinh2 ρ

(

1 +
1

κ2

sinh3 ρ − sinh ρ cosh2 ρ

cosh ρ − sinh ρ cos θ
cos θ

)

sI . (4.16)

The final result for the action is then

S
(1)
D3 = S

(1)
DBI + S

(1)
WZ = −4N∆

∫ sinh−1 κ

0
dρ

∫ π

0
dθ

sin θ

(cosh ρ − sinh ρ cos θ)2
sI . (4.17)

4.1.2 The correlation function

The prescription for computing the correlation function between the Wilson loop and the

chiral primary operator is to functionally differentiate the action (4.17) with respect to the

source sI
0 (see eq. (3.5))

〈W (C)O∆(L)〉
〈W (C)〉 = −δS

(1)
D3

δs0

∣

∣

∣

s0=0
. (4.18)

We approximate the bulk-to-boundary propagator with c z∆

L2∆ and use for z the expres-

sion (4.4). This yields

〈W (C)O∆(L)〉
〈W (C)〉 ' a∆

L2∆

4N∆

κ∆
c

∫ sinh−1 κ

0
dρ sinh∆ ρ

∫ π

0
dθ

sin θ

(cosh ρ − sinh ρ cos θ)2+∆
.

(4.19)

We are neglecting terms of higher order in a
L2 .

After performing the two integrals, the final result for the coefficients of the operator

product expansion turns out to be remarkably simple

cSk ,∆ =
2∆/2+1

√
∆

sinh(∆ sinh−1 κ). (4.20)

Interestingly enough, this can be expressed in terms of Chebyshev polynomials with ima-

ginary argument

cSk,∆ =
(−1)∆/22∆/2+1

√
∆

·
{

−iV∆(iκ) for ∆ even

T∆(iκ) for ∆ odd
(4.21)

where we have used the identities Tn(x) = cos(n cos−1 x) and Vn(x) = sin(n cos−1 x).

The string limit is recovered when κ → 0. In this regime the S2 in the brane worldvol-

ume shrinks to zero size and the D3 reduces effectively to a fundamental string with AdS2

worldsheet. The coefficients (4.20) become

cSk ,∆ ' 2∆/2+1
√

∆ κ = 2∆/2−1

√
∆λ

N
k (4.22)

in perfect agreement with the result (3.12) found originally in [26].
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4.2 The D5 brane

Circular Wilson loops in the rank k antisymmetric representation of the gauge group have

a bulk description in terms of D5 branes with AdS2 × S4 worldvolume and k units of

fundamental string charge dissolved in them [13, 14]. The D5 description of these Wilson

loops is valid in the large N , large λ limit with k/N fixed. Before moving on to compute

the coupling of these branes to the scalars sI dual to chiral primaries, we briefly review the

D5 solution [13] to set up the notation and our conventions. It is convenient to take the

AdS5 × S5 metric as

ds2 = cosh2u(dζ2 + sinh2ζdψ2) + du2 + sinh2u(dϑ2 + sin2ϑdφ2) +

+ dθ2 + sin2θdΩ2
4 , (4.23)

where we have written the AdS5 factor as an AdS2 × S2 fibration. These coordinates are

related to the usual Poincare patch by

r1 =
a cosh u sinh ζ

cosh u cosh ζ − cos ϑ sinhu
, r2 =

a sinh u sin ϑ

cosh u cosh ζ − cos ϑ sinhu

z =
a

cosh u cosh ζ − cos ϑ sinhu
(4.24)

where, as before, a denotes the radius of the Wilson loop. In these coordinates, the Wilson

loop is at ζ → ∞, u = 0 and it is parametrized by ψ. The selfdual 4-form potential can be

taken to be

C(4) = 4

(

u

8
− 1

32
sinh 4u

)

dH2 ∧ dΩ2 −
(

3

2
θ − sin 2θ +

1

8
sin 4θ

)

dΩ4 , (4.25)

where dH2 denotes the volume element of the AdS2 part of the metric.

Since we want to construct a D5 brane with AdS2 × S4 worldvolume, it is natural to

take a static gauge in which ζ, ψ and the coordinates of the S4 ⊂ S5 are the worldvolume

coordinates. Furthermore we can take the following ansatz which preserves the SO(2, 1)×
SO(3) × SO(5) symmetry of the Wilson loop

u = 0 , θ = const. (4.26)

and only the Fψζ component of the worldvolume gauge field is turned on. With this ansatz

the DBI and Wess-Zumino parts of the D5 action reduce to

SDBI = TD5

∫

d6σ
√

det(γab + 2πα′Fab)

=
2N

3π

√
λ

∫

dζ sinh ζ sin4 θ

√

1 +
4π2

λ

F 2
ψζ

sinh2 ζ
, (4.27)

SWZ = −2πα′i TD5

∫

F ∧ P [C(4)]
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=
4iN

3

∫

dζ Fψζ

(

3

2
θ − sin 2θ +

1

8
sin 4θ

)

(4.28)

where we have used TD5 = N
√

λ/8π4 and vol(Ω4) = 8π2/3. The equation of motion for

the electric field states that the conjugate momentum is a constant equal to the number of

fundamental string charge k dissolved in the D5 brane

Π ≡ −i

2π

δL
δFψζ

=
2N

3π

E sin4 θ√
1 − E2

+
2N

3π

(

3

2
θ − sin 2θ +

1

8
sin 4θ

)

= k (4.29)

where for convenience we have defined E = −2πi√
λ

Fψζ

sinh ζ . This equation allows to determine

the angle θ at which the D5 sits as a function of k

θk − sin θk cos θk = π
k

N
(4.30)

while the electric field is given by E = cos θk. One can check that with this ansatz the

equation of motion for u is also satisfied. Adding the appropriate boundary terms for the

electric field and the worldvolume scalars (see [13, 30] for details) the on-shell action for

the D5 brane becomes

SD5 = SDBI + SWZ + Sbdy = −2N

3π

√
λ sin3 θk (4.31)

so the expectation value of the Wilson loop in the rank k antisymmetric representation is

given by

〈WAk
〉 = exp

(

2N

3π

√
λ sin3 θk

)

. (4.32)

As previously noted in the literature, this result is consistent with the duality between

the rank k and rank N − k antisymmetric representations: indeed, it can be seen from

eq. (4.30) that under k → N − k the angle θk goes into π − θk. It can also be checked that

in the limit k/N → 0, in which the S4 factor shrink to zero size, (4.32) coincides with the

action of k fundamental strings, as for small k/N eq. (4.30) gives θ3
k ∼ 3πk/2N , so that

〈WAk
〉 ' exp k

√
λ.

4.2.1 Coupling to chiral primaries

The coupling of the KK scalars sI to the D5 worldvolume can be obtained along the same

lines of the D3 calculation of the previous section. However, besides the fluctuation of the

AdS5 part of the metric hµν , we also need the fluctuation of the metric in the S5 direction

hαβ as well as the fluctuation of the 4-form a(4) along the S4. The explicit expressions can

be found in section 2. In particular, in this coordinates the 4-form over the S5 is

aσ1σ2σ3σ4 = 4 sin4 θ µ(Ω4)
∑

sI ∂θY
I (4.33)

where σ1, . . . , σ4 are the coordinates on the S4 and µ(Ω4) = sin3 σ1 sin2 σ2 sin σ3 is the

corresponding measure. Differently from the D3 compuation, in this case the S5 spherical
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harmonics Y I play an active role in the computation since the D5 brane extends into the

5-sphere. The explicit form of the harmonics is given in the appendix.

The variation of the DBI part of the action to first order in the fluctuations hµν and

hαβ reads

S
(1)
DBI =

TD5

2

∫

√

det(γab+2πα′Fab)
(

γab+2πα′Fab

)−1(
hµν∂aX

µ∂bX
ν +hαβ∂aX

α∂bX
β
)

.

Using the explicit solution reviewed in the previous section, it is easy to compute the

matrix γab + 2πα′Fab. Plugging in the explicit expressions for the fluctuations and using

the fact that on the D5 solution we have z = a/ cosh ζ (this follows from the change of

coordinate (4.24) after setting u = 0), we get after some computations

S
(1)
DBI = πTD5

∫

dζdσ1 . . . dσ4µ(Ω4) sinh ζ sin5 θk

(

− 4∆

cosh2 ζ sin2 θk

+ 8∆

)

sIY I .(4.34)

Performing the integration over the S4, only the SO(5) invariant spherical harmonics are

selected, namely the harmonics which depends on θk only, and we get

S
(1)
DBI =

N
√

λ

3π

∫

dζ sinh ζ sin5 θk

(

− 4∆

cosh2 ζ sin2 θk

+ 8∆

)

s∆Y ∆,0(θk) (4.35)

where the suffix on the harmonic indicates that all the quantum numbers except one were

set to zero by the integration over the 4-sphere. As reviewed in the appendix, these S4

invariant harmonics can be explicitely written as

Y ∆,0(θk) = N∆ C
(2)
∆ (cos θk) (4.36)

where C
(2)
∆ (cos θk) are Gegenbauer polynomials, and N∆ is a normalization constant nec-

essary to have orthonormality.

The linear coupling coming from the Wess-Zumino part of the action (4.28) can be

obtained using the expression for the 4-form fluctuation in eq. (4.33), and after integrating

over the S4 as above, we get

S
(1)
WZ =

8N
√

λ

3π

∫

dζ sinh ζ sin4 θk cos θks
∆ ∂θk

Y ∆,0(θk). (4.37)

4.2.2 The correlation function

The correlator between the rank k antisymmetric Wilson loop and chiral primary operator

O∆(L) can now be computed plugging (3.5) into (4.34) and (4.37) and differentiating with

respect to the source s∆
0 . As before, the bulk-to-boundary propagator can be approximated

by c z∆/L2∆. Recalling that on the D5 solution z = a/ cosh ζ, the ζ-integrals can be readily

computed and we get

〈WAk
O∆(L)〉

〈WAk
〉 =

a∆

L2∆

[

2∆/2

3π

√
∆λ sin3 θkY

∆,0(θk) −

−2∆/2+1
√

λ(∆+1)

3π
√

∆(∆ − 1)
sin5 θk

(

∆Y ∆,0(θk)+
cos θk

sin θk
∂θk

Y ∆,0(θk)

)]

.(4.38)
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Using the formula for the derivatives of Gegenbauer polynomials eq. (A.16), we obtain

∆Y ∆,0(θk) +
cos θk

sin θk
∂θk

Y ∆,0(θk) =
N∆

sin2 θk

(

∆C
(2)
∆ (cos θk) − (∆ + 3) cos θk C

(2)
∆−1(cos θk)

)

.

(4.39)

The correlation function (4.38) can then be written as

〈WAk
O∆(L)〉

〈WAk
〉 =

a∆

L2∆
Y ∆,0(0)

[

2∆/2

3π

√
∆λ sin3 θk·

· 6(∆ − 2)!

(∆ + 2)!

(

2(∆ + 1) cos θk C
(2)
∆−1(cos θk) − ∆C

(2)
∆ (cos θk)

)

]

(4.40)

where we have factorized out the spherical harmonic evaluated at θ = 0, Y ∆,0(0) =

N∆
(∆+3)!

6∆! .10 The OPE coefficient cAk,∆ we aim to compute is the expression in square

brackets. Using the recurrence relation eq. (A.17), we find that this expression can be

written in the compact form

cAk ,∆ =
2∆/2

3π

√
∆λ sin3 θk

6(∆ − 2)!

(∆ + 1)!
C

(2)
∆−2(cos θk). (4.41)

This is our final result for the correlation function of rank k antisymmetric Wilson loops

and chiral primaries. In the next section, we will see that this result exactly matches

the one obtained from the normal matrix model. As a check, one can verify that this

expression reduces to the string result of [26] in the limit k/N → 0, by using θ3
k ∼ 3πk/2N

and eq. (A.18) from the appendix.

5. The correlation functions from the normal matrix model

It is well-known that the expectation value of a circular Wilson loop in the fundamental

representation of SU(N) can be computed from a quadratic Hermitian matrix model [22, 23]

〈W¤〉 =
1

ZH

∫

[dM ] exp

(

−2N

λ
TrM2

)

1

N
Tr¤ eM . (5.1)

This matrix model is conjectured to capture the physics of the Wilson loop exactly, up to

instanton corrections [31], to all orders of 1/N and λ. The conjecture extends to higher rank

Wilson loops as well. The result for the multiply wound Wilson loop has been obtained

in [12], whereas [25] and [13, 25] contain the computations for, respectively, the symmetric

and antisymmetric representations.

When computing the correlation function between a Wilson loop and a chiral primary

operator one can substitute the Hermitian model (5.1) with a complex one by introducing

10The OPE coefficient does not include a factor coming from the spherical harmonic evaluated at the

unit 6-vector θI appearing in eq. (1.1). After a rotation, this vector can always be set to θI = (1, 0, . . . , 0)

which corresponds to the north pole of S5, i.e. θ = 0.
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a second matrix MIm and defining z = M + iMIm. In [24] it was shown that, for certain

representations of the Wilson loop (the multi-winding and the antisymmetric), the complex

matrix model is equivalent to a normal matrix model, which is a complex model where the

matrix is constrained to commute with its conjugate. In the normal matrix model the

expression for the Wilson loop reads

〈WR〉 =
1

ZN

∫

[z,z̄]=0
[d2z] exp

(

−2N

λ
Trzz̄

)

1

dimRTrRe
1√
2
(z+z̄)

. (5.2)

For large N , the eigenvalues of this model are distributed in incompressible droplets

in the complex plane. This leads to interpreting the complex plane as the phase space of

free fermions, in analogy with the matrix quantum mechanics describing chiral primary

operators [32, 33]. For example, the Wilson loop in the fundamental representation has an

eigenvalue distribution given by a circular droplet with constant density 11

ρ(z) =







2
πλ |z| <

√

λ
2

0 |z| >
√

λ
2

(5.3)

In [24] it was also shown that the correlation function between a Wilson loop in the

fundamental representation and a chiral primary operator is given by 12

〈W¤O∆〉 =
2∆/2

ZN

∫

[z,z̄]=0
[d2z] exp (−Tr zz̄)

1

N
Tr¤ e

1
2

q

λ
N

(z+z̄)− λ
8N

1√
∆N∆

Tr z∆. (5.4)

We now use the normal matrix model to check our results for the coefficients of the operator

product expansion of higher rank Wilson loops.

5.1 The symmetric case

We start by reproducing the result (4.20) for cSk,∆ using the normal matrix model. Accord-

ing to the holographic dictionary put forward in [14], we are interested in the correlator

between a Wilson loop in the rank k symmetric representation and the chiral primary op-

erator O∆ = 1√
∆N∆

TrZ∆. In the limit of large N and large λ the symmetric representation

Wilson loop WSk
effectively coincides with the multiply wound fundamental loop W

(k)
¤

, as

was shown in [24] and [25]. Therefore we limit ourselves to the simpler case of computing

〈W (k)
¤

O∆〉, where k is the winding number and corresponds in the brane probe picture to

the number of fundamental strings dissolved in the brane.

We start from eq. (4.7) of [24], where we replace everywhere λ → k2λ

〈W (k)
¤

O∆〉 =
2∆/2+1ek2λ/8N

k
√

∆λ

∮

dw

2πi
w∆ek

√
λ w/2

(

1 +
k
√

λ

2Nw

)N




(

1 +
k
√

λ

2Nw

)∆

− 1



(5.5)

11Projecting (5.3) into the real axis one recovers the Wigner semi-circle distribution.
12The factor 2∆/2 instead of the 2−∆/2 of [24] is set in order to have normalizations consistent with [26].
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The large winding limit consists in taking N → ∞ while keeping κ ≡ k
√

λ
4N fixed. In this

limit the integral can be evaluated around the saddle point of the terms proportional to N

and k

∂w

(

k
√

λ

2
w + N log

(

1 +
k
√

λ

2Nw

))

= 0 (5.6)

which yields

w? =
√

1 + κ2 − κ. (5.7)

Inserting w∗ in (5.5) and using

√

1 + κ2 + κ = exp(sinh−1 κ),
√

1 + κ2 − κ = exp(− sinh−1 κ) (5.8)

it is easy to see that

〈W (k)
¤

O∆〉 =
2∆/2

2Nκ
√

∆
2 sinh(∆ sinh−1 κ)e2N(κ

√
1+κ2+sinh−1 κ). (5.9)

To get a properly normalized expression one still needs to divide (5.9) by

〈W (k)
¤

〉 =
1

2Nκ
e2N(κ

√
1+κ2+sinh−1 κ). (5.10)

The final result coincides with eq. (4.20), which we obtained from the brane picture.

5.2 The antisymmetric case

To compute the OPE coefficients of Wilson loops in the rank k antisymmetric representa-

tion, we have to evaluate the following correlator in the normal matrix model [24]

〈WAk
O∆〉 =

2∆/2 ekλ/8N

ZNN∆/2
√

∆

∫

[z,z̄]=0
[d2z]e−Tr(zz̄) 1

dimAk
TrAk

e
1
2

q

λ
N

(z+z̄)
Trz∆. (5.11)

This matrix integral can actually be solved exactly, as was shown in [24], and similarly to

the case of the fundamental representation, it can be written as a k-dimensional contour

integral. However, it does not seem to be easy to take the large N and large k limit with

k/N fixed from such an expression. Here we follow a different approach to get the above

correlator in this limit. First, as in [25], we find it convenient to rewrite the trace in the

antisymmetric representation using the corresponding generating function

TrAk
e

1
2

q

λ
N

(z+z̄)
=

∮

dt

2πi
tk−1 exp

[

Tr log

(

1 +
1

t
e

1
2

q

λ
N

(z+z̄)
)]

. (5.12)

Since we expect the correlator to be real, it is also convenient to replace Trz∆ → 1
2(Trz∆ +

Trz̄∆). The idea is then to view the insertion of the chiral primary Trz∆ in (5.11) as a
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small perturbation of the gaussian potential, by writing

∫

[z,z̄]=0
[d2z]e−Tr(zz̄)Trz∆ eTr log(1+ 1

t
e

1
2

√
λ
N

(z+z̄)
) =

= ZN
∂

∂α

(

1

ZN (α)

∫

[z,z̄]=0
[d2z]e−Tr(zz̄)+ α

2
(Trz∆+Trz̄∆)eTr log(1+ 1

t
e

1
2

√
λ
N

(z+z̄)
)

)

∣

∣

∣

∣

α=0

≡ ZN
∂

∂α

〈

exp

[

Tr log

(

1 +
1

t
e

1
2

q

λ
N

(z+z̄)
)]〉

α

∣

∣

∣

∣

α=0

(5.13)

where we have introduced an α-dependent partition function

ZN (α) =

∫

[z,z̄]=0
[d2z]e−Tr(zz̄)+ α

2
(Trz∆+Trz̄∆) (5.14)

and we have used that ZN (α) = ZN + O(α2).13 The problem is now to evaluate the

correlation function (5.13) in the normal matrix model with the deformed potential

V (z, z̄) = −Trzz̄ +
α

2
Tr(z∆ + z̄∆). (5.15)

Normal models with potentials of this kind were previously studied in the literature, for a

recent account see for example [34, 35]. To solve the model at large N , one can as usual go

to the eigenvalue basis at the expenses of introducing a Vandermonde factor, and determine

the eigenvalue density ρα(z, z̄) in the continuum limit. The density is found by solving the

saddle point equation 14

z − ∆α

2
z̄∆−1 = N

∫

d2z′
ρα(z′, z̄′)

z̄ − z̄′
(5.16)

where the term in the right hand side comes from the Vandermonde factor. Once the

density is known, the correlation function in (5.13) becomes

〈

exp

[

Tr log

(

1 +
1

t
e

1
2

q

λ
N

(z+z̄)
)]〉

α

→ exp

[

N

∫

d2z ρα(z, z̄) log

(

1 +
1

t
e

1
2

q

λ
N

(z+z̄)
)]

.

(5.17)

It is known that for potentials of the kind V (z, z̄) = −zz̄ + f(z) + f̄(z̄), the density is a

constant (equal to 1
Nπ in the normalizations we are using here) inside a certain droplet in

the complex plane and zero outside. For the gaussian potential, as reviewed previously,

the droplet is just a circle of radius
√

N (to compare with eq. (5.3), one has to rescale

z →
√

λ
2N z), while the term proportional to α induces a deformation of the circle which

preserves its total area (since we do not change the number of eigenvalues). It is not

difficult to find the shape of the droplet which solves the saddle point equation (5.16) at

13This follows from the fact that in the matrix model with gaussian potential 〈Trz∆〉 = 〈Trz̄∆〉 = 0.

14As in [25], the term exp

»

Tr log

„

1 + 1
t

e
1

2

q

λ

N
(z+z̄)

«–

does not modify the saddle point equation at

leading order at large N .
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leading order in α. It is convenient to work in polar coordinates z = reiφ. The curve which

bounds the droplet can then be written at first order as

r(φ) =
√

N
(

1 + αf(φ)
)

. (5.18)

Clearly f(φ) has to be periodic, and may be written as

f(φ) =

∞
∑

n=1

an cos nφ (5.19)

where only cosines appear because of the symmetry of the potential (5.15) under z ↔ z̄,

and the mode with n = 0 is excluded by requiring the area to be preserved. The saddle

point equation now reads

r eiφ − ∆α

2
r∆−1 e−i(∆−1)φ =

1

π

∫ 2π

0
dφ′

∫

√
N(1+α f(φ′))

0
dr′

r′

r e−iφ − r′ e−iφ′ . (5.20)

Expanding the integral at first order in α and plugging in the Fourier expansion (5.19),

we see that this equation is satisfied if a∆ = N∆/2−1 ∆
2 and all other an vanish, so we find

that the shape of the deformed droplet is given by the curve

r(φ) =
√

N
(

1 +
α

2
∆ N∆/2−1 cos ∆φ

)

. (5.21)

Before moving on to compute (5.13), we can check the validity of the method by

applying it to the computation of the correlator (5.4) when the Wilson loop is in the

fundamental representation. In this case, following the same steps as above, in the large

N limit we arrive at

〈W¤O∆〉 =
2∆/2

√
∆N∆/2

∂

∂α

∫

d2z ρα(z, z̄) e
1
2

q

λ
N

(z+z̄)
∣

∣

∣

α=0

=
2∆/2

√
∆N∆/2

∂

∂α

1

Nπ

∫ 2π

0
dφ

∫

√
N(1+ α

2
∆ N∆/2−1 cos ∆φ)

0
dr r e

q

λ
N

r cos φ
∣

∣

∣

∣

α=0

=
2∆/2

√
∆

N

1

2π

∫ 2π

0
dφ e

√
λ cos φ cos ∆φ =

2∆/2
√

∆

N
I∆(

√
λ) (5.22)

which is the result first found in [36] and the correct large N limit of the exact formula (5.5)

(with k = 1).

Going back to the antisymmetric representation, we have to evaluate

∮

dt

2πi
tk−1 ∂

∂α
exp

[

N

∫

d2z ρα(z, z̄) log

(

1 +
1

t
e

1
2

q

λ
N

(z+z̄)
)]

∣

∣

∣

∣

α=0

=

∮

dt

2πi
tk−1 ∂

∂α

[

N

∫

d2z ρα(z, z̄) log

(

1 +
1

t
e

1
2

q

λ
N

(z+z̄)
)]

∣

∣

∣

∣

α=0

×

× exp

[

N

∫

d2z ρ0(z, z̄) log

(

1 +
1

t
e

1
2

q

λ
N

(z+z̄)
)]

(5.23)
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where in the last line ρ0 is just the circular droplet density. Since the exponent is indepen-

dent of α, the t integral can be evaluated in the supergravity limit of large λ exactly as

in [25]: we first make a change of variables t = e
√

λw, then the saddle point of the exponent

is found to be

w? = cos θk (5.24)

where θk is defined as in eq. (4.30). The exponent in (5.23) gives a term proportional to

the expectation value of the Wilson loop, while the prefactor is evaluated at the saddle

point. After dividing by 〈WAk
〉, the OPE coefficient can then be obtained as

〈WAk
O∆〉

〈WAk
〉 =

2∆/2

√
∆N∆/2

∂

∂α

[

N

∫

d2z ρα(z, z̄) log

(

1 + e
1
2

√
λ

“

z+z̄√
N

−2 cos θk

”)]
∣

∣

∣

∣

α=0

' 2∆/2N
√

λ√
∆N∆/2

∂

∂α

2

π

∫ θk

0
dφ

∫ 1+ α
2

∆ N∆/2−1 cos ∆φ

cos θk
cos φ

dr r(r cos φ − cos θk)
∣

∣

∣

α=0
(5.25)

where the lower limit in the r integral comes from the fact that in the large λ limit the

integral has support only in the region r cos φ ≥ cos θk.
15 After doing the derivative, (5.25)

gives the final result

〈WAk
O∆〉

〈WAk
〉 =

2∆/2
√

∆λ

π

∫ θk

0
dφ cos ∆φ (cos φ − cos θk). (5.26)

Remarkably, the integral in (5.26) precisely reproduces the Gegenbauer polynomials arising

in the bulk computation, and the final result is

〈WAk
O∆〉

〈WAk
〉 =

2∆/2

3π

√
∆λ sin3 θk

6(∆ − 2)!

(∆ + 1)!
C

(2)
∆−2(cos θk) (5.27)

which exactly matches the D5 computation of the OPE coefficient.

6. Conclusion

In this paper we computed the correlation function between a higher rank Wilson loop and a

chiral primary operator in the fundamental representation using branes with electric fluxes.

Following the proposal of [12 – 14], we considered a D3k brane for the rank k symmetric

case and a D5k brane for the antisymmetric one. We then checked our results with the

normal matrix model discussed in [24] finding perfect agreement in both cases.

We focussed on chiral primary operators but it should not be difficult to extend our

computation to operators corresponding to other supergravity modes. For example, the

KK modes of the dilaton are necessary to compute correlation functions of Wilson loops

and Tr Φ∆F 2
+.

15The upper limit in the φ integral is rigorously θk + O(α), but it is easy to see that the correction does

not contribute at first order in α.
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It would be worthwhile to study more general representations of both the Wilson loop

and the chiral primary operator. A particularly interesting issue to address would be

understanding from our brane picture the selection rule found in [24]: for Wilson loops in

the rank k antisymmetric representation the only non vanishing correlators involve chiral

primaries with traces over Young diagrams with at most k hooks. Another direction to

pursue may be considering the correlation function between higher dimensional Wilson loop

and a chiral primary operator with ∆ ∼ N . In the bulk this would require to study the bulk-

to-bulk exchange of supergravity degrees of freedom between the electric branes describing

the Wilson loop and the (dual) giant gravitons associated with the chiral primary.
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A. Spherical harmonics and orthogonal polynomials

In this appendix we collect some facts about spherical harmonics and orthogonal polyno-

mials we have used in the paper. We follow the treatments of [37] and [38].

Spherical harmonics in d dimensions are eigenfunctions of the Laplacian on the unit

d-sphere

∇2
(d)Y

I(Ω) = λY I(Ω) (A.1)

where the Laplacian is

∇2
(d) =

1√
det g

∂i

√

det g gij ∂j (A.2)

with the metric given by gij = diag(1, sin2 θd(1, sin
2 θd−1(. . .))). The integer multi-index

I = (ld, . . . , l1) satisfies

ld ≥ ld−1 ≥ · · · ≥ l2 ≥ |l1|. (A.3)

The general solution to eq. (A.1) is

Y ld,...,l1(θd, . . . , θ1) =
ei l1θ1

√
2π

d
∏

n=2

nP̄
ln−1

ln
(θn) (A.4)

where we defined

nP̄ l
L(θ) = nc l

L(sin θ)−(n−2)/2P
−(l+(n−2)/2)
L+(n−2)/2 (cos θ). (A.5)
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In this expression P −m
n (x) is the Legendre function of the first kind and the constant

nc l
L =

[

(2L + n − 1)(L + l + n − 2)!

2(L − l)!

]1/2

(A.6)

is chosen to ensure the orthonormalization condition
∫

µ(Ωd) Y IY I′ = δII′ (A.7)

where µ(Ωd) is the measure over Sd. The integration over Sd−1 selects only SO(d) invariant

harmonics
∫

µ(Ωd−1)
∑

I

Y I =
∑

ld

Y ld, 0,...,0. (A.8)

The eigenvalue λ depends only on ld ≡ ∆ because of the O(d + 1) symmetry of the

problem and it can be found by studying the action of the Laplacian on SO(d−1) invariant

spherical harmonics

(

1

sind−1 θd

∂

∂θd
sind−1 θd

∂

∂θd

)

Y ∆, 0(Ω) = λ∆Y ∆, 0(Ω). (A.9)

After the change of variable x = cos θd, this is recognized to be the Gegenbauer equation

(

(1 − x2)
∂2

∂x2
− dx

∂

∂x

)

Y ∆, 0(x) = λ∆Y ∆, 0(x). (A.10)

The solution to this equation is

λ∆ = −∆(∆ + d − 1) , Y ∆, 0(x) = N∆ C
( d−1

2 )
∆ (x) (A.11)

where C
( d−1

2 )
∆ are Gegenbauer polynomials and the constant N∆ can be obtained from the

orthonormality of the Y ∆, 0’s

N∆ =

[

∆!(2∆ + d − 1)
[

Γ
(

d−1
2

)]2
Γ

(

d
2

)

24−dπ
d+2
2 Γ(∆ + d − 1)

]1/2

. (A.12)

The Gegenbauer polynomials C
(λ)
∆ (x) are a generalization of the Legendre polynomials

and can be obtained from the following generating function

1

(1 − 2xt + t2)λ
=

∞
∑

∆=0

C
(λ)
∆ (x) t∆. (A.13)

We list the first few of them

C
(λ)
0 (x) = 1

C
(λ)
1 (x) = 2λx

C
(λ)
2 (x) = −λ + 2λ(1 + λ)x2
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C
(λ)
3 (x) = −2λ(1 + λ)x +

4

3
λ(1 + λ)(2 + λ)x3. (A.14)

They satisfy the normalization condition

∫ 1

−1
dx(1 − x2)λ−1/2

[

C
(λ)
∆

]2
= 21−2λπ

Γ(∆ + 2λ)

(∆ + λ)Γ2(λ)Γ(∆ + 1)
(A.15)

for λ > −1/2.

In the paper we have used the following formula for the derivative of a Gegenbauer

polynomial

(1 − x2)∂xC
(λ)
∆ (x) = −∆ xC

(λ)
∆ (x) + (∆ + 2λ − 1)C

(λ)
∆−1(x) (A.16)

and the following recurrence relation

∆ C
(λ)
∆ (x) = 2(∆ + λ − 1)xC

(λ)
∆−1(x) − (∆ + 2λ − 2)C

(λ)
∆−2(x). (A.17)

We have also used that

C
( d−1

2 )
∆ (1) =

(∆ + d − 2)!

∆!(d − 2)!
. (A.18)
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