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Abstract
Doctorate School in Industrial Innovation Engineering
Department of Sciences and Methods for Engineering

Doctor of Philosophy

Optimization methods for knapsack and tool switching problems

by Alberto LOCATELLI

This Ph.D. thesis deals with two different classes of optimization problems: knap-
sack problems and tool switching problems.
The first purpose of this thesis is to provide a comprehensive survey on the knapsack
problems to cover the developments appeared in this field after the publication of
the latter volume of the two seminal books by Martello and Toth (1990) and Kellerer,
Pferschy, and Pisinger (2004). We review over 450 different papers, mostly appeared
after 2004 and before Summer 2021.
In the subsequent part of the thesis, motivated by a real-world application in the
colour printing industry, we deal with different variants of the well-known Tool
Switching Problem (ToSP). Firstly, we introduce four different variants of ToSP. For
each variant, we discuss its complexity and propose a mathematical formulation.
The third and fourth variants introduce a novel requirement into ToSP: the tool or-
der constraint. We show that the new problem variants are NP-hard even when
the job sequence is given as part of the input and the setup times are binary. We
solve them by using dedicated arc flow models, whose effectiveness is evaluated
on several instances that are generated with the aim of covering different scenarios
of interest. The thesis continues by addressing a challenging real-world industrial
problem arising in a food packaging company located in the city of Reggio Emilia
(Italy). The real-world problem generalizes the fourth introduced variant of ToSP to
a great extent (as it includes parallel heterogeneous machines, due dates, and several
additional complicating features). To solve it, we developed a greedy randomized
adaptive search procedure equipped with several local search procedures. The ex-
cellent performance of the algorithm is proved by extensive computational experi-
ments on real-world instances, for which it produced good-quality solutions within
a limited computing time. As in the real problem the setup times are subject to sig-
nificant uncertainties, forecasting these times is a very difficult task and significantly
influences the quality and efficiency of job scheduling. Thus, we explore the use of
machine learning regression algorithms for setup time prediction using a real-world
industrial dataset. The experimental results demonstrate these approaches outper-
form by a large margin the evaluation methods available in the literature, proving
their effectiveness in modeling the application.
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Chapter 1

Introduction

Knapsack problems are a highly active research area in combinatorial optimization.
Although, the knapsack problem has been known since over a century, see Mathews
[368], the first algorithmic studies were published in the Fifties (by Dantzig [141] and
Bellman [48]) while an intense research activity started in the Sixties. It produced,
over the next fifty years, an impressive number of scientific results, making this
field a very relevant area of combinatorial optimization. The success of this topic
in the subsequent decades is also shown by the fact that a study by Skiena [455]
ranked it as the 18th most popular algorithmic problem, and the second among the
NP-hard problems (after traveling salesman). Two specific monographs have been
devoted to knapsack problems. The first book was published in 1990 by Martello and
Toth ([361]). It focuses on algorithms and computer implementations for knapsack
problems, and offers a detailed description and analysis of approximately 200 results
that were published in the previous thirty years. The second book, published in 2004
by Kellerer, Pferschy, and Pisinger ([297]), is specifically dedicated to this area. The
first purpose of this thesis is to cover the developments appeared in this field after
the publication of the latter volume, until Summer 2021.

Chapter 2 is devoted to problems whose goal is to optimally assign items to
a single knapsack. Besides the classical knapsack problems (binary, subset sum,
bounded, unbounded, change-making), we review problems with special constraints
(setups, multiple-choice, conflicts, precedence, sharing, compartments) as well as
relatively recent fields of investigation, like robust and bilevel problems.

Chapter 3 covers multiple, multidimensional (vector and geometric), and quadratic
knapsack problems, as well as other relevant variants, such as, e.g., multiobjective
and online versions. Chapters 2 and 3 list over 450 different papers, mostly appeared
after 2004, the publication year of the latter of the two classical books specifically
dedicated to these topics.

In the subsequent part of the thesis, motivated by a real-world application in
the colour printing industry, we deal with different variants of the well-known Tool
Switching Problem (ToSP). The ToSP consists in optimally sequencing jobs and in
assigning tools to a capacitated magazine in order to minimize the number of tool
switches. This is equivalent to considering unit-time setups. To the best of our
knowledge, most of the previous research on ToSPs concerned uniform switching
time (see, e.g, Calmels [73]) and the only works that take into consideration non-
uniform setup times are those by Privault and Finke [409], Windras Mara et al. [482],
and Iori et al. [278].

In the ToSP, the position of the tools in the magazine is irrelevant (see Laporte,
Salazar-González, and Semet [329]) and this information can thus be neglected. On
the other hand, this information is crucial in the ToSP with non-uniform setup times,
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since the setup time depends on the tools switched at the same magazine slot. An-
other problem variant of the ToSP with unit-time setups, but in which the informa-
tion about the position of the tools in a magazine cannot be neglected, arises in the
case in which tools may require more than one slot. To tackle this problem, Tzur and
Altman [467] proposed an Integer Linear Programming (ILP) formulation and devel-
oped a heuristic procedure. Later, Van Hop [469] proposed a construction heuristic,
while Crama et al. [126] proved that the problem is NP-hard even when the order in
which the jobs are processed is fixed.

In Chapter 4, we address four different variants of ToSP of increasing difficulty:
CUF-ToSP, GUF-ToSP, GOF-ToSP, and GOV-ToSP. For each problem, we discuss its
complexity and propose a mathematical programming model. The third and fourth
variants introduce a novel requirement into ToSP: the tool order constraint. Under
this requirement, during the processing of each job, the selected tools must be sorted
along the slot sequence in the machine, and the machine will use them for processing
the job applying the tools in that order. We show that the new problem variants are
NP-hard even when the job sequence is given as part of the input and the setup
times are binary. We solve them by using dedicated arc flow models. We evaluate
the effectiveness of the models on several instances that are generated with the aim
of covering different scenarios of interest.

In Chapter 5, we tackle an interesting real-world industrial problem arising in
a food packaging company located in the city of Reggio Emilia (Italy). The prob-
lem faced by the company generalizes the last variant of ToSP, tackled in the fourth
chapter, to a great extent (as it includes parallel heterogeneous machines, release and
due dates, and several additional complicating features). In particular, we address
a scheduling problem that consists in assigning printing jobs to a heterogeneous set
of parallel flexographic printer machines, with the aim of minimizing a weighted
sum of total weighted tardiness and total setup time. To solve it, we developed a
greedy randomized adaptive search procedure equipped with several local search
procedures. The excellent performance of the algorithm is proved by extensive com-
putational experiments on real-world instances, for which it produced good-quality
solutions within a limited computing time.

As in the real scheduling problem the setup times are subject to significant un-
certainties, forecasting these times is a very difficult task and significantly influences
the quality and efficiency of scheduling. Although shortcomings in the setup times
prediction may lead to develop inefficient schedules and represent a relevant source
of gap between scheduling theory and practice, setup times estimation complexi-
ties received limited attention in the literature. With the aim of filling this gap, in
the last chapter, we explore the use of machine learning regression algorithms for
setup time prediction and we apply them to the real-world scheduling application
faced in Chapter 5. Using a real-world industrial dataset, we train three different
machine learning models: linear regression, random forests, and gradient boosting
machines. We take into account a wide set of features and several possible inter-
dependencies among them, and then, using a feature selection method based on
feature importance scores generated by random forests, we identify a parsimonious
but comprehensive subset of these features. The experimental results demonstrate
that the gradient boosting machine approach obtains the best performance overall,
immediately followed by random forests. For both models, the mean squared er-
ror on the predicted setup times is less than half of that of the heuristic evaluation
method available in the literature. The accuracy of the obtained predictions shows
the effectiveness of the proposed approach. Moreover, the versatility of the machine
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learning models allows an easy application to similar evaluation tasks in a multi-
tude of scheduling scenarios, making the obtained results particularly significant
and valuable.
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Chapter 2

Knapsack problems - An Overview
of Recent Advances. Part I: Single
Knapsack Problems*

After the seminal books by Martello and Toth (1990) and Kellerer, Pferschy, and
Pisinger (2004), knapsack problems became a classical and rich research area in com-
binatorial optimization. The purpose of the first two chapters of this thesis is to
cover the developments that appeared in this field after the publication of the lat-
ter volume. This chapter is devoted to problems whose goal is to optimally assign
items to a single knapsack. Besides the classical knapsack problems (binary, sub-
set sum, bounded, unbounded, change-making), we review problems with special
constraints (setups, multiple-choice, conflicts, precedences, sharing, compartments)
as well as relatively recent fields of investigation, like robust and bilevel problems.
Chapter 3 covers multiple, multidimensional, and quadratic knapsack problems,
and includes a succinct treatment of online and multiobjective knapsack problems.

2.1 Introduction

The area of knapsack problems is one of the most active research areas of combi-
natorial optimization. Two specific monographs have been dedicated to this field.
In 1990, Martello and Toth published the first book ([361], now available online
at http://www.or.deis.unibo.it/knapsack.html) explicitly dedicated to algo-
rithms and computer implementations for knapsack problems, in which about 200
results that appeared in the previous thirty years were thoroughly described and
commented. In 2004, Kellerer, Pferschy, and Pisinger published the second book
([297]) specifically dedicated to this area. Quoting their introduction, “Thirteen years
have passed since the seminal book on knapsack problems by Martello and Toth appeared. On
this occasion a former colleague exclaimed back in 1990: “How can you write 250 pages on
the knapsack problem?”... However, in the last decade a large number of research publica-
tions contributed new results for the knapsack problem in all areas of interest such as exact
algorithms, heuristics and approximation schemes.” Indeed, this new volume included
about 500 bibliographic references, two thirds of which appeared after 1990. Sev-
enteen more years have passed, during which the intense research activity on these
topics has continued. The purpose of the first two chapters of this thesis is thus to
report the many results that appeared in this period. As all the basic algorithmic ap-
proaches have been fully described in the two monographs, they will not be repeated

*The results of this chapter appears in: V. Cacchiani, M. Iori, A. Locatelli, and S. Martello. "Knap-
sack problems - an overview of recent advances. Part I: Single knapsack problems". In: Computers &
Operations Research 143 (2022), 105692.

http://www.or.deis.unibo.it/knapsack.html
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here. We will concentrate instead on a succinct description of the main recent results
appeared after 2003 (and until Summer 2021), with the objective of completing the
overview of this topic.

The knapsack problem has been known since over a century, see Mathews [368],
and, according to folklore, the name was suggested by Tobias Dantzig (1884-1956),
father of George Dantzig. (According to some authors, the suggestion was included
in Dantzig [142], which is wrong: the term ‘knapsack’ does not appear in this book.)
While the first algorithmic studies were published in the Fifties (by Dantzig [141]
and Bellman [48]), an intense research activity started in the Sixties. The success of
this topic in the subsequent decades is also shown by the fact that a study by Skiena
[455] ranked it as the 18th most popular algorithmic problem, and the second among
the NP-hard problems (after traveling salesman).

The ancestor problem is known as the 0-1 Knapsack Problem (KP01). Using Dantzig’s
1957 words, “In this problem a person is planning a hike and has decided not to carry more
than 70 lb of different items, such as bed roll, geiger counters (these days), cans of food ....”.
Formally, we are given a capacity c and a set of n items, each with a weight wj and
a profit pj. We want to determine a subset of items such that its total weight does
not exceed the capacity and its total profit is a maximum. The problem can then be
formulated as the Integer Linear Programming (ILP) model:

max
n

∑
j=1

pjxj (2.1)

s.t.
n

∑
j=1

wjxj ≤ c (2.2)

xj ∈ {0, 1} (j = 1, . . . , n), (2.3)

where xj takes the value 1 if and only if item j is selected. The first study on the
KP01, see [141], concerned the Linear Programming (LP) relaxation of this model, in
which (2.3) is replaced by

0 ≤ xj ≤ 1 (j = 1, . . . , n).

In the following, we will generally assume, without loss of generality, that all
input values are positive, that wj ≤ c (j = 1, . . . , n), and that ∑n

j=1 wj > c.
The number of knapsack problem variants addressed in recent years is huge. In

this chapter, we mostly concentrate on those classical problems that were addressed
in the main chapters of Kellerer, Pferschy, and Pisinger [297] (which also correspond
to chapters in Martello and Toth [361]) and on variants that received significant at-
tention in the recent literature.

Most results on knapsack problems were developed by the combinatorial opti-
mization community, to which the authors of monographs [361] and [297] dedicated
to these problems belong. This survey is mainly aimed at this community, and hence
our choice of subjects privileges problems with a clear combinatorial aspect. The
stochastic knapsack problems are not included, while we address in a succinct way
knapsack problems with a clear continuous, non-linear flavor. Problems closer to the
computer science community (online knapsack problems) or belonging to the area of
multiple criteria decision aiding (multi-objective knapsack problems) are discussed in
Section 3.6.2. Polyhedral aspects of knapsack problems are briefly mentioned in the
text but not covered in a dedicated section: in Section 2.2 we provide pointers to a
recent survey and to successive updates.
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The decision version of a special case of the KP01 (similar to the subset sum prob-
lem treated in Section 2.4) is one of the famous Karp’s 21 NP-complete problems
(see Karp [291]). In general, all optimization problems considered in this survey are
NP-hard. The “simplest” single knapsack problems (basically those reviewed in
Sections 2.3-2.8) areNP-hard in the weak sense, i.e., they may be solved in pseudo-
polynomial time through Dynamic Programming (DP). Most variants and general-
izations considered in the subsequent sections, as well as most problems treated
in Chapter 3, are instead NP-hard in the strong sense (i.e., they cannot be solved
by pseudo-polynomial time algorithms unless P = NP), as specifically stated in
the corresponding sections. NP-completeness considerations and several detailed
complexity proofs for knapsack problems can be found in Chapter 1 of [361] and in
Appendix A of [297].

Monograph [297] is updated to the end of June 2003. Apart from a handful of
earlier publications (mostly in the present and in the next section), all references in
this survey are from 2003 onwards. With very few exceptions, we restricted our re-
view to contributions appeared in peer reviewed journals. The survey is subdivided
into two parts. This chapter covers the classical single knapsack problems, while
Chapter 3 is devoted to the multiple, multidimensional, and quadratic cases, and
to a succinct treatment of online and multiobjective knapsack problems. As we re-
view several variants and generalizations, the thesis includes many acronyms: we
provide the list of the used abbreviations in Appendix 6.6.

2.2 Books and surveys

We already mentioned the two monographs dedicated to knapsack problems. Be-
sides the KP01, the book by Martello and Toth [361] includes specific chapters on
the following basic variants: bounded (and unbounded) knapsack, subset-sum, change-
making, multiple knapsack. In addition, there are two chapters on two companion
problems: generalized assignment and bin packing. The book by Kellerer, Pferschy,
and Pisinger [297] includes chapters on the same basic variants (but change-making),
plus chapters on multidimensional, multiple-choice, and quadratic knapsack problems.

Monograph [297] only briefly mentions bin packing and generalized assignment,
which are instead extensively treated in monograph [361]. In the Bin Packing Problem
(BPP), one is given n items with weights wj (j = 1, . . . , n) and an unlimited number
of identical knapsacks (bins) of capacity c, and the objective is to pack all the items
into the minimum number of bins without exceeding their capacities. In the Gener-
alized Assignment Problem (GAP), one is given n items and m knapsacks of capacity ci
(i = 1, . . . , m): inserting item j into knapsack i (i = 1, . . . , m; j = 1, . . . , n) produces
a profit pij and assigns a weight wij to knapsack i. The objective is to pack each item
into exactly one knapsack so as to maximize the overall profit without assigning to
any knapsack a total weight greater than its capacity. In the last decades, these two
topics where subject to intense investigation, which made them autonomous areas
of research. For this reason, they will not be treated in the present survey. We refer
the reader to some studies specifically devoted to them, namely:

• for the BPP, a review of exact approaches has recently been presented by De-
lorme, Iori, and Martello [160], while an exhaustive treatment of approxima-
tion algorithms can be found in Coffman et al. [119];

• for the GAP, three surveys have been published in the last fifteen years, by
Morales [380], Öncan [389], and Wu, Mutsunori, and Toshihide [484].
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Coming to knapsack problems, a number of surveys devoted to specific method-
ologies or problem variants appeared in the last two decades:

• Pisinger [404] presented an overview of exact solution approaches for the KP01
using classical and new benchmark tests. Also see the recent article by Smith-
Miles, Christiansen, and Muñoz [456] for a revisiting of this study;

• Bretthauer and Shetty [66] presented an exhaustive review of algorithms for
various classes of nonlinear knapsack problems (see Section 3.5.1): continuous,
integer, convex, nonconvex, separable, and nonseparable. In addition, they
discussed some interesting applications arising in production planning, health
care, and computer networks. An updated survey was later presented by Li
and Sun [337]. We also refer the reader to Ibaraki and Katoh [272] and Lin [343]
for previous surveys;

• Fréville [184] provided a survey on the multidimensional knapsack problem (see
Section 3.3) reviewing exact, heuristic, approximation, and metaheuristic algo-
rithms, as well as commercial software products; the work was later extended
in Fréville and Hanafi [185];

• Pisinger [405] reviewed the literature on the quadratic knapsack problem (see Sec-
tion 3.5), with special emphasis on methods for computing upper bounds. The
study includes an extensive experimental analysis, comparing tightness and
computational effort of the various bounds;

• Wilbaut, Hanafi, and Salhi [480] discussed heuristic algorithms for a number
of knapsack problem variants;

• Hu, Landa, and Shing [267] reviewed exact and approximation approaches to
the unbounded knapsack problem (see Section 2.5.2). Recently, Becker and Buriol
[42] reported the results of extensive computational experiments on several
exact algorithms from the literature for this problem;

• Lust and Teghem [349] considered the multiobjective version of single and mul-
tidimensional knapsack problems, reviewing exact, approximation, heuristic
and metaheuristic algorithms (see Section 3.6.2);

• Kellerer and Strusevich [299] reviewed the main results on the symmetric quadratic
knapsack problem (see Section 3.5.2), focusing on approximation algorithms and
their application to scheduling problems;

• Laabadi et al. [320] reviewed heuristic algorithms for variants of the multidi-
mensional knapsack problem (see Section 3.3);

• recently (2019), Hojny et al. [261] provided a comprehensive overview of the-
oretical results on the polytopes of knapsack problems, to which the reader is
referred for a deep analysis of these topics. After the publication of [261], rel-
evant studies on the knapsack polytopes have been presented by Hojny [260]
(polynomial-size formulations), Letchford and Souli [333] (knapsack cover in-
equalities), and Bienstock et al. [51] (polytope of the minimization version of
the problem);

• the geometric knapsack problem (see Section 3.4) has been treated in a number of
recent surveys, namely, Christensen et al. [114] (mainly devoted to the BPP),
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Silva, Toffolo, and Wauters [451] (focused on exact methods for the three-
dimensional version of the problem), Leao et al. [331] (devoted to the case of
irregular shapes), Iori et al. [277] (focused on exact algorithms and mathemat-
ical models for the two-dimensional version of the problem).

We finally mention the special issue of Computers & Operations Research on knap-
sack problems and applications, edited by Hifi and M’Hallah [247].

2.3 0-1 knapsack problem

The KP01 is the most popular among knapsack problems and it has been the subject
of intense research for decades. These investigations have produced a rich variety
of theoretical, practical, and algorithmic results which have, to a certain extent, sat-
urated this specific field. The most widely used approach to the exact solution of the
problem is still the Combo algorithm, developed by Martello, Pisinger, and Toth [359],
whose C code is available at http://hjemmesider.diku.dk/~pisinger/codes.html.

New branching strategies for Branch-and-Bound (B&B) approaches were devel-
oped by Morales and Martínez [379] and Yang, Boland, and Savelsbergh [493]. The
sensitivity analysis to perturbations of item profits or weights was studied by Hifi,
Mhalla, and Sadfi [245, 246] and by Belgacem and Hifi [47], while Pisinger and Saidi
[406] investigated a particular sensitivity analysis (tolerance analysis) that can be per-
formed in amortized time O(c log n) for each item. Improvements over existing Fully
Polynomial Time Approximation Schemes (FPTAS) were recently developed by Chan
[97] and by Jin [285].

In the next sections, we review recent results on relevant variants of the basic
KP01.

2.4 Subset sum problem

When the profit and the weight of each item are identical, the problem, given by

max
n

∑
j=1

wjxj (2.4)

s.t. (2.2)− (2.3),

is denoted as the Subset Sum Problem (SSP). In the special case in which c = ∑n
j=1 wj/2,

the SSP is called the Partition Problem and is regarded as the “simplest” NP-hard
problem (see Garey and Johnson [199]). Differently from the KP01, the SSP has been
the subject of intensive research in recent years too, probably also due to its connec-
tion to cryptography (see, e.g., Kate and Goldberg [294]).

Exact solution. The B&B algorithms for the exact solution of the SSP are nor-
mally initialized by sorting the items according to decreasing weight. Kolpakov and
Posypkin [307] showed that this policy is the one requiring, in the worst case, the
smallest number of iterations. Kolpakov, Posypkin, and Sin [308] proposed a varia-
tion of the B&B method that decreases the number of iterations by a factor of two.
Curtis and Sanches [132] presented an improved version of a DP algorithm called
Balsub (see [297], Section 4.1.5), and computationally compared it with other ap-
proaches from the literature on benchmarks of difficult SSP instances.

Approximation. The classical greedy algorithm for the SSP has worst-case perfor-
mance ratio equal to 0.5. Using a multiple-pass variant of the algorithm, Martello

http://hjemmesider.diku.dk/~pisinger/codes.html
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and Toth improved it to 0.75 (see [297], Section 4.5). More recently, Ye and Borodin
[496] studied greedy variants in which decisions may be revoked, obtaining a per-
formance ratio between 0.8 and δ ≈ 0.893. Gál et al. [193] adopted an unusual com-
putation model (input stream) to obtain an FPTAS having space requirement O(1/ε)
(while that of previous FPTASs depends on n), where ε is the required accuracy.
Pseudopolynomial-time algorithms for the SSP were presented at computer science
conferences by Koiliaris and Xu [306] and by Bringmann [67].

Heuristics. Since most instances of the SSP can be exactly solved in very short
computing times (see [297, 361]), no relevant results have been recently achieved
by heuristic or metaheuristic algorithms. Ghosh, Chakravarti, and Sierksma [201]
presented a sensitivity analysis of greedy heuristics for the KP01 and the SSP.

Variants and generalizations

In recent years, a number of variants of the SSP has been considered. Rohlfshagen
and Yao [421] empirically analyzed the dynamic version of the SSP (in which the
parameters change over time), investigating the correlation between the parameter
change and the movement of the optimum.

Darmann et al. [145] studied a game theoretic variant (the Subset Sum Game), in
which two decision makers compete for a common resource (the capacity), showed
that finding an optimal sequence of decisions is an NP-hard problem, and ana-
lyzed the worst-case performance of two natural heuristic strategies. Another game-
theoretic issue (the Fair Subset Sum Problem) was studied by Nicosia, Pacifici, and
Pferschy [386].

Kothari, Suri, and Zhou [311] introduced the Interval Subset Sum Problem: given a
set of intervals and an integer target T, find a set of integers, at most one from each
interval, such that their sum is closest to, without exceeding, T. They defined an effi-
cient FPTAS for its approximate solution. Later, Diao, Liu, and Dai [164] proposed an
improved FPTAS having almost the same time complexity but a significantly lower
space complexity. Gourvès, Monnot, and Tlilane [212] considered a node-weighted
digraph in which one has to select a subset of vertices with total weight not exceed-
ing a given capacity and added additional precedence and maximality constraints,
whose combination leads to four problem variants: they proved that all problems
are NP-hard and gave approximation results for special classes of digraphs.

We conclude this section by observing that the simple and neat structure of the
SSP also attracted researchers outside the operations research community. In mathe-
matics, properties of the SSP over finite fields were investigated by Li and Wan [338],
Wang and Nguyen [477], and Choe and Choe [113]. The computer science commu-
nity developed parallel algorithms for different architectures (Curtis and Sanches
[131] and Sanches, Soma, and Yanasse [433, 434]).

2.5 Knapsack problems with item types

In this section, we examine variants of the KP01 in which a number of identical
copies of each item is available. In these contexts, the term ‘item’ is normally re-
placed by item type.
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2.5.1 Bounded knapsack problem

The generalization of the KP01 in which bj identical copies of item type j are available
(j = 1, . . . , n) is known as the Bounded Knapsack Problem (BKP), formally defined by

(2.1)− (2.2)
0 ≤ xj ≤ bj, xj integer (j = 1, . . . , n), (2.5)

where xj represents the number of selected copies of item type j.
We are only aware of two recent results on the BKP. Tamir [459] proposed a

pseudo-polynomial algorithm having time complexity O(n3 maxj{wj}2), to be com-
pared with the O(nc) algorithm by Kellerer et al. (see [297], Section 7.2.2). Deineko
and Woeginger [148] showed that all instances satisfying a set of special inequalities
that relate weight ratios to profit ratios (cross ratio ordered instances) can be solved in
O(n) time.

Most results appeared in recent years concern the following special case of the
BKP:

2.5.2 Unbounded knapsack problem

In this case, an unlimited number of copies of each item type are available. The
Unbounded Knapsack Problem (UKP) is defined by

(2.1)− (2.2)
xj ≥ 0 and integer (j = 1, . . . , n). (2.6)

The UKP has a well-known characteristic: most of the contribution to the opti-
mal solution profit comes from the item type, say s, with highest profit-to-weight
ratio, provided the knapsack capacity is sufficiently large (see Hu, Landa, and Shing
[267]). In particular, a number of studies has been devoted to finding, for a given set
of item types, the capacity bound c0 such that, for all c ≥ c0, the optimal solution
value is z∗(c) = z∗(c−ws) + ps (periodicity property; see [297], Section 8.2, for a more
detailed treatment.) The survey by Hu, Landa, and Shing [267] (see Section 2.2) also
includes a DP approach for evaluating the periodicity property. Improved periodic-
ity bounds were proposed by Huang, Lawley, and Morin [268] and Huang and Tang
[269], although the latter, which requires O(n2) time, can be time-consuming when
c < n.

Poirriez, Yanev, and Andonov [408] proposed an algorithm based on a combina-
tion of DP, dominance rules, and B&B for the exact solution of the UKP. A hybrid
approach, that also includes the generation of valid inequalities, was presented by
He, Hartman, and Pardalos [236], who also extended it to the multidimensional ver-
sion of the problem (see Section 3.3). Becker and Buriol [42] reported on an extensive
computational experimentation (on classical and new benchmarks) of seven old and
recent exact algorithms for the UKP, including the algorithm in [408] and commer-
cial solvers CPLEX and Gurobi: quite surprisingly, a DP algorithm developed in
1966 by Gilmore and Gomory [203] (slightly improved by the authors) achieved the
best results among all DP algorithms.

Jansen and Kraft [283] proposed an FPTAS for the UKP, whose time and space
complexities improve those of classical FPTASs from the literature (see [297], Section
8.5). Deineko and Woeginger [149] investigated a special case of the UKP in which
the item weights form an arithmetic sequence and proposed an exact O(n8) time
algorithm.
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2.5.3 Change-making problems

The name of this problem comes from an interpretation in which a cashier needs to
make change for a certain sum using the minimum number of coins from a given
set of coin denominations. Using the knapsack terminology, given n (different) item
types, each having weight wj (j = 1, . . . , n), and a knapsack of capacity c, the Un-
bounded Change-Making Problem (UCMP) is:

min
n

∑
j=1

xj (2.7)

s.t.
n

∑
j=1

wjxj = c (2.8)

xj ≥ 0 and integer (j = 1, . . . , n). (2.9)

It is normally assumed that w1 < w2 < · · · < wn and that w1 = 1 (so a solution to
the problem always exists). The case in which there is a limited number of items of
each type is known as the Bounded Change-Making Problem (BCMP).

A greedy algorithm for the UCMP iteratively selects the item type (coin) whose
weight is no larger than the remaining capacity. Most recent results for the UCMP
studied characterizations of coin systems for which the greedy algorithm is opti-
mal. Pearson [394] gave an O(n3) algorithm to determine, for a given coin system,
whether the greedy algorithm is optimal. Cowen, Cowen, and Steinberg [123] char-
acterized totally greedy coin sets, i.e., instances of the UCMP such that, for each j,
the greedy algorithm is optimal for the coin set {w1 = 1, w2, . . . , wj}. Adamaszek
and Adamaszek [3] provided necessary conditions that must be satisfied by a coin
system in order to ensure that the greedy algorithm is optimal. Goebbels et al. [206]
studied approximate solutions for a generalization of the problem in which the sum
of the weights may be larger than c.

2.6 Knapsack problems with setup

Although the first definition of setup knapsack problems dates back to the Nineties
(see Chajakis and Guignard [96]) these problems have attracted more attention in the
last decade. A number of different (although similar) definitions can be encountered
in the literature, the most frequent one being the following. Consider a generaliza-
tion of the KP01 in which items belong to F disjoint families and can be selected only
if the corresponding family is activated. Family i ∈ {1, . . . , F} contains ni items and
has positive activation (setup) cost fi and weight di. The profit and weight of an
item j of family i are pij and wij, respectively. The Knapsack Problem with Setup (KPS)
is then

max
F

∑
i=1

ni

∑
j=1

(pijxij − fiyi) (2.10)

s.t.
F

∑
i=1

ni

∑
j=1

(wijxij + diyi) ≤ c (2.11)

xij ≤ yi (i = 1, . . . , F; j = 1, . . . , ni) (2.12)

xij ∈ {0, 1} (i = 1, . . . , F; j = 1, . . . , ni) (2.13)

yi ∈ {0, 1} (i = 1, . . . , F), (2.14)
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where xij takes the value one iff item j of family i is selected and yi takes the value
one iff family i is activated. Constraints (2.12) impose the activation of a family if
one of its items is selected. The KPS has a number of real world applications, e.g.,
in make-to-order production contexts in the management of different product cate-
gories.

Exact solution. The first exact approach to the KPS was proposed by Yang and
Bulfin [494], who presented a B&B algorithm and experimentally tested its per-
formance. Ichimura, Yokoyama, and Magori [273] proposed an extension of such
method, especially aimed at solving large-scale instances. Chebil and Khemakhem
[98] developed a DP approach with an original space reduction technique. Della
Croce, Salassa, and Scatamacchia [156] presented an exact method based on the iden-
tification of sub-problems, tackled through a commercial solver (CPLEX). Furini,
Monaci, and Traversi [191] studied alternative ILP formulations and implemented
a parallel approach that executes, on a multi-thread computer, three algorithms (a
B&B, a B&P, and a DP procedure) in parallel, and halts execution as soon as one of
the three terminates. Although a precise computational comparison with other ap-
proaches from the literature is not immediate, this method appears to be the current
state-of-the-art for the KPS.

Approximation. Pferschy and Scatamacchia [397] proved that no polynomial time
approximation algorithm can exist for the KPS (unless P = NP) and analyzed three
special cases of the problem that admit an FPTAS. They also proposed and compu-
tationally evaluated an improved DP algorithm for its exact solution.

Heuristics. Most exact algorithms solve large instances of the KPS within very
short computing times. For example, the computational experiments in [191] refer
to instances with up to 30 families and 10 000 items. Few heuristic approaches were
also proposed: Khemakhem and Chebil [301] presented a method based on a trun-
cated tree search approach and compared it with CPLEX on instances of the same
size. Amiri [27] proposed an iterative approach based on a Lagrangian relaxation of
the problem, followed by a greedy-type heuristic guided by the current Lagrangian
multipliers to construct feasible solutions. The computational experiments in [27]
show that the method produces good quality solutions for very large instances with
up to 500 families and 2 000 000 items.

Variants and generalizations

A number of variants of the KPS can be found in the literature. Altay, Robinson Jr.,
and Bretthauer [24] considered a mixed-integer variant of the KPS where fractions
of items are allowed to be selected. They developed exact and heuristic solution
methods as well as a Benders decomposition approach for the continuous relaxation
of the problem.

Akinc [12] studied the fixed-charge knapsack problem, a special case of the KPS with
no setup capacity consumption, i.e., di = 0 (i = 1, . . . , F). He developed several al-
gorithmic components to improve the efficiency of B&B, such as efficient procedures
to obtain good candidate solutions and a set of rules to peg the set-up variables yi to
1 or 0.

McLay and Jacobson [372] considered a generalization of the BKP (see Section
2.5.1) where each item type has a set-up weight and a (positive) set-up value that are
activated if at least one copy of that item type is selected. They proposed three DP
algorithms and an FPTAS. Al-Maliky, Hifi, and Mhalla [14] developed a sensitivity
analysis of this problem to the perturbation of item profits or weights.
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McLay and Jacobson [371] studied additional variants, one involving an un-
bounded number of copies of each item type, and one imposing that exactly k items
are inserted into the knapsack. For each of these two variants, they proposed DP
approaches, heuristics, and an FPTAS. Another unbounded variant of the problem
considered in [372] was studied by Caserta, Rico, and Márquez Uribe [90], who pro-
posed a metaheuristic algorithm based on a “cross entropy” scheme.

Michel, Perrot, and Vanderbeck [373] defined the multiple-class integer knapsack
problem with setups, a variant of the KPS where there are multiple copies of each
item, the item weights are multiples of a value associated with the class, and each
class has an upper and a lower bound on the number of items to select. They studied
this problem, as well as a number of its variants, showing how specialized B&B
procedures derived from the classical Horowitz-Sahni algorithm for the KP01 (see
[361], Section 2.5.1) can be extended to deal with them.

2.7 Multiple-choice knapsack problem

The Multiple-Choice Knapsack Problem (MCKP), also known as the knapsack problem
with generalized upper bound constraints, is a generalization of the KP01 in which the
item set is partitioned into ` classes N1, . . . , N` and it is requested to select exactly one
item per class. Formally,

(2.1)− (2.3)

∑
j∈Ni

xj = 1 (i = 1, . . . , `). (2.15)

The problem is sometimes modeled with the ‘≤’ sign in (2.15). Such formulation can
be transformed in an equivalent MCKP formulation by adding a dummy item, with
null profit and weight, to each class. To the best of our knowledge, no relevant result
on the exact solution of the MCKP appeared after the publication of monograph
[297].

He et al. [235] presented an approximation algorithm that, for a prefixed positive
integer parameter t, guarantees a worst-case ratio of 3 + ( 1

2 )
t and runs in O(n(t +

log m)) time. Bednarczuk, Miroforidis, and Pyzel [43] presented a heuristic ap-
proach that removes the capacity constraint (2.2) and solves a bi-objective problem
that maximizes the total profit and minimizes the total weight: the corresponding
solution set is then searched for Pareto efficient solutions which are feasible for the
MCKP. Sbihi [438] developed a reactive Tabu search algorithm for a variant of the
MCKP arising in budget planning over discrete periods espond to classes and have
individual capacities.

Agra and Requejo [5] studied a special case of the MCKP (the linking set problem)
which, under certain conditions, can be solved exactly in polynomial time. Zhong
and Young [504] described a real-world case in which the decision on the allocation
of funds to alternative projects was solved through an MCKP model.

Kozanidis and Melachrinoudis [315] and Kozanidis, Melachrinoudis, and Solomon
[316] discussed continuous and mixed-integer knapsack problems that include multiple-
choice type constraints imposing, for each class, an upper bound on the sum of the
corresponding continuous variables. They proved that the former problem can be
exactly solved by a two-phase greedy algorithm and developed a B&B approach for
the exact solution of the latter.
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2.8 Knapsack sharing problem

Another generalization of the KP01 is the Knapsack Sharing Problem (KSP). As in the
MCKP, the item set is partitioned into ` classes N1, . . . , N` but the objective is to select
a set of items that maximizes the minimum total profit of a class. Formally,

max min
1≤i≤`

{
∑

j∈Ni

pjxj

}
(2.16)

s.t. (2.2)− (2.3).

Hifi, M’Halla, and Sadfi [244] proposed an exact algorithm based on a decompo-
sition of the problem into ` KP01s, which are solved through DP for different ten-
tative values of the capacity assigned to each subproblem. Similar decompositions
and a sensitivity analysis have been studied by Hifi et al. [46, 243, 253, 255].

Haddar et al. [217] proposed a hybrid heuristic based on the combination of an
LP-based heuristic and a metaheuristic approach, and evaluated its average perfor-
mance through extensive computational experiments.

In a relevant variant of the problem, the Generalized Knapsack Sharing Problem
(GKSP) (also referred to as the knapsack sharing problem with common items), there is
an additional class N0 and its profit is summed to the profit of each class Ni (i =
1, . . . , `). Fujimoto and Yamada [187], who first defined this problem, proposed an
exact algorithm based on the decomposition of the problem into a KP01 and a KSP
and the enumeration of the possible capacities of the two subproblems. The method
was improved by Dahmani, Hifi, and Wu [135] through upper bound computations
and reduction procedures. A metaheuristic approach for the approximate solution
of the GKSP was proposed by Haddar et al. [219].

2.9 Knapsack problem with conflict graph

The Knapsack Problem with Conflict Graph (KPCG), also referred to as the knapsack
problem with conflicts or the disjunctively constrained knapsack problem, is a generaliza-
tion of the KP01 in which a given undirected graph G = (V, E) defines the pairs of
incompatible items that cannot be simultaneously selected. Formally,

(2.1)− (2.3)
xi + xj ≤ 1 (i, j) ∈ E. (2.17)

An alternative formulation replaces constraints (2.17) with

∑
j∈V(i)

xj ≤ |V(i)| (1− xi) i ∈ V, (2.18)

where V(i) denotes the set of neighboring vertices of vertex i ∈ V. To possibly obtain
a stronger LP-relaxation bound, constraints (2.17) can also be replaced by

∑
j∈C

xj ≤ 1 C ∈ C, (2.19)

where C denotes the family of cliques of G such that, for each edge (i, j) ∈ E, items i
and j belong to some clique C ∈ C.
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The KPCG is a generalization of the stable set problem (given an undirected graph,
find a maximal set of vertices no two of which are connected by an edge) and hence
it is strongly NP-hard, see Pferschy and Schauer [398].

Exact solution. Hifi and Michrafy [249] proposed a three-phase algorithm: a reac-
tive local search algorithm, adapted from Hifi and Michrafy [248], computes a lower
bound, reduction strategies are applied to fix some decision variables, and the re-
duced problem is solved by the commercial solver CPLEX. The algorithm was tested
on instances with very sparse conflict graphs. Bettinelli, Cacchiani, and Malaguti
[50] proposed a B&B algorithm based on model (2.1)-(2.3), (2.19): the branching
phase makes use of DP for pruning decision nodes, and upper bounds are com-
puted as an extension of the weighted clique cover bound, proposed in Held, Cook, and
Sewell [238]. The algorithm was extensively tested on instances with conflict graph
densities between 0.1 and 0.9, exhibiting better performance than the B&B approach
proposed in Sadykov and Vanderbeck [429], in which KPCG arises as a subproblem
of the bin packing problem with conflicts. Salem et al. [431] studied polyhedral aspects
of the KPCG, presented new families of valid inequalities, and determined necessary
and sufficient conditions for these inequalities to be facet defining. They also devel-
oped a Branch-and-Cut (B&C) algorithm that employs exact and heuristic separation
procedures for the valid inequalities. Recently, Coniglio, Furini, and San Segundo
[121] proposed a B&B algorithm which adopts a branching scheme similar to the one
in [50], but makes use of bounds based on clique partition and on transformation to
an MCKP. Extensive computational results show that this algorithm compares favor-
ably with the one in [50]. Facet defining cutting planes for the KPCG were recently
studied by Luiz, Santos, and Uchoa [347].

Approximation. Pferschy and Schauer [398] presented algorithms with pseudo-
polynomial time and space complexity for special classes of conflict graphs (graphs
with bounded tree-width and chordal graphs), and derived from these algorithms
FPTASs for the same classes of graphs. In addition, they showed that the KPCG re-
mains strongly NP-hard for perfect graphs. Pferschy and Schauer [400] proposed,
for special classes of graphs (bounded tree-width, chordal, weakly chordal, pla-
nar, perfect), several complexity results and approximation algorithms, both for the
KPCG and for the knapsack problem with forcing graph (a KP01 with constraints requir-
ing that, for each edge of the graph, at least one of the two items be selected). The
same two problems were tackled by Gurski and Rehs [216], who provided pseudo-
polynomial algorithms, based on DP, for the case of co-graphs as conflict and forcing
graphs, and FPTASs for the case of graphs of bounded clique-width.

Heuristics. All heuristic algorithms in the literature were tested on instances with
sparse graphs (density at most 0.4). The reactive local search algorithm in [248]
applies a greedy algorithm followed by a swapping procedure and a diversifica-
tion strategy. Other heuristics (local branching), metaheuristics (scatter search, lo-
cal search, ant colony), and hybrid approaches have been examined by Hifi et al.
[11, 242, 252, 254]. Quan and Wu [414] introduced a cooperative parallel adaptive
neighborhood search algorithm, in which the cooperation stage collects and shares
information on local optima found by subprocesses. Salem et al. [430] presented a
probabilistic Tabu search heuristic with multiple neighborhood structures, a variant
of Tabu search where the move is chosen probabilistically from a pool. The algo-
rithm provided better results than those in [242] and [254].
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2.10 Precedence constrained knapsack problem

Given a directed graph G = (V, A) of n vertices, the Precedence Constrained Knapsack
Problem (PCKP) is a generalization of the KP01 in which, for each arc (i, j) ∈ A, item
j can only be selected if item i has been selected. Formally,

(2.1)− (2.3)
xi ≥ xj ∀ (i, j) ∈ A. (2.20)

If G contains a cycle, the vertices of the cycle must either all be selected or all be
excluded. It follows that the items in a cycle can be replaced by a single item, with
cumulative profit and weight, so G can be assumed to be acyclic.

The PCKP is NP-hard in the strong sense, as it can be shown (see, e.g., [297])
by reduction from the clique problem (given an undirected graph, find a maximal
complete subgraph).

You and Yamada [499] presented a reduction procedure (pegging test) based
on Lagrangian relaxation of the precedence constraints (2.20) and subgradient op-
timization. Computational experiments showed that most randomly generated in-
stances with up to 2000 items can be optimally solved, after reduction, by a standard
commercial solver.

Boland et al. [56] presented methods for determining facets of the PCKP poly-
hedron based on clique inequalities, and tested their effectiveness in reducing solu-
tion times when applied at the root node of a cutting plane approach and within a
B&C framework. Espinoza, Goycoolea, and Moreno [172] provided a partial char-
acterization of maximally violated inequalities and computationally evaluated their
usefulness in improving the performance of a cutting plane algorithm.

Precedence constrained covering problems, which include the PCKP as a spe-
cial case, were studied by McCormick et al. [370], who presented a strongly poly-
nomial primal-dual approximation algorithm. A multi-period generalization of the
PCKP, arising in the mining industry, was considered by Samavati et al. [432], who
strengthened the LP relaxation of the problem so as to improve the efficiency of a
classical sequencing heuristic for mine production scheduling.

2.11 Robust knapsack problems

Robust optimization is an approach to uncertain optimization, frequently adopted as
an alternative to stochastic optimization. Loosely speaking, it consists in finding
a solution that is “robust” (according to some criterion) against variations in the
input data. For the knapsack problem, a set of data that defines an instance (profits,
weights, capacity) is called a scenario. There is a vast literature on scenario-based
robust optimization: we refer the interested reader to the classical books by Kouvelis
and Yu [312] and Kasperski [292]. Three main research streams have been followed
in the recent literature, as illustrated in the next sections.

2.11.1 Max-min knapsack problem

Consider a generalization of the KP01 in which we are given S scenarios, each char-
acterized by a set of profits ps

j (j = 1, . . . , n; s = 1, . . . S). It is assumed that weights
and capacity do not vary. The Max-Min Knapsack Problem (MMKP) consists in finding
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a solution that maximizes the worst-case profit over all scenarios, i.e.,

max min
1≤s≤S

{
n

∑
j=1

ps
j xj

}
(2.21)

s.t. (2.2)− (2.3).

The problem is NP-hard in the strong sense, as it can be shown (see, e.g., [297])
by reduction from the set covering problem (given a set S and a family F of subsets
of S , find the minimum cardinality subfamily of F whose union is S). In an earlier
study on the MMKP, Yu [501] proved that the problem is strongly NP-hard in the
case of an unbounded number of scenarios. On the other hand, he showed that it
can be solved in pseudo-polynomial time if the number of scenarios is bounded by
a constant.

Taniguchi, Yamada, and Kataoka [461] introduced a particular surrogate relax-
ation and a reduction (pegging) procedure, and embedded them into a B&B algo-
rithm that was computationally tested on a large set of benchmark instances. Go-
erigk [207] presented a new method to compute upper bounds and computationally
proved that it considerably improves on the performance of B&B approaches to the
MMKP. A different exact solution method, based on column generation and B&P,
was developed by Pinto et al. [403] and computationally tested on large-size bench-
mark instances (with up to 20 000 items and 1000 scenarios).

Metaheuristic algorithms for the MMKP have been proposed by Sbihi [437] (greedy
solution and Tabu search), Aldouri and Hifi [16] (hybrid reactive search), and Al-
douri, Hifi, and Zissimopoulos [13] (greedy randomized search and path-relinking).

Taniguchi, Yamada, and Kataoka [462] adapted their algorithm [461] to the spe-
cial case in which there are just two scenarios. A different exact approach for the
two-scenarios case, based on mixed integer programming formulations and reduc-
tion procedures, was proposed by Hanafi et al. [232].

2.11.2 Min-max regret knapsack problem

In this case, the scenarios are defined by n intervals [p−j , p+j ], and the actual profit of
an item j in scenario s can take any integer value, ps

j , in the corresponding interval.
As for the MMKP, weights and capacity do not vary across the scenarios. Each feasi-
ble solution x associated with scenario s has a value (zs(x) = ∑n

j=1 ps
j xj) and a regret,

rs(x) = zs
? − zs(x), where zs

? denotes the optimal solution value for scenario s. The
(interval) Min-Max Regret Knapsack Problem (MMRKP) consists in finding a solution
that minimizes the worst-case regret over all scenarios, i.e.,

min max
1≤s≤S

{rs(x)} (2.22)

s.t. (2.2)− (2.3).

The MMRKP is extremely challenging both from a theoretical and a practical point
of view. Its precise complexity status is unclear. Being a generalization of the KP01
(the special case in which p−j = p+j for all items) the MMRKP is NP-hard, while it
is an open question whether it is strongly NP-hard. Deineko and Woeginger [147]
proved that its decision version is complete for the complexity class Σp

2 (see [199]),
and hence is most likely not in NP . Observe that even computing the regret of a
single solution x is an NP-hard problem, as it requires the solution of a KP01.
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Furini et al. [192] evaluated the performance of standard approaches (Benders-
like decomposition and B&C) when adapted to the MMRKP, and proposed a Lagrangian-
based B&C algorithm, an iterated local search approach and an ILP-based heuristic.
Extensive computational experiments showed that the method can solve instances
with 50 items to proven optimality.

Kalaï and Vanderpooten [288] proposed the lexicographic α-robust knapsack prob-
lem, a variant that is somehow intermediate between the MMKP and the MMRKP,
and presented an algorithm to determine the set of all α-robust solutions in pseudo-
polynomial time.

In another variant, the discrete min-max regret knapsack problem, the profits do not
vary in intervals but according to a discrete number of scenarios. Approximation
results for this variant have been studied by Aissi, Bazgan, and Vanderpooten [8]
and later surveyed by Candia-Véjar, Álvarez-Miranda, and MacUlan [75].

Wu et al. [485, 486] presented exact and heuristic algorithms for the extension
of the MMRKP to the multiple knapsack problem (treated in Section 3.2) and to a
further generalization of the problem (the GAP). Metaheuristics for another variant
of the problem were recently presented by Wang et al. [476].

We finally mention that Conde [120] developed a linear-time algorithm for the
min-max regret version of the continuous variant of the UKP (see Section 2.5.2).

2.11.3 Γ-robust knapsack problem

In this case, profits and capacity are constant, while the weight of each item j has a
nominal value wj and a variability range [wj − wj, wj + wj]. At most Γ weights can
change from their nominal value to an arbitrary value in the interval. A solution is
Γ-robust if it satisfies the capacity constraint (2.2) for any possible set of weights. The
Γ-Robust Knapsack Problem (ΓRKP) is to find the maximum profit Γ-robust solution.
Differently from the MMKP and the MMRKP, the ΓRKP is weakly NP-hard.

Monaci, Pferschy, and Serafini [376] presented an FPTAS and a DP algorithm
(with special techniques to reduce the space complexity). They computationally
tested the resulting algorithm on a large set of randomly generated instances (up
to 5000 items and Γ = 50). Monaci and Pferschy [375] analyzed the worst case ra-
tio between optimal solution values of the KP01 and the ΓRKP, and extended their
analysis to the fractional version of the problem (in which fractions of items may be
packed).

Claßen, Koster, and Schmeink [117] considered a generalization of the ΓRKP, the
multi-band robust knapsack problem, in which the variability range is subdivided into
several smaller intervals (bands): they presented two DP algorithms and compared
their performance by focusing on benchmarks with 2 bands. Büsing et al. [72] stud-
ied a different variant, the recoverable ΓRKP, in which it is possible to remove at most
k items in order to restore the feasibility of any scenario: they presented different
ILP formulations and computationally evaluated them on a large test-bed. A fur-
ther recoverable ΓRKP variant, in which both weights and profits can vary, has been
studied by Büsing, Koster, and Kutschka [71].

Goerigk et al. [208] considered a variant in which one is allowed to perform Q
queries (Q < n): each query returns the actual weight of an item. The robust knapsack
problem with queries consists in deciding which items have to be queried so as to max-
imize the optimal solution value to the resulting instance (in which the weight of the
any non-queried item j is set to wj + wj). They studied the query competitiveness (de-
rived from online optimization, see Chapter 3) to evaluate the quality of an algorithm
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by comparing its solution value for the RKQP to that produced by the best possible
choice of items to query (if the real weights were known).

2.12 Compartmentalized knapsack problems

The problems treated in this section come from a number of real world applications,
mostly related to two-phase steel roll cutting problems, in which the items to be pro-
duced are subdivided according to their thickness. As we will see, these problems
were defined in various ways, induced by specific constraints appearing in different
applications, and formalized through various modeling techniques, ranging from
linear to nonlinear, from integer to mixed integer.

Consider a BKP (or an UKP, see Section 2.5) in which the item types are parti-
tioned into ` classes {N1, . . . , N`} (corresponding to different typologies, e.g., steel
thickness) and one is requested to build compartments inside the knapsack so that
only items of the same class are loaded into a compartment. Building a compartment
has a cost (depending on the specific application), the capacity of each compartment
has a lower bound li and an upper bound ui (i = 1, . . . , `), and the creation of each
compartment may produce a fixed loss of capacity of the original knapsack. The
Compartmentalized Knapsack Problem (CKP) is to build compartments and assign the
items in such a way that the overall profit (item profits minus building costs) is max-
imized. In the Constrained Compartmentalized Knapsack Problem (CCKP), the number
of items of type j in the overall knapsack cannot exceed a given value β j.

Hoto, Arenales, and Maculan [264] proposed exact algorithms for the CKP, based
on the solution of a large number of knapsack problems (one for each feasible com-
bination of weights of each class), and a heuristic in which the knapsack solutions
are replaced by the computation of the Martello-Toth upper bound (see [361]). They
also proposed a decomposition heuristic for the CCKP, in which feasible promis-
ing compartments are generated and a KP01 is solved to choose the compartments.
Marques and Arenales [356] proposed various heuristics and an upper bound for
the CCKP and performed extensive computational experiments. Leão et al. [330]
presented an ILP formulation and a number of effective heuristics. Modified ver-
sions of the heuristics in [356] were proposed and computationally tested by Hoto
and Bressan [265]. Other ILP models for the CCKP have been recently proposed
by Inarejos, Hoto, and Maculan [274] and Quiroga-Orozco, Carvalho, and V. Hoto
[417]. Approximation schemes for the CCKP (under a different name) were studied
by Xavier and Miyazawa [488].

2.13 Bilevel knapsack problem

Bilevel programs model a hierarchical relationship between two decision-makers, a
leader and a follower, who take their decisions in a sequential way: first, the leader
(upper level), who has perfect knowledge of the follower’s problem (objective func-
tion, constraints, and follower’s decisions), takes an action to optimize her own ob-
jective, and then the follower (lower level) reacts, thereby influencing the decision
of the leader (as the leader’s objective depends on the follower’s decision). These
problems, taking into account two agents, each with her own individual objective,
are known as two-player Stackelberg games. Although they belong to Game Theory,
in the Bilevel Knapsack Problems (BLKP) the leader and the follower solve a combi-
natorial optimization problem, so we provide a description of the main results. The
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interested reader is referred to the survey on bilevel programming by Labbé and
Violin [322].

Several different definitions of the BLKP can be found in the literature. Brotcorne,
Hanafi, and Mansi [68] proposed a two-phase DP algorithm for the BLKP originally
introduced by Dempe and Richter [161], in which item profits vary with respect to
the leader and the follower, and the leader first determines the knapsack capacity
(within given lower and upper bound values), while the follower decides the subset
of items to be selected by solving a KP01.

In a second version of the BLKP, introduced by Mansi et al. [352], the item set is
split into two sets, and both players can select items from their respective sets to be
inserted in a single knapsack: hence, the leader’s decision interferes with the resid-
ual capacity available to the follower. In [352], a DP algorithm was presented, while
Brotcorne, Hanafi, and Mansi [69] proposed, for a more general version, a two-step
exact algorithm that (i) in the first step applies a DP procedure taking into account
only the follower problem, and (ii) in the second step reformulates the bilevel prob-
lem as a one-level model, based on the optimal solutions computed in the first step.

Chen and Zhang [100] introduced another version with two knapsacks, one for
each player: items can be selected simultaneously by both players, but each item
profit depends on whether the item is selected by both the leader and the follower or
by only one of them. Approximation algorithm were derived in [100] and improved
by Qiu and Kern [412].

The most intensively studied version of the BLKP, introduced by DeNegre [162],
is known as the Bilevel Knapsack Problem with Interdiction Constraints (BLKPI). In the
BLKPI, two knapsacks, one for each player, with capacity c1 and c2, respectively, are
considered, and there is a common set of items having the same profits but different
weights for the two players: the item weight is vj for the leader and wj for the fol-
lower (j = 1, . . . , n). The interdiction constraints impose that if an item is selected by
the leader, it cannot be selected by the follower. The objective of the follower is to
maximize the total profit, while the objective of the hostile leader is to minimize it.
Binary variables xj and yj represent the item selection for the leader and the follower,
respectively. Formally,

min
n

∑
j=1

pjyj (2.23)

n

∑
j=1

vjxj ≤ c1 (2.24)

xj ∈ {0, 1} (j = 1, . . . , n), (2.25)

where variables y1, . . . , yn solve the follower’s problem:

max
n

∑
j=1

pjyj (2.26)

n

∑
j=1

wjyj ≤ c2 (2.27)

yj ≤ 1− xj (j = 1, . . . , n) (2.28)

yj ∈ {0, 1} (j = 1, . . . , n). (2.29)
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Caprara et al. [85] showed that the computational complexity of the decision ver-
sion of three variants studied in [161], [352], and [162] is complete for the complexity
class Σp

2 , and hence there is no way of formulating each problem as a single-level in-
teger program of polynomial size unless the polynomial hierarchy collapses. In ad-
dition, they studied these variants under so-called unary encodings, showing that
the first two become polynomially solvable while the third one becomes NP-hard.
For the third variant, a Polynomial Time Approximation Scheme (PTAS) was derived,
providing the first approximation scheme for a Σp

2 -hard problem. Caprara et al. [86]
proposed an exact algorithm that iteratively computes lower and upper bounds un-
til optimality is reached. Upper bounds are derived by solving a single-level MILP
model amended by nogood cuts. The algorithm was able to solve to optimality in-
stances with up to 50 items. Fischetti et al. [178] studied a family of mixed inte-
ger linear bilevel problems known as interdiction games, which include the BLKPI,
and proposed a Benders-like algorithm, in which the problem is reformulated as a
single-level problem with an exponential number of constraints, called interdiction
cuts. Additional families of modified or lifted interdiction cuts were presented, for
which exact and heuristic separation procedures were developed. The algorithm
was extensively tested on benchmark instances of the BLKPI showing significant
better performance with respect to the method in [86]. Carvalho, Lodi, and Marcotte
[89] proposed a polynomial algorithm with worst-case complexity O(n2) for the con-
tinuous relaxation of the BLKPI. Fischer and Woeginger [177] derived a faster algo-
rithm that improves the worst-case complexity to O(n log n). Recently, Della Croce
and Scatamacchia [157] proposed an exact algorithm that relies on an effective lower
bound and computes leader’s solutions by exploring the follower’s subproblems
that have better lower bounds. Computational experiments showed that the algo-
rithm can solve instances with up to 500 items in very short computing times, thus
significantly improving the results in [86] and [178], even though the tests were car-
ried out on different machines. The algorithm was extended to the MMRKP (see
Section 2.11.2) and computational results showed that it outperforms the approach
in [192] on most instances.

Pferschy et al. [402] considered another variant in which the item set is parti-
tioned into two sets, one for each player, and the leader can decide to assign an
incentive to each of her own items, with the aim of influencing the follower’s selec-
tion. The goal of the leader is to maximize the profit of the items selected from her
set, reduced by the incentives, while the follower’s goal is to maximize the profit of
all selected items, whichever set they are taken from, increased by the incentives.
The complexity is analyzed when the KP01 of the follower is solved to optimality,
or when it is solved with greedy heuristics, and algorithms and ILP models are pro-
vided. In a companion paper, Pferschy, Nicosia, and Pacifici [396] considered the
case where the weights can be modified by the leader (instead of the profits) and
analyzed the complexity of the problem for three different solution strategies of the
follower.

2.14 Extensions, generalizations, and research directions

This section lists a selection of less studied variants for which relatively few results
have been published, and hence they could be promising research areas. For these
problems we provide a concise description and references to the latest works.

In the knapsack problem with minimum filling constraint a minimum total weight
of the selected items is imposed. Xu and Lai [491] developed an FPTAS for this
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problem, which finds applications in auction clearing. In the incremental knapsack
problem, the capacity is increasing over time periods, an item selected in a period
cannot be removed afterwards and contributes with its profit for all time periods
in which it is included, with different time multipliers for different periods. Della
Croce, Pferschy, and Scatamacchia [152, 154] provided approximation results for the
problem and for some variants. A PTAS for a variant of this problem was presented
by Faenza and Malinovic [173].

In contrast to the previous variants, in the temporal knapsack problem the capacity
does not change, but each item is active in a given time interval, and the goal is to se-
lect the maximum profit subset of items whose total weight respects the capacity at
any point in time. Caprara, Furini, and Malaguti [77] and Caprara et al. [87] studied
B&P algorithms, based on a Dantzig-Wolfe reformulation of the problem. Gschwind
and Irnich [214] derived two types of column-generation stabilization methods. A
DP algorithm for its exact solution was recently presented by Clautiaux, Detienne,
and Guillot [118]. Slight variants of this problem can be encountered in the literature
under different names. For example, Darmann, Pferschy, and Schauer [144] studied
the case where all profits are one (under the name resource allocation with time inter-
vals), obtaining a ( 1

2 − ε) approximation algorithm.
Two knapsack problems with neighbor constraints, in which dependencies be-

tween items are represented by adjacencies in a graph, were studied by Borradaile,
Heeringa, and Wilfong [59] and, more recently, by Goebbels, Gurski, and Komander
[205]: the 1-neighbor knapsack problem, in which an item can be selected only if at least
one of its neighbors is also selected, and the all-neighbors knapsack problem, in which
an item can be selected only if all its neighbors are also selected. Approximation and
hardness results are provided in both works for several classes of graphs.

In the penalized knapsack problem, besides profit and weight, each item has a penalty,
and the goal is to maximize the sum of the profits, decreased by the largest penalty
value of the selected items. The problem was introduced by Ceselli and Righini [95],
who presented an exact algorithm that performs an exhaustive search to identify the
item with the largest penalty among items in the solution. Della Croce, Pferschy,
and Scatamacchia [153] proposed a DP algorithm based on a core problem and on
narrowing the relevant range of penalties.

In the discounted knapsack problem, a set of item groups is given: each group con-
sists of three items where the third item represents a discounted offer, i.e., its weight
is smaller than the sum of the weights of the first two items, while its profit coincides
with the sum of the profits of the first two items. At most one item of each group can
be selected, and the goal is to maximize the total profit while respecting the knap-
sack capacity. In Rong, Figueira, and Klamroth [424], an alternative core concept is
proposed to partition the original problem into three sub-problems that are solved
through DP. A DP algorithm with lower complexity was proposed by He et al. [237],
who also derived an FPTAS, a 2-approximation algorithm, and a metaheuristic.

Malaguti et al. [350] defined the fractional knapsack problem with penalties, in which
an item can be split at the expense of a penalty that depends on the fractional quan-
tity, and presented mathematical models, an FPTAS, DP algorithms, and various
heuristics. An improved FPTAS was developed by Kovalev [313].

Furini, Ljubić, and Sinnl [190] introduced the minimum-cost maximal knapsack
packing problem: it consists in finding a maximal knapsack packing that minimizes
the cost of the selected items. The authors proposed a DP algorithm, and showed
that the problem is equivalent to a “dual” problem (the maximum-cost minimal knap-
sack cover).
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In the parametric knapsack problem, profits are affine-linear functions of a parame-
ter, and the goal is to compute the optimal solutions for all values of the parameter on
the real line (or within a given interval). Approximation schemes for various cases
were derived by Giudici et al. [204], and Holzhauser and Krumke [262]. Halman,
Holzhauser, and Krumke [221] studied the case in which weights are affine-linear
functions of a parameter, and presented an FPTAS for this problem.

In the knapsack problem with qualitative levels, each item has a “qualitative” (im-
precise or vague) level instead of a numerical profit. Schäfer et al. [439] presented
a DP approach to compute non-dominated solutions and two greedy algorithms to
compute a single efficient solution.

We conclude with two variants which, although formally non-linear, have been
tackled through combinatorial optimization techniques.

In the collapsing knapsack problem, the capacity is a non-increasing function of the
number of selected items, i.e., it decreases when the number of selected items in-
creases. Originally introduced as a nonlinear knapsack problem (see Wu and Srikan-
than [483]), it has been solved: (i) by transformation into an equivalent KP01 (see
[297], Section 13.3.7), with the drawback of the introduction of very large coeffi-
cients, and of a high correlation between profits and weights; (ii) more recently,
through a very effective ILP formulation (see Della Croce, Salassa, and Scatamac-
chia [155], who also present a reduction procedure and an exact algorithm that can
be extended to the multidimensional case).

In the product knapsack problem, the profits can have positive or negative value,
and the goal is to maximize the product of the profits of the selected items. Halman
et al. [222] showed that the problem is weakly NP-hard. D’Ambrosio et al. [140]
presented effective ILP models and a DP algorithm for its exact solution. The first
FPTAS for this problem was recently presented by Pferschy, Schauer, and Thielen
[401].

2.15 Conclusions

We have examined over two hundred results on single knapsack problems, mostly
appeared in the last seventeen years.

The contributions we have examined show that knapsack problems frequently
appear in real-world applications. The introduction to special issue [247] enumer-
ates applications “encountered in numerous industrial sectors such as transporta-
tion, logistics, cutting and packing, telecommunication, reliability, advertisement,
investment, budget allocation, and production management”. In the previous sec-
tions, we have encountered other interesting application areas like, e.g., make-to-order
production (the KPS), finance (the MCKP), mine production (the PCKP), and steel indus-
try (the CKP).

Apart from being studied as standalone problems, knapsack problems frequently
appear as subproblems in some relevant optimization problems from different areas,
which further underlines the importance of investigating them. Notably, set cover-
ing formulations for bin packing and cutting stock problems are typically tackled
through column generation, which requires to solve, at each iteration, a knapsack
problem (see, e.g., [160]). Similarly, multidimensional cutting and packing problems
frequently require the solution of knapsack problems. In addition, they often appear
in algorithms to separate valid inequalities for optimization problems involving ca-
pacity constraints (see, e.g., [290] and [333]).
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Further pointers to this huge literature will be provided in the following chapter,
devoted to multiple, multidimensional, and quadratic knapsack problems, as well
as to a succinct treatment of online and multiobjective knapsack problems.
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Chapter 3

Knapsack problems - An Overview
of Recent Advances. Part II:
Multiple, Multidimensional, and
Quadratic Knapsack Problems*

Chapter 2 treats the classical single knapsack problems and their variants. The
present chapter covers multiple, multidimensional, and quadratic knapsack prob-
lems, as well as other relevant variants, such as, e.g., multiobjective and online ver-
sions.

3.1 Introduction

This is the second part of a survey aimed to review the developments appeared on
knapsack problems after the publication of the books by Martello and Toth [361] in
1990 and Kellerer, Pferschy, and Pisinger [297] in 2004, until Summer 2021. We recall
here the main definitions, referring the reader to Chapetr 2 for a general introduction
to this research area.

The problem which originated this field is the famous 0-1 Knapsack Problem (KP01):
given a set of n items, each associated with a profit pj and a weight wj (j = 1, . . . , n),
and a container (knapsack) of capacity c, find a subset of items with maximum total
profit having total weight not exceeding the capacity.

A systematic research on the KP01 and its many variants started in the Fifties.
It produced, over the next fifty years, an impressive number of scientific results,
making this field a very relevant area of combinatorial optimization. The two men-
tioned monographs include in total about 700 bibliographic entries. The purpose of
this survey is to review the subsequent developments, by mostly concentrating on
the problems treated in the main chapters of Kellerer, Pferschy, and Pisinger [297]
(which also correspond to the main chapters in Martello and Toth [361]) and on re-
cent “hot” topics. We privilege problems with a clear combinatorial aspect, with a
partial exception for non-linear knapsack problems: these are briefly described in or-
der to introduce the quadratic knapsack problems, which are usually handled through
combinatorial optimization tools. Other problems, closer to the computer science
community (online knapsack problems) or belonging to the area of multiple criteria
decision aiding (multi-objective knapsack problems), are succinctly treated in Sec-
tion 3.6.

*The results of this chapter appears in: V. Cacchiani, M. Iori, A. Locatelli, and S. Martello. "Knap-
sack problems - An Overview of Recent Advances. Part II: Multiple, Multidimensional, and Quadratic
Knapsack Problems". In: Computers & Operations Research 143 (2022), 105693.
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In Chapter 2, we have reviewed single knapsack problems. The present chapter
is devoted to multiple, multidimensional, and quadratic knapsack problems, with
a final section on the other knapsack problems mentioned above. Multiple knapsack
problems are the natural generalization of the KP01: the items are packed into differ-
ent knapsacks, each having its own capacity. For the multidimensional knapsack prob-
lems, the literature is instead ambiguous. Most of the papers use this term to refer to
the case in which each item is characterized by two or more independent weighting
functions (such as, for example, weight, volume, level of toxicity, etc.) and a capacity
limit is imposed on each function. Other papers adopt the same name for the case
in which both items and knapsack(s) are multidimensional rectangular boxes, and
items have to be packed without overlapping. We refer to the former problem as
the multidimensional vector knapsack problem (or the multidimensional knapsack problem,
when no confusion arises), and to the latter problem as the multidimensional geometric
knapsack problem.

Section 2.2 contains a thorough review of books, surveys, and special issues ded-
icated to knapsack problems. We only remind here the surveys specifically dealing
with the arguments treated in this chapter:

• Bretthauer and Shetty [66], Li and Sun [337]: non-linear knapsack problems
(continuous, integer, convex, nonconvex, separable, and nonseparable). We
also refer to Ibaraki and Katoh [272] and Lin [343] for previously appeared
surveys;

• Fréville [184] and Fréville and Hanafi [185]: multidimensional knapsack problem
(exact, heuristic, approximation, and metaheuristic algorithms);

• Pisinger [405]: quadratic knapsack problem (with special emphasis on upper bounds
computations);

• Lust and Teghem [349] considered the multiobjective version of single and mul-
tidimensional knapsack problems, reviewing exact, approximation, heuristic
and metaheuristic algorithms;

• Kellerer and Strusevich [299]: symmetric quadratic knapsack problem (exact and
approximation algorithms and their application on various scheduling prob-
lems);

• Christensen et al. [114]: multidimensional geometric knapsack problem (approxi-
mation and online algorithms);

• Laabadi et al. [320]: variants of the multidimensional knapsack problem (heuristic
algorithms);

• Silva, Toffolo, and Wauters [451]: three-dimensional geometric knapsack problem
(exact methods and extensive comparative experiments);

• Leao et al. [331]: multidimensional geometric knapsack problem (devoted to the
case of irregular shapes);

• Iori et al. [277]: two-dimensional geometric knapsack problem (exact algorithms
and mathematical models).
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3.2 Multiple knapsack problems

Given m knapsacks with capacities ci (i = 1, . . . , m) and n items with profits pj and
weight wj (j = 1, . . . , n), in the Multiple Knapsack Problem (MKP) the goal is to select m
disjoint subsets of items so that the total profit of the selected items is a maximum,
and each subset is assigned to a knapsack whose capacity is no less than the total
weight of the items in the subset. Let xij be a binary variable that takes the value one
iff item j is assigned to knapsack i. The MKP can be modeled as:

max
m

∑
i=1

n

∑
j=1

pjxij (3.1)

s.t.
n

∑
j=1

wjxij ≤ ci (i = 1, . . . , m) (3.2)

m

∑
i=1

xij ≤ 1 (j = 1, . . . , n) (3.3)

xij ∈ {0, 1} (i = 1, . . . , m, j = 1, . . . , n). (3.4)

The MKP is NP-hard in the strong sense, as it can be shown by reduction from
the 3-partition problem (see, e.g., [361], Section 1.3).

Exact solution. Exact Branch-and-Bound (B&B) algorithms for the MKP were pro-
posed by Fukunaga and Korf [189], who developed a method for pruning nodes
through dominance criteria between assignments of items to knapsacks. Fukunaga
[188] presented improved B&B approaches making use of dominance criteria and
symmetry breaking strategies, integrated with the B&B technique proposed in the
Eighties by Martello and Toth [360]. The resulting algorithms were successfully
tested on instances with up to 10 knapsacks and 100 items. Sitarz [454] developed
an exact method based on a multiple criteria Dynamic Programming (DP). Computa-
tional tests showed, however, that the developed method was slower than the direct
solution of (3.1)–(3.4) by a commercial software. Hickman and Easton [240] intro-
duced a new class of valid inequalities obtained by merging two lower-dimension
inequalities over the MKP polyhedron and presented conditions to check if the pro-
duced inequalities are facet defining. Dell’Amico et al. [158] solved the MKP by
means of a pseudo-polynomial arc-flow model (inspired by Carvalho [88]). In this
model, the m item subsets assigned to the knapsacks are represented as m paths in
a graph where nodes are partial knapsack fillings and arcs are items. The model
was improved by the inclusion of additional optimization techniques, such as par-
tial B&B, primal decomposition, Benders cuts, and a graph reduction procedure.
Computational tests proved the effectiveness of the resulting algorithm on instances
with up to 500 items and 50 knapsacks, or 300 items and 150 knapsacks. A new up-
per bound for the MKP was recently developed by Detti [163].

Approximation. In contrast with the KP01, the MKP does not admit a Fully Polyno-
mial Time Approximation Scheme (FPTAS) unless P = NP . Chekuri and Khanna [99]
presented a Polynomial Time Approximation Scheme (PTAS) running in nO(log(1/ε)/ε8)

time. Jansen [282] improved this result by proposing an Efficient Polynomial Time Ap-
proximation Scheme (EPTAS) with running time 2O(log(1/ε)/ε5) · poly(n) +O(m). Wang
and Xing [478] proposed an approximation algorithm that iteratively fills the knap-
sacks, according to nondecreasing capacity, by selecting for each knapsack the subset
of items with highest profit by means of an exact KP01 procedure, and provided a
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worst-case analysis for the cases m = 2 and m = 3. Khutoretskii, Bredikhin, and Za-
myatin [302] developed a 0.5-approximation algorithm with time complexity O(mn)
(excluding an initial sorting of items and knapsacks), based on specific lexicographic
orderings of both knapsacks and items.

Heuristics. The MKP has been a playground for a variety of heuristics, including:
population-based (Shah-Hosseini [446]), recursive constructive procedures (Lalami
et al. [326]), artificial bee colony (Wei and Zhang [479] and Sabet, Shokouhifar, and
Farokhi [427]) and artificial fish swarm (Liu et al. [344]).

3.2.1 Multiple subset sum problem

The Multiple Subset Sum Problem (MSSP) is a relevant special case of the MKP in
which all knapsacks have the same capacity and the item profits are equal to their
weights. The problem is NP-hard in the strong sense, as it can be proved through
the same reduction mentioned for the MKP.

A PTAS for the MSSP was presented by Caprara, Kellerer, and Pferschy [79], who
also described a 2

3 -approximation algorithm for the bottleneck version of the prob-
lem (where the minimum total weight contained in any bin is to be maximized).
They also showed that this is the best possible performance ratio achievable for
the problem in polynomial time (unless P = NP). The PTAS was then general-
ized by Caprara, Kellerer, and Pferschy [78] to the case of different knapsack ca-
pacities. Later, Caprara, Kellerer, and Pferschy [80] introduced a polynomial time
3
4 -approximation algorithm for the MSSP, with running time that is linear in the
number of items and quadratic in the number of knapsacks.

Kellerer, Leung, and Li [296] studied the MSSP with inclusive assignment set
restrictions. In this problem, the assignment set of an item (i.e., the set of knapsacks
that the item may be assigned to) is either a subset or a superset of the assignment
set of another item. They proposed a PTAS and an efficient 0.6492-approximation
algorithm. Pan and Zhang [391] showed how to solve MSSP instances with low
density with an oracle for the Shortest Vector Problem (SVP), where the density d is
measured by d = n/(m log2 w̄), with w̄ = maxj{wj}, and they focused on instances
having d ≤ 0.9408.

3.2.2 Multiple knapsack assignment problem

Kataoka and Yamada [293] formulated the Multiple Knapsack Assignment Problem
(MKAP) as an extension of the MKP in which the items are partitioned into disjoint
sets and each knapsack may only be assigned items from one of the sets in the parti-
tion. Having the MKP as a special case, the problem is obviously stronglyNP-hard.
The authors provided upper and lower bounds and used them to develop a heuris-
tic that was computationally tested on randomly generated instances. More effec-
tive approaches were later presented by Martello and Monaci [358], who developed
Lagrangian and surrogate relaxations, a constructive heuristic and a metaheuristic
refinement procedure. Computational tests on benchmark MKAP instances proved
the effectiveness of the algorithms.

Related problems having applications in real-world contexts were studied by
Dimitrov et al. [166], who focused on variants arising in emergency relocation, and
by Homsi et al. [263], who tackled a variant, arising in military and humanitarian sit-
uations, which involves loading constraints. The former article provides a heuristic
algorithm, whereas the latter presents a mathematical model, Lagrangian and sur-
rogate relaxations, and heuristic and matheuristic algorithms. Other MKP variants



3.2. Multiple knapsack problems 31

arising in military contexts were studied by Simon, Apte, and Regnier [453], who ex-
tended the MKP in several ways so as to model constraints on self-sufficiency (i.e.,
capacity of maintaining operations with external aid) of a squad of Marines. They
developed mathematical models and computationally tested them on a variety of
randomly generated instances.

3.2.3 Multiple knapsack problems with special constraints

The Multiple Knapsack Problem with Conflicts (MKPC), in which pairs of items cannot
be placed together in the same knapsack, was addressed by Basnet [39]. He devel-
oped constructive heuristic algorithms and tested them on instances with up to 500
items and 15 knapsacks.

The Multiple Knapsack Problem with Setup (MKPS) is an extension of the Knapsack
Problem with Setup (KPS) treated in Section 2.6 to the case of multiple knapsacks:
the items are characterized by a knapsack-dependent profit and belong to disjoint
families, each one associated with a knapsack-dependent setup cost. Lahyani et
al. [323] proposed a two-phase matheuristic algorithm, and a decomposition-based
Tabu search matheuristic approach that extends the former. Amiri and Barkhi [28]
recently studied a Lagrangian relaxation that decomposes the problem into a set of
m independent single problems, and developed a greedy heuristic to produce fea-
sible solutions. Both methods were evaluated through extensive computational ex-
periments, showing that good quality solutions can be obtained in reasonable CPU
times.

Motivated by a real application in the steel industry, Forrest, Kalagnanam, and
Ladanyi [183], formulated the Multiple Knapsack Problem with Color Constraints (MKPCC),
in which a color is associated with each item and the number of colors in any knap-
sack is restricted. They presented computational results for two very difficult MKPCC
instances, solved using a column-generation approach.

Yamada and Takeoka [492] formulated the Fixed-Charge Multiple Knapsack Prob-
lem (FCMKP) as an extension of the MKP in which a fixed cost fi must be paid if
knapsack i is used in the solution. The problem is to decide the set of knapsacks
to use, and to assign items to them, so that the total net profit (item profits minus
knapsack costs) is maximized. A B&B algorithm presented in [492] was able to solve
within 10 seconds almost all FCMKP instances with up to 32 000 items and 50 knap-
sacks. You and Yamada [500] introduced the Budget-Constrained Multiple Knapsack
Problem (BCMKP), where again knapsack i costs fi, but there is a prefixed budget to
buy the knapsacks, and the objective is to maximize the total profit of the selected
items. The problem was solved with a B&B algorithm making use of tools similar to
those employed in [492] for the FCMKP.

Chen and Zhang [101] studied a generalization of the MKP in which the set of
items is partitioned into groups, and, while each item has its own weight, the profit
of a group is obtained only if every item of the group is packed. They derived
both approximation and inapproximability results for a parameterized version of
the problem where the total weight of the items in each group is bounded by a fac-
tor δ ∈ (0, 1) of the total capacity of all knapsacks.

Laalaoui and M’Hallah [321] proposed a variable neighborhood search algorithm
for a particular MKP arising in a single machine scheduling problem where jobs
must be processed in multiple time-windows and machine unavailability periods
must be taken into account.
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Nip and Wang [387] presented three approximation algorithms for the two-phase
knapsack problem: given an MKP instance with an additional container of given ca-
pacity, the items have to be packed into the knapsacks and, in a second phase, the
knapsacks have to be packed into the container so that the profit of the selected items
is maximized.

3.3 Multidimensional (vector) knapsack problems

Given a knapsack having d different capacities ci (i = 1, . . . , d) and n items having
profits pj (j = 1, . . . , n) and weight wij for the i-th capacity (i = 1, . . . , d; j = 1, . . . , n),
the Multidimensional Knapsack Problem (MdKP) consists in determining a subset of
items such that its total i-th weight does not exceed the i-th capacity (i = 1, . . . , d)
and its total profit is a maximum. The MdKP can be modeled as:

max
n

∑
j=1

pjxj (3.5)

s.t.
n

∑
j=1

wijxj ≤ ci (i = 1, . . . , d) (3.6)

xj ∈ {0, 1} (j = 1, . . . , n). (3.7)

As already reported in Section 3.1, surveys devoted to the MdKP have been pub-
lished by Fréville [184], Fréville and Hanafi [185], and Laabadi et al. [320]. The MdKP
is in practice an Integer Linear Programming (ILP) problem with binary variables and
non-negative coefficients. It is strongly NP-hard, although some authors classify it
as weaklyNP-hard. The confusion probably arises from the fact that: (i) the general
problem (3.5)-(3.7), in which n and d are input values, is indeed strongly NP-hard
(see, e.g., Garey and Johnson [199], Problem [MP1]); (ii) if instead d is a constant, DP
solves the problem in pseudo-polynomial time O(nc̄d) (where c̄ = maxi∈{1,...,d} ci).
(A similar situation occurs for the MKP, although, to the best of our knowledge, all
authors classify it as strongly NP-hard.)

Over the years, the MdKP has been addressed with some exact techniques and
many (meta)heuristic methods.

Exact solution. Martello and Toth [362] proposed a B&B algorithm for the case
d = 2, making use of heuristics, reduction techniques, and multiple relaxations.
Vimont, Boussier, and Vasquez [471] developed an implicit enumeration scheme
which uses reduced cost constraints to fix non-basic variables and to prune nodes of
the search tree. Puchinger, Raidl, and Pferschy [410] presented different exact and
heuristic algorithms, all based on adapting to the MdKP the classical core concept for
the KP01 (limit the search, at least initially, to a small set of core items, while setting
all variables corresponding to items outside the core to their presumably 0-1 optimal
values). The core problem was also used by Della Croce and Grosso [150] in a reduc-
tion method, and by Mansini and Speranza [354] in an exact approach based on a
recursive variable-fixing process. Other B&B methods were proposed by Boussier et
al. [61], who improved the algorithm in [471] through a multi-level search strategy,
and by Boyer, El Baz, and Elkihel [62], who developed a method combining B&B
and DP. Bektas and Oǧuz [45] proposed a simple separation procedure to identify
cover inequalities.

With the aim of producing good upper bounds, Kaparis and Letchford [289] de-
veloped a cutting plane method based on lifted cover inequalities. Balev et al. [38]
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presented a preprocessing procedure based on the iterated use of DP and Linear Pro-
gramming (LP) relaxations. Gu [215] studied reduction criteria based on the concept
of core problem.

Very recently, Setzer and Blanc [444] studied the geometric aspect of the MdKP
solution space, and proposed an empirical orthogonal constraint generation method
aimed to reduce the number of capacity constraints, producing some new best-
known upper bounds and proving optimality for an open instance. They compu-
tationally tested this procedure on benchmarks proposed by Chu and Beasley [116]
(90 instances with d = 30 and n ∈ {100, 250, 500}) and compared it with other
approaches from the literature, especially with [471]. Their computational results
showed that, for small instances (n = 100), the original MdKP formulation can be
easily solved by means of a commercial solver (Gurobi). Instead, the more com-
plex approaches proposed in [471] and [444] payed off in cases of large instances
(n ∈ {200, 500}) for which the optimal solution is known by now just for 9 out of the
60 instances.

Heuristics. Already in 2004, Kellerer, Pferschy, and Pisinger [297] mentioned
that: “In recent years (MdKP) turned out to be one of the favourite playgrounds for ex-
periments with metaheuristics, in particular Tabu search and genetic algorithms”. In the
last years, this trend has increased enormously, and a large variety of metaheuristics
(sometimes fanciful, sometimes equipped with strong mathematical background)
has been developed to tackle the MdKP. We next provide some details on the meth-
ods obtained from relevant mathematical frameworks. For the sake of completeness,
we give in the next two paragraphs a concise list of other heuristics and nature in-
spired approaches. Moraga, Depuy, and Whitehouse [378] proposed a metaheuristic
to construct and improve feasible solutions by means of randomized priority rules
and local search techniques. Vasquez and Vimont [470] introduced a hybrid method
which combines a limited B&B variable fixing heuristic with Tabu search. Thion-
gane, Nagih, and Plateau [465] proposed a hybrid Lagrangian heuristic for the case
d = 2. Boyer, Elkihel, and El Baz [63] presented a heuristic approach based on sur-
rogate relaxation, DP and Branch-and-Cut (B&C). Wilbaut, Salhi, and Hanafi [481]
proposed an iterative scheme based on a dynamic fixing of the variables through
LP relaxations. Al-Shihabi and Ólafsson [15] designed a hybrid algorithm that com-
bines a nested partition method with a binary ant system and LP. Angelelli, Mansini,
and Speranza [30] proposed a heuristic based on a kernel search framework. Hanafi
and Wilbaut [231] described a heuristic based on an iterative generation of upper
and lower bounds. Della Croce and Grosso [151] proposed a heuristic that combines
core problem approaches and a branching scheme. Yoon, Kim, and Moon [498] and
Hill, Cho, and Moore [258] studied Lagrangian-based heuristics.

Various kinds of metaheuristics for the MdKP have been studied: harmony search
(Kong et al. [310]), scatter search (Hanafi and Wilbaut [230]), multi-verse optimiza-
tion (Abdel-Basset et al. [2]), local search (Wang, Wang, and Xu [475]), genetic and
randomized approaches (Jalali Varnamkhasti and Lee [281], Lai, Yuan, and Yang
[324], Ünal and Kayakutlu [468], García et al. [196], Martins and Ribas [366]). The
main nature inspired paradigms adopted for the MdKP are particle swarm (Chih
(et al.) [110–112], Haddar et al. [218], Mingo López, Gómez Blas, and Arteta Albert
[374]) and ant colony optimization (Kong, Tian, and Kao [309], Ke et al. [295]).

Variants and generalizations

A number of MdKP variants and generalizations have been investigated in the re-
cent literature.
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In the Unbounded Multidimensional Knapsack Problem (UMdKP), modeled by the
MdKP with (3.7) replaced by

xj ≥ 0 and integer (j = 1 . . . , n),

the number of copies that can be selected for each item is unlimited. The problem
was tackled by He, Hartman, and Pardalos [236] through an extension of their ap-
proach to the unbounded knapsack problem (see Section 2.5.2).

Quadri, Soutif, and Tolla [413] developed a B&B algorithm for a quadratic vari-
ant of the MdKP which calls for the maximization of a concave separable quadratic
objective function.

The Multidemand Multidimensional Knapsack Problem (MMKP) extends the MdKP
by including q additional dimensions, for each of which a demand constraint must
be satisfied. This implies adding

n

∑
j=1

wijxj ≥ ci (i = d + 1, . . . , d + q)

to model (3.5)-(3.7). The problem has been attacked through metaheuristics: Tabu
search algorithms were developed by Cappanera and Trubian [76], Arntzen, Hvat-
tum, and Løkketangen [32], and Lai, Hao, and Yue [325], while a scatter search ap-
proach was proposed by Hvattum and Løkketangen [271].

The Multiple Multidimensional Knapsack Problem (MMdKP) generalizes both the
MdKP and the MKP (Section 3.2) by considering multiple knapsacks having mul-
tiple dimensions. Ahuja and Cunha [6] solved it by means of a very large-scale
neighborhood search. Ang, Cao, and Ye [29] formulated a multi-period sea cargo
mix problem as an MMdKP and solved it by means of two heuristic algorithms. A
further generalization of the problem, the Multiple Multidimensional Knapsack with
Family-Split Penalties (MMdKPF), was proposed by Mancini, Ciavotta, and Meloni
[351] who solved it through a combinatorial Benders decomposition approach.

3.3.1 Multidimensional multiple-choice knapsack problem

The Multidimensional Multiple-Choice Knapsack Problem (MdMCKP) is a generaliza-
tion of the MdKP in which, as for the multiple-choice knapsack problem (see Section
2.7), the set of items is partitioned into ` classes N1, . . . , N`, and exactly one item of
each class must be selected. This implies adding

∑
j∈Ni

xj = 1 (i = 1, . . . , `) (3.8)

to model (3.5)-(3.7).
Exact solution. Sbihi [436] proposed a B&B algorithm that generates an initial

lower bound and determines an upper bound for each level of exploration accord-
ing to a best-first strategy. Extensive computational experiments showed that the
algorithm can solve instances with up to 50 classes, 20 items per class, and 7 ca-
pacity constraints. Han, Leblet, and Simon [223] proposed new methods to generate
hard benchmark instances of the MdMCKP, and provided an extensive experimental
evaluation. Ghasemi and Razzazi [200] extended the core concept (see Section 3.3) to
the MdMCKP, and used it in a B&B algorithm. Extensive computational experiments
showed that the algorithm can solve large size instances when there is no correlation
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between profits and weights (up to 100 classes, 100 items per class, and 15 capacity
constraints), but it can only solve small-size instances when such correlation exists.
Hifi and Wu [257] proposed an alternative model obtained by using information col-
lected from the optimal Lagrangian solution. Computational experiments showed
that the CPLEX solver is more efficient when the new model is used. Gokce and Wil-
helm [209] provided valid inequalities for the minimization version of the MdMCKP,
and two lifting procedures to strengthen them. The usefulness of these inequalities
was evaluated by embedding them in a branch-and-cut algorithm. Voß and Lalla-
Ruiz [472] compared the above model (3.5)-(3.8) to an alternative formulation which
uses binary variables xij taking the value 1 iff item j from class i is selected: compu-
tational experiments showed that the former obtains slightly better results. Mansini
and Zanotti [355] proposed an algorithm based on the concept of core (see Section
3.3), which iteratively constructs and solves a sequence of sub-problems by means
of a recursive variable-fixing procedure, until an optimality condition is satisfied.
Computational tests showed that the algorithm could solve to proven optimality ten
open benchmark instances (proposed by Hifi, Michrafy, and Sbihi [251], Shojaei et
al. [450], and Mansi et al. [353]) and improve the best-known values for many other
instances.

Heuristics. Hifi, Michrafy, and Sbihi [250] presented a guided local search meta-
heuristic based on a penalization strategy, and tested it on 13 instances with up to 10
capacity constraints and 4000 items. These results were improved by Hifi, Michrafy,
and Sbihi [251], who proposed a reactive local search algorithm and introduced
twenty new instances with up to 30 capacity constraints and 7000 items. Akbar
et al. [10] presented a polynomial time heuristic based on the iterative construction
of convex hulls, and tested it on randomly generated instances. Hiremath and Hill
[259] provided an analysis of the 13 MdMCKP benchmark instances, and addition-
ally proposed a new test set of 270 instances, which, however, were rarely used in
subsequent papers. Shahriar et al. [447] proposed a parallel version of a heuristic
algorithm previously developed by Akbar et al. [9]. Cherfi and Hifi [109] devel-
oped a rounding procedure combined with a truncated B&B algorithm applied, at
selected nodes, to a restricted model handled in a column generation fashion. Their
approach improved the computational results in [251]. Cherfi and Hifi [108] devel-
oped an approach that combines local branching with a truncated B&B algorithm,
based on their column generation procedure [109]. Feng, Ren, and Zhan [175] pre-
sented a method merging ant colony optimization and Lagrangian relaxation, and
compared it with the algorithm in [251], obtaining comparable results. Crévits et al.
[128] proposed four variants of a heuristic method based on the iterated solution of
semi-continuous relaxations where only a subset of variables is restricted to binary
values. The algorithms were enhanced by a local search procedure and by reduc-
tion rules, improving the results in [108]. Mansi et al. [353] improved the results
in [109] and [128] with a hybrid heuristic that iteratively refines the global upper
bound value through LP relaxations, and the lower bound value by solving reduced
problems. Heuristics based on the principles of Pareto algebra were proposed by
Shojaei et al. [450] and Zennaki [503]. Htiouech, Bouamama, and Attia [266] devel-
oped and computationally tested an algorithm that alternates between constructive
and destructive phases. Chen and Hao [102] presented two variants of a “reduce and
solve” heuristic that combines problem reduction with CPLEX solver and favorably
compared it with the methods in [353], [450] and [108]. Hifi and Wu [256] devel-
oped a heuristic based on a Lagrangian relaxation used to define a neighbourhood
search and successfully compared it with the methods in [128] and [353]. Gao et al.
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[195] proposed an algorithm based on the concept of pseudo-gap, a hypothesized gap
between upper and lower bounds. A pseudo-gap enumeration was combined with
cuts based on reduced cost constraints. The current state-of-the-art is an effective
kernel search heuristic recently presented by Lamanna, Mansini, and Zanotti [327].

Variants. Caserta and Voß [91] addressed the MdMCKP with uncertainty on
parameters wij, by adopting a robust optimization approach. They developed a
matheuristic algorithm to tackle both the nominal and the robust versions of the
problem, and tested it on benchmark instances.

In the Multidimensional Knapsack Problem with Generalized Upper Bound Constraints
(MdKP-GUB), items belong to disjoint families and it is required that at most one
item per family is chosen. The MdKP-GUB was invented and attacked through var-
ious metaheuristics in a series of papers by Li (et al.) [339–341].

3.4 Multidimensional geometric knapsack problems

In Cutting and Packing (C&P) problems one is given a set of geometric objects in
multidimensional real space which have to be packed, without overlapping, into a
given set of multidimensional containers (knapsacks). Equivalently, the containers
have to be cut in order to produce the items, which explains why these two applica-
tion domains, despite being quite different in practice, are studied together and lead
to similar mathematical models and solution algorithms.

The C&P literature addresses several multidimensional geometric knapsack prob-
lems. They have in common the fact that each item is associated with a profit and
there is a single knapsack where to pack/cut the items so as to maximize the total
profit, but they differ in a number of characteristics, such as shape and number of
dimensions of items and knapsacks, as well as additional geometric constraints.

Revising the complete literature on this area is beyond the scope of this survey,
so we limit our review to the case of orthogonal packing, where items and knapsack
are rectangular shapes (rectangles or boxes) and the items have to be packed/cut
with their edges parallel to those of the knapsack. This represents by far the most
studied field in the C&P area. For the case of irregular shapes, we refer the reader
to the very recent survey by Leao et al. [331], who presented a complete review of
mathematical models and solution techniques.

3.4.1 Two-dimensional knapsack problem

The most famous multidimensional geometric knapsack problem is known as the
Two-Dimensional Knapsack Problem (2D-KP), and consists in finding a maximum profit
subset of a set of rectangular items that can be orthogonally packed into a single rect-
angular knapsack. The 2D-KP is stronglyNP-hard, since in the special case in which
all item heights are equal, the problem of testing whether the whole set of items fits
in the knapsack is equivalent to the well-known (one-dimensional) bin packing prob-
lem (pack n items of weight wj (j = 1, . . . , n) into the minimum number of knapsacks
of capacity c).

Exact solution. For exact algorithms and mathematical models we refer the reader
to the very recent survey by Iori et al. [277], who also implemented a library, 2DPackLIB,
of benchmarks and links for two-dimensional orthogonal cutting and packing prob-
lems (see http://or.dei.unibo.it/library/2dpacklib-2-dimensional-cutti

ng-and-packing-library). To the best of our knowledge, the only relevant work
published on the 2D-KP after this survey is the one by Cunha, Lima, and Queiroz

http://or.dei.unibo.it/library/2dpacklib-2-dimensional-cutting-and-packing-library
http://or.dei.unibo.it/library/2dpacklib-2-dimensional-cutting-and-packing-library
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[129], who presented different reduction procedures based on several types of grids
of points, and used them to improve the performance of a mathematical model.

Approximation. Caprara and Monaci [82] presented an approximation algorithm
that guarantees a worst-case ratio of 3 + ε. Jansen and Zhang [284] improved the re-
sult with an algorithm having a worst-case ratio at most 2+ ε. For the special 2D-KP
case in which items and knapsack are squares, Harren [233] introduced a (5/4 + ε)-
approximation algorithm, whereas Heydrich and Wiese [239] introduced an EPTAS
with running time Oε(1)nO(1), where Oε(1) denotes a value that is constant for con-
stant ε. For the case in which the weight of each item is equal to its area, Lan et al.
[328] presented a EPTAS having running time O(n log n + 4ε−6

). For a more detailed
overview on approximation and online algorithms for the 2D-KP, we refer the reader
to the survey by Christensen et al. [114] (mainly devoted to the bin packing problem
but including a section on geometric knapsack problems).

Heuristics. A number of heuristic and metaheuristic algorithms was introduced
in recent years for the 2D-KP. Beasley [41] proposed a successful population heuris-
tic based upon a non-linear formulation and tested it on several benchmarks involv-
ing up to 4000 items. Improved computational results were obtained by Alvarez-
Valdés, Parreño, and Tamarit [26] (Tabu search), Hadjiconstantinou and Iori [220]
(genetic algorithm), Leung et al. [335] (simulated annealing), Kierkosz and Luczak
[303] (hybrid evolutionary algorithm), and Shiangjen et al. [449] (iterative bidirec-
tional heuristic).

Several variants of the 2D-KP have been also considered in the literature. Sil-
veira, Xavier, and Miyazawa [452] presented a (4 + ε)-approximation algorithm for
the 2D-KP with unloading constraints and a (3 + ε)-approximation algorithms for
two other special cases. Zhou et al. [506] presented mathematical models and com-
putational experiments for the 2D-KP with block packing constraints, in which the
knapsack is divided into disjoint blocks and each packed item has to be allocated
inside a block. Queiroz et al. [416] proposed ILP models, a B&C algorithm, and
metaheuristics for the 2D-KP with conflicts, in which some pairs of items cannot
both be packed into the knapsack. For the special case in which the knapsack is a
square and the objective is to pack all the items into the smallest possible square,
lower bounds, mathematical models, and an exact algorithm have been presented in
Caprara et al. [84] and Martello and Monaci [357].

3.4.2 Two-dimensional knapsack problems with guillotine constraints

The most widely studied variant of the 2D-KP is the Two-Dimensional Knapsack Prob-
lem with Guillotine Constraints (2D-KPGC), in which the items must be obtained from
the knapsack through a series of guillotine cuts (i.e., edge-to-edge cuts parallel to the
edges of the knapsack). Each series of parallel cuts is called a stage, and when a limit
k (frequently encountered in real-world applications) is imposed on the maximum
number of stages, the problem is called the k-staged 2D-KPGC. In the constrained
version of the 2D-KPGC the number of items that can be selected for each item type
is bounded. While this version is strongly NP-hard, the unconstrained version (here
referred to as the 2D-UKPGC) can be solved to optimality in pseudo-polynomial
time through DP (see Iori et al. [277]).

Exact solution. For what concerns exact algorithms and mathematical models, we
again refer the reader to the thorough recent survey by Iori et al. [277].

Approximation. As regards approximation algorithms, Caprara, Lodi, and Monaci
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[81] considered the special case of the 2-staged 2D-KPGC in which the profit of each
item coincides with its area and generalized the approximation scheme presented in
[79], obtaining an (absolute) approximation scheme.

Heuristics. Alvarez-Valdés, Parajón, and Tamarit [25] presented a Greedy Ran-
domized Adaptive Search Procedure (GRASP) and a Tabu search algorithm for the 2D-
KPGC. Hifi [241] introduced a hybrid approach which combines depth-first search
using hill-climbing strategies and DP. Bortfeldt and Winter [60] proposed a genetic
algorithm for the 2D-KP and the 2D-KPGC, also able to handle both the 2D-UKPGC
and the case where the items can be rotated by 90◦. Borgulya [58] introduced, for the
2D-KPGC, an evolutionary method based on an estimation of a probability distribu-
tion from a set of solutions, and computationally compared it with the approach in
[60].

3.4.3 Geometric knapsack problems in higher dimensions

The Three-Dimensional Geometric Orthogonal Knapsack Problem (3D-KP) is the exten-
sion of the 2D-KP to the case in which knapsack and items are three-dimensional
boxes. The literature on this problem and on related variants is quite scarce com-
pared to the one on the 2D-KP.

For what concerns exact methods, a recent review, also providing the outcome
of extensive comparative experiments, was presented by Silva, Toffolo, and Wauters
[451].

Diedrich et al. [165] proposed a (7 + ε)-approximation algorithm.
Egeblad and Pisinger [168] generalized to the 3D-KP an iterative heuristic for 2D-

KP. They adopted the sequence pair representation by Murata et al. [381], which rep-
resents a solution by two item permutations, and obtained feasible packings through
the algorithm by Pisinger [405].

Queiroz et al. [415] developed a DP algorithm based on reduced raster points for
a k-staged three-dimensional knapsack problem with guillotine constraints.

Baldi, Perboli, and Tadei [37] introduced the 3D-KP with balancing constraints,
where the packing center of mass is forced to lie into a specific boxed domain inside
the knapsack. They presented a mixed-integer linear programming model and a
heuristic algorithm.

We finally mention the d-Dimensional Orthogonal Knapsack Problem (D-KP), a fur-
ther extension of the 2D-KP to the case in which items and knapsack are d-dimensional
rectangles. Harren [233] provided a (1 + 1/2d + ε)-approximation algorithm for the
D-KP.

3.5 Quadratic knapsack problems

The quadratic knapsack problem is a special case in the area of nonlinear knapsack
problems, characterized by a combinatorial structure. Before analyzing the problem
in detail, we briefly introduce this general area in the next section.

3.5.1 Nonlinear knapsack problems

As previously stated, this survey is mainly addressed to the combinatorial optimiza-
tion community, so we just mention in a succinct way arguments with a clear con-
tinuous, non-linear structure like those treated in this section. Consider a general
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optimization problem of the form

max f (x) (3.9)
s.t. g(x) ≤ c (3.10)

x ∈ D (3.11)

where x = (x1, . . . , xn) ∈ Rn, f (x) and g(x) are continuous differentiable functions,
c is a non-negative value, and D ⊆ Rn. Now consider the special case where both
f (x) and g(x) are separable functions, and D includes bounds and integrality re-
quirements on (part of) the variables. Using the knapsack terminology, the resulting
problem can be defined as follows. Given n items, with item j having a profit func-
tion f j(xj) and a weight function gj(xj), associated with n variables xj limited by lower
bounds lj and upper bounds uj (j = 1, . . . , n), determine non-negative xj values such
that the total weight does not exceed a given capacity c and the total produced profit
is a maximum. A subset N of the xj variables can be restricted to take integer values.
Formally, the Non-Linear Knapsack Problem (NLKP) is:

max ∑
j∈N

f j(xj) (3.12)

s.t. ∑
j∈N

gj(xj) ≤ c (3.13)

lj ≤ xj ≤ uj (j = 1, . . . , n) (3.14)

xj integer (j ∈ N ⊆ {1, . . . , n}), (3.15)

where f j(xj) and gj(xj) are nonlinear, non-negative, non-decreasing functions. Note
that, in general, there is no further assumption on functions f j(xj) and gj(xj), i.e.,
they can be nonconvex and nonconcave.

The NLKP has many applications in various fields such as portfolio selection,
stratified sampling, resource-allocation, production planning, and resource distri-
bution. Nonlinear knapsack problems have been studied in the books by Ibaraki
and Katoh [272], and Li and Sun [337]. For a general introduction to these prob-
lems, the reader is referred to the classical survey by Bretthauer and Shetty [66] as
well as to Lin [343] who reviewed a number of knapsack problem variants, among
them the MKP, the MdKP, and the quadratic knapsack problem discussed in the next
section. D’Ambrosio and Martello [137] proposed a fast and effective heuristic al-
gorithm enriched by a local search post-optimization procedure for the NLKP. Re-
laxations and heuristics for the natural extension of the NLKP to the case of mul-
tiple knapsacks (Non-Linear Multiple Knapsack Problem, NLMKP) were proposed by
D’Ambrosio, Martello, and Mencarelli [138]. Other variants and generalizations of
the NLKP and the NLMKP have been studied by Stefanov [458], Elbassioni, Kara-
petyan, and Nguyen [171], Goos et al. [211], and D’Ambrosio, Martello, and Monaci
[139].

3.5.2 Quadratic knapsack problem

In the Quadratic Knapsack Problem (QKP), one is given a knapsack with capacity c and
n items having profit pj and weight wj (j = 1, . . . , n). An extra non-negative profit
pij is earned if both items i and j are selected (i, j = 1, . . . , n; i 6= j). The objective is
to find a subset of items of total weight not exceeding the capacity, which maximizes
the overall profit, calculated as the sum of the profits of the selected items and of
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their pairwise profits. Formally

max
n

∑
j=1

pjxj +
n−1

∑
j=1

n

∑
i=1+j

pijxixj (3.16)

s.t.
n

∑
j=1

wjxj ≤ c (3.17)

xj ∈ {0, 1} (j = 1, . . . , n). (3.18)

The problem is strongly NP-hard, as it can be shown (see, e.g., [297]) by reduc-
tion from the clique problem (given an undirected graph, find a maximal complete
subgraph). A thorough review of the QKP was provided by Pisinger [405]. The C

code of an effective algorithm (Quadknap) for the exact solution of the problem, de-
veloped by Caprara, Pisinger, and Toth [83], is available at http://hjemmesider.di
ku.dk/~pisinger/codes.html.

Exact solution. Billionnet and Soutif [53] presented a B&B algorithm based on
the computation of an upper bound by means of a Lagrangian decomposition previ-
ously studied in Billionnet, Faye, and Soutif [52]. The method, evaluated on a large
set of randomly generated benchmarks, solved almost all instances with up to 150
variables, and with up to 300 variables for medium and low density profit matrices.
Billionnet and Soutif [54] proposed three ways of linearizing the QKP into an equiv-
alent Mixed-Integer Program and solved it with a commercial software. Pisinger, Ras-
mussen, and Sandvik [407] proposed an exact algorithm based on a variable fixing
procedure, called aggressive reduction: it employs the upper bound proposed in [53]
and another upper bound introduced in [83], as well as several heuristic algorithms
to compute lower bounds. The procedure is followed by a B&B algorithm. The
algorithm was able to solve large-size instances with up to 1500 variables. Wang,
Kochenberger, and Xu [474] compared the performance of the CPLEX optimizer for
quadratic integer programs and that of the method in [53], showing that the former
outperforms the latter. Létocart, Nagih, and Plateau [334] introduced a reoptimiza-
tion method that improves the efficiency of the solution of the numerous continu-
ous linear knapsack problems generated by the Lagrangian approaches proposed
in Billionnet, Faye, and Soutif [52] and [83]. Rodrigues et al. [420] presented a lin-
earization method which replaces the quadratic terms of the objective function with
a set of linear constraints, and applied it within a B&B algorithm. Computational
experiments showed that the algorithm is able to provide better results than that of
[407] for all the tested instances with low density and up to 200 variables. Fampa
et al. [174] introduced a parametric convex quadratic relaxation of the problem, de-
veloped a primal-dual interior point method to obtain the best possible bound, and
proposed valid inequalities for the convex quadratic model. Worth is mentioning
however that Schauer [440] criticized the randomly generated instances normally
adopted for computational experiments on algorithms for the QKP: he showed that,
for a large family of classical test instances used in the literature, a basic greedy
algorithm (consecutively insert the items sorted by non-increasing weight as long
as they fit) produces solutions of value asymptotically very close to the optimum
as the instance size tends to infinity. In [440] an additional class of instances, for
which finding a good solution is much harder, was introduced. Fomeni, Kaparis,
and Letchford [180] presented a Cut-and-Branch algorithm that embeds a cutting-
plane phase, primal heuristics, reduction rules, and a B&B phase, and tested it also

http://hjemmesider.diku.dk/~pisinger/codes.html
http://hjemmesider.diku.dk/~pisinger/codes.html
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on instances introduced in [440].

Approximation. Taylor [463] presented an approximation algorithm that guaran-
tees, for any given ε > 0, an approximation ratio within O(n2/5+ε) and a run time
within O(n9/ε). The quadratic profit pij can be seen as the cost of the edge between
vertices i and j of an undirected weighted graph whose vertices represent the knap-
sack items. Pferschy and Schauer [399] studied the QKP on special graph classes.
They provided an FPTAS for the QKP on graphs of bounded treewidth, a PTAS for
the QKP on planar graphs, and they showed that the QKP is stronglyNP-hard on 3-
book embeddable graphs (generalizations of planar graphs). Wu, Jiang, and Karimi
[487] sudied the convergency property of a logarithmic descent direction approxi-
mation algorithm.

Heuristics. Patvardhan, Prakash, and Srivastav [393] proposed a quantum in-
spired evolutionary algorithm, later improved and parallelized in Patvardhan, Bansal,
and Srivastav [392]. Yang, Wang, and Chu [495] presented a GRASP and a Tabu
search algorithm and successfully compared them with a heuristic approach devel-
oped by Xie and Liu [489]. Azad, Rocha, and Fernandes [36] proposed an artificial
fish swarm algorithm having good computational performance, although not out-
performing the method in [489]. Fomeni and Letchford [181] presented an effective
DP heuristic obtained by modifying the classical DP approach for the KP01. The al-
gorithm was enhanced by considering specific item ordering and a tie-breaking rule,
giving solutions very close to the optimal ones. Toumi, Cheikh, and Jarboui [466]
introduced two variable neighborhood search heuristics and successfully compared
them with the method in [495]. Cunha, Simonetti, and Lucena [130] investigated two
Lagrangian heuristics and compared them with the method in [181], showing that
all these approaches provide good quality solutions. Chen and Hao [105] proposed
a method which introduces an additional cardinality constraint to decompose the
problem into several disjoint sub-problems. The most promising sub-problems are
then solved through reduction procedures and Tabu search. The resulting algorithm
was compared with the algorithms in [489], [495], and [181].

Variants and generalizations

Kellerer and Strusevich [298] presented an FPTAS for a variant of the QKP, the Sym-
metric Quadratic Knapsack Problem (SQKP), which has several applications in machine
scheduling. In the SQKP, the extra profit pij is obtained by multiplying the weight
wi by a non-negative integer coefficient, and it is earned if both i and j are selected
or neither i nor j are selected. This FPTAS was later improved by Xu [490]. A gen-
eralization and extension of these works, also relevant for the SQKP, appeared in
Kellerer and Strusevich [300]. In their survey, Kellerer and Strusevich [299] reviewed
the main results on the SQKP and reformulated a number of scheduling problems
through it.

Schulze et al. [441] introduced the Rectangular Knapsack Problem (RKP) as a special
case of the QKP in which the items have profit pj = 0, weight wj = 1 (so that the
capacity constraint corresponds to a cardinality constraint), and the extra profit has
the form pij = aibj, with (a1, . . . , an) and (b1, . . . , bn) positive integer vectors. They
designed a polynomial time algorithm that provides a constant approximation ratio
of 4.5, and performed computational experiments on randomly generated instances
with different correlation structures.

The Quadratic Knapsack Problem with Conflict Graphs (QKPCG) is a generaliza-
tion of the QKP in which, as for the knapsack problem with conflict graph (see Section
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2.9), a given undirected graph G = (V, E) defines the pairs of incompatible items
that cannot be simultaneously selected. Shi, Wu, and Meng [448] presented a large
neighborhood search algorithm for the QKPCG. Dahmani and Hifi [134] proposed
a descent-based heuristic that combines local search and reactive search for diver-
sification. The approach obtained better results than those in [448]. Dahmani et al.
[136] developed a method based on particle swarm combined with local search, and
further improved the results in [134].

The Quadratic Knapsack Problem with Multiple Knapsack Constraints (MdQKP) is a
generalization of the QKP in which, as for the MdKP (see Section 3.3), the knapsack
has d different capacities. The corresponding quadratic mathematical model is thus
defined by (3.16), (3.6), and (3.7). The MdQKP was introduced by Wang, Kochen-
berger, and Glover [473], who compared the quadratic model with three alternative
linearizations, solved with CPLEX on test instances with up to 800 variables. The
computational experiments showed that, for large instances, the quadratic model
outperforms by a large margin the linearized ones both in terms of solution quality
and solution time.

Quadratic multiple knapsack problem

The Quadratic Multiple Knapsack Problem (QMKP) is a generalization of the QKP in
which, as for the MKP (see Section 3.2), one is given m knapsacks with capacities ci
(i = 1, . . . , m) and n items having profit pj and weight wj (j = 1, . . . , n). In addition,
as for the QKP, each pair of distinct items i and j gives an extra profit pij if both items
are assigned to the same knapsack. The objective is to select m disjoint subsets of
items so that each subset is assigned to a knapsack whose capacity is no less than the
total weight of its items, and the total profit (sum of the profits of the selected items
and of the pairwise profits of items assigned to the same knapsack) is maximized.
Formally

max
m

∑
i=1

n

∑
j=1

pjxij +
n−1

∑
j=1

n

∑
k=j+1

m

∑
i=1

pkjxijxik (3.19)

s.t. (3.2)− (3.4).

Exact solution. The first exact solution approach to the QMKP is due to Bergman
[49]. He introduced an exponential-size ILP model solved through a of a Branch-and-
Price (B&P) algorithm. Computational tests showed that the method outperforms
commercial optimization solvers. The B&P algorithm was also applied to the au-
tomated table event seating problem (a variant of the QMKP in which each item is
required to be placed in some knapsack). Galli et al. [194] studied polynomial size
formulations and upper bounds for the QMKP. They proposed surrogate and La-
grangian relaxations, providing theoretical properties and dominances, as well as
extensive computational experiments. An effective B&B algorithm for the QMKP
was recently presented by Fleszar [179].

Heuristics. García-Martínez, Rodriguez, and Lozano [197] and García-Martínez
et al. [198] introduced two metaheuristics for the QMKP, one based on strategic oscil-
lation, one consisting of a Tabu-enhanced greedy approach. They showed that their
methods are competitive with the state-of-the-art algorithms. Chen and Hao [103]
presented an algorithm that combines a threshold based exploration with a descent
based improvement and successfully compared it with the methods in [197, 198].
Chen, Hao, and Glover [106] proposed an evolutionary path relinking approach and
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showed that it successfully competes with the algorithms in [197, 198], and [103].
Peng et al. [395] proposed an ejection chain method with an adaptive perturbation
mechanism and positively compared it with the algorithms in [197, 198]. Qin et al.
[411] presented a Tabu search based on local search algorithms that consider both
feasible and infeasible solutions, and favourably compared it with the previous lit-
erature on the QMKP.

Variants and generalizations

Olivier, Lodi, and Pesant [388] introduced the Quadratic Multiknapsack Problem with
Conflicts and Balance Constraints (QMPCBC) as a generalization of the QMKP which
includes pairwise conflicts between items and asks for packing all the items into the
knapsacks in such a way that the load of every knapsack is within a lower and an
upper bound. They proposed a constraint programming model and two quadratic
integer programming formulations. The best computational results were obtained
by a column generation algorithm that solves one of the quadratic formulations and
adopts a constraint program for the pricing subproblem.

Saraç and Sipahioglu [435] introduced the Generalized Quadratic Multiple Knapsack
Problem (GQMKP), which extends the QMKP as follows: (i) the items are partitioned
into classes, and a setup cost has to be paid when at least one item from a class is as-
signed to a knapsack; (ii) additional assignment constraints impose that some items
and classes cannot be assigned to certain knapsacks; (iii) the profits depend on both
items and knapsacks. The authors introduced a mathematical model and proposed
two heuristic approaches: a genetic algorithm and a hybrid method which combines
the former with a subgradient approach. Chen and Hao [104] developed a memetic
algorithm which combines a crossover operator with multi-neighbourhood simu-
lated annealing, and successfully compared it with the methods in [435]. Avci and
Topaloglu [33] developed a multi-start iterated local search algorithm embedding
an adaptive perturbation mechanism and a Tabu list. The proposed approach was
favourably compared with the previous literature. Adouani, Jarboui, and Masmoudi
[4] introduced a new ILP model and a matheuristic approach which integrates vari-
able local search techniques, an adaptive perturbation mechanism, and quadratic
integer programming. A hybrid evolutionary search approach that embeds a num-
ber of metaheuristic techniques was recently presented by Zhou, Hao, and Wu [505].
Experimental results show that this is the algorithm providing so far the best results
in the literature for the GQMKP.

3.6 Other knapsack problems

3.6.1 Online knapsack problems

In the Online Knapsack Problem (OKP), the information on the items is given one by
one during the packing process. More specifically, only after a decision is made on a
given item, the information on the next one is then available and it has to be decided
immediately whether to pack this item (and keep it in the knapsack forever) or dis-
card it (without the possibility of packing it again). As for the offline version (KP01),
the objective of the OKP is to maximize the profit under the capacity constraint.

An online algorithm is said to be r-competitive if there exists a constant r (the
competitive ratio) such that, for any possible incoming sequence of items, the ratio
between its performance and the performance achieved by an exact offline algorithm
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is bounded by r. Han, Kawase, and Makino [226] provided a simple randomized 2-
competitive algorithm for the online version of the SSP (referred in the literature as
the unweighted case, i.e., the case in which each item has weight equal to its profit),
and showed that it is the best possible. Böckenhauer et al. [55] analyzed complexity
issues of the OKP.

Other minor variants of the OKP have been studied. Han and Makino [228]
showed that no algorithm has a bounded competitive ratio for the minimization
version of the OKP, in which the goal is to find a subset of items such that the sum
of their weights is at least equal to the knapsack capacity and the sum of their prof-
its is minimized. Cygan, Jeż, and Sgall [133] investigated the online variant of the
MKP. Thielen, Tiedemann, and Westphal [464] considered the OKP with incremental
capacity, in which the knapsack capacity increases by a constant amount in each time
period. Navarra and Pinotti [384] addressed the knapsack of unknown capacity problem,
an online variant of the KP01 where the capacity c of the knapsack is unknown and
it is revealed during the packing process. When the knapsack capacity is revealed,
no other item can be inserted and the first item in the sequence of packed items that
does not completely fit in the knapsack is removed, as well as all the subsequent
inserted items.

Iwama and Taketomi [279] introduced the Online Removable Knapsack Problem
(ORKP), a version of the OKP in which the already stored items can be removed
during the packing process in order to accept the current one. They provided an
r-competitive algorithm for the unweighted case, where r = (1 +

√
5)/2 ≈ 1.618.

For the general case, they showed that no algorithm can have a bounded competi-
tive ratio. They also provided some tight bounds for the ORKP with resource aug-
mentation (see [280]), which allows online algorithms to use more capacity than
offline algorithms. Han et al. [229] addressed the ORKP under a convex function
f (·) such that pj = f (wj) (j = 1, . . . , n). They proposed a greedy online algo-
rithm with competitive ratio 2 and an improved online algorithm with competi-
tive ratio 5/3. Han, Kawase, and Makino [226] introduced a simple randomized
2-competitive algorithm and provided a lower bound 1 + 1/e for the competitive
ratio. For the unweighted case, they proposed a randomized 10/7-competitive al-
gorithm and proved that there exists no randomized online algorithm with compet-
itive ratio less than 5/4. Han, Chen, and Makino [224] studied the ORKP under a
concave function f (·) such that pj = f (wj) (j = 1, . . . , n), provided a lower bound

max{q, f ′(0)
f (1) }, and showed that, for the concave case, the competitive ratio of the on-

line algorithm proposed in [279] is f ′(0)
f (1/q) . In addition, they proposed another online

algorithm with a competitive ratio f ′(0)
f (1) + 1.

Several variants of the ORKP have been also considered in the literature. Han
and Makino [227] studied the ORKP with limited cuts, in which items are allowed
to be cut/packed at most k ≥ 1 times. Han, Kawase, and Makino [225] addressed the
unweighted case of the ORKP with removal cost. In this variant, if an item is packed
into the knapsack making the current total weight to exceed the knapsack capacity,
then some items in the knapsack have to be removed, paying some additional re-
moval costs. The aim is to maximize the sum of the total weight of the packed items
minus the total removal cost. Han, Kawase, and Makino [225] provided competitive
ratios for the cases of proportional (to the weights) or unit removal costs. Han and
Makino [228] addressed the minimization version of the ORKP and obtained the fol-
lowing results: they provided an 8-competitive deterministic algorithm, proposed
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a 2e-competitive randomized algorithm, derived a lower bound of 2 for determin-
istic algorithms, and proposed a 1.618-competitive deterministic algorithm for the
unweighted case, showing that this is the best possible.

3.6.2 Multiobjective knapsack problems

The Multiobjective Knapsack Problem (MOKP) is a generalization of the KP01 in which
each item has t ≥ 2 non-negative integer profits pjk (j = 1, . . . , n; k = 1, . . . , t) and
the total profit objectives are maximized in the Pareto sense, i.e.,

max(
n

∑
j=1

pj1xj, . . . ,
n

∑
j=1

pjtxj). (3.20)

Most results in the literature concern the case in which t = 2, usually called the
Biobjective Knapsack Problem (BOKP). Both the MOKP and the BOKP generalize the
KP01 and hence are NP-hard. We refer the reader to the fundamental book by
Ehrgott [169] on multicriteria optimization for a thorough discussion on the com-
plexity status of the problems. More recently, a specific survey on the MOKP has
been presented by Lust and Teghem [349]. In the following, we mostly discuss pa-
pers appeared after its publication (2012).

Exact solution. A number of exact methods for the BOKP have been proposed.
Rong et al. [422, 425] presented a DP algorithm and evaluated different reduction
techniques aimed at decreasing the number of states explored by the algorithm. Al-
gorithmic improvements of these methods were proposed by Figueira et al. [176] and
Rong and Figueira [423]. The use of special data structures for the BOKP was evalu-
ated by Correia, Paquete, and Figueira [122]. Daoud and Chaabane [143] proposed a
reduction strategy for the BOKP and showed, through computational experiments,
its effectiveness in reducing the search space.

Approximation and heuristics. Cerqueus et al. [94] studied the effectiveness of var-
ious branching heuristics for the BOKP and proposed a dynamic adaptive branch-
ing strategy. Their computational experiments showed however that the proposed
techniques are not useful in practice, as they require high CPU times. The MOKP
has been also tackled through metaheuristics: we mention in particular a quantum-
inspired evolutionary algorithm by Lu and Yu [346], a Bayesian estimation of dis-
tribution algorithm by Martins et al. [367], and a swarm intelligence approach by
Zouache, Moussaoui, and Ben Abdelaziz [507].

Variants and generalizations. Kozanidis [314] proposed an algorithm for the biob-
jective version of the multiple-choice knapsack problem studied in Kozanidis and
Melachrinoudis [315] (see Section 2.7). Rong, Klamroth, and Figueira [426] pro-
posed hybrid solution approaches for a variant of the MOKP which also includes
so-called k-min objectives aiming at the maximization of the k-th smallest objective
coefficients. Castillo-Zunino and Keskinocak [92] studied a multiple version of the
MOKP, in which the items are partitioned into groups and either all or none of the
items from a group are assigned.

Multidimensional multiobjective knapsack problems

Few results on the multidimensional version of multiobjective knapsack problems
appeared after the publication of the survey by Lust and Teghem [349]. Cerqueus,
Przybylski, and Gandibleux [93] studied the bidimensional version of the BOKP:
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they introduced a convex surrogate upper bound and presented two exact algo-
rithms and a heuristic approach for its computation. Shah and Reed [445], Mavrotas,
Florios, and Figueira [369], and Luo, Ji, and Zhu [348] presented extensive computa-
tional evaluations of various metaheuristic approaches.

3.7 Conclusions

After over sixty years of intensive research, knapsack problems are a lively research
area in a number of scientific fields. This work covers the recent developments in
the richest of such fields, combinatorial optimization. The two parts of the survey
list over 450 different papers, mostly appeared after 2004, the publication year of the
latter of the two classical books specifically dedicated to these topics.

Chapter 2 covers the classical single knapsack problems and their many variants
and generalizations: subset sum, item types, setup, multiple-choice, conflict graphs,
precedences, sharing, bilevel, robust, among others. The section on extensions and
generalizations provides pointers to the variants that are especially attractive from
the point of view of possible future investigations.

Chapter 3 is mainly devoted to multiple, multidimensional (vector and geomet-
ric), and quadratic knapsack problems, but also contains a succinct treatment of on-
line and multiobjective knapsack problems. We have mentioned, in the conclud-
ing remarks of Chapter 2, a number of relevant real-world applications for knap-
sack problems. In this chapter, we noticed other relevant applications, arising in
emergency military and humanitarian contexts (the MKAP), steel production (the
MKPCC), machine scheduling (the MKP), cutting of material (the 2D-KPGC), and
container loading (the 3D-KP), among others. We believe that new applications will
continue to appear in the next years.

Recent research has produced a good number of new exact algorithms, but there
is still room for improvement on many problem variants. While some knapsack
problems, as the KP01 and the SSP, are solved extremely well by the algorithms
available in the literature, and difficult instances involve very large coefficients and
a huge number of items, for other problems, as the 2D-KP, instances with just 30
items are still unsolved to proven optimality despite decades research. We did not
include here a section on hot topics as the publication dates of most reviewed articles
(over 70% of the articles in the bibliography appeared in the last decade) indicate that
all the main variants and generalizations of these problems still undergo intensive
analysis and hence are attractive research areas to researchers interested in pursuing
investigations in this fascinating area.
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Chapter 4

Tool switching problems with tool
order constraints*

This chapter addresses four different variants of the well-known Tool Switching
Problem (ToSP). For each variant, we discuss its complexity and propose a math-
ematical formulation. Motivated by a real-world application in the colour printing
industry, the third and fourth variants introduce a novel requirement into ToSP: the
tool order constraint. Under this requirement, during the processing of each job, the
selected tools must be sorted along the slot sequence in the machine, and the ma-
chine will use them for processing the job applying the tools in that order. We show
that the new problem variants are NP-hard even when the job sequence is given as
part of the input and the setup times are binary. We solve them by using dedicated
arc flow models. We evaluate the effectiveness of the models on several instances
that were generated with the aim of covering different scenarios of interest. Our
code finds proven optimal solutions for most of the instances with up to 30 jobs, 60
tools and 10 slots.

4.1 Introduction

Consider the following general class of combinatorial optimization problems. Let
J = {1, . . . , n} be a set of jobs to be processed sequentially on a single machine,
C = {1, . . . , m} be a set of different tools, and K = {1, . . . , k} be a set of slots available
on the machine and used to allocate the tools. The machine can execute one job at a
time, and the execution of a job cannot be interrupted until it is completed. Each job
j ∈ J requires a subset of tools Cj ⊆ C to be loaded in the magazine of the machine
before starting the execution of the job. We assume that |Cj| ≤ |K| holds for all j ∈ J.
In practical situations, the magazine cannot hold all tools at once (i.e., |C| > |K|);
hence, some tool switches may be necessary when performing two consecutive jobs.
During the processing of a job, the machine sequentially uses the involved tools,
stored in the magazine, in accordance with its slot sequence. After finishing the
execution of a job and before starting the execution of the next job, one must decide
for each slot whether to preserve the current tool or to switch to a different one.
Replacing the tool in a slot with another tool out of the magazine is a tool switching
operation. Moving a tool from one slot to another slot in the magazine is considered
in our context as two tool switching operations. Tool switching operations may take
a long time, with the effect of significantly raising the setup time, while preserving a
tool in a slot does not require any setup time. Since tool switches imply a reduction

*The results of this chapter were submitted for publication to international journal: M. Iori, A. Lo-
catelli, M. Locatelli, and J. J. Salazar-González. "Tool switching problems with tool order constraints".
Technical report, (2022).
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Table 4.1: Computational complexity of ToSP variants.

Variant CUF GUF GOF GOV CUV GUV COF COV

Complexity P P NP-hard Strongly
NP-hard NP-hard Strongly

NP-hard unknown unknown

Reference Section
4.2

Section
4.3

Section
4.4

Section
4.5

Calmels
[73]

Calmels
[73] unknown unknown

in productivity, minimizing them is desirable. The aim is to find the job sequence
and the tools to be in each slot of the magazine at each time. This problem can be
seen as a variant of the well-known Tool Switching Problem (ToSP, see, e.g., Calmels
[73]).

In the ToSP, for each job j ∈ J, the order of the tools along the slot sequence in the
magazine is irrelevant, and one just decides the |K| tools in the magazine so that Cj
is loaded. In this chapter, we address four problem variants of increasing difficulty.
The third and fourth variants address the case where the tools required by a job
must be placed in the machine in a prespecified order, which means that they must
be sorted along the slot sequence so that the machine will use them in the required
order for the job execution.

To distinguish between the problem variants, we use an acronym composed of
three letters:

1. as the initial letter, we use C and G to denote the problem with constant and
general (i.e. non-uniform) non-negative setup times, respectively;

2. as the second letter, we use U when the set Cj is unordered for each job j ∈ J,
i.e., the tools of job j can be placed in the slots in any order; we use O, instead,
when the set Cj is ordered, i.e., the tools of job j are to be placed in the slots in
the order specified in Cj, although not necessarily in consecutive slots;

3. as the final letter, we use F and V when the sequence of jobs is fixed and variable,
respectively. “Variable” means that the job sequence must be determined as
part of the combinatorial problem.

Observe that we have introduced eight different variants, each corresponding to
a different three-letter acronym. Table 4.1 reports all the variants and their complex-
ity. The complexity of CUV-ToSP and GUV-ToSP are known from the literature (see,
e.g., Calmels [73]), while the complexity of CUF-ToSP, GUF-ToSP, GOF-ToSP, and
GOV-ToSP are stated in this chapter. To the best of our knowledge, the complexity
of COF-ToSP and COV-ToSP is still unknown.

The first and simplest problem is CUF-ToSP, where we assume constant setup
times for tool switching operations and a fixed job sequence (i.e., job j ∈ J is executed
in position j of the schedule). The second problem is GUF-ToSP, where we assume
non-uniform setup times for tool switching operations and fixed job sequence. The
third addressed problem is GOF-ToSP, in which we assume non-uniform setup times
for tool switching operations and a fixed job sequence. In addition, in GOF-ToSP we
assume that the tools required by a job must be sequentially used by the machine
in a given order, which means that they must be sorted along the slot sequence so
that the machine will use them in the required order. The fourth and most difficult
problem is GOV-ToSP where the job sequence is not fixed. We also mention that
a further variant (CUV-ToSP) is known in the literature as the Job Sequencing and
Tool Switching Problem (SSP). Such a problem has been addressed in different pa-
pers, including Crama et al. [125], Laporte, Salazar-González, and Semet [329], and



4.1. Introduction 49

Calmels [73]. Crama et al. [125] provided a formal proof that SSP (aka CUV-ToSP) is
NP-hard. On the other hand, the first problem addressed in this chapter, CUF-ToSP,
can be solved in polynomial time by means of a Keep Tool Needed Soonest policy
(see Tang and Denardo [460]). For this problem, in Section 4.2 we show that the bi-
nary linear programming formulation of SSP proposed in Tang and Denardo [460]
is a perfect formulation, so that we also provide a different proof that CUF-ToSP can
be solved in polynomial time.

The second problem addressed in this chapter is GUF-ToSP, the generalization
of CUF-ToSP in which the setup time for tool switching operations is non-uniform.
In Section 4.3, we show that GUF-ToSP can be solved in polynomial-time by for-
malizing it as a minimum-cost flow problem (see, e.g., Bazaraa, Jarvis, and Sherali
[40]) for which we provide a perfect arc flow formulation. Crama et al. [127] proved
that GUF-ToSP with non-uniform tool sizes (i.e., the generalization of GUF-ToSP in
which the number of slots occupied by a tool does not need to be the same for all
tools) is strongly NP-complete.

The third problem is GOF-ToSP, obtained by introducing the tool order constraint
into GUF-ToSP. GOF-ToSP is the main motivation of this chapter since the problem
originates from a real-world application arising in a food packaging company lo-
cated in the city of Reggio Emilia (Iori, Locatelli, and Locatelli [275]). The specific
technology used in this application is the flexographic printing (see, e.g., Kipphan
[305]). A flexographic printer machine can simultaneously accommodate a limited
number of colours (which can be treated as tools) and must sequentially perform
a finite set of jobs. Each job is associated with a subset of colours that the printer
machine must have stored in its magazine before starting the execution. During the
processing of a job, the printer machine sequentially applies the involved colours,
stored in the magazine, on the printed material in accordance with its slot sequence.
In many industrial printing technologies, the overlapping order of colours plays a
crucial role in achieving print quality (see, e.g., Boora and Verma [57]) and a viola-
tion of the chromatic order occurring during the printing of a job may lead to colour
deviations, colour mixing, and reverse printing failures in the final products. Thus,
the colours must be sorted along slots in the magazine so that the printer will ap-
ply them in the required order, which is fixed in advance. In addition, non-uniform
setup times for colour switching operations are caused by the fact that the process
to wash a slot depends directly on the specific colours involved. For instance, if the
process requires switching a black ink cartridge to a white one, complete cleaning
of the corresponding slot is necessary to preserve the white purity, with the effect of
a significant increase in the setup time. On the other hand, if the process requires
changing a slot from pale green ink to dark green ink, then the setup time is smaller
because the dark green ink is not easily altered by the residuals of the pale green ink
and, therefore, the relative slot needs only partial washing.
The real-world problem faced by the company generalizes the GOF-ToSP to a great
extent (as it includes parallel heterogeneous machines, release and due dates, and
several additional complicating features) and was solved by Iori, Locatelli, and Lo-
catelli [275] using a constructive heuristic. Section 4.4 states the NP-hardness of
GOF-ToSP and presents an arc flow model. Moreover, we provide a preprocessing
method that allows us to potentially reduce the number of jobs.

The fourth problem addressed in this chapter is GOV-ToSP, the generalization of
GOF-ToSP in which the sequence of jobs is not given in advance. In Section 4.5, we
state that GOV-ToSP is stronglyNP-hard and provide a descriptive arc flow model.

In this chapter, we introduce three novel arc flow formulations in the area of
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ToSP. An arc flow formulation is a network flow formulation where decision vari-
ables correspond to non-negative flows on each arc of the network (see Lima et al.
[342] for a recent survey). Arc flow formulations have been recently applied with
success to many important combinatorial optimization problems, such as bin pack-
ing and cutting stock (see, e.g., Delorme and Iori [159] and Martinovic, Scheithauer,
and Carvalho [364]), skiving stock (see, e.g., Martinovic and Scheithauer [363] and
Martinovic et al. [365]), and parallel machine scheduling problems (see, e.g., Kramer,
Dell’Amico, and Iori [317] and Kramer, Iori, and Lacomme [318]). To the best of our
knowledge, no previous papers on arc flow formulations have been published in the
area of ToSP.

In Section 4.6, we perform extensive computational experiments to evaluate the
effectiveness of the arc flow models proposed for GOF-ToSP and GOV-ToSP. Such
experiments have been carried out on instances that have been generated starting
from realistic data features and with the aim of covering different scenarios of in-
terest. Finally, in Section 4.7 we draw some concluding remarks and provide some
hints for future research.

4.2 CUF-ToSP

In CUF-ToSP, the order of the tools in the magazine is irrelevant, the job sequence
is fixed in advance (thus, job j is executed in position j), and all tool switches have
identical setup time, which, w.l.o.g., can be assumed equal to one (i.e., cuv = 1 if
u 6= v and 0 if u = v). Thus, CUF-ToSP aims at determining the subsets of tools
loaded in the magazine during the processing of each job j ∈ J to minimize the total
number of tool switches. For the notation it is convenient to extend J with a dummy
job 0 with no need of tools (i.e. C0 = ∅) obtaining J = {0, 1, . . . , n}.

4.2.1 Two-index formulation for CUF-ToSP

The formulation that we propose for CUF-ToSP requires two sets of decision vari-
ables: a binary decision variable yu

j taking the value 1 if tool u is loaded on the mag-
azine during the processing of job j, and 0 otherwise; and a binary decision variable
zu

j taking the value 1 if tool u is switched with another tool loaded on the magazine
before starting job j ∈ J. In other words, zu

j = 1 corresponds to the occurrence of a
tool switch. The formulation is then:

min ∑
u∈C

∑
j∈J\{0}

zu
j (4.1)

∑
u∈C

yu
j ≤ |K| j ∈ J (4.2)

yu
j = 1 j ∈ J, u ∈ Cj (4.3)

yu
j − yu

j−1 ≤ zu
j j ∈ J \ {0}, u ∈ C (4.4)

yu
j ∈ {0, 1} j ∈ J, u ∈ C (4.5)

zu
j ∈ {0, 1} j ∈ J \ {0}, u ∈ C. (4.6)

The objective function (4.1) minimizes the total number of tool switches. Constraints
(4.2) guarantee that the magazine capacity is never exceeded, while constraints (4.3)
guarantee that, during the processing of job j ∈ J, each tool u ∈ Cj takes exactly
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a slot. Constraints (4.4) impose a switch operation when tool u is in the magazine
when processing job j and it is not in the magazine when processing job j− 1.

We remark that the model above is the model for SSP proposed in Tang and
Denardo [460] after fixing in that model the values of the binary variables that define
the sequence of jobs.

We recall that a perfect formulation of a set S ⊆ Rn is a linear system of inequal-
ities Ax ≤ b such that the convex hull of S coincides with {x ∈ Rn : Ax ≤ b}. The
following theorem proves that CUF-ToSP is solvable in polynomial time.

Theorem 4.2.1. A perfect formulation of the set defined by constraints (4.2)–(4.6) is ob-
tained by relaxing the binary requirements yu

j , zu
j ∈ {0, 1} into yu

j , zu
j ∈ [0, 1].

Proof. We can restrict the attention to constraints (4.2) and (4.4), since all other con-
straints can be viewed as bound constraints for the variables. The right-hand side
vector of these constraints has integer coordinates, so, to prove the result, we only
need to prove that the corresponding constraint matrix is Totally Unimodular (TU).
We prove this by exploiting Ghouila-Houri’s characterization of TU matrices (see
Ghouila-Houri [202]). Namely, a matrix A is TU if and only if for each subset I of its
rows, it is possible to partition it into two subsets I1, I2 such that for each column j
of the matrix it holds that ∣∣∣∣∣∑i∈I1

Aij − ∑
i∈I2

Aij

∣∣∣∣∣ ≤ 1. (4.7)

The matrix associated with constraints (4.2) and (4.4) has n + 1 = |J| rows, denoted
by r0, . . . , rn and corresponding to the first set of constraints, and n collections of
rows S1, . . . , Sn, where each collection Sj is made up of m = |C| rows (one for each
u ∈ C). The columns of the matrix are subdivided into n + 1 collections C0, . . . , Cn,
where each collection Cj is made up by m columns (one for each u ∈ C), and a
further set of n collections D1, . . . , Dn, where each collection is also made up of m
columns. The first set of collections of columns corresponds to the set of variables
yu

j , j ∈ J, u ∈ C, while the second set of collections corresponds to the set of variables
zu

j , j ∈ J \ {0}, u ∈ C.

Now we immediately notice that condition (4.7) is always satisfied by the columns
in the collections D1, . . . , Dn for any possible partition I1, I2, because each column
in these collections contains a single non-zero element (equal to −1). Therefore, we
restrict the attention to columns in the collections C0, . . . , Cn. We introduce a proce-
dure, described by Algorithm 1, to build a partition for a given subset I of the rows.
For each j ∈ {0, 1, . . . , n}, the non-zero entries of columns Cj lie in row rj (coefficient
+1), rows Sj (coefficient +1), and rows Sj+1 (coefficient −1). Therefore, for these
columns we need to prove that for the resulting partition it holds that∣∣∣∣∣∣ ∑

i∈I1∩[{rj}∪Sj∪Sj+1]

Aij − ∑
i∈I2∩[{rj}∪Sj∪Sj+1]

Aij

∣∣∣∣∣∣ ≤ 1, (4.8)

where we set S0 = Sn+1 = ∅. First we notice that, with the given initialization of
I1 and I2 at steps 1-2 of Algorithm 1, the columns in C0 satisfy (4.8). Now, for j ≥ 1
and columns in Cj, we have that if rj 6∈ I, then rows Sj ∩ I and Sj+1 ∩ I are placed in
the same member of the partition (either I1, step 9, or I2, step 17) in order to fulfill
(4.8). Instead, if rj ∈ I, then we can fulfill (4.8) by placing row rj and all rows Sj+1 ∩ I
in the same member of the partition, while all rows Sj+1 ∩ I are placed in the other
member of the partition (steps 6 and 9).
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Algorithm 1: Procedure to partition rows in I in such a way that (4.7) is
fulfilled.

Input: I
1 Set I1 = I ∩ [{r0} ∪ S1];
2 Set I2 = ∅;
3 for j← 1 to n do
4 if I ∩ [{rj−1} ∪ Sj] ⊆ I1 then
5 if rj ∈ I then
6 I2 = I2 ∪

{
I ∩ [{rj} ∪ Sj+1]

}
;

7 end
8 else
9 I1 = I1 ∪

{
I ∩ [{rj} ∪ Sj+1]

}
;

10 end
11 end
12 else
13 if rj ∈ I then
14 I1 = I1 ∪

{
I ∩ [{rj} ∪ Sj+1]

}
;

15 end
16 else
17 I2 = I2 ∪

{
I ∩ [{rj} ∪ Sj+1]

}
;

18 end
19 end
20 end
21 return I1, I2;

We illustrate Algorithm 1 over an example. For the instance with the constraint
matrix given in Table 4.2, the procedure is illustrated over the subset of the rows
obtained by omitting row r2 and the second row in S2 (we denote by S′2 such a subset
of S2). We first consider the columns in C0 and we assign row r0 and both rows in
S1 to I1. Next, we move to the columns in C1. Since row r1 ∈ I, we assign rows
{r1} ∪ S′2 to I2. Next, we move to the columns in C2. Since r2 6∈ I, we assign the
two rows in S3 to I2. Now, we move to the columns in C3. Since r3 ∈ I, we assign
rows {r3} ∪ S4 to I1. Finally, we move to the columns in C4. Since r4 ∈ I, we need to
assign the single row r4 to I2. In conclusion, we found the following partition

I1 = {r0, r3} ∪ S1 ∪ S4, I2 = {r1, r4} ∪ S′2 ∪ S3.

fulfilling (4.7) for all columns.

4.3 GUF-ToSP

In GUF-ToSP, the order of the tools in the magazine is irrelevant and the job sequence
is fixed in advance (thus, job j is executed in position j). We are also given a general
setup time cuv required to switch from tool u to tool v. More specifically, for all
u, v ∈ C, the setup time cuv is always non-negative and it is negligible if the two tools
u and v coincide (i.e., cuu = 0 for all u ∈ C). Moreover, we assume that the triangular
inequality holds for the setup times (i.e., cuw ≤ cuv + cvw for all u, v, w ∈ C). GUF-
ToSP consists of determining the assignment of the tools to the slots of the magazine
during the processing of each job j ∈ J to minimize the total setup time.
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Table 4.2: Constraint matrix for an instance with n = 4 (i.e., 5 jobs) and m = 2
tools.

C0 C1 C2 C3 C4 D1 D2 D3 D4
r0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
r3 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
r4 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

S1
-1 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0
0 -1 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0

S2
0 0 -1 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0
0 0 0 -1 0 1 0 0 0 0 0 0 0 -1 0 0 0 0

S3
0 0 0 0 -1 0 1 0 0 0 0 0 0 0 -1 0 0 0
0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 -1 0 0

S4
0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 -1

4.3.1 Four-index Arc Flow Formulation for GUF-ToSP

Given a job sequence J, a solution of GUF-ToSP can be represented as |K| paths
from a source to a destination visiting disjoint nodes of a specific network N . Let
J∗ = {0, 1, . . . , n + 1}, where the two additional jobs 0 and n + 1 are two dummy
jobs with C0 = Cn+1 = {0}, where 0 is a dummy tool, and represent the source and
destination node, respectively.
We consider the network N = (V ,A) with set of nodes V = V1 ∪ V2 and set of
directed arcs A = A1 ∪A2 ∪A3 ∪ {((0, 0)(0, n + 1))}, where:

• V1 is composed of all couples (u, j) with j ∈ J∗ and u ∈ Cj;

• V2 is composed of all copies (u, j)′ of the nodes (u, j) ∈ V1 such that j ∈ J;

• A1 is composed of all arcs from the source node (0, 0) to nodes (u, i)′ ∈ V2, i.e.:

A1 = {((0, 0), (u, i)′) : (u, i)′ ∈ V2};

• A2 includes, for each i ∈ J, all arcs from a node (u, i) ∈ V1 to its copy node
(u, i)′ ∈ V2, i.e.:

A2 = {((u, i), (u, i)′) : (u, i) ∈ V1, i ∈ J};

• A3 is composed of all arcs from node (u, i)′ ∈ V2 to node (v, j) ∈ V1 such that
i ∈ J, j ∈ J∗ \ {0}, and j > i, i.e.:

A3 = {((u, i)′, (v, j)) : (u, i)′ ∈ V2, i ∈ J, (v, j) ∈ V1, j ∈ J∗ \ {0}, j > i}.

From the source node (0, 0) an amount of flow |K| is sent toward the sink node
(0, n + 1). A cost function w : A → R+ maps each arc ((u, i)′, (v, j)) ∈ A3 to a cost
cuv (i.e., the setup time required for switching tool u of job i with tool v of job j), and
all arcs in A1 ∪A2 to a null cost.

Now, we can formulate the GUF-ToSP as a minimum-cost flow problem on N . The
decision variables of the problem are the arc flows, which are denoted by φe for each
arc e ∈ A. In particular:

• variable φ((0,0)(u,i)′) is equal to 1 if tool u of job i is the first tool placed in a slot;



54 Chapter 4. Tool switching problems

• variable φ((0,0)(0,n+1)) is the only integer and not binary variable, and indicates
the number of slots that are never used;

• variable φ((u,i)′,(v,j)), j > i, is equal to 1 if tool v of job j replaces tool u of job i in
one of the slots;

• each variable φ((u,i),(u,i)′) is, in fact, a constant equal to 1 that is used to impose
that each required tool takes exactly one slot.

The resulting mathematical model is:

min ∑
((u,i)′ ,(v,j))∈A3

cuvφ((u,i)′ ,(v,j)) (4.9)

∑
(v,j):

((0,0),(v,j))∈A1

φ((0,0),(v,j)) = |K| (4.10)

φ((0,0),(0,n+1)) + ∑
(v,j):

((v,j)′ ,(0,n+1))∈A3

φ((v,j)′ ,(0,n+1)) = |K| (4.11)

φ((0,0),(u,i)) + ∑
(v,j):

((v,j)′ ,(u,i))∈A3

φ((v,j)′ ,(u,i)) = φ((u,i),(u,i)′) (u, i) ∈ V1 (4.12)

φ((u,i),(u,i)′) = ∑
(v,j):

((u,i)′ ,(v,j))∈A3

φ((u,i)′ ,(v,j)) (u, i) ∈ V1 (4.13)

φ((u,i),(u,i)′) = 1 ((u, i), (u, i)′) ∈ A2 (4.14)

φ((0,0),(u,i)) ∈ {0, 1} ((0, 0), (u, i)) ∈ A1 (4.15)

φ((u,i)′ ,(v,j)) ∈ {0, 1} ((u, i)′, (v, j)) ∈ A3 (4.16)

φ((0,0),(0,n+1)) ∈ Z+. (4.17)

The objective function (4.9) minimizes the total setup time. Constraint (4.10) im-
poses that there is an exit flow equal to |K| from the source node. Constraint (4.11)
imposes that there is an entering flow equal to |K| into the sink node. Constraints
(4.12) together with constraints (4.14) guarantee that, during the processing of job
i ∈ J, each tool required by i takes exactly a slot. Moreover, constraints (4.12) to-
gether with constraints (4.13) guarantee flow conservation at all intermediate nodes
(u, i) and (u, i)′. Note that binary constraints are imposed for all variables, except
φ((0,0),(0,n+1)), which is required to be a nonnegative integer.

Theorem 4.3.1. A perfect formulation of the set defined by constraints (4.10)-(4.17) is ob-
tained by relaxing the binary requirements φe ∈ {0, 1}, for each e ∈ A \ {((0, 0)(0, n +
1))} into φe ∈ [0, 1], and the integer requirement φ((0,0),(0,n+1)) ∈ Z+ into φ((0,0),(0,n+1)) ≥
0.

Proof. The proof easily follows from the observation that the underlying constraint
matrix is TU (see, e.g., Nemhauser and Wolsey [385]) and all right-hand sides are
integer values.

Note that CUF-ToSP is the sub-case of GUF-ToSP where all weights cuv are equal
to one. Thus, in that case, the above formulation is a perfect formulation alternative
to (4.2)-(4.6), which is, however, more compact.
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4.4 GOF-ToSP

Motivated by a real-world application in the colour printing industry (see Section
4.1), we assume that tools must be sorted along the slot sequence in a required order
during the processing of each job. To model this aspect, we introduce a precedence
relation≺j in each set Cj ⊆ C. We read u ≺j v as “tool u must be in the slot sequence
before tool v when the machine executes job j”, for each u, v ∈ Cj. Thus, each job j ∈
J is associated with a strict partially ordered set (Cj,≺j) of tools. In GOF-ToSP, we are
also given a setup time cuv required to switch from tool u to tool v. More specifically,
for all u, v ∈ C, the setup time cuv is always non-negative and it is negligible if the
two tools u and v coincide (i.e., cuu = 0 for all u ∈ C). In addition, we assume that the
job sequence is fixed in advance. GOF-ToSP consists of determining the assignment
of the tools to the slots of the magazine during the processing of each job j ∈ J
to minimize the total setup time. The following theorem states the complexity of
GOF-ToSP in the special case of binary setup times.

Theorem 4.4.1. GOF-ToSP is NP-hard even in the case of binary setup times (i.e., cuv ∈
{0, 1} for all u, v ∈ C).

Proof. We prove theNP-hardness through a polynomial reduction from the Disjoint
Matching (DM) problem. In such a problem, given two sets P, Q with equal cardi-
nality and given A1, A2 ∈ P×Q, we would like to establish whether there exist two
disjoint matchings M1 ⊆ A1 and M2 ⊆ A2 or not. The DM problem has been proven
to be NP-complete in [186] (see also [182] for a simpler proof).

We prove the NP-hardness of GOF-ToSP by showing that there exists a polyno-
mial reduction of DM into it. Let m = |P| = |Q|. We define an instance of GOF-ToSP
with n = 2m2 + 2 jobs and k = m2 + 1. The set R1 has cardinality k and its tools are

ξ1, . . . , ξm, ν, α11, . . . , α1,m−1, . . . , αk1, . . . , αk,m−1, . . . , αm1, . . . , αm,m−1.

Most of the other sets of tools are singletons. In particular, for all h, r ∈ {1, . . . , m}
we have:

R1+(h−1)m+r = {βhr}, R2+m2+(h−1)m+r = {γhr}.

The remaining set is defined as follows :

R2+m2 = {ν, µ11, . . . , µ1,m−1, µ21, . . . , µ2,m−1, . . . , µm1, . . . , µm,m−1}.

We set

C1
ij =

{
0 if (i, j) ∈ A1

1 otherwise
C2

ij =

{
0 if (i, j) ∈ A2

1 otherwise.

Then, we set the following setup costs:

• c(ξ j, βij) = C1
ij for all i, j ∈ {1, . . . , m};

• c(αip, βij) = 0 for all i, j ∈ {1, . . . , m} and p ∈ {1, . . . , m− 1};

• c(βij, µip) = 0 for all i, j ∈ {1, . . . , m} and p ∈ {1, . . . , m− 1};

• c(µip, γir) = 0 for all i, r ∈ {1, . . . , m} and p ∈ {1, . . . , m− 1};

• c(βij, γrj) = C2
rj for all i, j, r ∈ {1, . . . , m}, with i 6= r.
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All other setup costs between distinct tools are set equal to 1, while those between
identical tools are always set equal to 0. Next, for each i ∈ {1, . . . , m} we define the
following sets of jobs:

Ji = {1 + (i− 1)m + 1, . . . , 1 + mi};

J̄ = {m2 + 2};

J ′i = {2 + m2 + (i− 1)m + 1, . . . , 1 + m2 + mi}.

For i, j ∈ {1, . . . , m}, we refer to the j-th job in Ji, namely job 1 + (i− 1)m + j, as job
Jij. Similarly, we refer to the j-th job in J ′i , namely job 1 + m2 + (i− 1)m + j, as job
J′ij. Finally, we refer to the single job in J̄ as J̄. We denote by S0 the set of the first m
slots, then we have the single slot m + 1, and finally we define the following other
sets of m− 1 slots for each i ∈ {1, . . . , m}:

Si = {m + (i− 1)(m− 1) + 2, . . . , m + i(m− 1) + 1}.

Note that, since all setup costs are nonnegative, the optimal value of the GOF-ToSP
instance is nonnegative. Now, let us consider any pair (M1, M2) where M1 and M2
are disjoint perfect matchings between members of P and Q. Then, we can define the
following solution for GOF-ToSP. For each (i, j) ∈ M1, we leave ξ j in the j-th slot,
until we get to job Jij, where we place tool βij in the slot. Then, we do not change
tool in this slot for the remaining jobs in Ji. In the slots in Si we place tools βih, h 6= j
(always placing them in the first slot where an α tool is present), as we process the
jobs in Ji \ {Jij}. Next, we process the single job J̄ and we put tool ν in slot m+ 1 and
tools µip, p ∈ {1, . . . , m− 1}, in all slots in Si, i = 1, . . . , m. Next we start processing
the jobs in J ′i , i ∈ {1, . . . , m}. For each (h, j) ∈ M2 we do not put any tool in slot j
until we reach job J′hj, where we place tool γhj in the slot. Then, we do not put any
further tool in this slot. In the slots in Sh we place tools γhs, s 6= j (no matter in which
order), as we process the jobs in J ′h \ {J′hj}. If we compute the overall setup cost of
this solution, this is equal to

Setup(M1, M2) = ∑
(i,j)∈M1

C1
ij + ∑

(i,j)∈M2

C2
ij. (4.18)

An example is displayed in Table 4.3 for a case with m = 3. We notice that Setup(M1, M2) ≥
0 and, in view of the definitions of C1

ij and C2
ij, it is equal to 0 if and only if M1 ⊆ A1,

M2 ⊆ A2. In other words, if DM has a yes answer, then the optimal value of the
GOF-ToSP instance is equal to 0.
Now we need to prove the reverse, i.e., we assume that the optimal value of the
GOF-ToSP instance is equal to 0 and show that DM has a yes answer. We first no-
tice that, in view of the nonnegativity of the setup costs, under the assumption that
GOF-ToSP has an optimal value equal to 0, it holds that the optimal solution can-
not contain any setup cost equal to 1. In particular, this implies that two β tools
cannot belong to the same column, and, similarly, two γ tools cannot belong to the
same column. Now, we observe that when we process the jobs in Ji, each tool βij,
j ∈ {1, . . . , m}, can only be placed either in one slot in S0, i.e., in one of the first m
slots, or in one of the slots in Si. Since |Si| = m− 1, at least one of these tools has
to be placed in one of the first m slots. In fact, exactly one of these tools has to be
placed there. Indeed, if we place more than one, taking into account that among all
tools βrh, r 6= i, at least m− 1 will be placed in the first m slots, then there would be
one slot in S0 with two distinct β tools, which implies a non-optimal setup cost of
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Table 4.3: Solution of GOF-ToSP corresponding to M1 = {(1, 3)(2, 2)(3, 1)}
and M2 = {(1, 1)(2, 3)(3, 2)}.

Set Job S0 4 S1 S2 S3

1 ξ1 ξ2 ξ3 ν α11 α12 α21 α22 α31 α32

J1

2 - - - - β11 - - - - -
3 - − - - - β12 - - - -
4 - - β13 - - - - - - -

J2

5 - - - - - - β21 - - -
6 - β22 - - - - - - - -
7 - - - - - - - β23 - -

J3

8 β31 - - - - - - - - -
9 - - - - - - - - β32 -

10 - - - - - - - - - β33

J̄ 11 - - - ν µ11 µ12 µ21 µ22 µ31 µ32

J ′1
12 γ11 - - - - - - - - -
13 - - - - γ12 - - - - -
14 - - - - - γ13 - - - -

J ′2
15 - - - - - - γ21 - - -
16 - - - - - - - γ22 - -
17 - - γ23 - - - - - - -

J ′3
18 - - - - - - - - γ31 -
19 - γ32 - - - - - - - -
20 - - - - - - - - - γ33

1. Stated in another way, the slots in Si are used as a bin where all unmatched pairs
involving i ∈ P are placed, while the single member j ∈ Q matched to i in matching
M1 will be recognized because of the tool βij inserted in slot j.
Job J̄ plays an important role. Exploiting the peculiarity of tool ν, which, at optimal
solutions, cannot be placed in a slot different from m + 1, job J̄ allows the replace-
ment of the β tools in slots S1, . . . ,Sm with µ tools, which play the same role as the
α tools. In this way, when we process the jobs J ′i , similar to what we have already
seen with the β tools, tool γij can only be placed either in one of the first m slots, or
in one of the slots in Si. Again, at least one of the tools γih, h ∈ {1, . . . , m} has to be
placed in one of the first m slots. For the same reason as before, exactly one of these
tools has to be placed there, say γir. This also means that the remaining tools γis,
s 6= r, are placed in the slots in Si, again used as a bin for unmatched pairs, with an
overall setup cost from such slots equal to 0. Taking into account that such setup cost
has to be paid for all i ∈ {1, . . . , m}, we have an overall contribution to the overall
setup cost from the slots m + 1 up to m2, i.e., the slots in ∪m

i=1Si, equal to 0. The tool
γir, i.e., the tool placed in one of the first m slots, could only be placed in slot r ∈ S0
and only if slot r contains tool βhr with h 6= i. Its presence there means that in the
second matching we match member i ∈ P with member r ∈ Q. In this case we pay
C2

ir, which must be equal to 0, or, stated in another way, (i, r) ∈ A2.
Note that the non-optimal setup cost c(γir, βir) = 1 guarantees that the two match-
ings defined by the β and γ tools in the first m slots are disjoint, as required in DM.
Therefore, optimal solutions of GOF-ToSP with an objective function value equal
to 0 can only be those corresponding to disjoint matchings M1 and M2 such that
M1 ⊆ A1, M2 ⊆ A2, which implies that the DM problem has a yes answer.

The instance of GOF-ToSP to which the DM instance was reduced does not fulfill
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the triangular inequality. Indeed, we have, e.g., that c(βij, γij) = 1, while c(βij, µip) =
c(µip, γij) = 0 for all i, j ∈ {1, . . . , m} and p ∈ {1, . . . , m − 1}. However, a similar
reduction into an instance fulfilling the triangular inequality can be defined if we
allow for general, rather than binary, setup costs. We briefly sketch the proof. It is
enough to change the following setup costs with respect to the previous reduction:

• c(βij, µip) = 1 for all i, j ∈ {1, . . . , m} and p ∈ {1, . . . , m− 1};

• c(ν, ζ) = c(ζ, ν) = m2 for each tool ζ different from ν.

Then, we consider the complete graph G = (V ,A) where V is the set of all tools, and
we associate a distance equal to the corresponding setup cost with each arc. Finally,
we define new setup costs c′(i, j) for each pair i, j ∈ V , i 6= j, by setting c′(i, j) equal
to the shortest path between i and j. Thus, we are sure that the new setup costs
fulfill the triangular inequality. In this case it can be proven that the DM instance
has a yes answer if and only if the corresponding GOF-ToSP instance has optimal
value m(m− 1), equivalent to the minimum setup costs to be paid for the single job
in J̄ . The proof is completely analogous to the proof given above.

It is worthwhile to observe that, while in the case of fixed setup times and un-
ordered Cj a fixed sequence of jobs simplifies the problem (CUF-ToSP is solvable in
polynomial-time, while CUV-ToSP isNP-hard), a fixed sequence of tools in the slots
(as in GOF-ToSP with binary setup times) makes the problem hard even when the
sequence of jobs is fixed.

4.4.1 Five-index Arc Flow Formulation for GOF-ToSP

The mathematical model proposed for GOF-ToSP recalls the one introduced in Sec-
tion 4.3.1 for GUF-ToSP, but with an additional index, referring to the slots, for
the variables, which is needed to preserve the order of the tools within the slots.
Given a job sequence J, a solution of GOF-ToSP can be represented as |K| paths
from a source to a destination visiting disjoint nodes of a specific network N . Let
J∗ = {0, 1, . . . , n + 1}, where the two additional jobs 0 and n + 1 are dummy jobs,
each with a set of tools made of the single dummy tool 0, i.e., C0 = Cn+1 = {0}.
We consider the network N to be composed of:

• a directed graph G = (V ;A), where V is composed of all couples (u, j) with
j ∈ J∗ and u ∈ Cj, and A includes all arcs from node (u, i) ∈ V to node
(v, j) ∈ V such that i ∈ J∗ \ {n + 1}, j ∈ J∗ \ {0}, and j > i;

• a cost function w : A → R+ that maps each arc ((u, i), (v, j)) ∈ A to a cost cuv
(i.e., the setup time required for switching tool u of job i with tool v of job j).

The formulation considers a copy of graph G for each slot k ∈ K and requires a
binary variable φk

((u,i),(v,j)) taking the value 1 if tool u ∈ Ci is loaded in the k-th slot
and is switched with tool v ∈ Cj, 0 otherwise. We obtain:

min ∑
k∈K

∑
((u,i),(v,j))∈A

cuvφk
((u,i),(v,j)) (4.19)

∑
(v,j):

((v,j),(u,i))∈A

φk
((v,j),(u,i)) − ∑

(v,j):
((u,i),(v,j))∈A

φk
((u,i),(v,j)) =

=


−1, if i = 0,
1, if i = n + 1,
0, otherwise,

k ∈ K, (u, i) ∈ V (4.20)



4.4. GOF-ToSP 59

∑
k∈K

∑
(v,j):

((u,i),(v,j))∈A

φk
((u,i),(v,j)) = 1 (u, i) ∈ V : i /∈ {0, n + 1} (4.21)

∑
h≥k

∑
(u,i):

((u,i),(v,j))∈A

φh
((u,i),(v,j))+

+ ∑
h≤k

∑
(u,i):

((u,i),(w,j))∈A

φh
((u,i),(w,j)) ≤ 1

k ∈ K, (v, j), (w, j) ∈ V :

v ≺j w
(4.22)

φk
((u,i),(v,j)) ∈ {0, 1} ((u, i), (v, j)) ∈ A, k ∈ K. (4.23)

The objective function (4.19) minimizes the total setup times. Flow conservation
is imposed by constraints (4.20). Constraints (4.21) guarantee that, during the pro-
cessing of job j ∈ J, each tool required by j takes exactly a slot. Constraints (4.22)
guarantee that the precedence relation ≺j at each job j is fulfilled.

4.4.2 Preprocessing

We introduce a method that relies on the triangular inequality assumption for the
setup times and allows us to potentially reduce the number of jobs in an instance.
Let us introduce the concept of a mergeable job. A job i is said to be mergeable in job
j if Ci ⊆ Cj and, for each u, v ∈ Ci such that u ≺i v, it also holds that u ≺j v. In such
a case, if job i is next to job j, it is possible to merge job i into job j, i.e., consider them
as a unique job, having the characteristics of job j.

Proposition 1. Let us consider an instance of GOF-ToSP for which the triangular in-
equality holds. Assume job j + 1 is mergeable in job j. Then, there exists an optimal
solution without any tool switching operation between jobs j and j + 1, i.e., we can
merge job j + 1 into j. Similarly, if job j is mergeable in job j + 1, then, there exists an
optimal solution without any tool switching operation between jobs j and j + 1, i.e.,
we can merge job j into j + 1.

Proof. We prove the result only for the case where j + 1 is mergeable in job j. The
proof for the other case is analogous. An optimal solution S defines, for each job
i ∈ J and each slot k ∈ K, a tool uk

i that lies in the k-th slot just before processing
job i. Now, we consider the solution S obtained from S imposing that uk

j = uk
j+1 for

each k ∈ K. Since job j + 1 is mergeable in job j, we have, in view of the triangular
inequality, that:

∑
k∈K

n

∑
i=0

cuk
i uk

i+1
= ∑

k∈K

n

∑
i=0, i 6=j,j+1

cuk
i uk

i+1
+ ∑

k∈K
(cuk

j uk
j+1

+ cuk
j+1uk

j+2
) ≥

≥ ∑
k∈K

n

∑
i=0, i 6=j,j+1

cuk
i uk

i+1
+ ∑

k∈K
cuk

j uk
j+2

i.e., the objective function value of the feasible solution S is at least as good as the
objective function value of the optimal solution S. Thus, S is also an optimal solution,
for which no tool switching operation occurs between jobs j and j + 1.

The operation of merging jobs can be iteratively repeated. Thus, given a job j, we
merge jobs j + 1, . . . , j + h if they are all mergeable into j. Similarly, we merge jobs
j− 1, . . . , j− r if they are all mergeable into j.
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4.5 GOV-ToSP

GOV-ToSP is the generalization of GOF-ToSP in which the job sequence is not fixed.
Concerning its complexity we can prove the following result.

Theorem 4.5.1. GOV-ToSP is strongly NP-hard even when |K| = 1.

Proof. This result easily follows from the observation that there exists a polynomial-
time reduction of the Traveling Salesman Problem (see, e.g., Applegate et al. [31])
into GOV-ToSP with a single slot.

Note that the above result also states the NP-hardness of GUV-ToSP, since for
|K| = 1 the order of the tools is irrelevant.

4.5.1 Six-index Arc Flow Formulation for GOV-ToSP
A solution of GOV-ToSP can be represented as |K| paths from a source to a desti-
nation visiting disjoint nodes of a specific network N . In this section, we present
an arc flow formulation, similar to the one described in Section 4.4.1 for GOF-ToSP,
but containing an additional time-index with respect to that formulation. In doing
so, the planning horizon is discretized into |T| time periods (where T = {1, . . . , n}),
each corresponding to a time period in which a job can be processed. Let T∗ be the
set of time periods in T with two additional times 0 and n + 1, i.e., the processing
times of dummy jobs 0 and n + 1, respectively.
Since in GOV-ToSP the job sequence is not fixed, the directed graph G = (V ;A)
of N is different from the graph defined for the GOF-ToSP model. In this case,
V = {(u, i, t) : u ∈ C, i ∈ J, t ∈ T} ∪ {(0, 0, 0), (0, n + 1, n + 1)}, where additional
nodes (0, 0, 0) and (0, n + 1, n + 1) correspond to the source and the sink of all paths,
respectively. Set A includes all arcs from nodes (u, i, t) ∈ V to nodes (v, j, t + 1) ∈ V
such that i ∈ J∗ \ {n + 1}, j ∈ J∗ \ {0, i}, and t ∈ T∗ \ {n + 1}. Similar to the GOF-
ToSP model, a cost function w : A → R+ maps each arc ((u, i, t), (v, j, t + 1)) ∈ A to
a cost cuv.
The following formulation considers a copy of graph G for each slot k ∈ K and re-
quires a binary variable φk

((u,i,t),(v,j,t+1)) taking the value 1 if between time t and t + 1
we switch from job i to job j and from tool u to tool v in the k-th tool group.

min ∑
((u,i,t),(v,j,t+1))∈A

cuv ∑
k∈K

φk
((u,i,t),(v,j,t+1)) (4.24)

∑
(v,j,t−1):

((v,j,t−1),(u,i,t))∈A

φk
((v,j,t−1),(u,i,t)) − ∑

(v,j,t+1):
((u,i,t),(v,j,t+1))∈A

φk
((u,i,t),(v,j,t+1)) =

=


−1, if i = 0,
1, if i = n + 1,
0, otherwise,

k ∈ K,

(u, i, t) ∈ V
(4.25)

∑
k∈K

∑
(u,i,t)∈V

∑
(v,j,t+1):

((u,i,t),(v,j,t+1))∈A

φk
((u,i,t),(v,j,t+1)) = 1 i ∈ J, u ∈ Ci (4.26)

∑
h≥k

∑
(u,i,t−1):

((u,i,t−1),(v,j,t))∈A

φh
((u,i,t−1),(v,j,t))+

+ ∑
h≤k

∑
(u,i,t−1):

((u,i,t−1),(w,j,t))∈A

φh
((u,i,t−1),(w,j,t)) ≤ 1

k ∈ K,

(v, j, t), (w, j, t) ∈ V :

v ≺j w

(4.27)

∑
k∈K

∑
(v,j,t+1):

((u,i,t),(v,j,t+1))∈A

φk
((u,i,t),(v,j,t+1))+
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+ ∑
k∈K

∑
(v,j,t′+1):

((u′ ,i,t′),(v,j,t′+1))∈A

φk
((u′ ,i,t′),(v,j,t′+1)) ≤ 1

(u, i, t) ∈ V ,

(u′, i, t′) ∈ V : t 6= t′
(4.28)

φk
((u,i,t),(v,j,t+1)) ∈ {0, 1}

k ∈ K,

((u, i, t), (v, j, t + 1)) ∈ A.
(4.29)

The objective function (4.24) minimizes the total setup times. Constraints (4.25)
impose flow conservation. Constraints (4.26) guarantee that, during the processing
of job j ∈ J, each tool required by the job takes exactly a slot. Constraints (4.27)
guarantee that the precedence relation between tools in Cj is respected for all jobs
j ∈ J. Constraints (4.28) guarantee a consistent sequencing of jobs, i.e., among all
nodes associated with a given job i, only those corresponding to a single time period
can have a positive out-flow.

4.6 Computational Results

This section illustrates computational experiments designed and conducted to assess
the effectiveness of the proposed models. The formulations of Sections 4.2.1, 4.4.1,
and 4.5.1 have been implemented in Phyton by using Gurobi 9.1.2 as mixed integer
linear programming solver. The resulting algorithms are called CUF-Alg, GOF-Alg,
and GOV-Alg. The tests have been executed on a 2.3GHz Intel Xeon Gold 6252N
with 16 GB of memory. We let Gurobi use all four available threads. The CPU time
limit was set to 600 seconds per instance.

4.6.1 Test Instances

To evaluate the effectiveness of the models, a number of instances have been gener-
ated with the aim of covering different scenarios of interest. It has been necessary
to do this as the instances for CUV-ToSP available in the literature (see Calmels [73])
are difficult to adapt and extend to our problems.
The generation of a set of instances has the following input parameters: the number
|J| of jobs, the number |C| of available tools, and the number |K| of available slots.
For all tools u, v ∈ C, u 6= v, the setup time cuv is set to an integer value uniformly
distributed in [1; |C|] (and it is set to zero if the two tools u and v coincide). Then,
since the triangular inequality holds for the setup times, if cuw > cuv + cvw for some
u, v, w ∈ C, we set cuw = cuv + cvw and we repeat this operation until cuw ≤ cuv + cvw
holds for all triplets. For each instance, |J| jobs are created as follows: the number l
of tools required by a job j is an integer value uniformly distributed in [1; |K|]; and
the set Cj is generated by randomly selecting l different tools from C and randomly
ordering them.

A job is added to J if it is not mergeable in any job previously added to J.
Thus, the preprocessing method described in Section 4.4.2 is used to generate in-
stances that cannot be reduced in terms of number of jobs. Computational tests
were performed on a set of 90 instances generated with various combinations of
|J| ∈ {5, 7, 10, 20, 30}, |C| ∈ {5, 10, 30, 40, 50, 60}, and |K| ∈ {2, 3, 10, 15}. The gener-
ated instances are divided into 5 groups of 10 instances each having the same num-
ber of jobs, tools, and slots. All the generated instances are publicly available at
https://github.com/regor-unimore/Tool-switching-problems.

https://github.com/regor-unimore/Tool-switching-problems
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4.6.2 Computational Evaluations

Theorem 4.2.1 implies that the CUF-ToSP can be solved as a linear program. There-
fore, large instances can be solved in very short run-time. For the sake of complete-
ness, we report that all the largest instances that we proposed (i.e., with |J| = 30,
|C| = 60, and |K| = 15) are solved in less than one tenth of a second by means of
CUF-Alg.

Tables 4.4 and 4.5 highlight the results obtained by GOF-Alg and GOV-Alg, re-
spectively. Entries in columns z∗ and LB exhibit the integer optimal solution value
(or the value of the best solution found when optimality is not proven) and the
final lower bound obtained by the search tree, respectively. The percentage gap,
shown in column GAP, is computed as 100(z∗ − LB)/z∗, while column sec exhibits
the run-time required to solve the instances (expressed in seconds). We also pro-
vide some information about the continuous relaxations of the models: zLP is the
value of the optimal solution at the root node of the branch-decision tree, i.e., the
linear-programming relaxation value (which we obtained by turning off the Gurobi
presolver functionality); GAPLP is computed as 100(z∗ − zLP)/z∗; and secLP exhibits
the run-time required to solve the linear-programming relaxation (expressed in sec-
onds). Each row in the table gives the results obtained on an instance. In addition,
for each group, entries in row AVG exhibit the average values of each column. Sym-
bol "–" indicates that no feasible solution was produced by the algorithm.
Table 4.4 shows that GOF-Alg is capable to find a solution within the time limit for
almost all instances. It is worth observing that the size of the proposed instances
is compatible with real data (see Iori, Locatelli, and Locatelli [275]). Indeed, a flex-
ographic printer is usually capable of holding at most 9 colours at a time, 10 jobs
correspond approximately to a week of production, and no more than 30 colours are
usually required for printing 10 different jobs. As expected, the run-time increases
more with the increase of the parameter |K|, on which the number of variables of the
formulation in Section 4.4.1 mostly depends. Indeed, in the worst case, the number
of variables is equal to N = |K|(|K|2(|J|2 − |J|)/2 + 2|K||J|+ 1), which is |K| times
the number of arcs of the directed graph G = (V ;A) described in Section 4.4.1 for
the case |Ci| = |K| for i = 1, . . . , n. We can also observe that N does not depend on
the size of set C (i.e., on the number of total tools).
It follows from Theorem 4.5.1 that GOV-ToSP is the most difficult problem in theory.
This result is also confirmed in practice by computational experiments. GOV-Alg
is able to find the minimum solution within the time limit just for small instances
(i.e., the instances reported in Table 4.5) and in many cases the initial zLP bound is
trivially equal to 0. For larger instances, GOV-Alg failed to find even a feasible so-
lution within the time limit, mainly because of the large number of variables and
constraints of the model.

4.7 Conclusions and Future Research

In this chapter, we addressed four different combinatorial optimization problems of
increasing difficulty: CUF-ToSP, GUF-ToSP, GOF-ToSP, and GOV-ToSP. In particular,
GOF-ToSP is motivated by a real-world application in a company that operates in the
packaging industry by producing and printing packaging materials for food prod-
ucts. For each problem we discussed its complexity and proposed a mathematical
programming model. Experiments over realistic instances confirmed the theoreti-
cal findings: GOV-ToSP is the most difficult problem and the proposed method is
able to find the minimum solution within the time limit just for the first and smaller
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Table 4.4: Computational results for GOF-ToSP.

Inst. |J| |C| |K|
LP ILP

zLP GAPLP secLP z∗ LB GAP sec

TI_Ins01_10_30_10 10 30 10 163.9 7.9% 0.9 178 178 0.0% 26.9
TI_Ins02_10_30_10 10 30 10 131.4 1.9% 0.6 134 134 0.0% 5.7
TI_Ins03_10_30_10 10 30 10 155.5 2.2% 0.5 159 159 0.0% 5.8
TI_Ins04_10_30_10 10 30 10 132.2 6.9% 0.9 142 142 0.0% 21.0
TI_Ins05_10_30_10 10 30 10 243.0 0.8% 0.9 245 245 0.0% 5.1
TI_Ins06_10_30_10 10 30 10 156.9 1.3% 0.8 159 159 0.0% 4.3
TI_Ins07_10_30_10 10 30 10 180.0 0.0% 0.8 180 180 0.0% 2.7
TI_Ins08_10_30_10 10 30 10 187.6 3.3% 1.0 194 194 0.0% 7.4
TI_Ins09_10_30_10 10 30 10 230.7 7.0% 1.5 248 248 0.0% 33.0
TI_Ins10_10_30_10 10 30 10 158.8 7.7% 1.0 172 172 0.0% 14.0

AVG 174.0 3.9% 0.9 181.1 180.9 0.0% 12.6

TI_Ins01_20_40_10 20 40 10 251.3 4.4% 4.3 263 263 0.0% 100.2
TI_Ins02_20_40_10 20 40 10 433.2 0.2% 14.3 434 434 0.0% 42.0
TI_Ins03_20_40_10 20 40 10 279.6 3.6% 9.8 290 290 0.0% 69.8
TI_Ins04_20_40_10 20 40 10 380.8 0.6% 11.9 383 383 0.0% 33.7
TI_Ins05_20_40_10 20 40 10 347.2 1.9% 10.8 354 354 0.0% 50.2
TI_Ins06_20_40_10 20 40 10 370.8 0.3% 11.0 372 372 0.0% 35.7
TI_Ins07_20_40_10 20 40 10 265.8 5.1% 4.6 280 280 0.0% 96.8
TI_Ins08_20_40_10 20 40 10 285.0 3.1% 6.7 294 294 0.0% 78.0
TI_Ins09_20_40_10 20 40 10 309.1 2.8% 9.6 318 318 0.0% 80.8
TI_Ins10_20_40_10 20 40 10 300.3 5.0% 8.2 316 316 0.0% 106.0

AVG 322.3 2.7% 9.1 330.4 330.4 0.0% 69.3

TI_Ins01_20_50_10 20 50 10 247.3 2.6% 5.3 254 254 0.0% 47.7
TI_Ins02_20_50_10 20 50 10 235.7 2.2% 6.0 241 241 0.0% 28.8
TI_Ins03_20_50_10 20 50 10 214.1 11.5% 6.4 242 222 8.9% 600.8
TI_Ins04_20_50_10 20 50 10 283.5 0.5% 5.4 285 285 0.0% 21.2
TI_Ins05_20_50_10 20 50 10 250.3 3.3% 5.7 259 259 0.0% 46.6
TI_Ins06_20_50_10 20 50 10 314.7 1.0% 11.0 318 318 0.0% 34.7
TI_Ins07_20_50_10 20 50 10 337.8 2.9% 12.3 348 348 0.0% 72.8
TI_Ins08_20_50_10 20 50 10 267.9 7.6% 8.1 290 290 0.0% 483.2
TI_Ins09_20_50_10 20 50 10 204.3 5.0% 5.3 215 215 0.0% 117.4
TI_Ins10_20_50_10 20 50 10 361.9 3.0% 11.7 373 373 0.0% 86.8

AVG 271.8 4.0% 7.7 282.5 280.4 0.9% 154.0

TI_Ins01_10_50_15 10 50 15 401.9 1.5% 72.5 408 408 0.0% 129.0
TI_Ins02_10_50_15 10 50 15 82.6 14.0% 4.3 96 96 0.0% 294.9
TI_Ins03_10_50_15 10 50 15 77.4 14.0% 3.0 90 90 0.0% 172.8
TI_Ins04_10_50_15 10 50 15 156.8 5.6% 9.3 166 166 0.0% 141.9
TI_Ins05_10_50_15 10 50 15 142.2 11.1% 11.2 160 160 0.0% 378.7
TI_Ins06_10_50_15 10 50 15 173.3 3.7% 10.6 180 180 0.0% 119.6
TI_Ins07_10_50_15 10 50 15 72.2 22.4% 2.5 93 82 13.4% 600.1
TI_Ins08_10_50_15 10 50 15 70.8 11.6% 1.7 80 80 0.0% 131.5
TI_Ins09_10_50_15 10 50 15 243.4 4.6% 19.8 255 255 0.0% 280.2
TI_Ins10_10_50_15 10 50 15 252.4 3.3% 27.8 261 261 0.0% 232.6

AVG 167.3 9.2% 16.3 178.9 177.7 1.4% 248.1

TI_Ins01_30_60_10 30 60 10 344.2 5.4% 13.7 364 356 2.1% 600.3
TI_Ins02_30_60_10 30 60 10 242.1 6.2% 19.5 258 248 4.0% 600.2
TI_Ins03_30_60_10 30 60 10 394.8 3.2% 28.0 408 408 0.0% 189.0
TI_Ins04_30_60_10 30 60 10 481.1 3.8% 51.7 500 496 0.9% 600.4
TI_Ins05_30_60_10 30 60 10 420.6 2.6% 29.9 432 432 0.0% 257.7
TI_Ins06_30_60_10 30 60 10 487.1 2.4% 46.7 499 499 0.0% 409.9
TI_Ins07_30_60_10 30 60 10 418.8 3.5% 45.4 434 434 0.0% 480.6
TI_Ins08_30_60_10 30 60 10 347.5 4.8% 17.8 365 360 1.4% 600.4
TI_Ins09_30_60_10 30 60 10 397.5 8.0% 36.2 432 403 7.1% 601.0
TI_Ins10_30_60_10 30 60 10 376.9 3.8% 23.1 392 392 0.0% 357.6

AVG 391.1 4.4% 31.2 408.4 402.9 1.5% 469.7
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Table 4.5: Computational results for GOV-ToSP.

Inst. |J| |C| |K|
LP ILP

zLP GAPLP secLP z∗ LB GAP sec

TI_Ins01_5_5_2 5 5 2 1.5 96.9% 0.2 48 48 0.0% 5.1
TI_Ins02_5_5_2 5 5 2 0.0 100.0% 0.1 25 25 0.0% 5.0
TI_Ins03_5_5_2 5 5 2 0.0 100.0% 0.1 23 23 0.0% 5.3
TI_Ins04_5_5_2 5 5 2 6.0 83.3% 0.1 36 36 0.0% 6.8
TI_Ins05_5_5_2 5 5 2 8.0 63.6% 0.2 22 22 0.0% 4.8
TI_Ins06_5_5_2 5 5 2 0.0 100.0% 0.1 47 47 0.0% 5.6
TI_Ins07_5_5_2 5 5 2 7.5 79.7% 0.2 37 37 0.0% 6.0
TI_Ins08_5_5_2 5 5 2 0.0 100.0% 0.1 26 26 0.0% 5.3
TI_Ins09_5_5_2 5 5 2 0.0 100.0% 0.1 46 46 0.0% 3.8
TI_Ins10_5_5_2 5 5 2 4.1 92.8% 0.2 57 57 0.0% 7.2

AVG 2.7 83.3% 0.2 36.7 36.7 0.0% 5.5

TI_Ins01_5_10_2 5 10 2 0.7 95.8% 0.4 16 16 0.0% 28.9
TI_Ins02_5_10_2 5 10 2 12.5 67.9% 0.5 39 39 0.0% 29.5
TI_Ins03_5_10_2 5 10 2 6.0 59.7% 0.5 15 15 0.0% 9.4
TI_Ins04_5_10_2 5 10 2 11.2 76.7% 0.5 48 48 0.0% 28.2
TI_Ins05_5_10_2 5 10 2 1.0 97.1% 0.4 35 35 0.0% 45.3
TI_Ins06_5_10_2 5 10 2 6.1 69.7% 0.4 20 20 0.0% 28.5
TI_Ins07_5_10_2 5 10 2 0.0 100.0% 0.3 27 27 0.0% 37.4
TI_Ins08_5_10_2 5 10 2 0.0 100.0% 0.4 14 14 0.0% 90.3
TI_Ins09_5_10_2 5 10 2 0.8 97.6% 0.4 33 33 0.0% 37.8
TI_Ins10_5_10_2 5 10 2 1.7 86.7% 0.4 13 13 0.0% 13.2

AVG 4.0 85.1% 0.4 26.0 26.0 0.0% 34.9

TI_Ins01_5_10_3 5 10 3 0.0 100.0% 0.6 27 27 0.0% 136.3
TI_Ins02_5_10_3 5 10 3 0.0 100.0% 0.6 37 37 0.0% 127.0
TI_Ins03_5_10_3 5 10 3 0.0 100.0% 0.5 9 9 0.0% 171.5
TI_Ins04_5_10_3 5 10 3 0.0 100.0% 0.4 17 17 0.0% 143.3
TI_Ins05_5_10_3 5 10 3 0.0 100.0% 0.5 28 28 0.0% 119.6
TI_Ins06_5_10_3 5 10 3 0.0 100.0% 0.6 34 34 0.0% 132.4
TI_Ins07_5_10_3 5 10 3 0.0 100.0% 0.5 5 5 0.0% 145.6
TI_Ins08_5_10_3 5 10 3 9.3 90.1% 1.0 93 93 0.0% 89.4
TI_Ins09_5_10_3 5 10 3 0.0 100.0% 0.6 13 13 0.0% 88.9
TI_Ins10_5_10_3 5 10 3 0.0 100.0% 0.6 30 30 0.0% 88.6

AVG 0.9 99.1% 0.6 29.3 29.2 0.0% 124.3

TI_Ins01_7_10_2 7 10 2 5.9 89.8% 2.3 58 58 0.0% 468.4
TI_Ins02_7_10_2 7 10 2 4.1 93.4% 2.1 62 62 0.0% 319.6
TI_Ins03_7_10_2 7 10 2 2.0 94.3% 1.9 35 35 0.0% 388.3
TI_Ins04_7_10_2 7 10 2 0.6 98.9% 1.9 51 51 0.0% 468.0
TI_Ins05_7_10_2 7 10 2 2.5 92.4% 2.0 33 33 0.0% 398.0
TI_Ins06_7_10_2 7 10 2 7.7 83.6% 2.3 47 47 0.0% 354.9
TI_Ins07_7_10_2 7 10 2 0.0 100.0% 1.4 32 32 0.0% 355.2
TI_Ins08_7_10_2 7 10 2 1.0 98.5% 1.9 65 65 0.0% 534.0
TI_Ins09_7_10_2 7 10 2 1.0 97.4% 1.8 38 16 57.9% 600.2
TI_Ins10_7_10_2 7 10 2 2.1 91.4% 1.9 24 24 0.0% 251.4

AVG 2.7 93.9% 1.9 44.5 42.3 5.8% 413.8

TI_Ins01_7_10_3 7 10 3 0.0 - 2.7 - 0 - 600.4
TI_Ins02_7_10_3 7 10 3 0.0 100.0% 2.7 58 0 100.0% 600.2
TI_Ins03_7_10_3 7 10 3 0.0 - 2.5 - 0 - 600.4
TI_Ins04_7_10_3 7 10 3 0.0 - 2.8 - 0 - 600.6
TI_Ins05_7_10_3 7 10 3 0.0 - 2.8 - 0 - 600.6
TI_Ins06_7_10_3 7 10 3 0.0 - 2.6 - 0 - 600.5
TI_Ins07_7_10_3 7 10 3 0.0 - 3.7 - 20 - 600.8
TI_Ins08_7_10_3 7 10 3 0.0 - 2.8 - 4 - 600.5
TI_Ins09_7_10_3 7 10 3 0.0 - 2.5 - 0 - 600.5
TI_Ins10_7_10_3 7 10 3 0.0 - 3.2 - 0 - 600.3

AVG 0.0 100.0% 2.8 58.0 2.4 100.0% 600.5
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group of instances.
On the other hand, the proposed approach to solve GOF-ToSP is able to find optimal
solutions for realistic instances in a short time and thus can provide quick support to
the company on its weekly decisions. It is worthwhile to remark that the computing
times are currently not a major issue for the company. Indeed, taking into account
that the planned activities of the proposed instances cover approximately one week,
larger computing times could still be feasible in practice. We also tried to implement
alternative formulations for GOV-ToSP, having fewer variables and constraints: a
four-index formulation and a five-index arc flow formulation. The behavior of these
two models was worse than that of GOV-Alg, mainly because the relaxed linear pro-
gramming bound was zero for most of the instances.
To the best of our knowledge, the complexity of COF-ToSP and COV-ToSP is still
unknown. A thorough study of such complexity results represents an interesting
possible future research direction. As a further possible topic for future research,
finding new valid inequalities to strengthen the proposed formulations for GOV-
ToSP and GOF-ToSP is also of high interest.

Another interesting future research direction is the development of algorithms
for GOV-ToSP. These could be obtained by improving the formulation we proposed,
devising new formulations, or developing heuristic strategies, especially to solve
large instances.
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Chapter 5

A GRASP for a real-world
scheduling problem with unrelated
parallel print machines and
sequence-dependent setup times*

In this chapter we consider a real-world scheduling problem arising in the color
printing industry. The problem consists in assigning print jobs to a heterogeneous
set of flexographic printer machines and finding a processing sequence for the jobs
assigned to each machine. The machines are characterized by a limited sequence of
color groups and can equip additional components (e.g., embossing rollers and per-
forating rolls) to process jobs that require specific treatments. The process to equip a
machine with an additional component or to clean a color group takes a long time,
with the effect of significantly raising the setup times. The aim is to minimize a
weighted sum of total weighted tardiness and total setup time. The problem derives
from the activities of an Italian food packaging company. To solve it, we developed
a greedy randomized adaptive search procedure equipped with several local search
procedures. The excellent performance of the algorithm is proved by extensive com-
putational experiments on real-world instances, for which it produced good-quality
solutions within a limited computing time. The algorithm is currently in use at the
company to support their weekly scheduling decisions.

5.1 Introduction

The food packaging industry has undergone a remarkable evolution over the last
years. For capturing and establishing a lasting and strong bond with customers,
the graphic design and choice of materials for food packages has become more and
more important (see, e.g., Paine and Paine [390]). As a consequence, the color print-
ing industry has been forced to satisfy increasingly demanding market requirements
dictated by the food industry and its customers. For printing flexible food packages,
rotogravure and flexography printing are the most used technologies. More specifi-
cally, flexography is faster, less expensive, and allows for printing on almost any type
of material such as plastic, paper, cellophane, and aluminum foil (see, e.g., Kipphan
[305]). In addition, even if rotogravure printing was frequently used to guarantee a
better quality, nowadays flexography has reached an equivalent quality.

*The results of this chapter appears in: M. Iori, A. Locatelli, and M. Locatelli. A GRASP for a
real-world scheduling problem with unrelated parallel print machines and sequence-dependent setup
times". In: International Journal of Production Research (2022), (in press).
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A flexographic printer machine is a flexible manufacturing machine (see, e.g.,
Crama [124]) able to handle different types of operations (i.e., coloring, embossing,
and perforating) which are performed by the available tools installed in its mag-
azine. The number of tools that a machine can equip is limited by its magazine
capacity. For instance, the number of different ink cartridges that a machine can
simultaneously load is bounded by its number of color groups.

A customer order, simply denoted as a job in the following, is characterized by
a number of characteristics, namely: order quantity, due date, release date, job-
machine incompatibilities, different processing time on the (compatible) machines,
and a set of required tools (e.g., ink cartridges, embossing rollers, and perforating
rolls).

The printing process of a job consists of two phases: the machine setup phase and
the printing phase (see, e.g., Schuurman and Van Vuuren [442]).

The machine setup phase consists in preparing the machine for printing a new
job and may require to perform some tool switching operations. Indeed, the lim-
ited magazine capacity of the machines and the demand to process various types of
jobs often induce to replace the currently installed tools with other tools required to
process the next jobs. Since the variety of colors required by the jobs is enormous,
changing the ink cartridges in the color groups of a machine is definitely the most
frequent switching operation performed between two jobs.

This operation requires a washing process to remove the previous color residue
from the inner surface of the color group, because such residual could affect the
quality of the next job. The process to wash a color group takes a long time and de-
pends directly on the specific colors involved. Moreover, if a printer machine equips
an automatic washing system, the color groups can be washed in parallel, otherwise
they have to be washed one by one. Hence, the time required for the machine setup
phase is machine dependent, job dependent, and job sequence dependent. Indeed,
it depends on the washing system of the machine, on the tools (i.e., ink cartridges,
embossing rollers, and perforating rolls) available in the magazine, and on the tools
required by the next job.

On the other side, the printing phase is just machine dependent and job depen-
dent. In particular, it only depends on the printing speed of the machine, on the
type of printed material (e.g., plastic, paper, cellophane, and aluminum foil), and on
print length (i.e., the length in meters of the job). This can be summarized by simply
computing a processing time of the given job on each machine that can process it.

Since tool switching operations are strongly time consuming, the machine setup
phase takes a considerable part of the entire production time. In addition, a large
part of the tool switching operations can be performed manually, thus requiring
more human labor and forcing the machines to remain in a non-printing mode to
ensure workers’ safety. Thanks to the introduction of automatic washing systems,
setup times have been considerably reduced in modern flexographic presses. De-
spite this, the growing demand for customized packaging has increased the demand
of small-length jobs as well as the complexity of the jobs, with a consequent increase
of the impact of the setup times on the total production time. Indeed, in the real-
world applications that we face, setup time requires around 65% of the total produc-
tion time. This makes scheduling decisions a crucial aspect in terms of productivity.

Motivated by a real-world application arising in a food packaging company lo-
cated in the city of Reggio Emilia (Italy), in this chapter we consider a scheduling
problem that consists in assigning printing jobs to a heterogeneous set of parallel
flexographic printer machines, with the aim of minimizing a weighted sum of total
weighted tardiness and total setup times. The problem also requires to determine
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the schedule of the jobs on each machine, and the location of the tools in the maga-
zines before the execution of each job takes place.

The resulting problem is not only NP-hard (see Section 5.2), but also very dif-
ficult in practice. To solve it, we developed a GRASP, a metaheuristic that obtained
good computational results on a large number of optimization problems (see, e.g.,
Resende and Ribeiro [419]). The GRASP uses a tailored randomized procedure to
build initial solutions, and then brings them to local optima by means of a set of
local search procedures. In addition, the GRASP is also equipped with a preprocess-
ing method that allows to potentially reduce scheduling complexity by grouping
specific jobs that are similar in their required tools. To obtain the best balance be-
tween computational effort and solution quality, the assignment of the tools to the
magazines is computed in a heuristic way that resembles the manual approach in
use at the company. After extensive computational testing, the GRASP has been em-
bedded into a simple interface and delivered to the company, which is now using it
on a regular basis to support their weekly scheduling decisions.

The remainder of the chapter is organized as follows. In Section 5.2, we briefly
review the related literature. In Section 5.3, we formally describe the problem that
we face. In Section 5.4, we present the details of the GRASP algorithm that we im-
plemented. In Section 5.5, we provide the outcome of computational experiments
carried out on a set of 25 real-world instances, each corresponding approximately
to a week of production and derived from the everyday activity of the company.
We compare the performance of the GRASP algorithm with the constructive heuris-
tic CGHA and the local search procedure ISHA presented as a preliminary work at
AMPS 2021 (Iori, Locatelli, and Locatelli [275]). Numerical tests demonstrate the ef-
fectiveness of the GRASP algorithm, which outperforms by a considerable margin
both previous heuristics. Moreover, we conduct a comparative analysis with com-
pany solutions which attests that the GRASP algorithm is always capable of provid-
ing better quality solutions and outperforms, by a considerable margin, the quality
of the company solutions. Finally, in Section 5.6, we draw some concluding remarks
and future research directions.

5.2 Brief literature review

The problem that we face, called the Parallel Print Machine Problem with Setup Times
(PMPST for short in the following), requires to (i) assign printing jobs to heteroge-
neous machines, (ii) establish the sequence in which the jobs are processed on each
machine, and (iii) determine the positions of the required tools in the magazines of
the machines, with the aim of minimizing a weighted sum of total weighted tardi-
ness and total setup time. The problem we solve, indeed, represents a large variety
of scheduling applications on parallel machines, where tool management represents
a major source of complexity, and decision makers aim at minimizing both setup
times and weighted tardiness. In this section we provide a brief review of the re-
lated applications.

The PMPST lies in the field of unrelated parallel machine problems with sequence-
dependent setup times, for which we refer the interested reader to the surveys by
Allahverdi et al. [17, 18, 22] and by Durasević and Jakobović [167]. Within this
field, and using the three-field notation for scheduling problems by Graham et al.
[213], the problem that most resembles the PMPST is the R|STsd|αTWT + βTST,
where TWT denotes the total weighted tardiness, TST the total setup time, and
α and β are input parameters used to combine tardiness and setup times into a
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unique objective function. The major difference between the two problems is that
the R|STsd|αTWT + βTST considers setup times that only depend on the pair of
consecutive jobs. This is equivalent to considering just the tools required by the cur-
rent job and by the preceding one to calculate the setup times between the two jobs.
In the PMPST, instead, it is often beneficial to leave a certain tool unused in a printer
magazine only to use it again a few jobs later.

We could not find literature aimed at solving the R|STsd|αTWT + βTST, but there
are works devoted to the R|STsd|Cmax, i.e., the problem variant in which the goal is
to minimize the makespan. In detail, Huang et al. [270] introduced a firefly algo-
rithm with courtship learning, whereas Jovanovic and Voß [287] proposed a GRASP
enhanced by a Fixed Set Search (FSS) metaheuristic. The basic concept of the FSS
heuristic consists in fixing a set of elements that frequently appear in high-quality
solutions and generating new solutions that contain such elements. In Section 5.4.2,
we apply a similar, although simpler, concept to group similar jobs in a preprocess-
ing phase.

In the production scheduling literature, just a limited number of studies include
aspects of history-dependent scheduling, where setup times for a job are affected
by the aggregate activities of all predecessors (see, e.g., Lee, Lei, and Pinedo [332]
and Dayama et al. [146]). However, the information about aggregate activities is still
not sufficient to calculate the setup time between two consecutive jobs exactly, since
this information does not allow to completely know which are precisely the tools
equipped by a machine before processing the current job.

A problem that has been largely studied in the literature and is more closely
related to the PMPST is the Tool Switching Problem with non-Uniform Setup Times
(SSPNU), a particular case of the well-known Tool Switching Problem (ToSP) (see La-
porte, Salazar-González, and Semet [329], Crama et al. [125], and Calmels [73]). The
ToSP consists in optimally sequencing jobs and in assigning tools to a capacitated
magazine in order to minimize the number of tool switches. This is equivalent to
considering unit-time setups. In the SSPNU, instead, the setup times required to
switching the tools are dependent on the specific switched tools, and the objective
function is to minimize the total setup time.

In the ToSP, the position of the tools in the magazine is irrelevant (see Laporte,
Salazar-González, and Semet [329]) and this information can be thus neglected. On
the other hand, this information is extremely necessary in the SSPNU, since the setup
time depends on the switched tools at the same magazine slot. Another problem
variant of the ToSP with unit-time setups but in which the information about the
position of the tools in a magazine cannot be neglected, arises in the case in which
tools may require more than one slot. To tackle this problem, Tzur and Altman [467]
proposed an ILP formulation and developed a heuristic procedure. Later, Van Hop
[469] proposed a construction heuristic, while Crama et al. [126] proved that the
problem is NP-hard even when the order in which the jobs are processed is fixed.

To the best of our knowledge, most of the previous research on ToSPs concerned
uniform switching time (see Calmels [73]) and the only works that take into con-
sideration non-uniform setup times are those by Privault and Finke [409], Windras
Mara et al. [482], and Iori et al. [278]. In [409], a max-flow-min-cost model is de-
veloped for solving the SSPNU. In [482], the SSPNU is solved by means of two ILP
models, namely, a five-index formulation and a multicommodity flow formulation.
Iori et al. [278] introduced two variants of the SSPNU in which tools must be sorted
along the slot sequence respecting a given order. For each variant, they discussed its
complexity and proposed an ILP model.
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The PMPST considers the same setup times of the SSPNU, but it also comprises
a number of additional features. Indeed, there are different typologies of tools, each
magazine slot of a machine can only hold a specific typology of tool and has a limited
capacity. Moreover, the PMPST considers non-identical parallel machines, which
differ in tool magazine capacity, processing times, and setup times. A generalization
of the ToSP in the context of non-identical parallel machines was recently studied by
Calmels [74], who provided a mixed ILP and different iterated local search methods.
In addition, incompatibilities among machines and jobs must be taken into account,
as well as due dates for the jobs, which, if violated, cause a penalization (weighted
tardiness) in the objective function. To this regard, the PMPST is thus a generaliza-
tion of the SSPNU. Since the SSPNU is a generalization of the ToSP and the ToSP is
NP-hard (see, e.g., Crama et al. [125]), we can conclude that the PMPST isNP-hard
too. In addition, it is also very challenging to solve it in practice. In the next sections,
we formally define the PMPST and then present the heuristic that we developed to
solve it.

5.3 Problem description

In the PMPST, a set J = {1, . . . , n} of jobs has to be processed by a set M = {1, . . . , m}
of heterogeneous flexographic printer machines along a scheduling period. Each
machine i ∈ M is available from Monday to Friday for 8 working hours per day
and it can be simply paused at the end of each work shift and resumed the day after
without any penalty cost (even during the printing phase). This implies that the
scheduling period can be considered as a unique uninterrupted time interval.

A flexographic printer machine i ∈ M is a flexible machine which can simultane-
ously hold mi distinct tools able to perform three different types of operations: ap-
plying a specific color, embossing the printed material, and perforating the printed
material. Let R be the set of all available tools. Since the company has a large num-
ber of tools, their availability is not an issue and so we assume that R is a countably
infinite set which contains an infinite number of each tool. Let R = C ∪ E ∪ P, with
C, E, and P be the disjoint sets of all available ink cartridges, embossing rollers, and
perforating rollers, respectively.

Each machine has three different typologies of magazine slots. The first one is
able to hold just ink cartridges (C), the second one just embossing rollers (E), and
the last one just perforating rollers (P). More specifically, the number of ink car-
tridges that a machine i ∈ M can hold is limited by the number ci of color groups
of the machine. In addition, a machine can equip at most ei embossing rollers and
pi perforating rollers. The compatibility between the typology of the magazine slot
and the typology of the mounted tool must always be respected. All tools required
for processing a job should have been loaded into the magazine slots before start-
ing the processing of the job. If a tool required by a job is already loaded into the
magazine, then the setup time required for loading that tool is null. Otherwise, a
positive setup time is incurred. The operation of loading and unloading an em-
bossing roller requires a fixed setup time, and the same holds for the operation of
loading and unloading a perforating roll. Instead, the setup time required for the
operation of unloading and loading an ink cartridge in a color group depends on
the two involved colors.

Each machine i ∈ M is also characterized by the following elements:

• Ji ⊆ J: subset of jobs that can be printed by machine i;
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• θi: printing speed of machine i;

• µi: availability date of machine i;

• `i: washing system type of machine i, either automatic (`i = 1) or manual
(`i = 0).

Each job j ∈ J requires a subset of ink cartridges Cj ⊆ C, a subset of embossing
rollers Ej ⊆ E, and a subset of perforating rollers Pj ⊆ P. A printing job j ∈ J is also
characterized by the following elements:

• Mj ⊆ M: subset of machines capable of printing job j;

• vj: length of job j, measured in linear meters;

• pij: processing time of job j on machine i ∈ Mj, computed as pij = vj/θi;

• dj: due date of job j;

• wj: tardiness penalty assigned to job j.

A sequence of jobs Si = (ji
1, . . . , ji

ni
) is feasible for machine i ∈ M if i ∈ Mj for

each j ∈ Si. A feasible sequence Si of jobs defines a schedule for machine i ∈ M
and can be used to compute start and completion times of all jobs. A set of feasible
sequences S = {Si : i ∈ M} is a feasible schedule for J if it forms a partition of J.

Given a schedule Si for machine i ∈ M, a tool switching schedule for machine i is a
function ξ : Si × {1, . . . , mi} → R such that, for each j ∈ Si:

• Cj ∪ Ej ∪ Pj ⊆
⋃mi

k∈1{ξ(j, k)}, i.e., the magazine of machine i, before starting job
j, contains all the tools required by job j;

• the compatibility between the typology of the k-th magazine slot and the ty-
pology of the tool ξ(j, k) is respected, for each magazine slot position k ∈
{1, . . . , mi}.

In other words, given a schedule Si for machine i ∈ M, for each magazine slot
position k ∈ {1, . . . , mi} and job j ∈ Si, the function ξ(j, k) defines which is the
tool in the k-th magazine slot during the processing of job j.

In the PMPST, the switching costs are determined by the sequence of job pro-
cessing and by the tool switching schedule. These factors have to be simultaneously
taken into account by determining a feasible schedule S and a tool switching sched-
ule for each machine i ∈ M with the main goal to minimize a weighted sum of total
weighted tardiness and total setup times. More specifically, the PMPST consists in
finding a feasible schedule that minimizes

z = βWT + (1− β)TST, (5.1)

where β ∈ [0, 1] is an input parameter used to balance the two components of the
objective function, namely

• WT = ∑i∈M ∑j∈Si wjTj;

• TST = ∑i∈M ∑ni−1
h=1 si

jh jh+1
.
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Here, Tj denotes the tardiness of a job j in Si, while si
jh jh+1

denotes the setup time
needed to switch from job ji

h to job ji
h+1. It turns out that the problem of calculating

such setup time is not trivial and may require a large computational effort. To be
able to solve practical industrial instances, in Section 5.4.1, we propose a heuristic
evaluation of the setup times. The tardiness is first computed as a number of days
from the due date and then switched to minutes, so both WT and TST are expressed
in minutes.

With a slight abuse of notation, given a feasible job sequence Si = (ji
1, . . . , ji

ni
) for

machine i ∈ M, we let z(Si) denote the value β · ∑j∈Si wjTj + (1− β) · ∑ni−1
h=1 si

jh jh+1
.

Note that z(Si) can be viewed as the contribution of machine i to the objective func-
tion. The aim of the PMPST is to find a job and tool switching schedule that is
feasible and minimize (5.1).

Example 5.3.1. We provide a numerical example to better illustrate the addressed
problem. We consider an instance composed of two machines M = {1, 2}, whose
characteristics are reported in Table 5.2, and five jobs J = {1, 2, 3, 4, 5} requiring tools
in C = {Black, Cyan, Magenta, Pink, Red, Yellow, White}, whose characteristics are
detailed in Table 5.1. All times are given in minutes. For simplicity, we assume that
the setup time required for the operation of unloading and loading an ink cartridge
is fixed to 25 for each color involved. Now, we consider the feasible schedule S =
{S1 = (3, 1, 5), S2 = (2, 4)} and the tool switching schedule for machine 1 and 2
given in Tables 5.3 and 5.4, respectively.

Table 5.1: Characteristics of considered jobs

j Cj Mj vj p1j p2j dj wj
1 {Red, Yellow} {1, 2} 15000 125 150 480 2
2 {Yellow, Cyan, Red} {1, 2} 12000 100 120 480 5
3 {Yellow, Cyan, Red, Black} {1} 18000 150 180 480 10
4 {Yellow, Cyan, Magenta} {2} 30000 250 300 480 1
5 {White, Pink, Magenta, Black} {1} 18000 150 180 960 7

Table 5.2: Characteristics of considered machines

i ci Ji θi µi li
1 4 {1, 2, 3, 5} 120 300 1
2 3 {1, 2, 4} 100 350 1

Table 5.3: Tool switching schedule for machine 1

S1 Slot 1 2 3 4

3 ξ(3, 1) = Yellow ξ(3, 2) = Cyan ξ(3, 3) = Red ξ(3, 4) = Black
1 ξ(1, 1) = Yellow ξ(1, 2) = Cyan ξ(1, 3) = Magenta ξ(1, 4) = Black
5 ξ(5, 1) = White ξ(5, 2) = Pink ξ(5, 3) = Magenta ξ(5, 4) = Black

Table 5.4: Tool switching schedule for machine 2

S2 Slot 1 2 3

2 ξ(2, 1) = Yellow ξ(2, 2) = Cyan ξ(2, 3) = Red
4 ξ(4, 1) = Yellow ξ(4, 2) = Cyan ξ(4, 3) = Magenta



74 Chapter 5. A GRASP for a real-world scheduling problem

For each job, the time required for the printing phase is reported in columns
p1j and p2j of Table 5.1. Now we calculate, for each job, the time required for the
machine setup phase. Initially, we assume that the slots of both machines are empty,
so there is no switching operation to perform for processing jobs 3 and 2. Thus, the
time required for the machine setup phase of jobs 2 and 3 is null. On the other hand,
the time required for the machine setup phase of jobs 1 and 4 is 25 (there is a switch
operation to perform in both cases) and 50 for the machine setup phase of job 5 (there
are two switch operations to perform) and thus TST = 100.

Since the working time of the machines is known (480 minutes per day) and the
jobs in S1 and S2 are performed one after another, start and completion times (and
thus also the tardiness) of all jobs can be directly calculated as follows. First, we
consider jobs in S1:

• job 3 starts at time µ1 and its completion time is at time µ1 + p13 = 300+ 150 =
450;

• job 1 starts at time 450 and its completion time is at 450 + s1
Red,Magenta + p11 =

450 + 25 + 125 = 600;

• job 5 starts at time 600 and its completion time is at 600+ s1
Yellow,White + s1

Cyan,Pink +
p15 = 600 + 25 + 25 + 150 = 800.

While, for jobs in S2:

• job 2 starts at time µ2 and its completion time is at time µ2 + p22 = 350+ 120 =
470;

• job 4 starts at time 470 and its completion time is at 470 + s1
Red,Magenta + p24 =

470 + 25 + 300 = 795.

Figure 5.1 reports a graphical representation of schedule S. It turns out that just
jobs 1 and 4 have 120 and 315 minutes of tardiness, respectively. So, WT = 120 ·
w1 + 315 ·w4 = 120 · 2 + 315 · 1 = 555. If we set β = 0.2 (for more details see Section
5.5.5), we obtain z = βWT + (1− β)TST = 0.2 · 555 + 0.8 · 100 = 191.

300 400 500 600 700 800

End of day 1

M2

M1 J3 J1 J5

J2 J4

Figure 5.1: Graphical representation of the feasible schedule S = {S1 =
(3, 1, 5), S2 = (2, 4)}

5.4 A GRASP Approach for the PMPST

The PMPST isNP-hard because it generalizes the ToSP, which is known to beNP-
hard (see, e.g., Crama et al. [125]). Furthermore, the PMPST (which considers multi-
ple non-identical machines and also requires to find an optimal tool switching sched-
ule for different tool typologies) is very challenging to solve in practice. In this sec-
tion, we present the GRASP that we developed to solve the PMPST. Its pseudocode
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is provided in Algorithm 2. In a few words, the GRASP is an iterative process in
which each iteration consists of two phases: construction and local search. In our
implementation, the GRASP is combined with a preprocessing method, described in
Section 5.4.2, that allows to potentially reduce scheduling complexity by grouping
specific jobs that are similar in their required tools into super-jobs. The construction
phase, described in Section 5.4.3, builds a feasible solution, whose neighborhood is
investigated until a local minimum is found during the local search phase. As de-
tailed in Section 5.4.4, the local search phase is composed of four procedures, namely
LS1, LS2, LS3, and LS4. At each iteration (step 4) a feasible solution S is found by
means of the construction phase, and then (step 5) S is brought to a local minimum
by sequentially invoking LS1, LS2, and LS3 in this order. Super-jobs are then un-
packed into jobs right before the LS4 procedure is invoked (step 6). Finally, at step 9,
the GRASP returns Sbest, the best solution found in Imax ∈N iterations.

Algorithm 2: GRASP metaheuristic for the PMPST
1 input: M, J, Imax, threshold parameter α, availability date µi for each i ∈ M;
2 create super-jobs by means of Algorithm 3;
3 for k ∈ {1, . . . , Imax} do
4 construct new feasible solution S using Algorithm 4;
5 bring S to a local minimum by sequentially invoking LS1, LS2, and LS3;
6 unpack all super-jobs in S and invoke LS4;
7 compare S with Sbest and possibly update Sbest;
8 end
9 return Sbest

In the PMPST, even just the problem of calculating the setup times is not trivial.
In the next section, we describe a simple and effective heuristic method for evaluat-
ing the setup times that is repeatedly used within the GRASP.

5.4.1 Heuristic setup time Evaluation

In our work, we decided to adopt a simple but quick and good-enough evaluation
of the setup times. This evaluation is used in all the steps of the GRASP.

First, a specific policy is introduced for determining a tool switching schedule.
Let us consider a machine with a given loading of the tools in its magazine, and
suppose we need to determine the tool switching operations required to process the
next job. According to our policy, if a magazine is full and a tool c ∈ C required for
printing the new job is not in the magazine, then the first tool c′ ∈ C in the magazine
that is not required by the new job is removed and switched with c. If, instead, a
tool c ∈ C required for printing the new job is not in the magazine and there are one
or more empty magazine slots that can hold a tool in C, then c is loaded in the first
of these empty slots. The two policies for defining the tool switching operations for
tools in E and P are similarly defined.

Given two consecutive jobs jh and jh+1 of a schedule Si for machine i ∈ M, let us
recall that si

jh jh+1
denotes the setup time needed to switch from job jh to job jh+1. The

setup times (i.e., the setup times required to switch the required tools in the machine
magazine) are evaluated as follows. A color washing time is added to si

jh jh+1
for each

c ∈ Cjh+1 that is not in the magazine after the end of job jh (in case `i = 0) or if there
is at least one tool c ∈ Cjh+1 that is not in the magazine after the end of job jh (in case
`i = 1). Indeed, if a printer machine equips an automatic washing system, then the
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color groups can be washed in parallel, otherwise they have to be washed one by
one in sequence. Moreover, if there is a tool c ∈ Cjh+1 that is not in the magazine after
the end of job jh and that corresponds to the color white or to a special varnish, then
an additional penalty time is considered. Indeed, the process to wash a color group
and to refill it with white ink or a special varnish requires the complete cleaning
of the corresponding color group, with the effect of significantly raising the setup
times. Furthermore, for each tool e ∈ Ejh+1 and for each tool p ∈ Pjh+1 that are not in
the magazine after the end of job jh, a fixed tool switching time is added to si

jh jh+1
.

5.4.2 Preprocessing method to Group Specific Jobs

For practical instances of the PMPST, where there is a large variety of jobs, it is con-
venient to group specific jobs, that tend to be similar in some of their required tools,
into super-jobs. Indeed, there are some specific tools for which their tool switch-
ing operations are significantly time consuming. Therefore, it is convenient to se-
quentially process all the jobs requiring these particular tools, so as to minimize the
resulting tool switching operations. The creation of super-jobs allows to identify a
relatively small set of good schedules and avoid searching through a large number
of alternatives, thus reducing the scheduling complexity. The grouping of jobs is
a desirable strategy and allows to deal with smaller and more tractable problems.
This general idea, which was highly appreciated by the company and is confirmed
in practice by the computational results showed in Section 5.5, has also been ap-
plied in other related problems (see, e.g., Burger et al. [70]). On the other hand, it
is worth noting that the grouping process may lead to an increase of total tardiness.
To reduce this downside, we introduce a parameter γ that identifies the maximum
number of jobs that can compose a super-job. For γ = 1, the prepossessing method
that produces the grouping process, described in Algorithm 3, does not create any
super-jobs.

Let us describe the preprocessing method in detail. Given a tool t ∈ R, let Jt be
the set of all jobs requiring t. Given a machine i ∈ M, let Jt

i = {j ∈ Jt : i ∈ Mj}
be the subset of jobs in Jt which can be printed by machine i, and let R′ ⊆ R be
the set of all tools for which switching operations are highly time consuming. For
each tool t ∈ R′, at step 3 Algorithm 3 selects a machine i′ ∈ M such that |Jt

i′ | =
maxi∈M |Jt

i |. Then, at step 5, the sequence St
i′ composed of all jobs in Jt

i′ , ordered
by due date (in order to reduce the effect of raising the total tardiness due to the
grouping process), is created. If St

i′ contains more than γ jobs, then, at step 7, the last
|St

i′ | − γ jobs are eliminated from St
i′ and the set Jt

i′ is updated accordingly. At step
9, the sequence St

i′ is considered as a unique job j′, called a super-job and having the
following characteristics:

• Cj′ =
⋂

j∈St
i′

Cj, Ej′ =
⋂

j∈St
i′

Ej, and Pj′ =
⋂

j∈St
i′

Pj. In doing so, we are sure that
tool t, for which the switching operation is highly time consuming, is a tool of
super-job j′ and that the magazine capacity of machine i′ is not exceeded by
the tools of j′. It is worthwhile to remark that the objective function value of a
solution has to be calculated in a schedule which does not contain any super-
jobs. Before calculating a solution value, all the super-jobs have to be unpacked
until there are no more super-jobs in the schedule. In order to unpack a super-
job j′ ∈ Si, it is sufficient to replace j′ with the sequence St

i created at steps
5–7.

• Mj′ = {i ∈ M : i ∈ Mj for all j ∈ Jt
i′} is the subset of machines which are able

to print all the jobs in Jt
i′ ;
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• pj′i is the sum of the time required by machine i′ to print all the jobs in Jt
i′ (i.e.,

∑j∈Jt
i′

vj/θi) and the sum of the setup times between two consecutive jobs in

j ∈ Jt
i′ required by machine i′;

• dj′ = min{dj : j ∈ Jt
i′};

• wj′ = max{wj : j ∈ Jt
i′}.

The operation of creating super-jobs is iteratively repeated until it is not possible to
create further super-jobs.

Algorithm 3: Preprocessing method for creating super-jobs
1 input: M, J, R′ ⊆ R tools for which switching operations are highly time

consuming;
2 for t ∈ R′ do
3 select i′ ∈ M such that |Jt

i′ | = maxi∈M |Jt
i |;

4 while |Jt
i′ | > 1 do

5 create the sequence St
i′ composed of jobs in Jt

i′ , ordered by due date;
6 if |St

i′ | > γ then
7 eliminate from St

i′ the last |St
i′ | − γ jobs;

8 end
9 from the sequence St

i′ , create the super-job j′;
10 remove from J all jobs in St

i′ and add the super-job j′;
11 end
12 end
13 return J

5.4.3 Constructive Phase

The constructive phase of the proposed GRASP is presented in Algorithm 4. This
method assigns, at each iteration, a job to the first available machine, generating, for
each machine i ∈ M, a feasible sequence of jobs Si. From step 5 to step 11, a set Li of
jobs is created by selecting from Ji the jobs behind schedule, i.e., {j ∈ Ji : dj < µi}. If
there are no jobs behind schedule, then Li is created by selecting from Ji the feasible
jobs that can only be printed by machine i, i.e., {j ∈ Ji : |Mj| = 1}. If Li is still empty,
then we set Li = Ji. At Step 13, the elements in Li are evaluated by the objective
function z defined in (5.1). This leads to the creation of a Restricted Candidate List
(RCL), formed by the jobs in Li whose addition at the end of the current sequence
of jobs Si produces the smallest incremental costs. More precisely, let δmin and δmax
be, respectively, the smallest and the largest incremental costs produced by adding
a job in Li at the end of Si and let α ∈ [0, 1] be a threshold input parameter. The
RCL is created by considering all jobs j ∈ Li whose incremental costs produced by
adding job j at the end of Si is in the range [δmin; δmin + α(δmax − δmin)]. At step 14,
the job to be incorporated into the partial solution is randomly selected from those
in the RCL. At step 16, the availability date µi of the machine is updated, as well as
the magazine state of machine i (according to the policy introduced above in Section
5.4.1 for determining the tool switching schedule). Finally, at step 18, the feasible
schedule S = {Si : i ∈ M} is returned.
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Algorithm 4: GRASP Constructive phase

1 input: M, J, threshold parameter α, availability date µi for each i ∈ M;
2 Si = ∅ (i ∈ M);
3 while J 6= ∅ do
4 select a machine i ∈ M such that µi = mini′∈M{µi′ : Ji′ 6= ∅} and Ji 6= ∅;
5 Li := {j ∈ Ji : dj < µi};
6 if (Li = ∅) then
7 Li = {j ∈ Ji : |Mj| = 1};
8 end
9 if (Li = ∅) then

10 Li = Ji;
11 end
12 build RCL (using threshold parameter α) from elements in Li;
13 select a job j ∈ RCL at random;
14 add job j at the end of sequence Si;
15 remove job j from J;
16 update µi and the magazine state of machine i;
17 end
18 return S = {Si : i ∈ M}.

5.4.4 Local Search Phase

To improve the solution S built by Algorithm 4, four local search procedures, namely
LS1, LS2, LS3, and LS4, are applied on S.

Procedure LS1 is based on an intra-machine swap neighborhood: it selects a ma-
chine i ∈ M, two job positions h and g (1 ≤ h < g ≤ ni) in the sequence Si of jobs,
and then generates a new sequence Si

(h,g) = (ji
1, . . . , ji

g, . . . , ji
h, . . . , ji

ni
) by switching

job ji
h with job ji

g (see Figure 5.2). The generated solution is better than the current
one if z(Si

(h,g)) < z(Si).

µi

Si
(h,g) ji

1
. . . ji

h
. . . ji

g . . . ji
ni

Si
ji
1

. . . ji
g . . . ji

h
. . . ji

ni

Figure 5.2: Intra-machine swap move used in LS1

Procedure LS2 is based on an inter-machine insertion neighborhood,: it selects
two machines i, i′ ∈ M and two job positions h (1 ≤ h ≤ ni) and g (1 ≤ g ≤ ni′)
in the sequences of jobs Si and Si′ , respectively, and, if i′ ∈ Mjih

, removes job ji
h

from Si (generating Si
(jih,h−) = (ji

1, . . . , ji
h−1, ji

h+1, . . . , ji
ni
)) and inserts ji

h before the g-

th position of Si′ (generating Si′
(jih,g+) = (ji′

1 , . . . , ji′
g−1, ji

h, ji′
g , . . . , ji

ni′
)) (see Figure 5.3).

The generated solution is better than the current one if z(Si
(jih,h−)) + z(Si′

(jih,g+)) <

z(Si) + z(Si′).
Procedure LS3 is based on an intra-machine sub-sequence insertion neighbor-

hood. Given a feasible sequence of jobs Si = (ji
1, . . . , ji

ni
) and two job positions h and

g (1 ≤ h < g ≤ ni) of Si, a sub-sequence of consecutive jobs Si
(h−g) = (ji

h, . . . , ji
g)
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Figure 5.3: Inter-machine insertion neighborhood move used in LS2

is t-maximal if si
jh−1 jh

> t (or h = 1), si
jg jg+1

> t (or g = ni), and si
j,j+1 ≤ t (for each

j = h, . . . , g − 1). Stated in another way, a t-maximal sub-sequence is a maximal
sequence of consecutive jobs to be executed on machine i whose setup times do not
exceed t. By definition, a t-maximal sub-sequence Si

(h−g) = (ji
h, . . . , ji

g) of Si is com-
posed of at least two jobs. In LS3, first, for each i ∈ M, a list Li of all t-maximal
sub-sequences of Si is created. Then, LS3 selects a machine i ∈ M, a t-maximal
sub-sequence Si

(h−g) in Li, a job position k (1 ≤ k < h or g < k ≤ ni), and then

generates a new sequence Si
k,(h−g) = (ji

1, . . . , ji
k−1, ji

h, . . . , ji
g, ji

k . . . , ji
ni
) by inserting the

sub-sequence Si
(h−g) before the k-th position of Si (see Figure 5.4). The generated

solution is better than the current one if z(Si
k,(h−g)) < z(Si).
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Figure 5.4: Intra-machine sub-sequence insertion move used in LS3

Procedure LS4 is based on an intra-machine swap neighborhood similar to LS1
but involving just jobs composing a super-job. Procedure LS4 selects a machine
i ∈ M, a super-job in Si composed of the sequence St

i′ , two job positions h and g (1 ≤
h < g ≤ ni) in the sequence of jobs St

i′ , and then generates a new sequence Si
(h,g) =

(ji
1, . . . , ji

g, . . . , ji
h, . . . , ji

ni
) by switching job ji

h with job ji
g. The generated solution is

better than the current one if z(Si
(h,g)) < z(Si).

All four local search procedures operate in a first-improvement manner. For each
i ∈ M, all the possible moves are considered, evaluating all the solutions in the
neighborhood until an improving solution (if any) is found. In case an improving
solution is detected, the current solution S is updated and the local search is re-
executed on S. If, instead, no improving solution is found, then the local search
returns the current local optimal solution.

5.5 Computational Results

In this section, we present extensive computational experiments on various instances
derived from a real-world application. All the algorithms have been coded in Python
version 3.9.2 and run on a computer with Intel(R) Xeon(R) Gold 6130 with CPU 2.10
GHz and RAM 16 GB, using Windows 10 Pro 64-bit.
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5.5.1 Test Instances and Parameters Setting

We consider 25 real-world instances, each corresponding to a week of production
at the company. The number of jobs spans from 50 to 116, while the number of
machines is 10. The parameter β in the objective function has been set to 0.2, as
required by the company (an evaluation obtained by attempting different β values is
provided in Section 5.5.5 below). The parameter t in the intra-machine sub-sequence
insertion moves is set to 125, because it has been noticed that with this value LS3
produces good-quality solutions.

In the GRASP algorithm, the threshold parameter α has been set to 0.1 and the
number Imax of iterations to 10. These two values have been chosen according to
preliminary experimental trials and guarantee to obtain stable and good results on
most of the tested instances within relatively small computing times. More specif-
ically, Table 5.5 shows the average values of the solutions obtained by the GRASP
over the 25 instances by varying α ∈ {0, 0.1, 0.2, . . . , 1}. Columns z, TST, and WT
give the average value of the objective function, the total setup time, and the total
weighted tardiness, respectively. These values are used for drawing, in the form of
a diagram, Figure 5.5, which confirms that setting α to 0.1 is the best choice.

Figure 5.6 is instead obtained after running the GRASP with Imax set to 50. First,
we calculated the percentage gap between the best current solution value in a given
iteration of the GRASP and the solution value returned at the end of the execution.
Then, we calculated the average gap over the 25 instances and reported it on the left
vertical axis of Figure 5.6. We can observe that after 10 iterations the curve is almost
flat. Moreover, in the right vertical axis of Figure 5.6 the average time necessary to
complete each iteration is reported. As expected, Figure 5.6 shows that the run time
of the GRASP is a linear function of Imax. From a managerial point of view, we point
out that a disruption may occur during the everyday activity, so the company may be
interested in re-running the algorithm to obtain a modified schedule, preferably in a
short time. Setting the parameter Imax to 10 allows the GRASP to quickly converge
(in less than 200 seconds, on average) to good solution values.

The value of γ has been set to 5, as this value guarantees to deal with tractable
problems in practice without increasing the total tardiness. Table 5.6 shows the aver-
age values of the solutions obtained by the GRASP over the 25 instances by varying
γ ∈ {0, 1, 2, . . . , 10}. Columns z, TST, WT, and sec give the average value of the
objective function, the total setup time, the total weighted tardiness, and the exe-
cution run-time, respectively. The values in the column γ and z are reported as a
diagram in Figure 5.7, which confirms that setting γ to 5 is the optimal choice. From
a managerial point of view, it is evident that γ has a crucial impact on the quality
of the solutions obtained. Large values of gamma allow the company to save setup
time, but at the expense of additional weighted tardiness. From a managerial point
of view, when facing similar applications we suggest to perform a preliminary anal-
ysis with different γ values. Its impact is very relevant also for the applicability of
the problem, because time increases in a relevant way when γ decreases.

5.5.2 Evaluation of the GRASP Algorithm

Table 5.7 shows the results of the first round of experiments, which we performed
with the aim of comparing the GRASP without preprocessing (obtained by setting
γ = 1) against the algorithms CGHA and ISHA by Iori, Locatelli, and Locatelli
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α z TST WT

0.0 9322.7 10726.6 3707.0
0.1 9139.9 10509.4 3661.9
0.2 9183.4 10566.8 3650.0
0.3 9188.1 10551.6 3734.0
0.4 9194.7 10580.8 3650.1
0.5 9253.4 10631.2 3742.0
0.6 9273.4 10679.2 3650.1
0.7 9265.4 10673.2 3634.1
0.8 9307.0 10711.2 3690.3
0.9 9336.1 10773.6 3586.1
1.0 9344.6 10783.2 3590.0

Table 5.5: Average
GRASP solution values
over the 25 instances, by
varying the threshold

parameter α
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Figure 5.6: Evolution of the percentage gap with respect to the best known
solution (on the left vertical axis) and the average time necessary to complete

each iteration (reported in gray on the right vertical axis)

γ z TST WT sec

0 9685.1 11216.0 3561.6 347.2
1 9613.6 11122.6 3577.5 300.1
2 9363.7 10804.0 3602.6 273.2
3 9350.7 10783.4 3620.1 222.8
4 9237.2 10638.2 3633.2 181.9
5 9137.0 10509.8 3645.8 177.9
6 9175.1 10542.6 3705.1 165.9
7 9255.7 10654.2 3861.5 149.1
8 9228.3 10572.4 3851.9 132.1
9 9256.1 10582.4 3950.9 130.8

10 9264.1 10592.4 3950.9 131.3

Table 5.6: Average
GRASP solution values
over the 25 instances,
by varying parameter γ
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[275], which represent the state of the art for the problem. Note that the CGHA cor-
responds to the constructive phase of the GRASP with α = 0 and without prepro-
cessing, while the ISHA corresponds to the GRASP, again with α = 0 and without
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preprocessing. Entries in the columns |J| and |M| give the number of jobs and of
machines, respectively. Columns z, TST, and WT give the value of the objective
function, the total setup time, and the total weighted tardiness, respectively. Entries
in the columns sec exhibit the execution run-time, expressed in seconds. Entries in
the row AVG provide the average values of each column, while GAP presents the
percentage gaps from the mean of the solution values produced by the CGHA. Table
5.7 shows that the CGHA finds feasible solutions in a very short time (always less
than three tenths of a second). the ISHA improves the quality of the solution found
by the CGHA on average by 12%, with percentage improvements on TST and WT
equal to 9.9% and 32.2%, respectively. The GRASP without preprocessing is always
able to produce better solutions than the ISHA (and therefore also of the CGHA),
with an improvement in the average function value of 18.4%, and a percentage re-
duction of TST and WT equal to 16.9% and 33.4%, respectively.

Table 5.7: Computational results of CGHA, ISHA, and GRASP without pre-
processing

Inst. |J| |M|
CGHA [275] ISHA [275] GRASP no preproc.

z TST WT sec z TST WT sec z TST WT sec

I01 50 10 7188.6 8485 2003.0 0.1 6272.7 7390 1803.3 5.0 5460.6 6325 2003.2 50.4
I02 76 10 9938.7 11855 2273.6 0.1 9213.1 11100 1665.5 20.7 8901.0 10710 1664.8 201.6
I03 78 10 9488.4 10725 4542.1 0.1 8044.1 9120 3740.3 18.2 7691.5 8605 4037.6 179.9
I04 82 10 9544.2 11295 2540.8 0.1 8383.3 9970 2036.3 23.8 7422.8 8745 2134.0 219.1
I05 83 10 11682.2 10740 15451.2 0.1 9423.8 9265 10058.8 49.3 8826.7 8470 10253.7 500.4
I06 85 10 11285.4 13375 2927.0 0.1 10417.5 12390 2527.3 21.1 8828.9 10405 2524.5 194.8
I07 85 10 12039.7 13540 6038.7 0.1 10823.3 12320 4836.7 23.5 9903.1 11345 4135.7 240.2
I08 86 10 12069.9 14270 3269.3 0.1 11401.3 13560 2766.3 22.9 10621.2 12610 2666.1 232.0
I09 87 10 9747.4 10850 5337.2 0.1 8455.1 10135 1735.3 28.0 7611.1 9105 1635.6 252.9
I10 89 10 10682.0 12730 2489.9 0.1 9449.7 11490 1288.3 31.3 8865.0 10735 1385.0 293.9
I11 89 10 12617.7 14035 6948.4 0.1 11526.5 13470 3752.4 57.1 10345.8 12045 3549.2 557.6
I12 89 10 13234.6 14130 9653.2 0.1 11179.9 12035 7759.4 28.2 10607.8 11395 7458.9 254.1
I13 91 10 13820.4 15635 6562.0 0.1 12404.7 14290 4863.3 27.7 11455.7 12955 5458.7 254.8
I14 93 10 11237.6 13710 1347.9 0.1 10305.7 12720 648.4 27.9 8744.7 10845 343.4 267.4
I15 97 10 11559.4 13295 4617.1 0.2 10479.7 12320 3118.3 36.3 9991.8 11735 3018.8 329.9
I16 98 10 14232.0 15625 8659.9 0.1 12530.8 13825 7353.8 38.6 10999.1 12060 6755.6 353.7
I17 99 10 11344.5 13850 1322.7 0.1 9598.1 11770 910.6 39.7 9573.2 11740 906.2 370.0
I18 102 10 11002.2 13010 2971.2 0.2 10025.1 11940 2365.6 33.6 9761.5 11685 2067.4 357.6
I19 102 10 12298.6 14285 4352.8 0.1 10974.9 13080 2554.5 42.6 10198.0 12235 2049.9 407.5
I20 105 10 13993.1 16180 5245.6 0.2 11672.7 13705 3543.5 44.1 11184.8 13145 3343.9 413.1
I21 107 10 12235.8 13255 8159.2 0.2 10534.0 11880 5150.2 49.7 9618.4 10685 5351.8 461.1
I22 109 10 14626.1 14545 14950.7 0.2 12054.3 12680 9551.6 46.8 11990.2 12575 9651.2 468.9
I23 110 10 13079.0 15320 4115.1 0.1 11522.7 14225 713.3 68.4 10386.2 12730 1011.2 668.1
I24 113 10 13103.4 14605 7097.0 0.1 11527.1 12835 6295.5 46.8 11086.8 12410 5793.8 447.3
I25 116 10 12757.6 15295 2607.9 0.2 11288.0 13910 799.9 70.4 10343.3 12680 996.7 703.3

AVG 92.8 10 11792.3 13385.6 5419.3 0.1 10380.3 12057 3673.5 36.1 9616.8 11119 3607.9 347.2
GAP -12.0% -9.9% -32.2% -18.4% -16.9% -33.4%

The second round of experiments, whose results are given in Table 5.8, com-
pares the solutions obtained by means of the CGHA+P, i.e., the CGHA combined
with the preprocessing Algorithm 3, the ISHA+P, i.e., the ISHA combined with the
preprocessing Algorithm 3, and the GRASP (with preprocessing). Even with the in-
troduction of the preprocessing method, the behavior of the algorithms is similar to
the one observed in the first round of experiments. CGHA+P is very fast, as all the
solutions are calculated in less than two tenths of a second. ISHA+P improves the
quality of the initial solution found by CGHA+P by 10.6% on average, reducing TST
and WT by 9.4% and 21.9%, respectively. The GRASP is always able to produce the
best solutions, improving by 14.1% the average solution value, and reducing TST
and WT by 13.0% and 25.7%, respectively.

By comparing the results in Table 5.7 with those in Table 5.8, we can observe that,
with respect to the algorithms under analysis, the introduction of the preprocessing
method always allows to obtain better quality solutions within shorter computing
times, which are basically halved.
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Table 5.8: Computational results of CGHA, ISHA, and GRASP with prepro-
cessing

Inst. |J| |M|
CGHA+P ISHA+P GRASP

z TST WT sec z TST WT sec z TST WT sec

I01 50 10 5400.6 6275 1903.2 0.1 5084.6 5880 1903.2 3.1 4572.6 5265 1803.2 35.1
I02 76 10 9754.3 11600 2371.5 0.1 8886.1 10840 1070.6 14.7 8162.5 9910 1172.3 142.4
I03 78 10 8856.6 10060 4042.9 0.1 8008.6 9150 3442.9 11.5 7629.0 8775 3044.9 103.0
I04 82 10 9484.3 11170 2741.5 0.1 8339.6 9940 1938.2 15.2 7540.6 8940 1943.0 156.6
I05 83 10 10598.5 10060 12752.7 0.1 9600.0 8985 12059.8 12.6 9295.2 8730 11556.2 114.7
I06 85 10 10269.5 11855 3927.6 0.2 8825.0 10400 2525.1 10.5 8649.7 10230 2328.7 100.5
I07 85 10 11723.6 12820 7338.1 0.1 9771.8 10855 5439.2 10.7 9852.1 10880 5740.7 120.0
I08 86 10 10753.5 12775 2667.6 0.1 9917.0 11780 2465.1 15.4 9272.8 11025 2263.8 138.2
I09 87 10 8054.9 9435 2534.3 0.1 7843.1 9220 2335.3 16.1 7643.0 8870 2735.1 147.1
I10 89 10 9567.8 11485 1899.0 0.1 8134.6 9695 1892.9 16.4 7853.2 9445 1486.2 136.1
I11 89 10 12114.4 13630 6052.2 0.1 10800.7 12690 3243.4 31.4 10200.5 11990 3042.7 314.2
I12 89 10 11518.7 12085 9253.5 0.1 10643.2 11215 8356.0 16.9 9732.2 10300 7460.9 152.8
I13 91 10 12041.2 13635 5665.9 0.1 10885.3 12540 4266.4 14.6 10439.8 12010 4159.1 142.2
I14 93 10 10289.1 12675 745.6 0.1 9492.8 11780 344.2 13.3 8492.6 10530 343.1 138.2
I15 97 10 11151.8 12810 4518.8 0.1 9893.1 11760 2425.6 14.6 9502.0 11295 2330.1 135.6
I16 98 10 12624.0 13565 8859.8 0.1 10919.2 11760 7556.2 18.4 10727.2 11695 6856.2 171.2
I17 99 10 10916.4 13240 1621.8 0.1 9996.3 12165 1321.3 18.4 9466.7 11605 913.7 182.3
I18 102 10 9658.5 11180 3572.6 0.2 8874.1 10500 2370.3 16.4 8565.4 10165 2166.8 169.7
I19 102 10 10495.1 12380 2955.5 0.2 9536.1 11355 2260.3 20.6 9234.8 10980 2253.8 186.6
I20 105 10 12194.1 13930 5250.5 0.1 10753.4 12180 5047.2 24.7 10449.6 12150 3648.0 208.5
I21 107 10 10530.1 11500 6650.7 0.2 9698.6 10685 5753.2 22.8 9551.1 10500 5755.4 218.6
I22 109 10 12648.8 12225 14344.1 0.1 10721.6 11065 9347.8 22.6 10746.1 11045 9550.3 218.6
I23 110 10 11254.6 13615 1813.2 0.1 10104.1 12155 1900.5 42.4 9703.9 11705 1699.5 425.4
I24 113 10 12456.8 13895 6704.2 0.1 10976.4 12295 5702.0 26.5 10699.5 11900 5897.5 258.5
I25 116 10 11697.7 13995 2508.5 0.1 10188.3 12510 901.7 33.6 10442.9 12805 994.7 319.3

AVG 92.8 10.0 10642.2 12075.8 4907.8 0.1 9515.7 10936.0 3834.7 18.5 9137.0 10509.8 3645.8 177.4
GAP -10.6% -9.4% -21.9% -14.1% -13.0% -25.7%

5.5.3 Comparison with Company Solutions

It is difficult to obtain a consistent comparison between solutions obtained by the
proposed approaches and practical industrial solutions executed by the company,
because some interruptions may occur during the daily activities. Thus, to be con-
sistent with the evaluation of the solutions returned by the proposed approaches,
given a company solution we re-calculate all the times required for the machine
setup phases (following the scheme presented in Section 5.4.1) and all the times re-
quired for the printing phases (by simply dividing vj by θi). In this way, start and
completion times (and thus also the tardiness and the setup times) of all jobs of the
practical industrial solutions have been re-calculated and provide a sound means of
comparison.

Graphical representations of the results that we obtained are shown in Figures
5.8, 5.9, and 5.10, where we compare company and the GRASP solutions in terms
of objective function values, TST, and WT, respectively. To comply with company
privacy requirements, we do not report explicit numerical values. Still, it is evident
that the GRASP provides better solutions and is always capable to outperform, by
a considerable margin, the quality of the company solutions. This result is due to
the fact that the GRASP algorithm is able to find solutions with a much shorter total
setup time and almost equivalent total weighted tardiness.

5.5.4 Impact of the local search procedures

The next round of experiments, whose results are highlighted in Table 5.9, aims
at studying the impact of the local search components (described in Section 5.4.4)
on the initial solution computed by CGHA+P. In CGHA+P+LS1, CGHA+P+LS2,
CGHA+P+LS3, and CGHA+P+LS4, the constructive phase is completed by means
of CGHA+P and then the solution is brought to a local minimum thanks to LS1,
LS2, LS3, and LS4, respectively. The results show that, in terms of solution quality,
LS1 is able to produce on average the largest improvement. Indeed, the value of
the objective function improves by 10.6% with LS1, by 4.8% with LS2, by 0.7% with
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Figure 5.8: Comparative evaluation of the objective function value between
company and the GRASP solutions
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Figure 5.9: Comparative evaluation of the total setup time (TST) between
company and the GRASP solution
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Figure 5.10: Comparative evaluation of the total weighted tardiness (WT)
between company and the GRASP solution
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LS3, and by 2.4% with LS4. This result highlights the strongly sequence-dependent
nature of the problem. Indeed, by re-sorting each sequence of jobs by means of the
intra-machine swap moves of LS1 and LS4 it is possible to obtain a large improve-
ment over the initial solution. Even if LS3 brings just slight improvements of the
initial solution, they are obtained in a very short time (always less than two tenths
of a second), thus LS3 is able to provide a good trade-off between the computational
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effort that it requires and its effectiveness. On the other side, LS2 is the most time-
consuming local search, reflecting the fact that the size of the inter-machine insertion
neighborhood is the largest one.

Table 5.9: Comparative evaluation of the different local search procedures

Inst. |J| |M|
CGHA+P CGHA+P+LS1 CGHA+P+LS2 CGHA+P+LS3 CGHA+P+LS4

z sec z sec z sec z sec z sec

I01 50 10 5400.6 0.1 5212.6 0.4 5392.6 1.7 5400.6 0.1 5336.6 1.3
I02 76 10 9754.3 0.1 9219.0 5.8 9729.7 8.0 9726.5 0.1 9622.2 0.9
I03 78 10 8856.6 0.1 8192.9 1.9 8684.2 6.6 8565.1 0.1 8692.6 1.1
I04 82 10 9484.3 0.1 8499.8 2.9 8569.8 10.3 9472.3 0.1 9340.3 3.1
I05 83 10 10598.5 0.1 9951.5 3.8 10190.3 6.5 10484.1 0.1 10598.5 1.4
I06 85 10 10269.5 0.2 9309.6 1.3 9993.4 8.4 10269.5 0.2 10157.3 2.6
I07 85 10 11723.6 0.1 10555.9 2.3 11439.8 6.8 11719.6 0.1 10943.8 2.3
I08 86 10 10753.5 0.1 10045.6 4.2 10124.9 9.8 10733.6 0.1 10601.5 1.4
I09 87 10 8054.9 0.1 7935.4 2.6 8010.9 11.3 7970.8 0.1 8034.9 1.3
I10 89 10 9567.8 0.1 9102.9 3.8 9551.9 10.6 9431.8 0.1 9411.8 1.4
I11 89 10 12114.4 0.1 10838.9 25.8 11913.1 8.0 12047.3 0.1 11835.7 2.7
I12 89 10 11518.7 0.1 10863.1 2.8 11350.8 11.5 11430.7 0.1 11366.7 1.7
I13 91 10 12041.2 0.1 11137.7 3.8 11968.8 7.7 11953.2 0.1 11965.2 2.5
I14 93 10 10289.1 0.1 9616.9 2.3 10172.7 11.5 10185.3 0.1 10044.7 1.8
I15 97 10 11151.8 0.1 9945.6 3.7 11135.6 8.6 11151.8 0.1 11023.7 2.0
I16 98 10 12624.0 0.1 11909.3 5.9 12619.6 9.1 12579.9 0.1 12139.7 2.1
I17 99 10 10916.4 0.1 10276.5 4.8 10851.6 10.1 10868.5 0.1 10482.9 3.6
I18 102 10 9658.5 0.2 9202.8 5.3 9621.8 8.3 9626.5 0.2 9222.5 3.2
I19 102 10 10495.1 0.2 9876.0 4.1 10443.1 13.5 10415.1 0.2 10483.1 2.1
I20 105 10 12194.1 0.1 11394.1 6.2 12058.2 16.7 12062.8 0.1 11710.3 3.0
I21 107 10 10530.1 0.2 9990.8 5.0 10377.2 13.8 10506.2 0.2 10314.0 2.7
I22 109 10 12648.8 0.1 10798.5 8.2 12516.3 10.7 12465.0 0.1 12601.1 2.4
I23 110 10 11254.6 0.1 10674.2 12.2 11209.4 17.1 11238.7 0.1 10866.4 3.6
I24 113 10 12456.8 0.1 11489.3 6.3 12187.9 14.6 12325.1 0.1 12064.8 5.0
I25 116 10 11697.7 0.1 10460.9 11.5 11140.3 17.7 11689.5 0.1 11417.5 6.8

AVG 92.8 10 10642.2 0.1 9860.0 5.5 10161.8 10.4 10572.8 0.1 10411.1 2.5
GAP -10.6% -4.8% -0.7% -2.4%

Table 5.10 shows the results of the round of experiments that aims at evaluating
the impact of the local search components on the GRASP. In GRASP-LS1, GRASP-
LS2, GRASP-LS3, and GRASP-LS4, we do not invoke either LS1, LS2, LS3, or LS4 at
steps 5-6 of Algorithm 2, respectively. The results are consistent with those in Table
5.9. Indeed, the quality of the solutions decreases on average by 7.2% with GRASP-
LS1, by 1.0% with GRASP-LS2, by 0.6% with GRASP-LS3, and by 2.4% with GRASP-
LS4. The results highlight once more the strongly sequence-dependent nature of the
problem. Indeed, without invoking the intra-machine swap moves of LS1 and LS4 in
the local search phase of the GRASP, we obtain a relative large GAP with the GRASP
solution. GRASP-LS2 is the fastest procedure under analysis, reflecting the fact that
the LS2 is the most time-consuming local search, as highlighted by the previous
round of experiments. On the other hand, GRASP-LS3 is the most time-consuming
procedure. This result is consistent with the fact that LS3 is the fastest among the
proposed local search procedures.

5.5.5 The Role of β in the Interplay Between WT and TST

In this section, we provide some insights for managing production operations through
a detailed analysis of the interplay between WT and TST by varying parameter β.
Specifically, we analyse the impact of the two different objective function compo-
nents in the PMPST by means of a Pareto front analysis. In Figure 5.11, a Pareto
front is obtained by means of the weighted sum method (see, e.g., Ehrgott [170]).
This method consists in solving different single objective problems obtained by a
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Table 5.10: Comparative evaluation of the impact of the different local search
procedures on the GRASP

Inst. |J| |M|
GRASP GRASP-LS1 GRASP-LS2 GRASP-LS3 GRASP-LS4

z sec z sec z sec z sec z sec

I01 50 10 4572.6 35.1 5008.6 22.8 4884.6 14.5 4548.6 26.5 4824.6 19.4
I02 76 10 8162.5 142.4 8833.1 86.2 8175.1 66.4 8514.1 135.7 8546.6 130.8
I03 78 10 7629.0 103.0 8067.7 74.7 7685.2 32.7 7724.1 92.4 7536.6 90.2
I04 82 10 7540.6 156.6 8607.9 128.0 7551.9 52.7 7820.1 143.6 8036.1 126.1
I05 83 10 9295.2 114.7 9622.5 68.3 9755.2 54.8 9499.2 109.6 9315.3 99.7
I06 85 10 8649.7 100.5 9005.2 80.3 8521.5 35.3 8635.6 92.0 8563.5 74.6
I07 85 10 9852.1 120.0 11004.1 93.9 9896.0 44.8 9768.1 109.8 10368.2 92.6
I08 86 10 9272.8 138.2 9920.9 96.5 9265.4 52.9 9140.9 131.6 9512.8 126.0
I09 87 10 7643.0 147.1 7687.2 114.4 7635.1 36.3 7639.5 134.2 7667.0 144.3
I10 89 10 7853.2 136.1 8418.7 110.1 7821.7 40.0 8193.9 130.0 8349.8 119.7
I11 89 10 10200.5 314.2 11154.2 97.6 10346.4 223.2 10612.7 286.0 10832.5 285.3
I12 89 10 9732.2 152.8 10295.1 113.7 9987.4 42.7 9571.5 142.4 9895.0 135.9
I13 91 10 10439.8 142.2 10844.0 92.1 10661.1 62.6 10167.7 131.5 10432.8 119.1
I15 93 10 8492.6 138.2 9165.0 103.5 8662.0 37.0 8643.9 125.4 8684.6 112.7
I16 97 10 9502.0 135.6 10719.6 90.2 9121.2 58.1 9398.6 128.7 9326.5 109.3
I17 98 10 10727.2 171.2 11634.7 105.4 10524.2 109.8 10695.6 163.1 11384.2 145.3
I18 99 10 9466.7 182.3 10131.0 122.2 9471.6 78.4 9480.1 173.9 9558.6 138.7
I19 102 10 8565.4 169.7 9165.8 101.7 8947.4 66.0 8745.7 148.6 9017.6 132.7
I20 102 10 9234.8 186.6 9571.2 142.0 9452.0 57.5 9391.4 175.1 9247.1 159.0
I21 105 10 10449.6 208.5 11502.3 162.1 10849.6 68.0 10941.1 205.2 10845.4 185.8
I22 107 10 9551.1 218.6 9605.4 156.5 9655.3 74.1 9551.1 215.4 9401.5 185.4
I23 109 10 10746.1 218.6 12076.7 118.4 10618.6 117.8 10658.1 201.0 10818.9 186.3
I24 110 10 9703.9 425.4 10549.1 202.2 9846.0 211.7 9645.2 325.8 10232.7 361.6
I25 113 10 10699.5 258.5 11420.0 179.0 10640.6 112.9 10748.2 247.5 11152.0 204.7
I26 116 10 10442.9 319.3 10860.2 204.1 10747.7 158.8 10119.1 299.1 10375.2 296.6

AVG 92.8 10.0 9137.0 177.4 9794.8 114.6 9228.9 76.4 9194.2 163.0 9357.0 151.3
GAP 7.2% 1.0% 0.6% 2.4%

linear scalarization of the multiple objective function components. In the PMPST,
the Pareto optimal solutions are sought one by one by changing the value of param-
eter β. Table 5.11 reports the average values of the Pareto solutions obtained over
the 25 instances described in Section 5.5.1 by varying β in the set {0, 0.1, 0.2, . . . , 1}.
For each value taken by β, columns z, TST, and WT give the average value of the
objective function, of the total setup time, and of the total weighted tardiness, re-
spectively. These values are used for drawing the Pareto front in Figure 5.11.

As expected, the average of the total setup time increases with the increasing of β,
while the average of the total weighted tardiness decreases. The value 0.2, chosen by
the company as the value to be used in the real-world application, represents indeed
a good balance. It guarantees to obtain schedules with a very short total setup time
and an acceptable weighted tardiness. Other good values, which would however
lead to higher TST values, are those between 0.3 and 0.9. Notably, the solutions
of the two mono-objective problems should be disregarded because they are very
unbalanced: when optimizing only TST (i.e., β = 0), we obtain WT = 4552.9, which
is 45% away from the best value that we obtain by optimizing only WT (3106.1); on
the other side, when optimizing only WT (β = 1), we obtain TST = 13700.4, which
is 32% away from the best WT value (10407.2). With β = 0.2, instead, the solution
obtained differs only by 20% from the best WT value and by 1% from the best TST
value.
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β z TST WT

0.0 10407.2 10407.2 4552.9
0.1 9814.6 10445.4 4137.1
0.2 9191.3 10555.6 3733.9
0.3 8513.9 10598.6 3649.5
0.4 7808.2 10726.4 3430.9
0.5 7058.5 10733.0 3384.0
0.6 6319.0 10884.0 3275.7
0.7 5525.0 10959.4 3196.0
0.8 4756.7 11094.4 3172.3
0.9 3943.3 11349.4 3120.4
1.0 3106.1 13700.4 3106.1

Table 5.11: Iterative re-
sults of Pareto optimal

solutions by changing
the parameter β
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5.5.6 The Impact of the Random Component of the GRASP on the final
solution

In this section, we analyze the impact of the random component of the GRASP con-
struction phase on the obtained solutions. For this purpose, we ran the GRASP 10
times. Table 5.12 shows the results of this round of experiments. More specifically,
in the column "Best solution found" (resp. "Worst solution found") the values of the
best solution (resp. worst solution) are reported, whereas in the column "Average
solution values" we report the average values over the 10 solutions. We can observe
that the values do not differ much from each other. The percentage gap between the
objective function values of the best and worst solutions is on average 2.5%, while
the percentage gap between the best and the average solution values is just 0.6%.
Furthermore, the average standard deviation of the solution values is 115.5, which
is very low compared to the average value (9162.5). This low value confirms the
limited impact of the random component of the GRASP and the robustness of the
overall algorithm.

5.5.7 Computational Results on an Available Instance Set

Due to the commercial nature of this research, we cannot publicly share the real-
world instances used in the previous sections. However, to allow and encourage
future research on this interesting problem, we propose a new instance set com-
posed of 25 realistic but randomly created instances. The set is available online at
https://github.com/regor-unimore/Parallel-Print-Machine-Problem-with-S

etup-Times/tree/main/Instances and has been generated by applying some ran-
domization to the original 25 real-world instances. In the new set that we obtained
in this way, the number of jobs spans from 50 to 130, and the number of machines
varies in the set {8, 9, 10, 11, 12}. Table 5.13 shows the results obtained by means
of our best algorithm, namely the GRASP (with preprocessing). All the solutions
that we obtained have been also made publicly available at the web site mentioned
above.

https://github.com/regor-unimore/Parallel-Print-Machine-Problem-with-Setup-Times/tree/main/Instances
https://github.com/regor-unimore/Parallel-Print-Machine-Problem-with-Setup-Times/tree/main/Instances
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Table 5.12: The Impact of the Random Component of the GRASP on the final
solution

Inst. |J| |M|
Best found Solution Worst found Solution Average Values

z TST WT z TST WT z TST WT sec

I01 50 10 4572.6 5265.0 1803.2 4820.6 5575.0 1803.2 4654.5 5377.5 1823.2 40.4
I02 76 10 8382.2 10185.0 1170.8 8562.4 10410.0 1172.1 8392.5 10231.0 1151.8 111.4
I03 78 10 7455.9 8460.0 3439.7 7756.3 8860.0 3341.7 7614.2 8657.0 3522.0 134.7
I04 82 10 7723.7 9145.0 2038.3 7531.8 8930.0 1939.2 7503.4 8908.0 1949.0 155.9
I05 83 10 9462.4 8865.0 11852.0 9531.0 8900.0 12054.9 9473.9 8829.5 12074.8 168.6
I06 85 10 8477.1 9940.0 2625.6 8617.3 10085.0 2746.6 8530.7 10026.5 2600.6 126.1
I07 85 10 9763.7 10870.0 5338.6 10180.2 11415.0 5241.1 9933.1 11038.5 5620.1 160.6
I08 86 10 9292.8 11125.0 1964.0 9616.6 11430.0 2363.0 9275.1 11105.0 2094.5 150.3
I09 87 10 7535.1 8910.0 2035.5 7639.5 9025.0 2097.3 7631.0 8931.0 2447.0 192.9
I10 89 10 8714.2 10570.0 1290.9 8193.9 9920.0 1289.4 8193.9 9920.0 1289.4 188.4
I11 89 10 10256.9 11935.0 3544.4 10300.6 12115.0 3043.1 10298.1 12112.0 3043.1 316.1
I12 89 10 9771.5 10300.0 7657.5 9843.2 10315.0 7955.9 9749.1 10257.0 7906.2 129.0
I13 91 10 10335.7 11930.0 3958.6 10716.8 12380.0 4064.1 10393.0 11984.5 4071.3 138.4
I14 93 10 8397.3 10410.0 346.7 8701.8 10765.0 448.9 8484.1 10534.0 414.1 318.0
I15 97 10 8976.5 10515.0 2822.6 9418.3 11065.0 2831.7 9239.3 10853.5 2877.9 151.7
I16 98 10 10572.0 11325.0 7559.8 10883.4 11715.0 7557.2 10627.3 11506.5 7188.0 165.3
I17 99 10 9267.0 11330.0 1015.1 9975.3 12165.0 1216.6 9585.0 11747.5 1116.1 161.4
I18 102 10 8657.3 10255.0 2266.7 9129.6 10845.0 2267.8 8847.3 10494.0 2337.4 227.5
I19 102 10 9155.0 10930.0 2054.8 9351.5 11120.0 2277.6 9214.8 10957.0 2327.6 430.7
I20 105 10 10781.7 12490.0 3948.3 11093.7 12990.0 3508.7 10751.0 12513.5 3858.0 213.2
I21 107 10 9346.1 10295.0 5550.4 9546.2 10595.0 5351.1 9364.7 10301.0 5682.6 112.5
I22 109 10 10646.3 10995.0 9251.6 10778.2 11125.0 9391.0 10707.1 11015.0 9502.1 325.7
I23 110 10 9481.1 11300.0 2205.6 9940.2 11925.0 2405.7 9700.9 11638.0 2074.4 301.0
I24 113 10 10612.5 11665.0 6402.4 10903.6 12175.0 6499.7 10742.6 11966.5 5899.7 113.0
I25 116 10 10054.3 12295.0 1091.7 10274.5 12555.0 1398.6 10155.2 12407.5 1214.4 273.4

AVG 92.8 10.0 9107.6 10452.2 3729.4 9332.3 10736.0 3770.6 9162.5 10532.5 3763.4 192.3
GAP 2.5% 2.7% 1.1% 0.6% 0.8% 0.9%

Table 5.13: Computational results of the GRASP on the publicly-available
instance set

Inst. |J| |M|
GRASP

z TST WT sec

BI01 50 8 4025.8 4920.0 404.0 31.5
BI02 75 8 6335.9 7885.0 103.5 126.4
BI03 80 8 8197.6 10190.0 105.2 139.5
BI04 80 8 6380.8 7530.0 938.2 154.8
BI05 80 8 6849.3 8195.0 1403.5 119.5
BI06 80 9 6545.1 7625.0 2012.6 116.8
BI07 85 9 8002.9 9415.0 1823.4 121.8
BI08 85 9 7601.1 8615.0 2454.5 131.7
BI09 90 9 6997.9 8615.0 408.3 205.7
BI10 95 9 8323.6 10070.0 1208.8 164.2
BI11 90 10 6671.6 8230.0 402.0 96.8
BI12 90 10 7926.5 9195.0 1094.4 136.7
BI13 95 10 8915.3 10110.0 3529.7 166.8
BI14 100 10 9791.3 11555.0 2129.6 174.6
BI15 100 10 8371.1 10065.0 1309.6 174.7
BI16 100 11 7379.6 9140.0 113.0 158.3
BI17 100 11 7435.3 9105.0 414.5 179.1
BI18 105 11 9209.0 11415.0 19.2 123.6
BI19 105 11 8789.6 10730.0 808.8 209.7
BI20 110 11 9941.9 11795.0 1370.6 181.6
BI21 115 12 9569.8 11480.0 843.9 232.1
BI22 120 12 10071.5 12395.0 324.3 247.7
BI23 120 12 9823.1 11575.0 2512.7 163.4
BI24 120 12 10100.3 11295.0 4543.4 213.9
BI25 130 12 11268.1 13605.0 858.3 295.9

AVG 96 10 8181.0 9790.0 1245.4 162.7

5.6 Conclusions

In this chapter, we tackled an interesting real-world industrial problem arising in a
food packaging company located in the city of Reggio Emilia (Italy). In particular,
we addressed a scheduling problem that consists in assigning printing jobs to a het-
erogeneous set of parallel flexographic printer machines, with the aim of minimizing
a weighted sum of total weighted tardiness and total setup time.

To face the problem, we proposed a GRASP algorithm that makes use of mul-
tiple local search procedures and of a preprocessing method aimed at producing
smaller and more tractable instances. Computational results on real-world instances
showed that the solution quality obtained by the GRASP is far superior than the one
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obtained by a constructive heuristic, even when the latter is further improved by the
use of local search procedures. This improved performance comes at the cost of an
increase in the total computing time. However, this increase is considerably reduced
by the introduction of the preprocessing method and, in practical terms, is not an
issue. Indeed, since the planned activities of the company cover about one week,
the computational times required by the GRASP (three minutes on average) are still
largely acceptable for practical use.

A comparative evaluation with company solutions showed that the GRASP is
able to produce significantly better quality solutions than the ones proposed by the
decision makers of the company. Indeed, it finds solutions with much shorter total
setup time and almost equivalent total weighted tardiness. These good results were
confirmed also in practice, as the company is currently using the algorithm for their
weekly production scheduling.

Several relevant extensions to this work may be taken into account as future
research directions. The FSS metaheuristic has been recently applied with success
to different combinatorial optimization problems (see, e.g., Jovanovic, Sanfilippo,
and Voß [286]), including a scheduling problem on unrelated parallel machines with
sequence-dependent setup times (see Jovanovic and Voß [287]). It would be inter-
esting to extend the proposed GRASP by combining it with the concept adopted in
the FSS metaheuristic.

In addition, an ILP formulation or a constraint programming model for solving
exactly the PMPST could be introduced. A constraint programming approach has
been recently applied for solving the multi-resource-constrained unrelated parallel
machine scheduling problem with sequence-dependent setup times (see Yunusoglu
and Topaloglu Yildiz [502]). Due to the size of real-world instances, we point out
that an ILP approach could be not suitable for solving the PMPST. Indeed, Iori et al.
[278] proposed an ILP formulation for solving a simplified version of the PMPST on
a single machine and, even for very small instances (10 jobs), the proposed method
is not able to find the optimal solution.

A rolling horizon framework could also be considered to allow the decision mak-
ers to use the algorithm even on a daily basis, thus looking for further improve-
ments. Furthermore, since in the real-world application processing and setup times
are subject to significant uncertainties (which are not captured by the heuristic eval-
uation procedure we proposed in Section 5.4.1), another interesting future research
project consists in estimating these times through the application of machine learn-
ing methods. Finally, as a practical extension of our work, it would be interesting to
make the GRASP directly interact with the incoming product warehouse, through
the introduction of the release dates of jobs.
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Chapter 6

Setup time prediction using
machine learning algorithms:
A real-world case study*

In this chapter, we explore the use of machine learning regression algorithms for
setup time prediction and we apply them to a real-world scheduling application aris-
ing in the color printing industry. To enhance the quality of setup time evaluations
and narrow the gap between scheduling theory and practice, we aim at exploiting a
data-driven approach based on machine learning algorithms. Using a real-world in-
dustrial dataset, we train three different machine learning models: linear regression,
random forests, and gradient boosting machines. The experimental results demon-
strate that the gradient boosting machine approach obtains the best performance
overall, immediately followed by random forests. For both such models, the mean
squared error on the predicted setup times is less than half of that of the heuristic
evaluation method proposed in Chapter 5.

6.1 Introduction

According to Allahverdi and Soroush [21], setup time (ST) can be defined as the time
required to prepare the necessary resource (e.g., machines, people) to perform a task
(e.g., a job, an operation). Setup operations may include, for instance, switching
tools, cleaning up, changing material, adjusting tools, etc. As all these operations
are often strongly time-consuming and may take a considerable part of the entire
production time, the reduction of STs plays a crucial role in scheduling. The deep
connection between scheduling activities and STs was analyzed in detail by Abd-
Alsabour [1], who provided a comprehensive survey on scheduling problems in-
volving STs.

Although, in many real-world manufacturing environments, STs are influenced
by various and random factors (e.g., crew experience, breakdowns of a tool or a
machine, lack of personnel, complex and non-fixed procedures, etc.), in the extant
literature, the vast majority of scheduling studies consider STs as a given input tak-
ing a deterministic value, calculated by means of simplistic average-based methods
that are not capable to catch the complexity of reality. As already highlighted by
Kim and Bobrowski [304], assuming stochastic STs as fixed and constant values may
lead to develop inefficient schedules. This is also confirmed by practitioners, who

*The results of this chapter were accepted to international conference: M. Iori, M. Lippi, A. Lo-
catelli, and M. Locatelli. "Setup time prediction using machine learning algorithms: A real-world case
study". In: 24ème édition du congrès annuel de la Société Française de Recherche Opérationnelle et d’Aide à la
Décision ROADEF 2023.
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often view the lack of uncertainty and dynamic elements in the modeling of schedul-
ing processes as the major source of gap between scheduling theory and practice
(see Sabuncuoglu and Goren [428]). Only a few of studies, recently reviewed by
Allahverdi [19], took into account the issues related to the STs uncertainty. These
studies mainly focused on robust optimization approaches (modeling STs as a prob-
ability distribution, or a fuzzy number, or a random variable within some interval),
but did not provide any methods to estimate these STs.

In this work, we seek to fill this gap of the literature by provide models that
can be used to provide good estimations of the STs starting from a set of empirical
data. In detail, we use machine learning (ML) regression algorithms to predict the
STs, and we apply them to a real-world scheduling application arising in the color
printing industry, where a finite set of jobs must be sequentially performed by a het-
erogeneous set of parallel flexographic printer machines. Specifically, we deal with
uncertain machine-dependent and job sequence-dependent setup times (UMJSSTs) with an
additional issue: the UMJSST between two jobs not only depends on the two jobs
and the involved machine, but also on all jobs previously scheduled on that specific
machine, owing to tool configurations (see, e.g., Soares and Carvalho [457]). Indeed,
jobs have different tooling requirements and it is often beneficial to leave a certain
tool unused in a machine magazine only to use it again a few jobs later (see Iori,
Locatelli, and Locatelli [275, 276] and Iori et al. [278]). We use the acronym UMJESTs
to denote UMJSSTs with such job entire-sequence-dependent characteristic.

In the addressed real-world industrial application, UMJESTs are strongly time-
consuming (around 65% of the total production time) and subject to significant un-
certainties, because depending on many factors: characteristics of the specific ma-
chine, status of the machine (which directly depends on the jobs already processed),
characteristics of the current job, operators’ experience, etc. It turns out that the
problem of predicting such times is not trivial and may require a large computa-
tional effort (see Iori, Locatelli, and Locatelli [275]). Iori, Locatelli, and Locatelli [276]
introduced a heuristic evaluation method (HEM), which expresses UMJESTs in terms
of some specific and pre-fixed features (i.e., characteristics of jobs and machines).
This analytic approach suffers from intrinsic limitations and cannot account for the
whole complexity of the problem (see [276]).

To improve the accuracy of UMJESTs prediction, we aim at exploiting a data-
driven approach based on ML algorithms to be exploratory both in selecting the
significant features and expressing the UMJESTs in terms of these features. Using
a real-world industrial database, we train three different ML models: linear regres-
sion (LR), random forest (RF), and gradient boosting machine (GBM). For each model,
we take into account a wide set of features and several possible inter-dependencies
among them, in order to identify a parsimonious but comprehensive subset of these
features. We compare the three models with HEM by Iori, Locatelli, and Locatelli
[276] on a real-world industrial test set. The experimental results demonstrate that
the GBM approach obtains the best performance overall, immediately followed by
RF. For both models, the mean squared error on the predicted UMJESTs is less than
half of that of HEM, proving their effectiveness in modeling the application. The
results are of interest because the ML models can be easily adapted to deal with ST
evaluation in many other scheduling problems.
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6.2 Brief Literature Review

Almost the totality of scheduling studies that tacked into account issues related to
the STs uncertainty mainly focused on providing robust optimization methods to
best manage the shortcomings in the STs prediction (see González-Neira, Montoya-
Torres, and Barrera [210]). In this context, the uncertainty of STs is generally rep-
resented by interval data or fuzzy description. Aydilek, Aydilek, and Allahverdi
[34, 35], Allahverdi and Allahverdi [20], and Allahverdi [23] modeled sequence-
independent STs by using interval data, while Yimer and Demirli [497] and Lu, Lin,
and Ying [345] represented sequence-independent and sequence-dependent family
STs, respectively, by fuzzy sets. To represent the shortcomings associated with es-
timation of sequence-dependent STs, Lu, Lin, and Ying [345] and Naderi-Beni et al.
[382] used fuzzy description, while Behnamian and Fatemi Ghomi [44] used interval
description.

As sequence-dependent STs are subject to many complexities, the problem of pre-
dicting such times is not trivial and, as already highlighted in Section 6.1, standard
analytical approaches cannot account for the whole complexity of the problem. Sur-
prisingly, advanced analytic methods received limited attention in this context. To
the best of our knowledge, the only study that dealt with STs estimation complexities
is the one by Cheng et al. [107], who proposed a random-forest-based metaheuristic
to minimize the makespan in an unrelated parallel machines scheduling problem
with UMJSSTs.

In contrast to the traditional sequence-dependent STs, the UMJESTs between two
jobs depends also on all jobs previously scheduled on the involved machine, rather
than only on the two jobs. This characteristic of STs typically arises in the context of
flexible manufacturing systems (see, e.g., Chryssolouris [115]), where a flexible man-
ufacturing machine (see, e.g., [124]) is capable to handle different types of operations
performed by the available tools installed in its limited capacity magazine. As each
job requires a subset of tools and the magazine cannot hold all tools at once, some
tool switches may be necessary when performing two jobs in succession (see, e.g.,
Laporte, Salazar-González, and Semet [329]). If a tool switch is required, then a pos-
itive setup time is incurred. Thus, it is often beneficial to leave a certain tool unused
in the magazine to use it again a few jobs later. For instance, a tool in the magazine
not required by the job currently being processed may be kept in the magazine if
required to process the next jobs (see, e.g., Soares and Carvalho [457]). This feature
of UMJESTs adds further complexities and uncertainties to STs and makes the prob-
lem of predicting UMJESTs even more challenging to solve in practice. To be able
to solve practical industrial instances, Iori, Locatelli, and Locatelli [276] introduced
HEM, a quick evaluation method to predict UMJESTs based on a specific policy for
determining the required setup operations. This simplistic approach is not capable
to incorporate the whole complexity of reality and, in addition, does not take into
account any issues related to the STs uncertainty. In this chapter, to improve the
accuracy of UMJESTs prediction, we employ three different ML techniques: LR, RF,
and GBM. There is a vast literature on these three ML algorithms and we refer the in-
terested reader to the comprehensive books by Montgomery, Peck, and Vining [377],
Breiman et al. [65], and to the article by Natekin and Knoll [383], respectively.
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6.3 Methodology

Firstly, we formulate the task of forecasting UMJESTs as a regression problem, where
the aim is to predict a UMJEST, represented by a real positive number y ∈ R, as a
function f of a n-dimensional set A of attributes/features. We recall that the UMJEST
between two jobs depends on many factors: the involved machine, the two jobs, and
on all jobs previously scheduled on that specific machine, thus the attributes in A
must express all these factors. On the other hand, a too wide set of attributes may
lead to overfitting issues and uncertainty predictions, reducing the effectiveness of
the ML models (see Kuhn and Johnson [319]). Thus, we take into account a wide set
of features and several possible inter-dependencies among them, and then, using a
feature selection method based on feature importance scores generated by RF, we
identify a parsimonious but comprehensive subset of these features.

As already stated in Section 6.1, we use supervised ML algorithms to build math-
ematical models for predicting UMJESTs. In this phase, a finite dataset Dtrain =
{(xi, yi)}m

i=1 of pairs, each containing both the n-dimensional input vector of features
xi = (x1

i , . . . , xn
i ) ∈ A and the desired output yi ∈ R, is provided. The learning task

is to find a function f̃ belonging to a certain family F of machine learning models (in
our case LR, RF, and GBM) that, for each input xi, has a predicted output ỹi = f̃ (xi)
as close as possible to the provided target yi.

As first basic approach, we compute f as a linear combination of input features
f (x) = βnxn + . . . , β1x1 + β0 with the vector of parameters (β0, . . . , βn) that we wish
to learn. LR is a widely employed technique that achieves good results when a linear
function can represent a reasonable approximation of the relation holding between
input and output variables (see Lewis-Beck and Lewis-Beck [336]).

In our problem there is a complex non-linear relation between target and het-
erogeneous variables (nominal, ordinal, and scalar), thus we also consider two non-
linear models largely used in ML applications, namely RF and GBM, and able to
manage heterogeneous data. More specifically, a RF is an ensemble learning method
made up of a number of decision trees, called estimators, which each produce their
own predictions. The RF model combines the predictions of the estimators to pro-
duce a more accurate prediction (see Breiman [64]). Also a GBM is an ensemble of
weak prediction models (in our case decision trees) combined into a single strong
learner in an iterative fashion. As each weak learner is added, a new model is fitted
to provide a more accurate estimate of the response variable. The new weak learners
are maximally correlated with the negative gradient of the loss function, associated
with the whole ensemble (see Hastie, Tibshirani, and Friedman [234]).

The aim of this work is to provide a general-purpose ML framework for predict-
ing sequence-dependent STs. This is reflected in the choice of using general-purpose
ML models, without resorting to more sophisticated and case-specific approaches
difficult to replicate and adapt to other cases. More specifically, the choice fell on
RM and GBM because, among the classic ML algorithms, their characteristics fit
well with those required by the problem. Indeed, RM and GBM perform well with a
high number of heterogeneous features and can be applied also when the data con-
tain missing values, typical characteristics of a real-world industrial database. An
additional important feature of RF and GBM is the evaluation of the relevance of a
variable by means of measures, which provides a greater readability of the models
and allows the identification of possible redundancy among features.

Finally, we compare the three obtained models, with the aim of finding the one
that performs the best on our real-world dataset. The final unbiased generalization
error of the selected model is computed on a provided test set Dtest.
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6.4 Case and Data Description

We apply the general-purpose ML framework introduced in Section 6.3 to a real-
world scheduling application arising in the color printing industry. The problem
consists in evaluating UMJESTs between jobs that are processed by a set of heteroge-
neous flexographic printer machines along a scheduling period from January 2019
to October 2022.

6.4.1 Case Description

Flexography is a printing technology, generally used in packaging industry, that al-
lows for printing on almost any type of material such as plastic, paper, cellophane,
and aluminum foil [305]. A flexographic printer machine is a flexible manufacturing
machine [124] able to handle different types of operations (i.e., coloring, embossing,
and perforating) which are performed by the available tools installed in its mag-
azine. The number of tools that a machine can equip is limited by its magazine
capacity. For instance, the number of different ink cartridges that a machine can
simultaneously load is bounded by its number of color groups.

The setup phase consists in preparing the machine for printing a new job and
may require performing some tool switching operations. Indeed, the limited maga-
zine capacity of the machines and the demand to process various types of jobs often
induce to replace the currently installed tools with other tools required to process
the next jobs. Since the variety of colors required by the jobs is enormous, changing
the ink cartridges in the color groups of a machine is definitely the most frequent
switching operation performed between two jobs.

This operation requires a washing process to remove the previous color residue
from the inner surface of the color group, because such residual could affect the qual-
ity of the next job. The process to wash a color group takes a long time and depends
directly on the specific colors involved. For instance, if the process requires to switch
a black ink cartridge with a white one, then a complete cleaning of the corresponding
color group is necessary to preserve the white purity, with the effect of significantly
raising the ST. If, instead, the process requires to change a color group from a pale
green ink to a dark green ink, then the setup takes less time because the dark green
ink is not easily altered by the residuals of the pale green ink and therefore the rela-
tive color group needs just a quick washing. Moreover, if a printer machine equips
an automatic washing system, the color groups can be washed in parallel, other-
wise they have to be washed one by one. Hence, the time required for the setup
phase is machine-dependent, job-dependent, and job-sequence-dependent. Indeed,
it depends on the washing system of the machine, on the tools (i.e., ink cartridges,
embossing rollers, and perforating rolls) available in the magazine, and on the tools
required by the next job.

6.4.2 Data Description

The dataset D is provided by the company as an extraction of orders from the
database of the Company Management System. It is composed of 16 595 samples
collected between January 2019 and October 2022. In this format, each sample, corre-
sponding to a processed job, has 74 attributes (e.g., job id, machine id, tools required
by the job, list of colours required by the job, id of the job processed right before by
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the same machine, etc.), many of which are removed because irrelevant for the pre-
diction problem (e.g., order quantity, due date, release date, etc.). Table 6.1 reports
the set of 26 attributes that may impact the UMJESTs.

Table 6.1: Features of dataset D

Feature Description Type

F1 Identification code of the job Int
F2 Identification code of the job processed right before Int
F3 Identification code of the set of required colours Int
F4 Identification code of the type of printed material Int
F5 The number of required colors Int
F6 1st colour required String
...

...
...

F15 10th colour required String
F16 Print mode, i.e, mirror or normal print String
F17 If perforating roller is required Boolean
F18 Identification code of the required special varnish Int
F19 Identification code of the required embossing roller Int
F20 Identification code of the required corona treatment Int
F21 If job requires compostable inks Boolean
F22 Identification code of the machine used to process the job Int
F23 The starting date of setup phase Date
F24 The starting time of setup phase Time
F25 The end date of setup phase Date
F26 The end time of setup phase Time

6.4.3 Pre-processing and Cleaning Phase

In this section, we outline the pre-processing and manipulation procedures applied
to the dataset D to enhance its quality, structure, and information content, with the
aim of improving the performance of machine learning models. The features of the
refined dataset are listed in Table 6.2.

As UMJESTs depend on many factors, the features reported in Table 6.1 are not
capable to provide a complete representation of the information necessary for an
accurate prediction of the UMJESTs. Thus, as a first step, we enriched the dataset by
introducing additional features.

The results of a preliminary statistical analysis showed that UMJESTs are influ-
enced not only by the specific machine used to process a job but also by some specific
machine characteristics, i.e., the number of color groups on the machine and whether
the machine has an automatic washing system. More precisely, when the machine
has an automatic washing system, the color groups can be washed simultaneously,
otherwise, they must be washed sequentially. Thus, feature F22 (see Table 6.1 ) was
divided into three separate features, i.e., f1, f2, and f3 (see Table 6.2), reporting these
additional information.

Because of the sequence-dependent nature of the UMJESTs, we replaced the fea-
ture F2 reporting the identification code of the job processed right before with new
features f60- f116 (see Table 6.2) describing all its characteristics.

After statistical analysis, we identified four tools for which the involving switch-
ing operations are most time-consuming, namely, white cartridge, varnish cartridge,
and embossing roller. Because of the entire sequence-dependent nature of the UM-
JESTs, for each of these tools, we added an additional feature (future f117- f119, respec-
tively, see Table 6.2), which indicates whether a switching operation involving such
a tool is required or whether that tool is already held in the magazine, considering
also all the jobs previously processed by the involved machine. On the other hand,
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Table 6.2: Features of the dataset D after the pre-processing and manipula-
tion phase.

Feature Description Type

f1 Identification code of the machine used to process the job Int
f2 Whether the machine has an automatic washing system Boolean
f3 The number of color groups of the machine Int
f4 The number of colors required by the job Int
f5 Identification code of the required embossing roller Int
f6 Whether perforating roller is required Boolean
f7 Identification code of the required special varnish Int
f8 Whether job requires compostable inks Boolean
f9 Identification code of the required corona treatment Int
f10 Print mode, i.e, mirror or normal print String
f11 Identification code of the type of printed material Int
f12 Identification code for the whole set of required colours. Int
f13 Whether colour red is required. Boolean
...

...
...

f59 Whether colour yellow is required. Boolean
f60 Print mode of previous job (i.e, mirror or normal) String
f61 Identification code of the type of printed material of previous job Int
f62 Identification code of the set of required colours of previous job Int
f63 Whether colour red is required by previous job Boolean
...

...
...

f116 Whether colour yellow is required by previous job Boolean
f117 Whether a switch involving white cartridge is necessary. Boolean
f118 Whether a switch involving varnish cartridge is necessary. Boolean
f119 Whether a switch involving embossing roller is necessary. Boolean
f120 Whether f12 is equal to f62. Boolean
f121 UMJEST (in minutes) between current and previous jobs Int

future f120 indicates if a the current job and the job processed right before requiring
exactly the same colours.

The transformation of categorical features F5-F16 into boolean features f13- f59 was
implemented to simplify the representation of the data and improve its suitability
for use by machine learning algorithms. Indeed, this conversion process not only
simplifies the representation of the data, but also enhances the performance of the
algorithms by reducing the dimensionality of the dataset.

For each sample, we only know the starting and ending time of the setup phase,
thus UMJEST was calculated as the difference between these times. As we do not
know the exact working timetable of the machines (indeed, machines may work
overtime), we removed all samples for which the setup phase takes place on two
different days. Indeed, in this case, we cannot accurately calculate UMJEST. After
this cleaning procedure, around 40% of data were removed. We detected and re-
moved outliers by using a boxplot-based method Schwertman and Silva [443] and
all corrupted data. Finally, we replaced features F23 to F26 with feature f121 reporting
the value of UMJESTs measured in minutes.

6.4.4 Feature Selection

We used the feature importance scores generated by RF to identify the most impor-
tant features of the dataset. More precisely, feature importance is calculated based
on the average decrease in impurity over all trees in the forest. The higher the impor-
tance score of a feature, the more it was used to split the data across decision trees.
We use a threshold parameter α ∈ [0, 1], to select only the features with importance
scores above α. Thus, we train the models using only the features with importance
scores above α.
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Figure 6.1: The distribution of UMJESTs fromD and the resulting probability
distribution.

6.5 Experiments

This section illustrates the computational experiments conducted to assess the effec-
tiveness of the proposed models and compare them with EEM. Data preparation,
pre-processing, and statistical analysis (see Section 6.4.3) were performed in Python
using pandas and numpy libraries. The three models introduced in Section 6.3 were
developed in Python by using the open-source H2O library [7]. The tests were exe-
cuted on a 2.3GHz Intel Xeon Gold 6252N with 16 GB of memory.

6.5.1 Experimental Setup

After the pre-processing and cleaning phase described in Section 6.4.3), we obtained
a datasetD composed of 9005 samples. Figure 6.1 shows, on the left, the distribution
of UMJESTs observed in D and, on the right, the probability distribution that best
fits the data, namely, beta distribution (found using Distfit library) with parameters
α and β equal to 2.93 and 6.47, respectively.

The models were fit on Dtrain composed of 7890 samples and collected between
January 2019 and April 2022. As the number of entries in the available real-world
industrial dataset is limited, to avoid reducing the number of samples by remov-
ing a held-out dataset and running into any bias problem, the evaluation of ML
models was performed via 10-fold cross-validation on Dtrain, a procedure normally
recommended for small real-world datasets [418]. More precisely, we randomly par-
titioned data into 10 equally-sized parts, named folds, and we trained 10 different
models on 9 parts, using for testing purposes the part that was not used for training.
Finally, the models were tested on a new corpus, named Dtest, composed of 1937
samples, which was collected later on, between May 2022 and October 2022.

6.5.2 Parameter Tuning

According to H2O library, LR corresponds to the Gaussian family model in which the
link function is the identity, and the density corresponds to a normal distribution.
LR model was fit using the least squares approach.

We trained RF by means of the random grid search, provided by H2O, over a
specific hyper-parameter space defined according to preliminary experimental trials.
Specifically, the number of trees takes values in {20, 50, 80, 110, 140, 170, 200}, the
sampling rate in {0.63, 0.70, 0.80, 1.00}, the maximum depth of each tree in {10, 15,
20,25, 30, 35}, the number of columns to randomly select at each level in {10, 20, 40,
60, 80}, the number of bins to be included in the histogram and then split at the best
point in {8, 16, 32, 64, 128, 256, 512, 1024}.
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To train GBM, we used AutoML, an automated hyper-parameter tuning method
provided by H2O.

Feature importance scores generated by RF are reported in Figure 6.2. We trained
LR, RF, and GBM with α ∈ {0, 0.05, 0.10, 0.15, 0.20, 0.25}, using the first 120, 52, 47,
40, 26, and 18 features, respectively.
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Figure 6.2: Feature importance scores of the first 60 features generated by RF.

6.5.3 Forecasting Results

Performance evaluations of the obtained models were done by measuring their qual-
ity using four statistical indicators: mean square error (MSE), root mean square error
(RMSE),mean absolute error (MAE), and root mean squared log error (RMSLE). More

precisely, MSE= 1
m ∑m

i=1 (yi − ỹi)
2, RMSE=

√
1
m ∑m

i=1(yi − ỹi)2, MAE= 1
m ∑m

i=1 |yi − ỹi|,

and RMSLE=
√

1
m ∑m

i=1(log yi − log ỹi)2.
Table 6.3 shows the computational results of EEM, LR, RF, and GBM for different

values of α. Thus, models were trained using different numbers of features, de-
pending on the value of α, and their performances were evaluated in terms of MSE,
RMSE, MAE, and RMSLE.

RF and GBM models consistently outperform the LR and EEM, with lower MSE,
RMSE, and MAE values for all considered threshold parameter values. In particu-
lar, their performances increase as α increases (up to α = 0.10), indicating that fea-
ture selection helps to simplify the models and reduce overfitting. More specifically,
Figure 6.3 highlights that setting α to 0.10 produces the best performance for both
models by striking a balance between having too many features, which may lead to
overfitting issues, and too few features, which may lead to an oversimplification of
models. On the other hand, the bad outcomes concerning LR are directly attributable
to the failure of the model to describe the complex and non-linear relation between
UMJESTs and variables.



100 Chapter 6. Setup time prediction using machine learning algorithms

Table 6.3: Computational results of EEM, LR, RF, and GBM.

Model α #features MSE RMSE MAE RMSLE

EEM - - 4080.60 61.28 46.58 -
LR 0.00 120 6422.50 80.14 58.53 -
RF 0.00 120 1995.00 44.66 36.67 0.42

GBM 0.00 120 1827.35 42.74 34.81 0.60
LR 0.05 52 4355.59 66.00 50.63 -
RF 0.05 52 1900.12 43.59 34.89 0.41

GBM 0.05 52 1816.73 42.62 34.65 0.40
LR 0.10 47 4353.31 65.98 50.61 -
RF 0.10 47 1853.33 43.05 34.73 0.40

GBM 0.10 47 1803.27 42.46 34.37 0.44
LR 0.15 40 4312.58 65.67 50.57 -
RF 0.15 40 1875.88 43.31 35.17 0.41

GBM 0.15 40 1821.83 42.68 34.73 0.40
LR 0.20 26 5065.27 71.17 55.12 -
RF 0.20 26 1903.73 43.63 35.69 0.41

GBM 0.20 26 1890.49 43.47 35.26 0.44
LR 0.25 18 5143.02 71.71 55.76 -
RF 0.25 18 2017.39 44.91 36.70 0.42

GBM 0.25 18 2058.74 45.37 37.48 0.43

6.6 Conclusions

In this paper, we faced the problem of predicting ST in the context of real-world
manufacturing environments. Although shortcomings in the ST prediction may
lead to develop inefficient schedules and represent a relevant source of gap between
scheduling theory and practice, ST estimation received limited attention in the liter-
ature. To fill this gap, we explored the use of ML regression algorithms to provide
good estimations of the ST. We applied these ML algorithms to a real-world schedul-
ing application arising in the color printing industry, where a finite set of jobs must
be sequentially performed by a heterogeneous set of parallel flexographic printer
machines. Specifically, we dealt with UMJSSTs which are subject to many complexi-
ties and typically arise in the context of flexible manufacturing systems.

After data preparation, pre-processing, and statistical analysis of a real-world in-
dustrial dataset, we trained three different ML models, namely, LR, RF, and GBM.
Computational experiments assessed the effectiveness of GBM approach, which ob-
tained the best performance overall, immediately followed by RF. For both models,
the mean squared error on the predicted UMJESTs is less than a third of LR and less
than half of that of EEM, a heuristic approach tailored for the same application.

The obtained results are of interest because the ML models can be easily adapted
to deal with ST evaluation in many other scheduling problems. In particular, as
a possible topic for future research, we are interested in embedding this approach
in scheduling algorithms to improve their accuracy and narrow the gap between
scheduling theory and practice.
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Appendix A

List of Acronyms

A.1 Acronyms, definitions, pages

ΓRKP Γ-Robust Knapsack Problem. 19

2D-UKPGC Two-Dimensional Unbounded Knapsack Problem with Guillotine Con-
straints. 37

2D-KPGC Two-Dimensional Knapsack Problem with Guillotine Constraints. 37

2D-KP Two-Dimensional Knapsack Problem. 36

3D-KP Three-Dimensional Geometric Orthogonal Knapsack Problem. 38

B&B Branch-and-Bound. 9, 29

B&C Branch-and-Cut. 16, 33

B&P Branch-and-Price. 42

BCMKP Budget-Constrained Multiple Knapsack Problem. 31

BCMP Bounded Change-Making Problem. 12

BKP Bounded Knapsack Problem. 11

BLKP Bilevel Knapsack Problem. 20

BLKPI Bilevel Knapsack Problem with Interdiction Constraints. 21

BOKP Biobjective Knapsack Problem. 45

BPP Bin Packing Problem. 7

C&P Cutting and Packing. 36

CCKP Constrained Compartmentalized Knapsack Problem. 20

CKP Compartmentalized Knapsack Problem. 20

CUF-ToSP ToSP with Constant setup times, Unordered tools, and Fixed sequence
of jobs. 2

D-KP d-Dimensional Orthogonal Knapsack Problem. 38

DP Dynamic Programming. 7, 29



106 Appendix A. List of Acronyms

EPTAS Efficient Polynomial Time Approximation Scheme. 29

FCMKP Fixed-Charge Multiple Knapsack Problem. 31

FPTAS Fully Polynomial Time Approximation Scheme. 9, 29

FSS Fixed Set Search. 70

GAP Generalized Assignment Problem. 7

GBM Gradient Boosting Machine. 92

GKSP Generalized Knapsack Sharing Problem. 15

GOF-ToSP ToSP with General setup times, Ordered tools, and Fixed sequence of
jobs. 2

GOV-ToSP ToSP with General setup times, Ordered tools, and Variable sequence of
jobs. 2

GQMKP Generalized Quadratic Multiple Knapsack Problem. 43

GRASP Greedy Randomized Adaptive Search Procedure. 38

GUF-ToSP ToSP with General setup times, Unordered tools, and Fixed sequence of
jobs. 2

HEM Heuristic Evaluation Method. 92

ILP Integer Linear Programming. 2, 6, 32

KP01 0-1 Knapsack Problem. 6, 27

KPCG Knapsack Problem with Conflict Graph. 15

KPS Knapsack Problem with Setup. 12, 31

KSP Knapsack Sharing Problem. 15

LP Linear Programming. 6, 33

LR Linear Regression. 92

MCKP Multiple-Choice Knapsack Problem. 14

MdKP Multidimensional Knapsack Problem. 32

MdKP-GUB Multidimensional Knapsack Problem with Generalized Upper Bound
Constraints. 36

MdMCKP Multidimensional Multiple-Choice Knapsack Problem. 34

MdQKP Quadratic Knapsack Problem with Multiple Knapsack Constraints. 42

MKAP Multiple Knapsack Assignment Problem. 30

MKP Multiple Knapsack Problem. 29
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MKPC Multiple Knapsack Problem with Conflicts. 31

MKPCC Multiple Knapsack Problem with Color Constraints. 31

MKPS Multiple Knapsack Problem with Setup. 31

ML Machine Learning. 92

MMdKP Multiple Multidimensional Knapsack Problem. 34

MMdKPF Multiple Multidimensional Knapsack with Family-Split Penalties. 34

MMKP Max-Min Knapsack Problem. 17

MMKP Multidemand Multidimensional Knapsack Problem. 34

MMRKP Min-Max Regret Knapsack Problem. 18

MOKP Multiobjective Knapsack Problem. 45

MSSP Multiple Subset Sum Problem. 30

NLKP Non-Linear Knapsack Problem. 39

NLMKP Non-Linear Multiple Knapsack Problem. 39

OKP Online Knapsack Problem. 43

ORKP Online Removable Knapsack Problem. 44

PCKP Precedence Constrained Knapsack Problem. 17

PMPST Parallel Print Machine Problem with Setup Times. 69

PTAS Polynomial Time Approximation Scheme. 22, 29

QKP Quadratic Knapsack Problem. 39

QKPCG Quadratic Knapsack Problem with Conflict Graphs. 41

QMKP Quadratic Multiple Knapsack Problem. 42

QMPCBC Quadratic Multiknapsack Problem with Conflicts and Balance Constraints.
43

RCL Restricted Candidate List. 77

RF Random Forest. 92

RKP Rectangular Knapsack Problem. 41

SQKP Symmetric Quadratic Knapsack Problem. 41

SSP Subset Sum Problem. 9

SSPNU Tool Switching Problem with non-Uniform Setup Times. 70

ST Setup Time. 91
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SVP Shortest Vector Problem. 30

ToSP Tool Switching Problem. 1, 70

TU Totally Unimodular. 51

UCMP Unbounded Change-Making Problem. 12

UKP Unbounded Knapsack Problem. 11

UMdKP Unbounded Multidimensional Knapsack Problem. 34

UMJSST Uncertain Machine-dependent and Job Sequence-dependent Setup Time.
92
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