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1 Introduction

The present paper deals with the existence of T-periodic solutions of the
T-periodic system of complex planar equationsu′ = p1(t, u, v)

v′ = p2(t, u, v),
(P)

where p1 and p2 are second order polynomials whose coefficients are T-periodic
continuous functions from R into C.
Like it will be clear from the examples of the last section, (P) represents a generali-
zation of the well known complex periodic Riccati equation

u′ = u2 + g(t),

where g : R→ C is a continuous T-periodic function.

The existence of periodic solutions of equations of the type

u′ =
n∑
j=0

cj(t)u
j (E)

is an extensively investigated subject.
For example, in 1973 Lloyd [5] studied the problem when the polynomial at the right
hand-side has real-valued coefficients.
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More recently several authors have been concerned with complex-valued polynomial
equations depending also by the conjugate of the solution (see Mawhin [7], Srzednicki
[11] and the references therein).

(E) is considered in Campos-Ortega [4] and Miklaszewski [8], whose papers deal
with the non-existence of periodic solutions, and in Campos [3], who analizes the
possible dynamics of the complex periodic Riccati equation, e.g. the case n = 2.

As far as we know the only papers dealing with the existence of periodic solutions
of (E) with complex-valued coefficients are those of Borisovich-Marzantovich [1] and
[2].

Following their idea, we consider the system (P) under the further assumption
that the coefficients of the polynomials have an holomorphic extension to a neigh-
bourhood of the unit disc, i.e. that they are developable in Fourier series with all
the coefficients corresponding to negative indexes equal to zero. Moreover we look
for solutions having the same property.

This stronger assumption allows us to pose the problem in a smaller space, at the
risk of loosing some solutions, but simplifying the problem, because of the multipli-
cability of the mean value functional.

In section 2 we introduce the normed space in which the coefficients are taken,
proving some properties we will use in the sequel. In section 3 we present the
topological method upon which the existence result is based. Like in the works
of Borisovich-Marzantovich it is a continuation theorem, but slightly different from
the one used there. The main theorems are contained in section 4, where we also
show that when (P) is reduced to a second order polynomial equation we get the
same existence result obtained in [2] and we apply the existence theorem to some
generalization of the complex periodic Riccati equation.

2 A space of functions

First of all we need to introduce some notations and to recall some basic prop-
erties of the spaces of functions we will use in the following.

Given a real number T > 0, S1(T ) and D(T ) will represent as usual the sets of
complex numbers of module respectively equal to and less than T

2π
. More precisely

S1(T ) =

{
z ∈ C : |z| = T

2π

}

and

D(T ) =

{
z ∈ C : |z| < T

2π

}
.

Let us now consider the maps

ϕ : {u : R→ CT -periodic} → {ũ : S1(T ) → C}
u → ũ : S1(T ) → C

T
2π
eiθ → u

(
T
2π
θ
)
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and
ψ : {ũ : S1(T )→ C} → {u : R → CT -periodic}

ũ → u : R → C
t → ũ

(
T
2π
ei

t
T

2π
)
.

It immediately follows that

(ϕ ◦ ψ)(ũ)

(
T

2π
eiθ
)

= ψ(ũ)

(
T

2π
θ

)
= ũ

(
T

2π
ei

T
2π
θ 2π
T

)
= ũ

(
T

2π
eiθ
)

and conversely

(ψ ◦ ϕ)(u)(t) = ϕ(u)

(
T

2π
ei

t
T

2π

)
= u

(
T

2π

t

T
2π

)
= u(t),

which means that ϕ is bijective and ϕ−1 = ψ. In what follows we will identify each
T−periodic function u : R → C with its image ũ through the map ϕ. Besides,
we will also identify a function u : [0, T ] → C, such that u(0) = u(T ), with its
continuous extension to the whole real line.

Finally, given a continuous function u defined in [0,T], we will denote by ck the
k-th coefficient of the Fourier’s development of u, i.e.

ck =
∫ T

0
u(t)e−i

t
T

2πkdt.

CH(T ) will denote the closure of the set of continuous T -periodic functions from R
into C having an holomorphic extension in a neighbourhood of D(T ).

Proposition 2.1. CH(T ) = {u : R → C continuous T - periodic, developable in

Fourier series: ck = 0 ∀ k < 0 and lim sup
k→+∞

k
√
|ck| < 1}.

Proof. If u has an extension u1 holomorphic in the open set D(T + 2πε), its Taylor
series centered at any point of D(T + 2πε) converges to the function itself in the
biggest open disc centered in the point and contained in the set, therefore

u1(z) =
+∞∑
k=0

u
(k)
1 (0)

k!
zk ∀ z ∈ D(T + 2πε),

where k! stands for the factorial of k.
Moreover the Cauchy’s integral formula holds in any closed curve contained in the
set and having index in the origin equal to 1, therefore

u
(k)
1 (0) =

k!

2πi

∫
S1(T )

ũ(ξ)

ξk+1
dξ,

which implies that

u1(z) =
+∞∑
k=0

zk

2πi

∫
S1(T )

ũ(ξ)

ξk+1
dξ ∀ z ∈ D(T + 2πε).



626 V. Taddei

Integrating now by substitution, we get

∫
S1(T )

ũ(ξ)

ξk+1
dξ =

∫ 2π

0

ũ
(
T
2π
eiθ
)
i(

T
2π

)k
eikθ

dθ =
∫ T

0

u(t)i(
2π
T

)k+1
eik

T
2π
t
dt =

(2π)k+1i

T k
ck.

Hence

u1(z) =
+∞∑
k=0

ck

(
2πz

T

)k
∀ z ∈ D(T + 2πε)

and, in particular,

u

(
T

2π
θ

)
=

+∞∑
k=0

cke
ikθ ∀ θ ∈ [0, 2π],

which is equivalent to the developability in Fourier series of u with all the coefficients
corresponding to negative indexes equal to zero.
Moreover the radius of the development in power series of u1 is bigger than or equal
to 1

T
2π

+ε
, therefore

lim sup
k→+∞

k

√√√√|ck|
(

2π

T

)k
≤ 1

T
2π

+ ε
,

which implies that

lim sup
k→+∞

k
√
|ck| ≤

1

1 + 2π
T
ε
< 1.

Viceversa if

u(t) =
+∞∑
k=0

cke
ik t
T

2π ∀ t ∈ [0, T ]

and

lim sup
k→+∞

k
√
|ck| =

1

1 + 2π
T
ε
< 1

then

lim sup
k→+∞

k

√√√√(2π

T

)k
|ck| =

2π
T

1 + 2π
T
ε

=
1

T
2π

+ ε
.

Hence the radius of convergence of the power series
∑+∞
k=0 ck(

2πz
T

)k is T
2π

+ ε, which
implies that the function

u1(z) =
+∞∑
k=0

ck

(
2πz

T

)k
is an extension of u in the neighbourhood D(T + 2πε) of D(T ), because

u1

(
T

2π
eiθ
)

=
+∞∑
k=0

cke
ikθ = u

(
T

2π
θ

)

and the thesis follows by the developability in Taylor’series of the sum of each power’s
series in the interior of its set of convergence. �
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C1
H(T ) will represent the set of the functions of class C1 belonging to CH(T ), i.e.

C1
H(T ) = {u ∈ CH(T ) of class C1}.

The spaces just defined are linear subspaces of the spaces of continuous and con-
tinuously differentiable T -periodic functions, therefore are normed with the usual
norms of those spaces, i.e. respectively

||u||0 = max
t∈[0,T ]

|u(t)|

and
||u||1 = max{||u||0, ||u′||0}.

Finally, given u ∈ CH(T ) we will denote by u its mean value in [0, T ], e.g.

u =
1

T

∫ T

0
u(t)dt.

For the spaces introduced above rather known properties hold. We refer to [10] for
any details on the theory of functions of a complex variable.

Proposition 2.2.

1) The derivative of each function of C1
H(T ) belongs to CH(T ) and conversely the

primitive of each u ∈ CH(T )

U : [0, T ]→ C

t→
∫ t

0
u(s)ds

belongs to C1
H(T );

2) the mean value is a multiplicative functional in CH(T ), i.e. f · g = f · g ∀ f, g.
Proof.

1) Let u be a function of class C1 belonging to CH(T ). Then u′ is a continuous
T -periodic function.
Moreover the properties of the power series in the interior of their disc of
convergence imply that the derivative of the holomorphic extension of u in a
neighbourhood of the unit disc is holomorphic in that neighbourhood. There-
fore the properties of the uniform convergence yield that u′ has a continuous
extension to the same neighbourhood of the unit disc which is precisely the
derivative of the extension of u.

Conversely, given u ∈ CH(T ), by the previous computations it follows that

ck(U) = − T i

2πk
ck(u).

Hence ck(U) = 0 when k < 0,

lim sup
k→+∞

k
√
|ck(U)| = lim sup

k→+∞
e

1
k

log T
2πk

k
√
|ck(u)| < 1

and the thesis follows from the developability in Fourier series of each function
of class C1.
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2) By the Cauchy’s formula, the mean value of each function of CH(T ) is equal to
the value in 0 of its extension to the neighbourhood of D(T ) and the conclusion
follows.

�

3 A continuation theorem

In this section we present the topological theorems upon which the existence
result is based. This is a known theory (see, for example, [6] for any details on
the topological degree and the continuation theorems), we just recall it briefly for
completeness.

Given two normed spaces (X1, || · ||1) and (X2, || · ||2), there are many equivalent
norms on the cartesian product X1×X2. We will consider the norm of the maximum,
e.g.

||(x1, x2)|| = max{||x1||1, ||x2||2}.
Definition 3.1. Let X,Z be normed spaces. A linear map L: dom L ⊂ X → Z is
said to be a Fredholm map of index zero if

1) dim ker L = codim Im L < +∞

2) Im L is closed in Z.

Example 3.2 Recalling the properties of the normed spaces C1
H(T ) and CH(T )

defined in the previous paragraph, we consider the derivative map

L : C1
H(T )2 → CH(T )2

(u, v)→ (u′, v′).

Then
kerL = {(u, v) ∈ C1

H(T )2 : ∃(z1, z2) ∈ C2 : u ≡ z1, v ≡ z2} ' C2

and

Im L =

{
(u, v) ∈ CH(T )2 :

∫ T

0
u(s)ds =

∫ T

0
v(s)ds = 0

}
≡ C2.

Therefore, since Im L is a closed subset of CH(T )2, L is a Fredholm map of index
zero.

Given a Fredholm operator of index zero L, consider the continuous projection
M of X onto kerL, (obviously L/kerM is bijective) and the continuous projection Q
of Z into itself such that kerQ = Im L = Im (I −Q).

Definition 3.3. Let L:dom L ⊂ X → Z be a Fredholm map of index zero. A
continuous function H defined on a normed space E and having values in Z is said
to be L-compact in the closure of an open and bounded subset Ω of E if ((L/kerM)−1

◦(I −Q) ◦H)(Ω) is compact.

We now give sufficient conditions in order that a continuous homotopy of a
normed space is compact.
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Theorem 3.4. Let Ω be an open and bounded subset of X and H : Ω× [0, 1]→ Z
a continuous function. If H(·, λ) is L-compact for every λ in [0,1] and (L/kerM)−1◦
◦(I−Q)◦H(x, ·) is uniformily continuous with respect to x ∈ Ω, then H is L-compact.

Proof. Consider a sequence {xk, λk}k of Ω×[0, 1]. Then, by the compactness of [0, 1],
eventually passing through a subsequence, {λk}k is converging to a certain λ ∈ [0, 1].
Since H(·, λ) is L-compact, there exists x ∈ Ω such that

((L/kerM )−1 ◦ (I −Q) ◦H)(xk, λ)k → x

as k goes to +∞. Therefore

||((L/kerM )−1 ◦ (I −Q) ◦H)(xk, λk)− x|| ≤

≤ ||((L/kerM)−1 ◦ (I −Q) ◦H)(xk, λk)− ((L/kerM)−1 ◦ (I −Q) ◦H)(xk, λ)||+
+||((L/kerM )−1 ◦ (I −Q) ◦H)(xk, λ)− x|| → 0

when k → +∞, because ((L/kerM)−1 ◦ (I − Q) ◦ H)(x, ·) is uniformily continuous
with respect to x in Ω and the proof is complete. �

Example 3.5 For every i, j = 1, 2, k = 1, ..., 4, let cjik be a function of CH(T ) and
consider the complex second order polynomials in two variables

pi(t, u, v) = c2
i1(t)u2 + c2

i2(t)v
2 + ci3(t)uv + c1

i1(t)u+ c1
i2(t)v + ci4(t).

Consider now the homotopy

H : CH(T )2 × [0, 1]→ CH(T )2

defined by
H(u, v, λ)(t) =

=

(
(1− λ)p1(u, v) + λp1(t, u(t), v(t)), (1− λ)p2(u, v) + λp2(t, u(t), v(t))

)
.

Recalling the function L of the Example 3.2, let us show that H is L-compact on
the closure of every open and bounded subset Ω1 × Ω2 of C1

H(T )2.
The continuous projections of L are M(u, v) = Q(u, v) ≡ (u, v) and

(L/kerM)−1(u, v)(t) =

(∫ t

0
u(s)ds,

∫ t

0
v(s)ds

)
.

Therefore
((L/kerM)−1 ◦ (I −Q) ◦H(u, v, λ))(t) =

=

(
(1− λ)p1(u, v)t + λ

∫ t

0
p1(s, u(s), v(s))ds− tp1(u, v),

(1− λ)p2(u, v)t + λ
∫ t

0
p2(s, u(s), v(s))ds− tp2(u, v)

)
=

= λ

(∫ t

0
p1(s, u(s), v(s))ds,−tp1(u, v),

∫ t

0
p2(s, u(s), v(s))ds,−tp2(u, v)

)
,
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because, since (1− λ)pi(u, v) is a constant for each i = 1, 2, H(u, v, λ) = (p1(u, v),
p2(u, v). Hence

||((L/kerM )−1 ◦ (I −Q) ◦H(u, λ))|| ≤ 2Tρ

where ρ = max
i=1,2

max
Ω1×Ω2

||pi(u, v)||0.
Moreover

((L/kerM )−1 ◦ (I −Q) ◦H(u, λ))′(t) =

= λ
(
p1(t, u(t), v(t))− p1(u, v), p2(t, u(t), v(t))− p2(u, v)

)
which implies

||((L/kerM )−1 ◦ (I −Q) ◦H(u, v, λ))′|| ≤ 2ρ

and the compactness follows from the Ascoli-Arzelá theorem.
In the same way one gets that

||((L/kerM )−1 ◦ (I −Q) ◦H(u, v, λ1))− ((L/kerM )−1 ◦ (I −Q) ◦H(u, v, λ2))|| ≤

≤ 2Tρ|λ1 − λ2|
and also the uniform continuity is proved.
Then H is L−compact in Ω by Theorem 3.4.

It is well known that, associated to every Fredholm map of index zero, there is
a topological degree theory that gives a measure of the set of zeros of the difference
between the map and a compact function in a fixed subset of the domain. In the
follow, given such a map L : dom L ⊂ X → Z, an open and bounded subset Ω of
X and a L-compact function H : Ω→ Z,

DL(L −H,Ω)

will denote the topological degree of H with respect to Ω and L.

Theorem 3.6. Let X,Z be normed spaces, L: dom L ⊂ X → Z a Fredholm map
of index zero and Ω an open and bounded subset of X. If

1) H : Ω× [0, 1]→ Z is L-compact,

2) H(u, λ) 6= Lu for every (u, λ) in dom L ∩ ∂Ω× [0,1),

3) DL(L−H(·, 0),Ω) 6= 0,

then there exists u ∈ dom L ∩ Ω such that H(u, 1) = Lu.

Proof. If there exists u ∈ dom L ∩ ∂Ω such that H(u, 1) = Lu, then the theorem is
proved.
Otherwise H(u, λ) 6= Lu∀ (u, λ) ∈ dom L ∩ ∂Ω× [0, 1], therefore

DL(L−H(·, 1),Ω) = DL(L−H(·, 0),Ω),

because of the homotopy invariance property of the degree.
Now, by hypothesis, the latter quantity is different from zero, hence there exists
u ∈ dom L ∩ Ω such that H(u, 1) = Lu, because of the existence property of the
degree. �
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4 Existence of periodic solutions

Given a real number T > 0, let CH(T ) and C1
H(T ) be the normed spaces defined

in section 2. For every i, j = 1, 2 and k = 1, ..., 4 we consider a function cjik of CH(T ).
In this section we will give sufficient conditions in order that the system


u′ = p1(t, u, v)

v′ = p2(t, u, v)

u, v ∈ C1
H(T )

(P∗)

has a solution, where p1 and p2 are the second order polynomials defined by

pi : R ×CH(T )2 → CH(T )2

(t, u, v)→ c2
i1(t)u2 + c2

i2(t)v2 + ci3(t)uv + c1
i1(t)u+ c1

i2(t)v + ci4(t).

Of course we suppose that p1 and p2 are different one from the other and that for
every i = 1, 2 at least one among c2

i1, c
2
i2 and ci3 is not identically equal to zero,

otherwise pi would be a first order polynomial. It is evident from the way CH(T )
has been defined that the solutions of (P∗) are also T-periodic solutions ofu′ = p1(t, u, v)

v′ = p2(t, u, v).
(P)

Remark 4.1 When p1 ≡ p2, then u′ = v′, therefore there exists a constant z0 ∈ C
such that v = u + z0 and u′ = p1(t, u, u+ z0). Since p1 is a second order complex
polynomial in two variables, the polynomial

p : R× CH(T )→CH(T )

u→p1(t, u, u+ z0)

is a second order complex polynomial in one variable, e.g. u must satisfy an equation
of the following kind

u′ = c2(t)u2 + c1(t)u+ c0(t).

We remind to Remark 4.3 for sufficient conditions for the existence of a solution of
this kind of equations.

Now we need to introduce some notations that will be used in the sequel of the
section. p will denote the function

p : C2 →C2

(z1, z2)→(p1(z1, z2)p2(z1, z2)),

where

pi : C2 →C
(z1, z2)→c2

i1z
2
1 + c2

i2z
2
2 + ci3z1z2 + c1

i1z1 + c1
i2z2 + ci4
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for every i = 1, 2. By Prop. 2.2 it follows that pi(u, v) = pi(u, v). Moreover, since
both p1 and p2 are second order polynomials in two variables, the systemp1(z1, z2) = 0

p2(z1, z2) = 0
(P)

has at most 4 solutions.
Calling (z11, z12), ..., (zs1, zs2) the distinct zeros of (P ), we define

M = max
i=1,2

max
1≤k≤s

|zki|.

Finally p0
i will denote the real polynomial

p0
i : R2 →R
(x, y)→||c2

i1||0x2 + ||c2
i2||0y2 + ||ci3||0xy + ||c1

i1||0x+ ||c1
i2||0y + ||ci4||0.

Theorem 4.2. Let (z11, z12), ..., (zs1, zs2) be the distinct zeros of the system of
complex polynomials p1(z1, z2) = 0

p2(z1, z2) = 0
(P)

and M = max
i=1,2

max
1≤k≤s

|zki|. If there exists R > M such that the system

M + T
2
p0
i (x, y)− x ≥ 0

M + T
2
p0

2(x, y)− y ≥ 0
(P0)

has no solutions in [0, R]× {R} ∪ {R} × [0, R], then the systemu′ = c2
11(t)u2 + c2

12(t)v
2 + c13(t)uv + c1

11(t)u+ c1
12(t)v + c14(t)

v′ = c2
21(t)u

2 + c2
22(t)v2 + c23(t)uv + c1

21(t)u+ c1
22(t)v + c24(t)

(P)

has at least s distinct solutions.

Proof. Since (z11, z12), ..., (zs1, zs2) are distinct, take δ > 0 such that Dδ
zk
∩Dδ

zh
= ∅

for each k, h = 1, ..., s with k 6= h, where

Dδ
zk

= {(z1, z2) ∈ C2 : max{|z1 − zk1|, |z2 − zk2|} < δ}.

Consider the map L and the homotopy H of Examples 3.2 and 3.5. Recalling the
properties therein proved, it is now sufficient to show that for every k = 1, ..., s the
assumptions 2) and 3) of Theorem 3.6 are satisfied in the open and bounded subset
of CH(T )

Ωk = {(u, v) ∈ CH(T )2 : max{||u||0, ||v||0} < R,max{|u− zk1|, |v − zk2} < δ}

and the existence of s distinct solutions of (P) belonging to C1
H(T )2 will follow from

the void intersection of each couple of the sets written above.
We point out that Ωk 6= ∅, because (u ≡ zk1, v ≡ zk2) ∈ Ωk ∀ k = 1, ..., s.
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Fixing k ∈ {1, ..., s}, the boundary of Ωk is the set

∂Ωk = {(u, v) ∈ CH(T )2 : max{||u||0, ||v0||} ≤ R,max{|u− zk1|, |v − zk2|} = δ}∪

∪{(u, v) ∈ CH(T )2 : max{||u||0, ||v||0} = R,max{|u− zk1|, |v − zk2|} < δ}.
Given λ ∈ [0, 1), take a solution (u, v) of L(u, v) = H(u, v, λ) belonging to ∂Ωk.
Then u′ = v′ = 0, because u and v are T-periodic. Recalling the properties of the
polynomials pi,

(u′, v′) = (p1(u, v), p2(u, v) = p(u, v),

hence (u, v) is a solution of (P), which, by the choice of δ, implies u = zk1 and
v = zk2. Therefore L(u, v) = H(u, v, λ) has no solutions in

{(u, v) ∈ CH(T )2 : max{||u||0, ||v||0} ≤ R,max{|u− zk1|, |v − zk2|} = δ}.

On the other side, like proved in [1], Corollary 2.12, since u and v are T-periodic, it
holds

||u||0 ≤ u+
T

2
||u′||0 ≤ M +

T

2
||p1(t, u, v)||0

and likewise

||v||0 ≤ M +
T

2
||p2(t, u, v)||0,

that is to say that (||u||0, ||v||0) is a solution of (P0). Hence, by hypothesis, L(u, v) =
= H(u, v, λ) cannot have solutions neither in

{(u, v) ∈ CH(T )2 : max{||u||0, ||v||0} = R,max{|u− zk1|, |v − zk2|} < δ}

and assumption 2) is proved.
By definition H(u, v, 0) = (p1(u, v), p2(u, v)) = p(u, v), therefore, by [6], Theorem
3.1,

DL(L−H(·, 0),Ωk) = deg(p,Dδ
zk
, 0),

where deg represents the Brouwer’s degree. The only zero of p in Dδ
zk

is (zk1, zk2)
and this implies that

deg(p,Dδ
zk
, 0) 6= 0,

because it is the multiplicity of (zk1, zk2) as zero of p (see [9] for a detailed analysis
of the Brouwer’s degree of a map defined in Rn) and also 3) is proved. �

Remark 4.3 When (P) reduces to a second order equation of one variable, e.g. to
the following system u′ = c2

11(t)u2 + c1
11(t)u+ c14(t)

v′ = 0,

Theorem 4.2 can not apply, because (P) has infinitely many solutions given by a
line or the union of two parallel lines of the complex plane.
However if we reduce (P) only to its first equation

c2
11z

2
1 + c1

11z1 + c14 = 0 (E)
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and we consider M equal to the maximum of the module of its zeros, there will be
R > M such thatM + T

2
||c2

11||0x2 + T
2
||c1

11||0x+ T
2
||c14||0 − x ≥ 0

M − y ≥ 0

has no solutions in [0, R]×{R}∪{R}× [0, R] if and only if there exists R > M such
that

M +
T

2
||c2

11||0R2 +
T

2
||c1

11||0R +
T

2
||c14||0 − R < 0,

which is the same necessary and sufficient conditions obtained in [2], Theorem 1.1,
in order that

u′ = c2
11(t)u2 + c1

11(t)u+ c14(t)

has at least the number of solutions equal to the number of distinct zeros of (E).

We now apply Theorem 4.2 to two generalizations of the complex periodic Riccati
equation.
Example 4.4 Let g and h be T-periodic continuous functions from R into C. Sup-
pose moreover that they are developable in Fourier series with all the coefficients
corresponding to negative indexes equal to zero and consider the following system
of planar equations u′ = u2 + v + g(t)

v′ = v2 + u+ h(t),
(P1)

which corresponds to (P) when c2
11 = c1

12 = c2
22 = c1

21 ≡ 1, c14 = g, c24 = h and all
the other coefficients are identically equal to zero.
Then the system corresponding to the mean values becomesz2

1 + z2 + g = 0

z2
2 + z1 + h = 0,

(P1)

which has at most 4 solutions, because at every z2 solution of

z4
2 + 2hz2

2 + z2 + h
2

+ g = 0

corresponds only one z1 such that

z1 = −z2
2 − h.

Calling M the maximum of the module of the solutions of (P1), to apply Theorem
4.2 it is sufficient to find a positive constant R bigger than M such that

T
2
x2 − x+ T

2
y + T

2
||g||0 +M ≥ 0

T
2
y2 − y + T

2
x+ T

2
||h||0 +M ≥ 0

(P0
1)

has no solutions in [0, R]× {R} ∪ {R} × [0, R].
The solutions of the first inequality of (P0

1) are all the points of the plane which
stand outside the parabola of equation y = −x2 + 2

T
x − ||g||0 − 2M

T
. It is easy to
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verify that its vertex V1 = ( 1
T
, 1
T 2−||g||0− 2M

T
) belongs to the part of the first quarter

of plane above the line y = x if and only if

T <
2√

1 + 4M + 4M2 + 8||g||0 + 1 + 2M
.

Likewise the solutions of the second one belong to the part of the plane situated
outside of the parabola x = −y2 + 2

T
y− ||h||0− 2M

T
, whose vertex V2 = ( 1

T 2 − ||h||0−
−2M

T
, 1
T

) belongs to the part of the first quarter of plane below that line if and only
if

T <
2√

1 + 4M + 4M2 + 8||h||0 + 1 + 2M
.

Therefore if

T <
2√

1 + 4M + 4M2 + 8 max{||g||0, ||h||0}+ 1 + 2M
,

one has that the segment {
1

T

}
×
[
0,

1

T 2
− ||g||0 −

2M

T

)

does not verifies the first inequality, while[
0,

1

T 2
− ||h||0 −

2M

T

)
×
{

1

T

}

does not satisfies the second. Hence the existence of a number of solutions of (P1)
at least equal to the number of distinct zeros of (P1) follows choosing

R =
1

T
>

1

2

√
1 + 4M + 4M2 + 8 max{||g||0, ||h||0}+

1

2
+M > M.

Example 4.5 Let g and h be as in the previous example and consider the systemu′ = v2 + g(t)

v′ = u2 + h(t),
(P2)

i.e. consider (P) with all the coefficients identically equal to zero, but c2
12 = c2

21 ≡ 1,
c14 = g and c24 = h.
Then we have z2

2 + g = 0

z2
1 + h = 0.

(P2)

Set M = max

{√
|g|,

√
|h|
}
, the system corresponding to the C0 norms becomes


T
2
y2 − x+ T

2
||g||0 +M ≥ 0

T
2
x2 − y + T

2
||h||0 +M ≥ 0.

(P0
2)
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The tangent to x = T
2
y2+ T

2
||g||0 +M in ( 1

2T
+ T

2
||g||0+M, 1

T
) is y = x+ 1

2T
− T

2
||g||0−

−M that lays in the upper half-plane determined by y = x if and only if

T <
1√

M2 + ||g||0 +M
.

Likewise the tangent to y = T
2
x2 + T

2
||h||0 +M in ( 1

T
, 1

2T
+ T

2
||h||0 +M) is y = x−

− 1
2T

+ T
2
||h||0 +M that lays in the lower half-plane determined by y = x if and only

if

T <
1√

M2 + ||h||0 +M
.

Therefore if

T <
1√

M2 + max{||g||0, ||h||0}+M

it follows that
{

1
T

}
×
[
0, 1

T

]
does not satisfy the first inequality, while

[
0, 1

T

]
×
{

1
T

}
does not verify the second one.
Theorem 4.2 then applies choosing

R =
1

T
>
√
M2 + max{||g||0, ||h||0}+M > M.

We point out that the method described in this paper can be applied in the same
way to get existence results for any system of complex polynomial equations with
the order of the polynomial bigger or equal than 2. We prefered not to consider the
very general case in this context, because the proof would have been made heavy by
the computations, while our aim was to give prominence to the method.
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