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On dispersion for Klein Gordon equation

with periodic potential in 1D

Scipio Cuccagna
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Abstract. By exploiting estimates on Bloch functions obtained in a previous paper,

we prove decay estimates for Klein Gordon equations with a time independent potential

periodic in space in 1D and with generic mass.

Key words: dispersive estimates, Klein Gordon equations, periodic Schroedinger opera-

tors.

1. Introduction

We consider Schrödinger operators of the form H = H0 + P (x) with,
H0 = −d2/dx2, P (x) a smooth nonconstant real valued periodic function,
P (x + 1) ≡ P (x), with spectrum Σ(H) = ∪n≥0Σn, formed by bands Σn =
[A+

n , A−
n+1] with A+

n < A−
n+1 ≤ A+

n+1 for any n ∈ N∪ {0}. We normalize H

so that A+
0 = 0. We then show:

Theorem 1.1 Under the above hypotheses consider for µ > 0 the solu-
tions of the following Cauchy problem for the Klein Gordon equation

utt + Hu + µu = 0, u(0, x) ≡ 0, ut(0, x) = g(x). (1.1)

Then there exists a bounded discrete set D ⊂ (0, +∞) such that for any µ ∈
(0, +∞)\D there is a Cµ > 0 such that the following dispersive estimate
holds:

‖u(t, · )‖L∞(R) ≤ Cµ〈t〉−1/3‖g( · )‖W 1,1(R). (1.2)

Maybe D is empty. The exact condition defining D is given in Lemma
3.1 below. The proof is based on results in [C] where proofs are explicitly
done only for the generic case when all the spectral gaps are nonempty. Since
the generic case contains all the crucial difficulties, there is no problem at
extending the results in [C] to the non generic case, and we will assume this
as a fact (and if this is unconvincing the reader can assume that `n = n
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below). To illustrate Theorem 1.1 consider P (x) = 2κ2 sn2(x, κ) for κ ∈
(0, 1), with sn(x, κ) the Jacobian elliptic function. Then Σ(H) = [κ2, 1] ∪
[1 + κ2, +∞) and by Theorem 1.1 for generic µ > −κ2 we get (1.2). Notice
that for µ = 0 this example resembles the flat Klein Gordon rather than
the flat wave equation, because we have A+

0 = κ2 > 0. For H = H0 the
equation utt + Hu − |u|p = 0 for any p > 1 is not globally well posed for
small initial data in C∞

0 (R) while if p À 1 this is the case for H with
P (x) = 2κ2 sn2(x, κ) or P (x) = sin2(x). In the latter case all the gaps are
non empty. The proof in this paper mixes results from [C] with a specific
computation in Marshall et al. [MSW], specifically Lemma 5 therein.

2. Reformulation, spectrum, band and Bloch functions

We will prove:

Theorem 2.1 Let H be as in Theorem 1.1, that is with a smooth periodic
potential, and such that A+

0 = 0. Then, there is a set D like in Theorem 1.1
such that for any µ ∈ (0, +∞)\D there is a Cµ > 0 such that the following
dispersive estimate holds:

‖ sin(t
√

H + µ)(H + µ)−3/4 : L1(R) → L∞(R)‖ ≤ Cµ〈t〉−1/3. (2.1)

The u in (1.1) is, for 1/4 > ε > 0, G = (H + µ)1/4(H0 + 1)−1/2+ε and
h = (H0 + 1)1/2−εg,

u(t) =
sin(t

√
H + µ)

(H + µ)3/4
Gh.

This implies

‖u(t)‖∞ ≤
∥∥∥sin(t

√
H + µ)

(H + µ)3/4

∥∥∥
L1→L∞

‖G‖L1→L1‖h‖1.

We have ‖h‖1 ≤ C‖g‖W 1,1 , ‖G‖L1→L1 ≤ C(µ), with C(0) = O(1), so (2.1)
implies (1.2). (2.1) is a consequence of the following estimate:

Proposition 2.2 There is a set D like in Theorems 1.1–2 such that for
any µ ∈ (0, +∞)\D there is a Cµ > 0 such that the following estimate holds
for any (t, x, y):∣∣(sin(t

√
H + µ)(H + µ)−3/4

)
(x, y)

∣∣ ≤ Cµ〈t〉−1/3. (2.2)

We will prove Proposition 2.2 in the case when the spectrum Σ(H) is
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formed by infinitely many bands, the finitely many bands case being easier.
To prove (2.2) we express the integral kernel in (2.2) in terms of Bloch
functions, see below. We express Σ(H) = ∪∞

n=0Σn, with Σn = [A+
n , A−

n+1]
with A+

n < A−
n+1 ≤ A+

n+1 for any n ∈ N ∪ {0}, with A+
0 = 0. Set for n ≥ 0,

a±n =
√

A±
n and a±−n = −a±n . For n ≥ 0 set σn = [a+

n , a−n+1] and σ−n =
−σn. Set σ = ∪∞

n=−∞σn, with each two intervals σn and σn+1 separated by
a non empty gap gn. For |gn| the length of the gap gn we have the following
classical result, see [E] ch. 4:

Theorem 2.3 Let P (x) be smooth. Set σn = [a+
n , a−n+1] and gn =]a−n , a+

n [.
Then ∃ a strictly increasing sequence {`n ∈ Z}n∈Z and a fixed constant C

such that

|a−n − `nπ| + |a+
n − `nπ| ≤ C〈`n〉−1.

∀ N ∃ a fixed constant CN such that |gn| ≤ CN 〈`n〉−N ∀ n.

We review band and Bloch functions. ∀ w ∈ C+ (the open upper half
plane) ∃ a unique k ∈ C+ such that there are two solutions of (H −w2)u =
0 of the form φ̃±(x, w) = e±ikxξ±(x, w) with ξ±(x + 1, w) ≡ ξ±(x, w)
and with φ̃±(0, w) = 1. The correspondence between w and the ”quasi-
momentum” k is a conformal map between C+ and a ”comb” K = C+ −
∪n6=0[`nπ, `nπ+ihn] with `n satisfying the conclusions of Theorem 2.3, with
|gn| ≤ 2hn ≤ C|gn| for a fixed C. For generic potentials, `n ≡ n. The map
k(w) extends into a continuous map in C+ with k(σn) = [`nπ, `n+1π], with
k(w) a one to one and onto map between σn and [`nπ, `n+1π], and with
k(gn) =]`nπ, `nπ + ihn]. k(w) extends into a conformal map from C −
∪n6=0gn into K = C − ∪nγn with γn = [`nπ − ihn, `nπ + ihn]. Next set
N2(w) =

∫ 1
0 φ̃+(x, w)φ̃−(x, w)dx. We have N2(w) =

∫ 1
0 |φ̃±(x, w)|2dx > 0

for w ∈ σ, N2(w) 6= 0 for any w ∈ C\∪n6=0gn. We set m0
+(x, w)m0

−(y, w) =
ξ+(x, w)ξ−(y, w)N−2(w) and m0

±(x, w) = ξ0
±(x, w)/N(w) with N(w) > 0

for w ∈ σ. We express w = w(k) for k ∈ K and with an abuse of notation
we write φ±(x, k) for φ±(x, w(k)) and m0

±(x, k) for m0
±(x, w(k)). We call

φ±(x, k) = e±ikxφ±(x, k) Bloch functions. In [C] we had to work with w

complex, but here we focus only on w ∈ σ. The band function is E(k) =
w2(k). Now we have the following well known fact:
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Theorem 2.4 Set f̂(k) =
∫

R φ+(y, k)f(y)dy for any k ∈ R\πZ. Then:∫
R
|f(y)|2dy =

∫
R
|f̂(k)|2dk, f(x) =

∫
R

φ−(x, k)f̂(k)dk,

Ĥf(k) = E(k)f̂(k).

In particular we have

sin(t
√

H + µ)
(H + µ)3/4

(x, y)

=
∫

R
e−i(x−y)k sin(t

√
E(k) + µ)

(E(k) + µ)3/4
m0

−(x, k)m0
+(y, k)dk. (2.3)

We will show that the generalized integral (2.3) is a function which
satisfies (2.2).

3. Estimates on band and Bloch functions

We set ḟ = df/dk, f ′ = df/dw and η(k) =
√

E(k) + µ. We compute

η̇ =
Ė

2(E + µ)1/2
, η̈ =

Ë

2(E + µ)1/2
− Ė2

4(E + µ)3/2
;

...
η =

...
E

2(E + µ)1/2
− 3ĖË

4(E + µ)3/2
+

3Ė3

8(E + µ)5/2

=
...
E

2(E + µ)1/2
− 3

2
Ėη̈.

(3.1)

Lemma 3.1 ∃ D ⊂ (0, +∞), bounded and discrete, such that ∀ µ ∈
(0, +∞)\D the system η̈(k) =

...
η (k) = 0, or equivalently (3.2) below, has no

solutions in R:

Ë =
Ė2

2(E + µ)
,

...
E = 0. (3.2)

For the case A+
0 = 0 and µ = 0 see Korotyaev [K1].

Proof of Lemma 3.1. We start by focusing on low energies. |E| ≤ E0

implies |k| ≤ k0 for a fixed k0 = k0(E0). By [K2] we have the following two
facts:
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Lemma 3.2 (a) On each band, Ė = 0 holds exactly at the extremes of
the band.
(b) On each band, there is exactly one solution of Ë = 0, contained in the
interior of each band.

Here recall we are assuming the bands to be bounded. By (a), for |k| ≤
k0 (3.2) cannot hold near the extremes of the bands. So there is a fixed
c > 0, such that, if k is a root of (3.2), then k is in the set, which we denote
by J , formed by the k whose distance from the nearest edge is at least c....
E = 0 has finitely many solutions in J . Indeed,

...
E 6≡ 0, is holomorphic in

K and J ⊂ K. So except for at most finitely µ’s with µ > 0, (3.2) has no
solutions for |k| ≤ k0. ¤

Next we consider Lemma 3.1 in the high energy case. Recall E = w2

and assume that (3.2) is satisfied at some value w0. Since E is even we can
assume w0 > 0, in particular w0 ∈ [a+

n , a−n+1]. We have a+
n = w((`nπ)+),

with `n ∈ N. We have the following facts:

Lemma 3.3 (1) There is a fixed C > 0 such that for
a−n+1 − C`

1/3
n+1|gn+1|2/3 < w ≤ a−n+1 we have Ë < 0.

(2) For any given C1 À 1 there are n0 and c0 > 0 such that for n ≥ n0

and for

a−n+1 − C1`
1/3
n+1|gn+1|2/3 ≤ w ≤ a−n+1 − C`

1/3
n+1|gn+1|2/3

we have |
...
E| ≥ c0`

−1
n+1|gn+1|−2/3 À 1.

(3) If a−n+1 < ∞ then there exists exactly one point w1, w1 ∈ (a+
n , a−n+1),

with k′′(w1) = 0. For w ∈ [a+
n , w1) we have k′′(w) < 0. Furthermore, there

are positive constants C0, C1, C2, α such that for any n ≥ n0, for any
w > a−n+1 − α we have

C1

〈w〉3
− ϕ(w)

4
≥ −k′′(w) ≥ C2

〈w〉3
− C0ϕ(w)

4
,

ϕ(w) :=
(a+

n+1 − a−n+1)
2

|w − a−n+1|3/2|w − a+
n+1|3/2

;

(4) For a−n + |gn|1/4 ≤ w ≤ a−n+1 − |gn+1|3/5 we have |ẇ − 1 + Q0/k2| ≤
C|k|−3 for a fixed C, with Q0 := (1/2)

∫ 1
0 P (x)dx. Furthermore, Ė = 2k +

O(k−2) and E = k2 + 2Q0 + O(k−2) with in either case |O(k−2)| ≤ Ck−2

for a fixed C.
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(1) is a consequence of Lemma 4.2 [C], (2) is Lemma 4.3 [C]. In (3) the
information on the sign of k′′(w) is in [K1] and the inequality is in Lemma 7.3
[C]. In (4) the inequalities for ẇ and Ė are proved in Lemma 7.1 [C], the
inequality for E is proved in Lemma 5.4 [C].
We return to Lemma 3.1. Ë > 0 at w0 by (3.2). By (1) Lemma 3.3, w0 <

a−n+1 − C`
1/3
n+1|gn+1|2/3. By

...
E = 0 at w0 and by (2) Lemma 3.3 then w0 ≤

a−n+1 − C1`
1/3
n+1|gn+1|2/3 for some C1 À 1. By (3) Lemma 3.3 in this region

k′′ < 0. Hence we have the inequality Ë = 2(ẇ)2 − 2w(ẇ)3k′′ ≥ 2(ẇ)2.
Suppose a+

n + C1`
3
n|gn| ≤ w0. By (4) Lemma 3.3 we have ẇ = 1 − Q0/k2 +

O(k−3). So

Ë ≥ 2
(
1 − 2

Q0

k2

)
+ O(k−3). (1)

On the other hand for w0 = w(k) by (4) Lemma 3.3 we have

Ë =
Ė2

2(E + µ)
= 2

(k + O(k−2))2

k2 + 2Q0 + µ + O(k−2)

= 2 − 4Q0 + µ

k2
+ O(k−3)

The last formula is incompatible with (1) for µ ≥ µ0 > 0 with µ0 fixed and
for |k| À 1/µ. Hence at large energies and for a+

n + C1`
3
n|gn| ≤ w, for some

fixed C1 > 0, there are no solutions of (3.2). Let a+
n ≤ w ≤ a+

n + C1`
3
n|gn|.

The following lemma, see Lemma 4.3 [C], shows w0 6∈ [a+
n + c|gn|, a+

n +
|gn|3/5] for c À 1 fixed:

Lemma 3.4 For a+
n + c|gn| ≤ w ≤ a+

n + |gn|3/5 for c À 1 a fixed large
constant, |

...
E| is very large.

Finally w0 6∈ [a+
n , a+

n + c|gn|] because by the following lemma, see Lem-
mas 7.1 and 7.4 [C], and by Lemma 2.3 for |u − a+

n | . |gn| then Ë =
Ė2/{2(E + µ)} cannot hold:

Lemma 3.5 For |u − a+
n | ≤ c|gn| for c > 0 fixed there are n0, C1 > 0

and C2 > 0 such that for any n ≥ n0 we have |Ë| ≥ C1`n|gn|−1 and |Ė| ≤
C2`n

√
u − a+

n /|gn|.

Finally for later use we state the following, see Lemma 7.1 [C]:
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Lemma 3.6 ∃ C1 > C2 > 0 such that ∀m and ∀w ∈ σm = [a+
m, a−m+1] we

have for

A(w) =
|gm|2

(w − a+
m)1/2(w − a+

m + |gm|)3/2

+
|gm+1|2

(a−m+1 − w)1/2(a−m+1 − w + |gm+1|)3/2

1 + C2

(
A(w) +

1
〈w〉2

)
≥ k′(w) ≥ 1 + C1A(w).

Correspondingly for k ∈ [`mπ, `m+1π] and for ẇ = dw/dk we have

1
1 + C2(A(w) + 1/〈w〉2)

≤ ẇ ≤ 1
1 + C1A(w)

.

4. Decomposition of (2.3) and estimates on the single parts

We decompose
(
sin(t

√
H + µ)/(H +µ)3/2

)
(x y) =

∑
n Kn(t, x, y) with

Kn(t, x, y)

:=
∫

[`nπ,`n+1π]
e−i(x−y)k sin(tη(k))

η3/2(k)
m0

−(x, k)m0
+(y, k)dk. (4.1)

A basic ingredient in the proof is the stationary phase theorem, see p. 334
[S]:

Lemma 4.1 Suppose φ(x) is real valued and smooth in [a, b] with |φ(m)(x)|
≥ cm > 0 in ]a, b[ for m ≥ 1. For m = 1 assume furthermore that φ′(x) is
monotonic in ]a, b[. Then we have for Cm = 5 · 2m−1 − 2:∣∣∣∫ b

a
eiµφ(x)ψ(x)dx

∣∣∣
≤ Cm(cmµ)−1/m

[
min{|ψ(a)|, |ψ(b)|} +

∫ b

a
|ψ′(x)|dx

]
.

The following two lemmas are special cases of Lemmas 4.4 & 4.5 in [C]:

Lemma 4.2 There are fixed constants C > 0, C3 > 0, Γ > 0 and c > 0
such that for all x, all n we have:
(1) ∀w ∈ [a+

n +C3`
5
n|gn|, a−n+1−C3`

5
n+1|gn+1|] we have |m0

+(x, k)m0
−(y, k)

−1| ≤ C/〈k〉;



634 S. Cuccagna

(2) ∃ fixed C > 0 such that forall k ∈ R we have |m0
+(x, k)m0

−(y, k)| ≤
C.

Lemma 4.3 There are fixed constants C > 0 and C4 > 0, with C4 < C2,
such that for all x, all n we have:
(1) for all a+

n + |gn|1/4 ≤ k ≤ (a+
n +a−n+1)/2, then |∂k(m0

−(x, k)m0
+(y, k))|

≤ C/(k|k − π`n|);
(2) for all (a+

n + a−n+1)/2 ≤ k ≤ a−n+1 − |gn+1|3/5, then
|∂k(m0

−(x, k)m0
+(y, k))| ≤ C/(k|k − π`n+1|);

(3) for w in the remaining part of [a+
n , a−n+1] we have for m = n (resp.

m = n + 1) near a+
n (resp. a−n+1) |∂k(m0

−(x, k)m0
+(y, k))| ≤ C/(|k −

π`m| + |gm|).

By Lemmas 4.1–3 and Lemma 3.1 we conclude:

Lemma 4.4 ∃ D ⊂ (0,+∞), bounded discrete, such that ∀ µ ∈ (0,+∞)\D
and and for any n0 bands then there exists a C = C(µ, n0) > 0 such that
for all x, y and for all t ≥ 0 we have

∣∣∣∑|n|≤n0
Kn(t, x, y)

∣∣∣ ≤ C〈t〉−
1
3 .

As a consequence of Lemma 4.4, in order to prove Proposition 2.2 it is
enough to look at Kn in (4.1) with large n. It is not restrictive to sum over
n À 1. We split further in (4.1). We introduce a smooth, even, compactly
supported cutoff χ0(t) ∈ [0, 1] with χ ≡ 0 near 1 and χ0 = 1 near 0. Set
χ1 = 1 − χ0. For c À 1 fixed we split each Kn in (4.1) as Kn =

∑5
1 Kn

j

partitioning the identity in σn = [a+
n , a−n+1],

1σn(w) = χ0

(w − a+
n

c|gn|

)
+ χ1

(w − a+
n

c|gn|

)
χ0

(w − a+
n

|gn|1/4

)
+ χ1

(w − a+
n

|gn|1/4

)
χ1

(a−n+1 − w

|gn+1|3/5

)
+ χ0

(a−n+1 − w

|gn+1|3/5

)
χ1

(a−n+1 − w

c|gn+1|

)
+ χ0

(a−n+1 − w

c|gn+1|

)
.

By c À 1 we have ẇ ≈ 1 for w ∈ [a+
n + c|gn|, a−n+1 − c|gn+1|], Lemma 3.6.

Lemma 4.5 ∃ a fixed C > 0 s.t. |Kn
1 | ≤ Ct−1/2|gn|1/2 and |Kn

5 | ≤
Ct−1/2|gn+1|1/2.

Lemma 4.6 There are an ε > 0 and Cε such that |Kn
2 | ≤ Cεt

−1/3|gn|ε.

Lemma 4.7 There are an ε > 0 and Cε such that |Kn
4 | ≤ Cεt

−1/3|gn+1|ε.
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Lemmas 4.5–7 imply
∑

n

∑5
j 6=3,j=1 |Kn

j (t, x, y)| ≤ C max{t−1/3, t−1/2}.
Turning to Kn

3 , set K3 =
∑

n Kn
3 . The following lemma completes the

proof of Proposition 2.2:

Lemma 4.8 There is a fixed C such that |K3(t, x, y)| ≤ C〈t〉−1/3.

We prove Lemmas 4.5–7 in § 5 and Lemma 4.8 in § 6.

5. Proof of Lemmas 4.5–7

For all the j 6= 3 and for ψ(k) the corresponding cutoff, we consider

Hn
j (t, x, y) =

∫
[`nπ,`n+1π]

e−i(x−y)k±itη(k)m0
−(x, k)

× m0
+(y, k)η−3/2(k)ψ(k)dk.

Lemma 4.5 is an immediate consequence of:

Lemma 5.1 ∃ a fixed C such that |Hn
1 | ≤ Ct−1/2|gn|1/2 and |Hn

5 | ≤
Ct−1/2|gn+1|1/2.

Proof. We will prove the j = 1 case. Recall from formula (3.1)

η̈ = 2−1Ë(E + µ)−1/2 − 4−1Ė2(E + µ)−3/2.

For 0 ≤ w−a+
n . |gn| by Lemma 3.6 we have 0 ≤ ẇ . (w−a+

n )1/2|gn|−1/2 .
1 and so in particular Ė2 . `2

n. By Lemma 3.5 we have |Ë| ≥ c`n|gn|−1 for
some fixed c > 0. Hence |η̈| & |gn|−1. Then, by Lemmas 4.1–3 we obtain

|Hn
1 (t, x, y)| ≤

C
√

|gn|√
t

∫ a+
n +c|gn|

a+
n

(dk/dw)dw

|k − π`n| + |gn|
.

We have dk/dw ≈
√

|gn|(w − a+
n )−1/2 and so |k − π`n| ≈

√
|gn|

√
w − a+

n .
Hence

|Hn
1 (t, x, y)| ≤ C1√

|gn|t

∫ a+
n +c|gn|

a+
n

√
|gn|√

w − a+
n

dw ≤
C2

√
|gn|√
t

.

The argument for Hn
5 is the same, by Ė2 . `2

n+1 and |Ë| ≥ c`n+1|gn+1|−1.
¤

Lemma 4.6 is an immediate consequence of the following lemma:



636 S. Cuccagna

Lemma 5.2 There is C > 0 such that
|Hn

2 | ≤ C min{〈`n〉3/2t−1/2 log(1/|gn|), |gn|1/4}.

Proof. Hn
2 is defined by an integral for w ∈ [a+

n + c|gn|, a+
n + |gn|1/4]. We

claim we have |η̈| & 〈k〉−3. Assume this inequality. By Lemma 3.6 we have
dk/dw ≈ 1, w − a+

n ≈ k − π`n. So by Lemmas 4.1–3, by k − π`n & |gn| and
proceeding as in Lemma 5.1

|Hn
3 | ≤ C1t

−1/2〈`n〉3/2

∫ a+
n +|gn|1/4

a+
n +c|gn|

(dk/dw)dw

|k − π`n| + |gn|

≤ C2t
−1/2〈`n〉3/2

∫ a+
n +|gn|1/4

a+
n +c|gn|

dw

w − a+
n

≤ C3t
−1/2〈`n〉3/2 log

1
|gn|

.

By Lemma 4.2 we have also |Kn
3 | ≤ C|gn|1/4. To prove |η̈| & 〈k〉−3 we

write 4η̈ = (2(E + µ)Ë − Ė2)(E + µ)−3/2 with E = k2 + 2Q0 + O(k−2),
Ė2 = 4k2 + O(1/k):

η̈ =
(2Ë − 4)k2 + 2Ë(2Q0 + µ) + O(1/k)

4(E + µ)3/2
.

For w ∈ [a+
n + c|gn|, a+

n + |gn|1/4] we have k′′ < 0 and so as in Lemma 3.3

Ë = 2(ẇ)2 − 2w(ẇ)3k′′ ≥ 2(ẇ)2 = 2(1 − 2Q0k
−2 + O(k−3)).

So we get η̈ ≥ (µ + O(k−1))(E + µ)−3/2 and our claim is proved. ¤

Lemma 4.7 is an immediate consequence of the following lemma.

Lemma 5.3 There is a C s.t. |Hn−1
4 | ≤ Ct−1/3|gn−1|1/30.

Proof. Hn−1
4 is defined by an integral for w ∈ [a−n −|gn|3/5, a−n −c|gn|]. By

Lemma 4.3 [C] we have |
...
η | & |gn|−1/10. By Lemma 3.6 we have dk/dw ≈ 1,

a−n −w ≈ π`n−k, and so by Lemmas 4.1–3 and proceeding as in Lemma 5.1

|Hn
4 | ≤ Ct−1/3|gn|1/30

∫ a−
n −`n|gn|

a−
n −|gn|3/5

dw

a−n − w

≤ C1t
−1/3|gn|1/30 log

1
|gn|

.

¤
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6. Proof of Lemma 4.8

For K3 =
∑

n Kn
3 we show |K3(t, x, y)| ≤ C〈t〉−1/3 for C fixed by re-

ducing to the flat case of Lemma 5 [MSW], whose proof permeates this
section. Set χint(k) =

∑
n χ1(w − a+

n /|gn|1/4)χ1(a−n+1 − w/|gn+1|3/5) sup-
ported inside the union of sets a+

n + |gn|1/4 ≤ w ≤ a−n+1 − |gn+1|3/5. Then
for R = x − y

K3(t, x, y) = 2
∫ ∞

0
cos(Rk) sin(tη(k))η−3/2(k)

× m0
−(x, k)m0

+(y, k)χint(k)dk.

We split the integral between [0, t] and [t, ∞). By Lemma 4.2 and by
η(k) ≈ 〈k〉 the [t, ∞) integral has absolute value less than C〈t〉−1/2 for a
fixed C > 0. Next write

h±(k) = tη(k) ± Rk

I±(t) =
∫ t

0
eih±(k)η−3/2(k)m0

−(x, k)m0
+(y, k)χint(k)dk

(6.1)

It is not restrictive to assume R = x − y > 0. We start with I−(t).

Lemma 6.1 There is a fixed C such that |I−(t)| ≤ C〈t〉−1/3.

Proof. The proof ends in Lemmas 6.16. We set I−(t) = I1(t) + I2(t) with

I1(t) =
∫ t

0
eih(k)η−3/2(k)(m0

−(x, k)m0
+(y, k) − 1)χint(k)dk

I2(t) =
∫ t

0
eih(k)η−3/2(k)χint(k)dk

(6.2)

To prove Lemma 6.1 we use:

Lemma 6.2 In supp(χint) ∩ [0, t] we have for fixed constants:
(1) 0 < 1 − η̇(k) < Q0k

−2 + O(k−3);
(2) η̈(k) & 〈k〉−3 and so |ḧ(k)| = t|η̈(k)| & tµη−3 ≈ t〈k〉−3.
(3) There is a fixed C > 0 such that for any n sufficiently large we have

|Ė(k) − 2k| ≤ C

〈k〉2
for a+

n + `3
n|gn| ≤ w ≤ a−n+1 − `3

n+1|gn+1|.

(4) There are fixed constants C > 0, C1 > 0 and c > 0 such that for any
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n and any k ∈ [`nπ, `n+1π], that is for any w ∈ [a+
n , a−n+1], we have:

a+
n + c|gn| ≤ w ≤ a−n+1 − C1`

1/3
n+1|gn+1|2/3 ⇒ Ë ≈ 1

2
+

`n|gn|2

|w − a+
n |3

.

Proof. For (3) see Lemma 7.1 [C], for (4) see Lemmas 4.2 and 7.4 [C]. (2)
is proved as in Lemma 5.2. By construction supp(χint) ∩ [0, ∞) ⊂ [k̃, ∞)
for some k̃ ≈ n0 À 1. The following for k À 1, which uses (3) here and (4)
Lemma 3.3, proves (1):

η̇ =
Ė

2(E + µ)1/2
=

2k + O(k−2)
2(k2 + 2Q0 + O(k−2))1/2

= 1 − Q0k
−2 + O(k−3).

¤

The following lemma coincides with Lemma 4.7 [C], with the proof
scattered in Lemmas 5.2, 7.1, 7.4 and 7.6 [C]:

Lemma 6.3 In the support of χint we have w ≈ k, ẇ = 1 + O(k−2), ẅ =
O(k−3). We can extend w from the support of χint to the whole of R so that
the extension (which we denote again with w) satisfies the same relations
and is an odd function.

Thanks to Lemma 6.3 we obtain:

Lemma 6.4 We can extend η(k) =
√

w2(k) + µ to all R so that there are
fixed positive c1, c2 so that η̈(k) ≥ c1〈k〉−3 and |1 − η̇(k)| ≤ c2〈k〉−2, and
positive c3, c4 such that in R\[−1, 1], c3 ≥ η̇(k) ≥ c4. Furthermore, from
η̇ = wẇ/

√
w2 + µ where µ ≥ µ0 > 0, from Lemma 6.3, n0 = n0(µ0) can be

chosen and the extension in Lemma 6.3 be done so that |η̇| < 1 in R.

In the rest of the paper by η(k) we will mean this extension and we will
set h(k) = tη(k) − Rk. We have:

Lemma 6.5 Consider the h(k) just introduced.
(1) If t ≤ R then |ḣ(k)| = R − tη̇(k) ≥ ct|k|−2 for a fixed c > 0.
(2) If t > R then ḣ(k) has exactly one zero in [0, +∞) which we denote

by k0.
(3) In case (2), if k0 > 2, for 1 ≤ k < k0/2 and for k > 2k0 we have

|ḣ(k)| ≥ ct|k|−2. If k0 ≤ 2 for k > 2k0 we have |ḣ(k)| ≥ ct|k|−2.
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Proof. |η̇| < 1 implies (1). Consider t > R. By ḣ = twẇ(w2 + µ)−1/2 − R

we have ḣ(0) = −R and by Lemma 6.3 ḣ ≈ t − R > 0 for k → ∞. So
there is a zero which by ḧ = tη̈ ≥ c1t〈k〉−3 > 0 is unique. We denote it by
k0. This gives us (2). We set [a, b] = [1, t] ∩ [k0/2, 2k0]. For k ∈ (1, a) by
Lemma 6.5 we have ḣ(k) < ḣ(2k) < 0. So for some k̃ ∈ [k, 2k]

|ḣ(k)| > ḣ(2k) − ḣ(k) = ḧ(k̃)k > ctk−2.

For k > b ≥ 2k0 we have ḣ(k) > ḣ(k/2) > 0 and for some k̃ ∈ [k/2, k]

|ḣ(k)| > ḣ(k) − ḣ(k/2) = ḧ(k̃)k/2 > ctk−2.

¤

Lemmas 4.1 and 6.2–4 imply:

Lemma 6.6 Let Ḣ(k) = eih(k) with H(0) = 0. Then for a fixed c > 0 we
have |H(k)| ≤ ct−1/2〈k〉3/2 for all k ∈ [0, t].

Next, we have the following analogue of Lemma 5 [MSW]:

Lemma 6.7 For |g(k)| = O(〈k〉−5/2) we have∣∣∣∫ t

0
H(k)g(k)dk

∣∣∣ ≤ C〈t〉−1/2. (1)

Proof. By Lemma 6.6, |H(k)| . 〈t〉−1/2 for |k| ≤ 2. If R ≥ t by Lemma 6.4
we have |ḣ(k)| ≥ ctk−2. Then by Lemma 4.1 for k ≥ 1 we have |H(k) −
H(2)| ≤ ct−1k2. By |H(2)| ≤ C〈t〉−1/2 and by |g(k)| = O(〈k〉−5/2) we
obtain (1). If R < t by Lemma 6.4 ḣ(k) has one zero which we denote by
k0. If k0 ≤ 2 we can repeat the above argument. If k0 > 2 set [a, b] =
[1, t]∩ [k0/2, 2k0] as in Lemma 6.5. For k ∈ (1, a) and p < k by Lemma 6.5

|ḣ(p)| > ctp−2 > Ctk−2.

By Lemmas 4.1 and 6.5 |H(k)| ≤ ck2t−1. Then we get∣∣∣∫ a

1
H(k)g(k)dk

∣∣∣ ≤ Ct−1/2.

For k > p > b ≥ 2k0 by Lemma 6.5

|ḣ(p)| > ctp−2 > Ctk−2.
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By Lemmas 4.1 and 6.6 |H(k) − H(b)| ≤ ck2t−1. Then we get∣∣∣∫ t

b
(H(k) − H(b))g(k)dk

∣∣∣ ≤ Ct−1/2.

By Lemma 6.6∣∣∣∫ t

b
H(b)g(k)dk

∣∣∣ ≤ Ct−1/2〈b〉3/2b−3/2.

Finally ∣∣∣∫ b

a
H(k)g(k)dk

∣∣∣≤Ct−1/2

∫ 2k0

k0/2

dk

k

≤Ct−1/22 log 2.

¤

Lemma 6.8 There is a fixed C such that for the I2(t) in (6.2), |I2(t)| ≤
C〈t〉−1/3.

Proof. Write χint(k) = 1 − χext(k) and correspondingly I2(t) = I21(t) −
I22(t) with I21(t)=

∫ t
0 eih(k)η−3/2(k)dk and I22(t)=

∫ t
0 eih(k)χext(k)η−3/2(k)dk.

Then:

Lemma 6.9 There is a fixed C such that |I21(t)| ≤ C〈t〉−1/2.

Lemma 6.10 There is a fixed C such that |I22(t)| ≤ C〈t〉−1/3.

Proof of Lemma 6.9. We have

I21(t) =
3
2

∫ t

0
H(k)η−5/2(k)η̇(k)dk + H(t)η−3/2(t).

|H(t)| ≤ t and η(t) ≈ 〈t〉 imply |H(t)η−3/2(t)| . 〈t〉−1/2. We have η(k) ≈ k

and |η̇| . 1. So g(k) := η−5/2(k)η̇(k) = O(〈k〉−5/2). Then Lemma 6.7
implies Lemma 6.9. ¤

Proof of Lemma 6.10. For Jn = [`nπ − C|gn|3/5, `nπ + C|gn|1/4] for some
fixed C & 1, set

I22(t) =
∫ t

0
eih(k)η−3/2(k)χext(k)dk = −I221(t) − I222(t),
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I221(t) :=
∞∑

n=0

∫
[0,t]∩Jn

Hn(k)χext(k)
d

dk
η−3/2(k)dk,

I222(t) :=
∞∑

n=0

∫
[0,t]∩Jn

Hn(k)η−3/2(k)χ̇ext(k)dk,

with Ḣn(k) = eih(k), Hn(`n) = 0. By ḧ(k) = tη̈(k), c1〈k〉−3 ≤ η̈(k), |η̇| < 1
and Lemma 6.6 which implies |Hn(k)| ≤ Ct−1/2〈k〉3/2 for C fixed,

|Hn(k)χext(k)η−5/2(k)η̇(k)| ≤ Ct−1/2〈k〉3/2〈k〉−5/2

so |I221(t)| ≤ Ct−1/2
∑[t]

n=1〈n〉−1 . t−1/2| log t|. By
|Hn(k)| ≤ C min{t−1/2〈k〉3/2), |gn|1/4}∫

[0,t]∩Jn

|Hn(k)η−3/2(k)χ̇ext(k)|dk ≤ min{t−1/2, |gn|1/4〈`n〉−3/2}.

This by Theorem 2.3 implies |I222(t)| ≤ Ct−1/3. ¤

Lemma 6.11 There is a fixed C such that |I1(t)| ≤ C〈t〉−1/3.

Proof. We fix some small ε > 0 and split I1(t) = I11(t) + I12(t) with

χ̃int(k) :=
∑

n

χ1

(
ε−1(k − π`n)

)
χ1

(
ε−1(`n+1π − k)

)
I11(t) :=

∫ t

0
eih(k)η−3/2(k)

(
m0

−(x, k)m0
+(y, k) − 1

)
χ̃int(k)dk

I12(t) :=
∫ t

0
eih(k)η−3/2(k)

(
m0

−(x, k)m0
+(y, k) − 1

)
×χint(k)(1 − χ̃int(k))dk.

¤

Lemma 6.12 There is a fixed C such that |I11(t)| ≤ C〈t〉−1/2.

Proof. We have m0
−(x, k)m0

+(y, k)−1 = O(k−1) and ∂k(m0
−(x, k)m0

+(y, k))
= O(k−1) in the support of χ̃int(k). Then Lemma 6.7 implies Lemma 6.12.

¤

Lemma 6.13 There is a fixed C such that |I12(t)| ≤ C〈t〉−1/3.

Proof. We consider I12(t) =
∑

n In
12(t), In

12(t) :=
∫ `n+1π
`nπ eih(k)f(k)dk

f(k) := Ψn(k)η−3/2(k)
(
m0

−(x, k)m0
+(y, k)− 1

)
where
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Ψn(k) := χ1

(w − a+
n

|gn|3/5

)
χ1

(a−n+1 −w

|gn+1|1/4

)
χ0

(k − π`n

ε

)
χ0

(`n+1π − k

ε

)
.

¤

Observe that Ψn(k) = Ψn1(k) + Ψn2(k) with Ψn1(k) supported in
|gn|1/4 . k − π`n . ε and with Ψn2(k) supported in ε & π`n+1 − k &
|gn+1|3/5. Correspondingly write f = f1 + f2 and In

12 = In1
12 + In2

12 . We have:

Lemma 6.14 For a fixed C and for j = 1,2:
∑

n |I
nj
12 (t)| ≤C〈t〉−1/2| log t|.

Proof. We focus on In1
12 , the proof for In2

12 being almost the same. We have

In1
12 (t, x, y) =

∫ (`n+1/2)π

`nπ
Ḣn(k)f1(k)dk with

Hn(k) =
∫ k

`nπ
eih(k′)dk′.

For In2
12 the proof is the same but with Hn(k) =

∫ k
`n+1π eith(k′)dk′. We get

In1
12 (t) = −In1

121(t) − In1
122(t) with

In1
121(t) =

∫ (`n+1/2)π

`nπ
Hn(k)∂k

(
Ψn1(k)η−3/2(k)

)
×

(
m0

−(x, k)m0
+(y, k) − 1

)
dk

In1
122(t) =

∫ (`n+1/2)π

`nπ
Hn(k)Ψn1(k)η−3/2(k)

×∂k

(
m0

−(x, k)m0
+(y, k) − 1

)
dk.

¤

Lemma 6.15 There is a fixed C > 0 such that
∑∞

n=1 |In1
121(t)| ≤ C〈t〉−1/3.

Proof. Set

∂k

(
Ψn1(k)η−3/2(k)

)
= −3

2
Ψn1(k)η−5/2(k)η̇(k) + Ψ̇n1(k)η−3/2(k)

=: a(k) + b(k).

We have a(k) = O(k−5/2) and

|b(k)| ≤ C(ε−1k−3/2χI1(k) + |gn|−1/4k−3/2χI2(k))
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with length of I1 ≈ ε and length of I2 ≈ |gn|1/4. Recall by Lemma 4.2,(
m0

−(x, k)m0
+(y, k) − 1

)
= O(k−1).

For t ≤ R then ḣ ≥ ct〈k〉−2. From the estimates on a(k) and b(k) we get
|In1

121(t)| ≤ Ct−1`
−1/2
n . Summing up over `n . t we get much less than t−1/3.

For t > R and for the critical point k0 > 2 (otherwise proceed as above)
distinguish between two cases

Case 1: π`n outside [k0/2−π, 2k0 +π]. Then |ḣ| ≥ ct〈k〉−2 by Lemma 6.5
and |In1

121(t)| ≤ Ct−1`
−1/2
n . Summing up over `n ≤ t we get O(t−1/2).

Case 2: π`n inside [k0/2 − π, 2k0 + π]. Then by Lemma 6.4 we have
|Hn(k)| ≤ Ct−1/2〈k〉3/2 and |In1

121(t)| ≤ Ct−1/2`−1
n . Summing up over `n ≈

k0 we get O(t−1/2). ¤

Lemma 6.16 There is a fixed C > 0 such that
∑∞

n=1 |In1
122(t)| ≤ C〈t〉−1/3.

(1) Suppose t > R. Then |ḣ(k)| ≥ ct〈k〉−2. For a fixed C by Lemma 4.1∣∣∣∫ k

`nπ
eih(k′)dk′

∣∣∣ ≤ min{C〈k〉2t−1, |k − π`n|}. (6.3)

Next we split In
122(t) =

∫ `nπ+t−1

`nπ · · · +
∫ (`n+1/2)π
`nπ+t−1 · · · . By Lemma 4.3∣∣∣∫ `nπ+t−1

`nπ
Hn(k)Ψn1(k)η−3/2(k)∂k

(
m0

−(x, k)m0
+(y, k)

)∣∣∣
≤ C

∫ `nπ+t−1

`nπ
|k − π`n||k − π`n|−1〈`n〉−5/2dk = Ct−1〈`n〉−5/2

(6.4)

and ∣∣∣∫ (`n+1/2)π

`nπ+t−1

· · ·
∣∣∣ ≤ ∫ (`n+1/2)π

`nπ+t−1

Ct−1〈k〉2|k − π`n|−1〈`n〉−5/2 (6.5)

and so |In
122(t)| ≤ C〈`n〉−1/2t−1 log t. Then

∑
|In

122(t)| ≤ Ct−1/2 log t.
(2) Suppose t < R. Then there is a unique k0 > 0 with ḣ(k0) = 0. If
k0 ≤ 2 we have ḣ(k) ≥ ct〈k〉−2 in the support of the integrands and we can
apply the argument in (1). If k0 > 2 set [a, b] = [1, t] ∩ [k0/2, 2k0]. Then
consider `n ≤ a − π/2. Then for a fixed C we get (6.3) and by proceeding
as in the case t > R we can split again and obtain estimates (6.4–5). Same
is true for `n ≥ b. Summing up over all these `n . t we get

∑
|In

122(t)| ≤
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Ct−1/2 log t. For a − π/2 < `n < b for a fixed C∣∣∣∫ k

`nπ
eith(k′)dk′

∣∣∣ ≤ min{Ct−1/2k3/2, |k − π`n|}.

Next we split

In
122(t) =

∫ `nπ+t−1/2`
3/2
n

`nπ
· · · +

∫ (`n+1/2)π

`nπ+t−1/2`
3/2
n

· · ·

But now∣∣∣∫ `nπ+t−1/2`
3/2
n

`nπ
· · ·

∣∣∣ ≤ C

∫ `nπ+t−1/2`
3/2
n

`nπ
|k − π`n||k − π`n|−1〈`n〉−5/2

= Ct−1/2`−1
n

and ∣∣∣∫ (`n+1/2)π

`nπ+t−1/2`
3/2
n

· · ·
∣∣∣ ≤ ∫ (`n+1/2)π

`nπ+t−1/2`
3/2
n

t−1/2|k − π`n|−1〈`n〉−1

and so |In
122(t)| ≤ C〈`n〉−1t−1/2 log t. Then

∑
|In

122(t)| ≤ Ct−1/2 log t.
To complete the proof of Lemma 4.8 we have to prove the following

lemma whose proof is analogous to the proof for I−(t) in the easier case
t < R and which we skip:

Lemma 6.17 There is a fixed C such that |I+(t)| ≤ C〈t〉−1/3.
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