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Abstract - English

Modern society is increasingly dependent on reliable Information Technology
(IT) services. This pervasive digitalization offers multiple benefits, but it allows
attackers to tamper with systems and cause great damage to services, customers
and citizens. Modern IT systems should be designed and implemented to achieve
a minimum security level even after successful intrusions, but the state-of-the-
art is not oriented to meet similar goals. In this thesis, we consider critical
systems that cannot tolerate intrusions and propose original solutions to satisfy
their survivability, that is, to guarantee security properties even in presence of
successful attacks, failures, or accidents. The proposed ideas contribute to the
fields of intrusion-tolerance and survivability in the context of access control,
single sign-on authentication and software supply chains.

Abstract - Italiano

La società moderna dipende sempre più da servizi di Information Technology
(IT) affidabili. Questa digitalizzazione pervasiva offre molteplici vantaggi, ma
consente agli aggressori di manomettere i sistemi e causare gravi danni ai servizi,
ai clienti e ai cittadini. I sistemi IT moderni dovrebbero essere progettati e im-
plementati per raggiungere un livello minimo di sicurezza anche dopo intrusioni
riuscite, ma lo stato dell’arte non è orientato ad offrire garanzie simili. In
questa tesi, consideriamo sistemi critici che non tollerano intrusioni e proponi-
amo soluzioni originali per soddisfare la loro survivability, ossia per garantire
proprietà di sicurezza anche in presenza di attacchi riusciti, guasti o incidenti.
Le idee proposte contribuiscono ai campi della intrusion-tolerance e della surviv-
ability nel contesto del controllo degli accessi, dell’autenticazione single sign-on
e delle catene di fornitura del software.
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Chapter 1

Introduction

Information technology (IT) has changed the world to the extent that nowa-
days modern society depends on IT systems for several aspects of its operation.
Indeed several sectors, from health care, to payments systems, telecommuni-
cations, or critical infrastructure, rely on IT systems to operate correctly and
efficiently. However, while the widespread adoption of information technology in
different domains certainly entails several advantages, its misuse allows to harm
society in increasingly damaging ways. Such damage is demonstrated by recent
serious incidents, which show that adversaries are becoming so effective at com-
promising IT systems that even if IT systems are designed to be secure against
external threats, adversaries are able to compromise them nonetheless. Success-
ful attacks against business IT infrastructure [39], software supply chains [92], or
authentication systems [39, 4] are among the most notable examples of such re-
markable adversary capabilities. Despite the individual differences among these
attacks in terms of context and execution, their effectiveness lies in a common
pattern shared by all mentioned incidents: in each attack the adversary was
able to compromise an IT system component that was assumed to be trusted.
As the whole IT system by definition relies upon trusted components to func-
tion correctly, trusted components are single points of failure, and thus their
compromise inevitably has fatal consequences for the overall IT system secu-
rity. As a result, the common pattern shared by these attacks highlights an
urgent security challenge: to counter highly sophisticated adversaries it is no
longer sufficient to design secure IT systems exclusively comprised of trusted
components. Instead, IT systems should be designed to minimize the amount
of trusted components, so that ideally a system consists mostly of untrusted
components that cooperate to implement a given functionality, and only of very
few trusted components that the whole system can assume to never be com-
promised. The benefits of this design is twofold. First, the adversary has less
opportunities to exploit possibly fatal attacks against trusted components. Sec-
ond, even if the adversary compromises a subset of untrusted components, the
adversary only gains marginal advantage in subverting the whole system secu-
rity. Both benefits increase attack costs and buy precious time for defenders to
detect and thwart the attack. These guidelines allow to design IT systems that
are able to survive successful attacks or, in other words, to design survivable
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systems [13].
Motivated by the entity and damage of recent incidents, in this thesis we

redesign the affected IT systems and components in a survivable way, to fix the
fundamental design issues that allowed such incidents to occur. As cloud-based
businesses have been the major target of the considered attacks, we start by
considering the general design of an IT network in the context of a cloud-based
business, and propose the first survivable zero trust architecture [50]. Then,
given the central importance of authentication for zero trust security, we focus
on a specific component of the proposed architecture, the survivable single sign-
on component, to both fix limitations of existing survivable password-based
SSO [90], and to provide the first passwordless survivable SSO protocol [89].
Finally, as the most damaging attacks have compromised the software supply
chain of critical proprietary software adopted by thousands of organizations,
we propose the first survivable update framework for proprietary software, to
mitigate supply chain attacks [91].

As businesses have been the preferred attack target, we first focus on the gen-
eral design of a survivable IT network in the context of a cloud-based business,
by considering the emerging zero trust paradigm which seems to partially em-
brace survivable design guidelines. In fact, it recognizes that perimeter defenses
can be breached and are no longer suitable for modern dynamic organizations.
As a result, it suggests to consider users and their user agents as hostile, and to
enforce access control on each request. However, existing zero trust architecture
(ZTA) proposals enforce such access control by relying exclusively on trusted
components. Thus, despite assuming adversaries capable of breaching perime-
ter defenses, they also assume that the same adversaries are not able to breach
ZTA components. To overcome these unrealistic assumptions we propose the
first survivable ZTA. The proposed architecture is able to tolerate intrusions
and recover from failures and successful attacks [50].

One of the most critical parts of the proposed survivable ZTA is the sur-
vivable single sign-on (SSO) authentication component, which is responsible for
password-based user authentication. Although survivable password-based SSO
proposals exist, once deployed they fix the security parameters that allow to
tune the amount of tolerable compromised components. This lack of flexibil-
ity makes the state-of-the art unsuitable to heterogeneous cloud environments
that need to protect resources with diverse security requirements. We overcome
this lack of flexibility by proposing the first flexible password-based SSO proto-
col [90] which allows to choose the trade-off between security and performance
at run-time, and even to preserve compatibility with non-survivable SSO.

In the context of survivable authentication, passwords are among the most
convenient credentials in terms of ease of use and user experience. However,
all survivable password-based SSO proposals inherit the typical vulnerabilities
related to password usage, including notoriously effective and arguably simple
phishing attacks. Passwordless authentication provides phishing-resistance, but
no existing passwordless protocol is designed to also guarantee intrusion toler-
ance. To fill this gap we propose SPOC, the first survivable passwordless SSO
protocol [89]. SPOC preserves the usability of standard passwordless protocols
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and is fully compatible with existing authenticators available on the market.
Finally, as the pervasive nature of IT has created a network of dependencies

among businesses that produce software (software-houses) and possibly thou-
sands businesses that consume said software, software supply chain attacks tend
to have a large impact. Even though a single software-house can adopt the pro-
posed survivable ZTA and survivable SSO protocols to defend against highly
skilled adversaries, protecting the business software supply chain, composed
third parties that are outside the business control, requires an ad-hoc solution.
For this reason, to address supply chain attacks in the context of proprietary
software distribution [92, 39], we introduce the first survivable software update
framework for proprietary software [91]. Compared to previous works, the pro-
posed framework is the first to guarantee both survivability, and confidentiality
of software updates.

This thesis is structured as follows. In Chapter 2 we propose the surviv-
able zero trust architecture. Chapter 3 describes the survivable and flexible
password-based SSO protocol, while in Chapter 4 we show the survivable pass-
wordless SSO protocol. In Chapter 5 we describe the proposed survivable soft-
ware update framework. Finally, Chapter 6 concludes the thesis.
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Chapter 2

Survivable Zero Trust for Cloud Comput-

ing Environments

2.1 Introduction

Cyber security based on the defense of the perimeter of an organization is be-
coming obsolete and unsuitable to organizations that are characterized by “bring
your own device” policies, hybrid cloud services, remote working and Internet-of-
Things. As a further flaw, the implicit trust granted to internal hosts facilitates
lateral movements to attackers who have gained unauthorized access to the in-
ner network and cloud resources [11]. The emerging security model based on
the so-called zero trust [70] removes the concept of perimeter by designing ar-
chitectures that do not grant implicit trust to any host/device because of their
physical location. Access to any resource must be previously authenticated and
authorized and, to this aim, zero trust solutions adopt two types of architec-
tural components: the control plane and the data plane [60, 104]. The former
includes components that collaborate to evaluate access control policies and
configure data plane components. The latter elements enforce access control
policies to the resources according to the configuration received by the control
plane.

As every network flow is considered untrusted, zero trust architectures as-
sume omnipresent internal and external threats [70, 60, 36, 113]. However,
existing designs of zero trust architectures in literature assume an untrusted
data plane but a trusted control plane (e.g., [44, 77, 46, 115, 122]) that is, they
assume that adversaries are confined to the data plane cannot compromise the
control plane components.

We argue that relying on a trusted control plane is incoherent with zero
trust principles as we consider unrealistic to assume that attackers could not
compromise control plane components that grant access to system resources.
For this reason, we identify possible threats and attacks to zero trust control
plane and mitigate them through a novel design that distributes trust within
the control plane so that no single component is fully trusted. We evaluate
the feasibility of the proposal in cloud computing environments by analyzing
performance of the state-of-the-art protocols and components that are required
for the implementation of the proposed architecture.
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This chapter is organized as follows. Section 2.2 discusses related work. Sec-
tion 2.3 introduces the reference zero trust architecture. Section 2.4 highlights
possible attack scenarios. Section 2.5 overviews the design of the proposed sur-
vivable zero trust architecture to prevent the considered attacks. Section 2.6
describes the adopted technical solutions. Section 2.7 discusses the security and
robustness of the proposed architecture. Section 2.8 discusses the feasibility of
the architecture. Section 2.9 concludes the chapter.

2.2 Related work

In this work, we propose the first survivable zero trust architecture for cloud
computing that satisfies the core principles of zero trust [70, 60, 36, 113], namely:
the network is assumed to be hostile and characterized by persistent external
and insider threats; network flows are not trusted even if they originate from
internal networks; each flow must be authenticated and authorized through dy-
namic access control policies. Existing literature on zero trust assumes that
only the data plane can be hostile while the control plane is assumed as trusted
(e.g., [44, 77, 46, 115, 122]). As this assumption contrasts zero trust core princi-
ples, we design an architecture that tolerates attacks from external and insider
adversaries against the data plane and the control plane.

Some works [44, 46] propose zero trust architectures composed by multiple
trusted control plane components that do not guarantee security in the case
of successful intrusions. These proposals do not store access control policies
in a survivable way, hence an adversary which alters them may defeat access
control mechanisms. We avoid a similar limitation by storing access control
policies in survivable databases that tolerate attacks against policy integrity. As
a further limitation, existing proposals assume trusted communication channels
among control plane components, hence they cannot guarantee authenticity
of control plane configurations. The proposed zero trust architecture secures
control plane communications over untrusted channels with well-known public
key infrastructure (PKI) and tolerates attacks against PKI components.

Another line of research (e.g., [77, 115] extend XACML [2]) proposes zero
trust architectures supporting fuzzy evaluation of dynamic access control poli-
cies. These proposals rely on trusted components to evaluate policies and, as a
result, they cannot tolerate attacks against the integrity of the policy evaluation
process. We present an architecture supporting dynamic access control policies
that can even tolerate integrity violations of the policy evaluation process.

The paper in [122] proposes a zero trust architecture that allows perimeter-
ization of microservices, but a similar scenario is quite different than that con-
sidered in this work. We refer to users requesting access to resources through
managed devices, whereas the other work considers microservices requiring ac-
cess to other microservices. The difference between the two scenarios is that
the entity issuing a request, known as network agent [60], in our case is repre-
sented by the pair user-device, whereas in [122] refers to microservice identities.
This difference is reflected in the different design of the architectural compo-
nents devoted to network agent authentication. In their proposal, the trusted
kernel of the host executing a microservice authenticates requests originating
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from the microservice. As a result, compromising the host allows the adversary
to impersonate any microservice. The architecture proposed in this work au-
thenticates user and device through intrusion tolerant components that prevent
impersonation of a network agent by removing single points of vulnerability.

Recent literature aims to reduce trust assumptions on the control plane by
proposing access control architectures based on blockchain [86, 125, 88, 80, 45].
For example, the authors in [45] extend the seminal zero trust architecture
of [70] by storing and evaluating access control policies on smart contracts.
The works of [86, 125, 88] extends XACML architecture by designing policy
enforcement and decision points as blockchain components. These design choices
guarantee the integrity of policies and of the evaluation process even in presence
of attacks, but they incur in monetary and computational costs associated with
permissionless blockchains. We propose a zero trust architecture with the same
security guarantees without incurring in their drawbacks.

The authors in [80] propose an access control system in Industry 4.0 by
adopting a permissioned blockchain that saves monetary costs, but this sys-
tem considers network agents consisting of devices only and does not include
user identities. As a result, it lacks the procedures and components required
for user authentication, such as a user database or a single sign-on authentica-
tion system. This proposal does not satisfy the zero trust paradigm that both
users and devices must be authenticated. Our architecture includes survivable
components dedicated to user and device authentication, thus embracing and
enhancing zero trust principles completely.

2.3 Reference zero trust architecture

Multiple architectures have been proposed to instantiate zero trust design prin-
ciples at different levels of abstraction and coverage of security requirements.
We consider a reference architecture that is a subset of the BeyondCorp Zero
Trust Architecture (ZTA) [118], which is a full-fledged architecture already de-
ployed in production-ready cloud-based environments. In Section 2.3.1, we show
that the architecture has general validity and we discuss how it relates to NIST
ZTA [104] and XACML architectures [2, 12].

The reference model of the considered ZTA is outlined in Figure 2.1. We
consider the following components.

• Administrator: an employee with the privileged access to the archi-
tectural components. He can allow their initial setup and subsequent
configurations.

• User: a person that requests access to a resource through a managed
device.

• Resource: applications, services and infrastructures that are subject to
access control.

• Managed device: device that a user adopts to access a resource; this
device is procured and managed by administrators through some device
management systems.
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A similar architecture requires several components that are responsible for
authentication and authorization as reported below.

• Single Sign-On: a centralized user authentication service that issues
authentication tokens after validating users credentials.

• Access Control Engine: a centralized logical component that evaluates
access policies and performs authorization by granting or revoking access
to a resource.

• Access Proxy: a logical component that allows or denies access to re-
sources as instructed by the Access Control Engine.

The Access Control Engine performs authorization by executing a so called
trust algorithm [104] that evaluates access control policies by taking into account
several information. It supports the evaluation of the trust level associated to
a device-user pair requesting a resource. The sources of information, that are
collectively referred as Sources, are:

• Access Policies database: stores the set of both infrastructure-wide
and application-specific policies. A policy is a set of predicates that must
be satisfied to access a resource.

• Device Inventory database: stores information about devices; the
stored information includes device last observed status (e.g., operating
system version or installed software) as well as other additional informa-
tion (e.g., device owner or device certificates).

• Device Certification Authority: issues certificates to managed de-
vices, which are stored in the Device Inventory as well as on devices.

• Infrastructure Certification Authority: issues certificates to other
ZTA components.

• User/Group database: stores information about users and groups.
This information is used to evaluate access control policies.

The third role is represented by the Human Resources Staff that is
granted to write permissions by Administrators over the User/Group database
and the Device Inventory.

Administrators grant write permissions to Human Resources staff by defining
appropriate access policies in the Access Policies database. Human Resources
staff is the only unprivileged actor that is allowed to access the Device Certifica-
tion Authority, the Device Inventory and the Users/Group databases. A similar
grant is denied to normal users.

We highlight that Users, Human Resources Staff and Administrators cor-
respond to the typical roles of an organization. This classification reflects the
different levels of trust required to access components and to operate the infras-
tructure, but it does not limit the general value of the proposal. We can model
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all personnel that requires access to resources and that must not have access
to the User/Group database, the Device Inventory or certification authorities
with the User role. Moreover, the considered system model allows personnel to
be assigned multiple roles at once (e.g., an administrator that also provisions
managed devices).

Let us describe the flow of operations of the reference ZTA. When a new user
needs access to resources, the Human Resources staff must complete the user reg-
istration and device provisioning operations. User registration is performed by
authorized Human Resources staff which adds the new user to the User/Group
database. Human Resources staff then completes device provisioning by ob-
taining a new device certificate from the Device Certification Authority, and by
inserting a record in the Device Inventory database that contains device infor-
mation and the device certificate. Once users and their managed devices are
registered, they can obtain access to a resource by completing the authentica-
tion and authorization flow which involves the following sequence of operations:
device authentication, user authentication, request authorization and resource
serving. A request for a resource is always received by the Access Proxy which
is in charge of device authentication. During device authentication the device
identifies itself to the Access proxy by presenting the certificate. If the access
proxy verifies that the supplied certificate is present in the authentication pro-
cedure, then it completes the authentication procedure by executing a public
key authentication protocol with the device. If not, the Access proxy termi-
nates the device authentication procedure. Once the device is authenticated,
the Access Proxy redirects the user to the single sign-on system for user authen-
tication. The user authenticates to the single sign-on system, possibly through
multi-factor authentication, and obtains an authentication token attesting the
user identity. The single sign-on system redirects the user back to the Access
Proxy which forwards the user request, along with the obtained authentication
information, to the Access Control Engine for request authorization. The Ac-
cess Control Engine executes the trust algorithm by evaluating the request, the
attached authentication information, as well as other data sources, and then
determines whether access to the resource is granted or denied. The Access
Control Engine finally sends the authorization result to the Access Proxy. If
the access is granted, then the Access Proxy proceeds to resource serving during
which the Access Proxy serves the resource to the user by acting as a reverse
proxy. If the access is denied, then the Access Proxy terminates the sequence
of operations.

All architectural components communicate over mutually authenticated and
confidential channels. Channel authenticity relies on a public key infrastructure
(PKI) whose root of trust is represented by the Infrastructure Certification
Authority that is managed and maintained by administrators.

The Device Inventory database plays an important role during the device
authentication procedure, because it acts as a certificate whitelist that allows
only registered certificates to be used during authentication. This feature has
relevant security implications that are discussed in Section 2.4 and Section 2.5.
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Figure 2.1: Reference zero trust architecture

2.3.1 Discussion on related architectures

We discuss how the considered architecture relates to BeyondCorp ZTA [118],
NIST ZTA [104] and XACML architectures [2, 12].

The considered reference architecture is a subset of BeyondCorp ZTA (as
already mentioned at the beginning of Section 2.3), because it focuses on pre-
ventive security measures, such as access control components that, if breached,
give immediate unauthorized access to resources. BeyondCorp ZTA also in-
cludes additional supporting components such as security information and event
management (SIEM) or threat intelligence systems. Our proposal is orthogo-
nal to these supporting components and can be easily integrated with existing
systems.

The NIST ZTA can be regarded as a full-fledged architecture that is similar
to the BeyondCorp ZTA, however it adopts a higher abstraction level. The con-
sidered architecture represents a potential instantiation of the NIST ZTA: the
Access Control Engine instantiates the Policy Decision Point (PDP), the Ac-
cess Proxy instantiates the Policy Enforcement Point (PEP), the Access Policies
database instantiates the Policy Administration Point (PAP), the User Group
database instantiates the Subject database, the Device Inventory database in-
stantiates the Asset database, the Single Sign-on instantiates the ID Manage-
ment System, and the Device and Infrastructure certification authorities instan-
tiate the Enterprise PKI component. Finally, similarly to how our architecture
is a subset of the BeyondCorp ZTA, it would also be a subset of the NIST
ZTA because it only considers preventive security measures. Other supporting
components could be easily integrated with our proposal.

Standard XACML architectures [2] focus on access control components but
do not include many details regarding authentication. For access control, XACML
architectures broadly share the same high level abstraction approach of the NIST
ZTA, and many components also have the same names (e.g., PEP, PDP, PAP).
Thus, our architecture can be also considered an instantiation of these com-
ponents of XACML architectures. However, some components are even more
abstract because they do not consider details related to distinguished authenti-
cation of users and devices (as an example, the Policy Information Point (PIP)
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store information that all ZTAs store in separated databases, such as the Sub-
ject database and the Asset inventory databases of the NIST ZTA). Finally,
standard XACML architectures do not include other components, such as the
Device Certification Authority and Single Sign-On system.

Some proposals extend XACML architectures to include identity manage-
ment components to support credential-based access control [12]. However, they
consider a network agent that only includes the user identity and not his device,
and thus lack the components devoted to device authentication.

2.4 Threat model and attack scenarios

We consider an attacker that wants to gain unauthorized access to some resource
of an organization, such as users’ information stored in databases or signing keys.
The attacker may be an external threat, who does not possess a device registered
in the Device Inventory and who is not registered in the User/Group database.
The attacker may also be an insider threat, such as a disgruntled employee, who
owns a managed device registered in the Device Inventory and who is registered
in the User/Group database. Our proposal can defend against attackers that try
violating Sources as well as any authentication and authorization component in
order to compromise the integrity and authenticity of the access control process.

Attacks that gain access to Sources and other authentication and authoriza-
tion components by violating the credentials of administrators or employees do
not qualify as a component compromise because the attacker uses valid creden-
tials. To prevent these attacks, our proposal can be combined with standard
solutions for multi-factor authentication or decentralized governance approaches
proposed by the literature [123].

An attacker may try subverting the correct operations of zero trust access
control by compromising the several components that, in the reference design
of ZTAs, represent single points of vulnerability:

• Device Certification Authority: the attacker may compromise the
confidentiality of the Device Certification Authority signing key. This
allows the attacker to issue arbitrary certificates to attacker-controlled
devices (A1). As the Device Inventory acts as a certificate whitelist, this
attack does not allow the attacker to successfully authenticate his device
because a corresponding entry that associates the rogue certificate to the
attacker device must be present in the Device Inventory.

• Infrastructure Certification Authority: the attacker may compro-
mise the confidentiality of the Infrastructure Certification Authority sign-
ing key. A similar compromise enables the attacker to issue rogue certifi-
cates to impersonate architectural components (A2). This attack becomes
very effective in subverting zero trust access control if the attacker imper-
sonates the Access Control Engine to the Access Proxy. In this case, the
attacker can bypass the authorization logic by providing fake authorization
results to the Access Proxy.

• Device Inventory: the attacker may compromise the integrity of the

17



inventory by inserting arbitrary device entries (A3). This allows the at-
tacker to insert an attacker-controlled device among the set of legitimate
managed devices. If a similar operation is executed after the compro-
mise of the Certification Authority, it allows the attacker to authenticate
arbitrary devices (A1 +A3).

• Access Policy Database: the attacker may compromise the integrity
of the access policies (A4), and grant access to unauthorized devices and
users. If the attacker is an insider threat, this attack is sufficient to grant
access to unauthorized resources as the insider device and user account
are already registered in their respective databases. If the attacker is
external, he can modify the policies to the extent that anonymous accesses
are allowed.

• Access Control Engine: the attacker may compromise the integrity of
the access control logic (A5) and alter the authorization logic to allow
access to unauthorized devices and users.

• Single Sign-On: the attacker may compromise the confidentiality of the
single sign-on signing key (A6). This allows the attacker to sign arbitrary
authentication tokens, thereby impersonating registered users. If an in-
sider compromises the Device Inventory to assign an attacker-controlled
device to the impersonated user (A3 +A6), the attacker can access unau-
thorized resources. An external attacker must also compromise the cer-
tification authority to issue a valid certificate to the attacker-controlled
device (A1 +A3 +A6).

• User Group Database: the attacker may compromise the integrity of
the user group database (A7) to grant access to unauthorized users. If the
attacker is an insider threat, this attack is sufficient to grant unauthorized
access to resources as the insider may change his attributes to elevate his
access privileges. An external attacker may leverage this attack to register
valid credentials to the Single Sign-On, but he must still compromise the
certification authority and the device inventory to issue a valid certificate
to the attacker-controlled device (A1 +A3 +A7)

• Access Proxy: the attacker may violate the confidentiality of the secret
keys used by the Access Proxy to authenticate to resources (A8). Since
the Access Proxy acts as a policy enforcement point, an attacker that is
able to impersonate the Access Proxy can bypass any authentication and
authorization logic.

We summarize the attacks against individual components and the cyber kill
chains that allow unauthorized resource access in Table 2.1.

The presented attacks allow to gain unauthorized access to cloud resources
through different numbers and types of additional components that must be
compromised. For example, compromising the Infrastructure Certification Au-
thority (A2), the Access Policy database (A4), Access Control Engine (A5), the
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Attack
label

Attacked
component(s)

Attack
description

Unauthorized
access

A1 Device CA key confidentiality ✗

A2 Infrastructure CA key confidentiality external
A3 Device Inventory database data integrity ✗

A4 Access Policy database data integrity external
A5 Access Control Engine process integrity external
A6 Single Sign-On key confidentiality ✗

A7 User Group database data integrity insider
A8 Access Proxy key confidentiality external

A3 +A6
Device Inventory database

Single Sign-On
kill chain insider

A1 +A3 +A6
Certification Authority

Device Inventory database
Single Sign-On

kill chain external

A1 +A3 +A7
Certification Authority

Device Inventory database
User Group database

kill chain external

✗: attack does not grant unauthorized access

Table 2.1: ZTA attacks and kill chains summary

User Group database (A7) or the Access Proxy (A8) allows unauthorized access
to resources because the attacker is able to alter or bypass the authorization
logic without the need of compromising additional components. As a result,
these attacks are very effective and require a minimum amount of successful
compromises. We note that attacks A1, A3 and A6 do not grant unauthorized
access on their own. In order to be effective, they must be included in a cyber
kill chain consisting of multiple attacks.

If the attacker is unable to alter or bypass the authorization logic, then he
must carry out attacks requiring the compromise of multiple components. In a
similar way, the attacker can issue a request from an authorized device while
impersonating an authorized user.

It is tempting to assume that compromising multiple architectural com-
ponents is harder than compromising a single component and, as a conse-
quence, that attacks involving the Device Certification Authority, the Single
Sign-On system, the User Group database and the Device Inventory (A3 +A6,
A1 + A3 + A7, A1 + A3 + A6) are unfeasible or unrealistic. This assumption
is false when the architectural components are affected by the same vulnera-
bilities. For example, when they rely on the same software dependencies (e.g.,
same libraries), if they share the same operating system or if they run on the
same hardware [81, 72]. In practice this is a common occurrence as the ad-
ditional costs of n-version programming [14] and of supporting heterogeneous
hardware inhibit the creation of failure independent subsystems. In these sce-
narios, the efforts of compromising multiple components may not be more ex-
pensive than compromising one of them. As a result, designing survivable ZTAs
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for cloud computing environments that can resist to classes of seemingly com-
plex attacks against multiple architectural components is of urgent and practical
interest.

2.5 Zero trust architecture survivable design

The core zero trust principles [60] that guide our design can be summarized as
following:

• the network is always assumed to be hostile;

• external and internal threats exist on the network at all times;

• accesses from the local network do not guarantee trust;

• every device, user, and network flow must be authenticated and autho-
rized;

These core principles are established to protect network resources, but we
claim that they should also be extended to protect the ZTA itself from ex-
ternal and internal threats. Indeed, the multitude of attacks undermining the
security of architectures presented in Section 2.4 have the common character-
istics of violating the trust of some components. The mitigation of the impact
of trust violations due to successful compromise of trusted components requires
the distribution of trust of each component among multiple entities. We identify
two main approaches: intra-component trust distribution and inter -component
trust distribution.

Intra-component trust distribution substitutes the original trusted compo-
nent with a functionally equivalent structure composed by multiple replicas.
Replicas share trust, so that the corruption of a subset of replicas is not suffi-
cient to affect the security properties of the replicated component. Byzantine
fault tolerant state machine replication is a well-known example of a similar
approach [109].

Inter-component trust distribution requires the distribution of trust among
heterogeneous components sharing some dependency relation. This solution al-
lows components to share trust on their dependencies with other components
or actors. Whitelisting is an example of inter-component trust distribution: a
component considers data received by a dependency as valid if it is both correct
and approved. Data is correct if it satisfies certain semantics and formal prop-
erties. It is approved if it finds a match in the local whitelist. This component
distributes trust because it allows the dependent component to discard seem-
ingly valid but not approved data produced by a malicious dependency. To this
aim, whitelisting relies on a trusted entity to define and update the whitelist.
As a result, trust is shared between the dependency and the trusted entity: the
dependency is trusted for correctness, while the entity defining the whitelist is
trusted for approval. In our proposal, administrators represent the trust anchor
of the ZTA. We can rely on them for whitelisting operations. Inter-component
trust distribution based on whitelisting is already present in the reference ZTA
in the form of the Device Inventory. It acts as a device certificate whitelist which
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prevents dependent components (e.g., Access Control Engine and Access Proxy)
from accepting forged device certificates that are correct but not approved. We
rely on this observation to avoid the application of intra-component trust distri-
bution techniques on the Device Certification Authority and the Infrastructure
Certification Authority (see Section 2.6.3).

A so called intermediary removal is another example of inter-component
trust distribution. Here, trusted dependencies are removed by shifting their re-
sponsibilities to the dependent components. This allows the system to distribute
trust among all the components that depend on the removed intermediary be-
cause each component is independently responsible for guaranteeing the proper-
ties and functionality offered by the removed intermediary. In our proposal, we
apply this technique by designing protocols that allow to move access control
enforcement responsibilities from the Access Proxy to resources. This allows us
to avoid the application of intra-component trust distribution techniques on the
Access Proxy.

To sustain the workloads of modern cloud computing environments, the
scalability and elasticity properties offered by cloud infrastructures are essen-
tial. Therefore, we consider the architectural components of our design as part
of a cloud infrastructure owned and maintained by the infrastructure operator.
Admins preserve direct access to the cloud infrastructure and, in accordance
with the zero trust paradigm, our architecture allows users to access cloud re-
sources both from within operator premises and remotely, provided they adopt
authorized managed devices.

Our design of a survivable ZTA is guided by the threat model presented in
Section 2.4. For each attack, we identify the security properties that an attack
may violate, and we derive the security requirements that the affected logical
components must satisfy. Finally, for each affected component we identify the
most appropriate trust distribution technique that can mitigate the identified
attacks and protect the affected security properties. This approach preserves
the logical components of the reference ZTA and their original functions, but
it requires some additional components that operate together to guarantee the
survivability of the architecture. The main requirements that each component
must satisfy are outlined in Figure 2.2, while the resulting design is shown in
Figure 2.3.

Some attacks are possible because conventional databases do not tolerate
malicious violations of the data integrity. As this attribute must be one of the
main goals of a survivable architecture, we require that the Device Inventory, the
User/Group database and the Policy Database can tolerate integrity violations
by design and can recover from attacks. To this aim, we apply intra-component
trust distribution and replicate the Device Inventory, the User/Group database
and the Policy Database through Byzantine Fault Tolerant (BFT) database
replication. These schemes distribute a database among a set of replicas that
can mask malicious integrity violations and recover from them.

The Device Certification Authority is a single point of vulnerability because
it is not designed to tolerate confidentiality violations of its signing key. An
attacker that compromises the Device Certification Authority can issue rogue
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Figure 2.3: Overall survivable zero trust architecture

certificates to attacker-controlled devices that can later try to authenticate by
presenting a valid certificate. However, a BFT Device Inventory is sufficient to
prevent this attack. In fact, the Device Inventory acts as a certificate whitelist
that prevents authentication with unregistered certificates. Since the attacker
is unable to maliciously alter a BFT Device Inventory to insert rogue certifi-
cates, he is unable to authenticate his rogue devices. Our design leverages a
similar whitelist-based inter-component trust distribution, and does not require
a Device Certification Authority that can tolerate the violation of signing key
confidentiality because the BFT Device Inventory already masks this attack.

The Infrastructure Certification Authority is a single point of vulnerability
as an attacker that compromises its signing key can issue a rogue certificate
to impersonate infrastructure components. In order to mitigate this attack,
we apply whitelist-based trust distribution on the Infrastructure Certification
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Authority that allows dependent components to detect forged certificates not
belonging to the component local certificate whitelist. As a result, our design can
securely adopt conventional certification authorities that rely on well-established
security techniques to detect and recover from key compromise.

The type of user impersonation attacks violates the confidentiality of the
signing key that is used to issue single sign-on authentication tokens to users.
In such a way, an attacker is able to forge rogue authentication tokens. For this
reason, we require single sign-on authentication mechanisms that can tolerate
and recover from attacks that compromise the confidentiality of the signing key.
To guarantee signing key confidentiality, we apply intra-component trust dis-
tribution by adopting a survivable single sign-on mechanism. This mechanism
splits the signing key among multiple signing parties so that, if a subset of par-
ties is compromised, then the confidentiality of the signing key is guaranteed;
moreover, the compromised parties can recover from an attack. We allow each
signing party to access the Users/Group database to include user information
in the issued authentication tokens.

The Access Control Engine represents a single point of vulnerability because
an adversary that can compromise the integrity of its access control logic may be
able to gain unauthorized access to cloud resources. To guarantee integrity of the
access control logic we apply intra-component trust distribution by replicating
the Access Control Engine through BFT schemes so that it can tolerate the
compromise of a threshold of its replicas.

Finally, the Access Proxy is another single point of vulnerability because an
adversary breaching it can violate the confidentiality of its keys used to establish
authenticated communication channels with cloud resources. This vulnerability
allows the attacker to access resources by impersonating the Access Proxy and
bypass any authentication and authorization logic. This is due to the implicit
trust that each resource grants to the Access Proxy. To fix a similar vulnerability
we notice that the Access Proxy has many responsibilities that do not have to
remain concentrated in a single component. In particular, the Access Proxy
is responsible for both device authentication and policy enforcement. Device
authentication can be left to the Access Proxy, while policy enforcement can be
decentralized. To this aim, we apply inter-component trust distribution based
on intermediary removal by extending each resource with a Resource Proxy, also
known as Zero Trust reverse proxy [60] or gateway [104]. Each resource trusts
its Resource Proxy to enforce access control. This design approach distributes
trust among multiple Resource Proxies instead of concentrating it in a single
Access Proxy. The advantage is twofold: a compromised Access Proxy does
not allow an adversary to access resources; a compromised Resource Proxy
does not allow an adversary to access other resources managed by other non-
compromised Resource Proxies, thus limiting the impact of the compromise of
a trusted component.

2.6 Detailed architecture

We describe how the trust distribution techniques of the architectural design
are applied to each component. Section 2.6.1 analyzes survivable databases
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used in multiple components of the architecture. Section 2.6.2 discusses the
survivable single sign-on component. Section 2.6.3 discusses trust distribution
for certification authorities. Section 2.6.4 describes the novel design of the access
control engine and of the access proxy.

2.6.1 Survivable databases

Survivable databases can be obtained by means of middleware-based byzantine
fault tolerant (BFT) database replication (also, BFT databases), which are full-
fledged database management systems (DBMS) that achieve BFT guarantees.
Although the initial BFT databases date back to some decades ago [57], they
have been improved by more recent research proposals (e.g., [58, 59, 114, 56, 100,
84]). We show that no existing BFT database can satisfy all the requirements
of our survivable ZTA.

Table 2.2 summarizes the analysis of existing BFT databases. In this table,
we consider typical features [83], such as number of replicas, message complex-
ity, consistency guarantees, support of concurrent transactions and tolerance of
faulty clients. Moreover, we introduce additional requirements that are inher-
ited by the literature on survivable systems [13]: presence of single points of
vulnerability and fault recovery.

SPoV # replicas
Fault

recovery
Message

complexity
Consistency

Concurrent
transactions

Faulty
clients

HRDB yes 2k + 1 yes O(n) serializable yes yes
Gashi et al. no 3k + 1 yes O(n2) serializable no yes

BFT-DU no 3k + 1 no O(n2) serializable yes no
Byzantium no 3k + 1 no O(n2) snapshot yes yes

MITRA no 3k + 1 no O(n2) serializable yes yes

Table 2.2: Comparison among BFT database replication proposals

Single points of vulnerability. BFT database replication solutions may in-
troduce single points of vulnerability (denoted as “SPoV” in Table 2.2) in their
architecture as a compromise between survivability and performance.

Number of replicas. The number of replicas that a BFT database requires
corresponds to the number of distinct database instances that must be deployed
to guarantee byzantine fault tolerance. Most proposals require a number of
n = 3k + 1 replicas, where k is the number of faulty replicas that the system
can tolerate. For example, we need four replicas to tolerate k = 1 faults.

Fault recovery. This property guarantees that the database can recover from
a compromise of some of its replicas. Moreover, it ensures that the number of
faulty replicas f does not exceed the amount established at system setup during
the whole lifetime of the database.

Message complexity. The message complexity indicates the growth of the
number of messages that are globally exchanged among replicas during the pro-
tocol execution with respect to the number of replicas. Most proposals require
a quadratic number of messages in the number of replicas.

Consistency guarantees. The consistency guarantees indicate the tolerance
of the replicated database to anomalies arising from the concurrent execution
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of transactions. Single-copy serializability (denoted as “serializable” in Ta-
ble 2.2) guarantees that the execution of concurrent transactions on a replicated
database behaves as the sequential execution of the same transactions on a sin-
gle copy of the database [23]. This solution represents the strongest consistency
guarantee for replicated databases. On the other hand, snapshot isolation is
a weaker consistency guarantee that may affect data integrity because it does
not prevent some classes of anomalies [22]. Other proposals adopt a similar
isolation level because, especially for read biased workloads, it offers a better
transaction throughput. In our case, single-copy serializability is preferable to
snapshot isolation because an attacker may exploit anomalies to maliciously
corrupt data.

Concurrent transactions. A database may not support the execution of
concurrent transactions, such as in the case of [58]. This is a limitation that may
negatively impact performance in scenarios characterized by intensive database
workloads.

Faulty clients. A BFT database tolerates byzantine clients if it does not allow
a client to compromise the database consistency guarantees during transaction
execution. As an example, a byzantine client may equivocate responses to dif-
ferent replicas during protocol execution to bring the system in an inconsistent
state.

The evaluation criteria allow us to identify the requirements that a BFT
database should satisfy in a survivable ZTA. A BFT database should not in-
troduce single points of failure. It should ensure single-copy serializability and
allow concurrent transactions. It should tolerate byzantine clients and guarantee
fault recovery. Existing proposals only partially satisfy all these requirements.
Hence, further research efforts are required in the field of BFT databases. We
identify MITRA and HRDB as the solutions offering the best trade-offs among
the examined BFT databases. MITRA satisfies most requirements but it does
not include a fault recovery mechanism. Hence, if faults can be detected, then
the database may be restored to a known safe checkpoint, but non-detectable
byzantine faults may go unnoticed and accumulate over time among replicas so
that the security threshold is exceeded [59]. HRDB supports fault recovery and
offers better performance than MITRA (Section 2.8) at the cost of introducing
a trusted component in its design. The trusted component has a much lower
attack surface compared to database replicas as it can be implemented with
a smaller code base [114]. The adoption of secure coding and operations best
practices to protect the trusted component should guarantee that HRDB can
be regarded as a practical proposal in the context of survivable ZTAs.

It is interesting to evaluate some architectural features of existing BFT
databases that determine how they may be integrated in a survivable ZTA.
A common approach to BFT databases is to design a middleware that enables
crash-fault tolerant databases to collectively guarantee a BFT service. The mid-
dleware intercepts client requests and delivers them to the appropriate replicas,
thereby hiding BFT replication to the client. This black box approach has sev-
eral advantages: it does not require modifications of the database source code,
which may not be available in case of proprietary databases. Moreover, it allows

25



the inclusion of several databases from different vendors in the deployment of
the BFT system. This feature is important because it allows middleware solu-
tions to support design diversity [14], which is an important security technique
to mitigate common-mode failures.

In general, the architecture of a middleware-based BFT database consists
of a client-side proxy component that is aware of each replica in the system.
The proxy intercepts the client requests and appropriately forwards them to
the replica-side proxy which then communicates with the replica’s database
management system (DBMS).

Our design replaces the User/Group and the Access Policies databases with a
different BFT database, and may replace the Device Inventory to obtain stronger
survivability guarantees (for a precise definition of survivability guarantees see
Definition 2.7.1). To this aim, we must establish the desired level of tolerable
byzantine replicas k for each BFT database, and then deploy the required total
number of replicas. Moreover, the single sign-on system, the Access Control
Engine and the Access Proxy, which are clients of the BFT databases, must be
modified to include the client-side proxy.

2.6.2 Survivable single sign-on

A survivable single sign-on function requires a cloud-based survivable single
sign-on architecture. The examples in [5, 17, 123] are some single sign-on sys-
tems that guarantee signing key confidentiality in case of successful attacks and
allow recovery from successful compromises. We establish the most appropriate
system that our architecture can adopt, by analyzing the state-of-the-art about
traditional and survivable single sign-on solutions and identify the characteris-
tics that are required for survivable ZTAs.

Traditional single sign-on, represented in Figure 2.4, involves three actors:
a user, and identity provider and a service provider. The user wants to ac-
cess a resource owned by the service provider, who enforces access control over
the resource. As a result, the service provider needs to authenticate users.
To this aim, the service provider trusts and delegates to the identity provider
the authentication procedure. The service provider does not maintain the user
credentials database required for authentication, which is maintained by the
identity provider. A user, who has previously registered himself to the identity
provider, can use his credentials to authenticate to the identity provider. Upon
successful authentication, the identity provider digitally signs and sends an au-
thentication token to the user. The user then forwards the authentication token
to the service provider. The service provider verifies the token authenticity and,
if authentic, can be convinced about the user identity.

Various attacks against traditional single sign-on systems motivate the need
for survivable single sign-on. An attacker that can compromise the confidential-
ity of the identity provider signing key is able to forge arbitrary authentication
tokens. Moreover, an attacker that can read the credentials database may be
able to mount offline dictionary attacks. A survivable single sign-on system,
represented in Figure 2.5, prevents these attacks by substituting the identity
provider with a set of n identity servers, each maintaining independent creden-
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tials databases. The system can tolerate at most k < n corrupt identity servers.
To prevent an adversary from forging arbitrary authentication tokens, the iden-
tity provider signing key is cryptographically split among n identity servers so
that any subset of less than k + 1 servers cannot reconstruct or use the signing
key. This approach guarantees token unforgeability against the breach of k iden-
tity servers. To prevent an attacker from mounting offline dictionary attacks,
user credentials are cryptographically split among multiple credentials databases
so that gathering data stored in less than k + 1 databases does not reveal any
information about user credentials. This guarantees credentials security against
the breach of k credentials databases.

The information flow of survivable single sign-on is similar to the flow of
traditional single sign-on. In survivable single sign-on, the user authenticates to
a threshold of identity servers which issue enough partial authentication tokens
so that the client can reconstruct a full authentication token. The client then
forwards the authentication token to the service provider as in traditional single
sign-on.

We identify the characteristics of survivable single sign-on (SSO) and es-
tablish the requirements that survivable SSO must satisfy to be adopted in a
survivable ZTA. To this aim, we consider typical features adopted in the sur-
vivable single sign-on research field [17], that are: threshold security, proactive
recovery support, trusted setup, number of round trips for authentication, resis-
tance against online password testing attacks, number of secret keys per replica.
Table 2.3 compares the considered proposals.

threshold proactive
Trusted
setup

# auth.
round trips

OPTA
# secrets

per replica
PASTA (k, n) no no 1 no O(#users)
PESTO (n− 1, n) yes yes 2 yes O(n)

PROTECT (k, n) yes no 2 yes O(#users)

Table 2.3: Comparison among survivable single sign-on proposals

Threshold security. This criterion indicates whether the SSO system allows
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the choice of any threshold of tolerable malicious identity servers k < n or im-
poses additional constraints on the value of k. In the case of PESTO [17], the
value of k can be set just to k = n− 1. This implies that a token generated by
this proposal is valid only if it is authenticated by all identity servers. There-
fore, if a single identity server becomes unresponsive, the whole SSO becomes
unavailable as no valid authentication tokens can be generated. As a result, al-
lowing the flexible definition of the amount of malicious identity servers k, such
as in solutions that guarantee (k, n) threshold security, can guarantee a higher
level of availability of the single sign-on service than solutions that guarantee
(n− 1, n) threshold security. We note that all considered proposals [5, 17, 123]
require to establish the values of k and n at protocol setup and do not allow
to change them at runtime. In Chapter 3 we overcome these limitations and
introduce a survivable SSO protocol that allows the service provider to choose
the value of k at runtime according to the security requirements of the resource
being accessed.

Proactive security. A survivable SSO proposal is proactively secure if it
allows to periodically refresh the cryptographic material of identity servers. This
allows us to recover compromised identity servers from successful attacks and
ensures that any leaked cryptographic material becomes useless after a refresh.
This property is essential to guarantee that the amount of compromised identity
servers never exceeds the security threshold k during the whole lifetime of the
single sign-on service.

Trusted setup. A survivable SSO may require a trusted setup to split crypto-
graphic material among identity servers. A trusted setup introduces a possible
single point of failure in the distributed architecture. However, in an enterprise
scenario a trusted setup may be acceptable in case it is executed by an adminis-
trator who must be trusted anyway because, for example, he needs direct access
the identity servers for setup and maintenance purposes. Moreover, schemes
that rely on trusted setup usually are more efficient than alternative schemes
not relying on trusted setup. As an example, PESTO, which relies on a trusted
setup, allows a non-interactive proactive refresh phase. PROTECT, which does
not rely on a trusted setup, incurs in a quadratic communication cost among
servers during the proactive refresh procedure.

Number of round trips for authentication. It indicates the number of round
trips of communication between a client and each identity server during au-
thentication. Current proposals either require one or two round trips of com-
munication. While reducing the number of round trips from two to one clearly
benefits communication efficiency, research shows that this opens the possibility
of online password testing attacks (OPTA) [17, 123], which we describe shortly.
Determining whether it is possible to reduce the number of rounds to one while
preventing OPTAs is still an open problem.

Online password testing attacks. This criterion indicates whether an attacker
is able to perform an online password testing attack. This attack allows an
adversary with a dictionary of candidate passwords to retrieve the identity of
users using a particular password in the dictionary. A desirable property of a
survivable single sign-on system is to prevent these attacks as this allows weaker
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assumptions on the strength of user credentials.
Number of secrets per replica. It indicates the growth of the amount of secret

cryptographic material as a function of some parameters, such as the number n
of identity servers or the number of users (denoted as “#users” in Table 2.3).
In PESTO, user-specific information stored in each credential database is not
confidential and as a result, the amount of confidential cryptographic material
does not depend on the number of users that we assume to be much larger than
the number of identity servers. On the other hand, PASTA and PROTECT reg-
ister users by storing security-sensitive cryptographic material in the credentials
database and thus the amount of confidential cryptographic material depends
on the number of users. A low amount of confidential cryptographic material
may allow the identity servers to securely store such material in a hardware
security module enhancing the overall security.

Let us identify the main requirements that a survivable SSO system must
satisfy to be adopted in a survivable ZTA. First of all, it must guarantee proac-
tive security and prevent online password testing attacks. Moreover, it must
guarantee (k, n) threshold security to provide higher availability with respect to
(n − 1, n) threshold security. To the best of our knowledge, PROTECT is the
only proposal satisfying all previous requirements.

To integrate the survivable SSO in our design, we assume that the Users/Group
is a middleware BFT database. The survivable SSO system must have access to
the Users/Group database to include user identity information in authentica-
tion tokens. This implies that each identity server must be modified to include
the client-side proxy, as discussed in Section 2.6.1. There are different design
decisions that may be considered as appealing optimizations, but some of them
are useless or even harmful in terms of security. The two not recommended op-
timizations include the replication of the credentials databases of each identity
server, and the memorization of all user credentials in one database. One may
hope that replicating the credentials database of each identity server through
BFT database replication can increase the security of the SSO system, but this
is not true. Credentials database distribution in the context of survivable SSO
enhances security by cryptographically splitting credentials at multiple loca-
tions to prevent offline dictionary attacks. On the other hand, BFT replication
in the context of databases enhances data integrity and availability. Moreover,
it prevents equivocation in presence of byzantine adversaries. These two secu-
rity goals are distinct, hence replicating a credentials database does not increase
the difficulty of offline dictionary attacks. In summary, replicating credential
databases is useless in terms of security, and possibly harmful in terms of per-
formance due to the overhead of BFT replication.

The second not recommended optimization involves the reduction of the
number of credentials databases by storing user credentials in the Users/Group
database. However, survivable SSO systems are designed with the assump-
tion that credentials databases are distinct for each identity server and that
breaches are independent. Storing credentials in the same database, even if it is
BFT-replicated, violates this fundamental assumption as it allows an adversary
who has breached the Users/Group database, or any of its replicas, to collect
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all credentials at once, thus effectively violating more than k identity servers.
Therefore, reducing the number of credentials databases is a bad design decision
that harms the security of SSO and that must be avoided.

2.6.3 Certification Authorities

We detail the trust distribution techniques applied to the Device Certification
Authority and the Infrastructure Certification Authority. of the reference ZTA.
This latter CA is a single point of vulnerability that, if breached, allows an
attacker to issue valid certificates to attacker-controlled devices and to imper-
sonate other components of the ZTA. A possible solution is to continue the trend
of intra-component trust distribution proposed in Section 2.6.1 and Section 2.6.2
towards the adoption of survivable certification authorities [103, 119, 124]. This
is an unnecessary step because we show that applying inter-component trust
distribution and maintaining conventional centralized certification authorities
guarantees enough security against forged certificates.

Let us first consider the Device Certification Authority. We assume that the
Device Inventory is BFT-replicated (Section 2.6.1) and, as a consequence, the
attacker is unable to compromise its integrity. Hence, even if an attacker com-
promises the confidentiality of the Device Certification Authority signing key,
the resulting rogue certificates issued to attacker-controlled devices are useless to
the attacker because the Device Inventory acts as a certificate whitelist. Thus,
even if an attacker issues a rogue certificate for a device that the attacker owns,
the certificate does not allow the attacker to satisfy existing access control poli-
cies because the attacker device is not present in the Device Inventory. As a
result, during device authentication (Section 2.3), the Access Proxy denies the
authentication to the attacker device as its rogue certificate is not present in
the Device Inventory. The only way for an attacker to effectively use a rogue
certificate is to add it to the Device Inventory. As the Device Inventory is BFT
replicated, the attacker cannot proceed in a similar way.

We now focus on the Infrastructure Certification Authority. The effect of
attacks in which the adversary issues rogue certificates to impersonate archi-
tectural components can be mitigated by means of key pinning [41]. In fact,
key pinning is a form of certificate whitelisting. In key pinning, administra-
tors configure the several architectural components to communicate over secure
mutually authenticated communication channels which adopt admin-installed
certificates to authenticate the endpoints. As a result, even if the attacker is-
sues a rogue certificate and uses it in an impersonation attempt, the attacked
components refuse to connect to the attacker because the rogue certificate is
different from the component’s pinned certificate.

Our design adopts well-established security techniques to detect and recover
from key compromise of centralized certification authorities. Moreover, our de-
sign relies on a scalable cloud infrastructure to ensure a high level of availability
of the certification authority service to sustain the workloads of modern cloud
computing environments.
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2.6.4 Access Control Engine and Access Proxy

To mitigate attacks against a compromised Access Control Engine, we apply
intra-component trust distribution to the Access Control Engine. Moreover,
to mitigate the attacks against a compromised Access Proxy, we apply inter-
component trust distribution based on intermediary removal, where we remove
the responsibility of access control enforcement from the Access Proxy. To
securely integrate the two design choices we deploy a secure communication
protocol that guarantees end-to-end authenticity of user requests and Access
Control Engine policy evaluations, and end-to-end confidentiality of resource
responses.

We describe the details of our proposal by considering Figure 2.6. Our
proposal extends resources with a Resource Proxy, which enforces access control
policies on its corresponding resource. It accepts requests from the Access Proxy
and forwards them to the resource only if they are collectively authenticated by
a threshold of Access Control Engine replicas, thus preventing unauthorized
access to the resource by a compromised Access Proxy. If we assume that an
attacker cannot compromise more than a threshold of Access Control Engine
replicas, then the attacker is unable to forge an Access Control Engine collective
signature.

BFT Access Control Engine

User

Access
Proxy

ACE
Replica 1

ACE
Replica n

Managed
Device

ResourceResource
Proxy

Figure 2.6: BFT Access Control Engine and Access Proxy architecture proposal

The high-level information flow of the proposed protocol is as follows. The
user submits a request to the Access Proxy and completes both device authen-
tication and user authentication as in the reference flow. If user and device
authentication are successful, the Access Proxy sends the authenticated user re-
quest to the Access Control Engine replicas which evaluate the access policies.
Replicas agree on the outcome of the policy evaluation and return a collective
signature of the request to the Access Proxy if access is allowed. The Access
Proxy forwards the signed request to the Resource Proxy which verifies the re-
quest signature and, if valid, the Resource Proxy forwards the request to the
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resource. The resource sends the response to the Resource Proxy which encrypts
it for the managed device and forwards the encrypted response to the Access
Proxy. The Access Proxy then returns the encrypted response back to the man-
aged device which decrypts it to obtain the plaintext response. We highlight
that our proposal does not protect request confidentiality because it may have
negative impact on system performance and, perhaps counterintuitively, even
on security (we propose a discussion in the last paragraph of this section).

We now discuss how the proposed architecture can be deployed adopting
existing solutions. The Access Control Engine can be decentralized by adopt-
ing proactive byzantine fault tolerant protocols, such as [40] by deploying n
replicas. This protocol allows to achieve byzantine fault tolerant state machine
replication [109] while also guaranteeing recovery from a compromise of k < n/3
replicas. Each replica of the Access Control Engine requires access to the Access
Policies, Users/Group and Device Inventory databases to determine the outcome
of the access control logic. Moreover, the Access Proxy requires access to the
Device Inventory database to access whitelisted device certificates during de-
vice authentication. As a result, both Access Control Engine and Access Proxy
replicas must integrate the client-side proxy of the adopted middleware-based
BFT database replication solution discussed in Section 2.6.1. In our proposal,
we assume that the setup of a proactively secure threshold signature scheme,
such as [29], is completed so that each replica holds the secret share ski of
the secret key corresponding to the replicas collective public key pkACE . The
security threshold of the signature scheme must match the threshold k of the
BFT protocol. We assume that the Resource Proxy knows the Access Control
Engine collective public key pkACE . Moreover, we assume that the Resource
Proxy owns a key pair (skRP , pkRP ) and that the managed device knows the
public key pkRP . In the following, we denote as (skMD, pkMD) the public key
pair of the user managed device, whose certificate is stored in the Device Inven-
tory. Finally, we assume that communication among components occurs over
confidential and mutually authenticated channels. We note that during proac-
tive refresh, the cryptographic material of both the proactive BFT protocol and
of the threshold signature scheme are refreshed.

We assume that the goal of the attacker is to gain unauthorized access to
resources. To this aim, the attacker can compromise k < n/3 Access Control En-
gine replicas. The attacker can also compromise the Access Proxy to eavesdrop
and modify all messages in transit and send new messages authenticated with
the Access Proxy cryptographic material. Finally, we assume a computationally
bound adversary that cannot break the security of the adopted cryptographic
schemes.

We describe the detailed information flow and summarize it in Figure 2.7.
The user generates the request, which we denote as req, to access a resource.
The user managed device then computes the pair ⟨req, σMD⟩, where σMD de-
notes the signature on req produced with skMD. The user completes the user
authentication and device authentication procedures (see Section 2.3) and sends
⟨req, σMD⟩ to the Access Proxy. We assume that req contains the due informa-
tion required by the Access Control Engine BFT protocol, including metadata
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Figure 2.7: Resource access protocol flow

to defend against typical adversarial attacks (as an example, a nonce to prevent
replay attacks). The Access Proxy sends ⟨req, σMD⟩ along with the authentica-
tion information obtained during device and user authentication to the Access
Control Engine replicas. Each replica verifies the user and device authentica-
tion information as well as σMD. Each replica, given the authenticated request
req, evaluates the access control policies. If access is granted, then replicas
collectively sign an authorization message. To this aim, each replica computes
⟨⟨req, σMD, pkMD⟩ , σi⟩ where σi denotes a signature share produced by replica
i on message ⟨req, σMD, pkMD⟩. We note that each replica has access to the
Device Inventory so they can all obtain the same pkMD. The Access Proxy
collects at least k + 1 responses and then combines signature shares σi into a
signature σACE which can be verified with pkACE . The Access Proxy then sends
⟨⟨req, σMD, pkMD⟩ , σACE⟩ to the Resource Proxy. The Resource Proxy verifies
σACE with pkACE and, if the signature is valid, forwards req to the resource.
The resource, given request req, computes the response resp and then sends
resp back to the Resource Proxy. The Resource Proxy encrypts resp with the
managed device public key pkMD, producing ciphertext c, and finally sings the
pair ⟨req, c⟩ with his secret key skRP , producing signature σc. The Resource
Proxy then sends ⟨⟨req, c⟩ , σc⟩ to the Access Proxy, which simply forwards it to
the managed device. The managed device finally verifies that req matches the
request sent initially, verifies σc with the Resource Proxy public key pkRP and
then decrypts c using his secret key skMD.

We now discuss the security of our proposal. The attacker is not able to alter
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the request req sent by the user because it is authenticated by the user secret
key, which is itself authenticated by the corresponding certificate stored in the
Device Inventory. The attacker cannot replay the request to replicas because
we assumed that req already embeds information to prevent replay attacks.
The attacker is unable to forge an Access Control Engine collective signature
as we assume that the attacker cannot compromise more than a threshold of
replicas to gather enough key shares ski to produce arbitrary signatures. As a
result, even if the attacker compromises the Access Proxy, it cannot gain direct
access to resources. The attacker is unable to forge or replay old responses to
the managed device because it is unable to forge Resource Proxy signatures
which authenticate ciphertexts. Finally, the attacker is unable to eavesdrop on
resource responses because they are encrypted for the managed device.

The availability guarantees of the proposed solution against denial of service
(DoS) attacks involve some trade-offs that are worth discussing. We consider
DoS attacks against the Access Proxy because it is a client-facing component
and thus more likely to suffer from DoS. Moreover, we also consider DoS attacks
originating from a compromised Access Proxy that silently drops user requests.
In the proposed protocol Access Control Engine replicas collectively sign an
authorization message only if access is granted. When access is denied to the
user, Access Control Engine replicas do not respond with a collectively signed
error message. The lack of response prevents the user from distinguishing an
available ZTA that is denying access from an unavailable ZTA under DoS. To
allow the user to detect DoS attacks, the protocol may be modified to also let
Access Control Engine replicas collectively sign access-denied error messages.
However, we note that collective signing is an expensive operation in terms
of computational and network costs and thus signing every user request even
when access is denied may facilitate DoS attacks because of the increased load
on the Access Control Engine. Moreover, we note that the lack of response
messages may actually be a desired behavior for a ZTA. In fact, Single Packet
Authorization (SPA) is a technique that may be adopted to avoid fingerprinting
of the infrastructure and resources. With SPA the Access Proxy only accepts
ingress packets authenticated by known hosts, and silently drops packets from
unknown hosts to conceal its presence [60]. If SPA is adopted, then revoked
access at the SPA level is indistinguishable from an unavailable ZTA under DoS.
Therefore, collective signing of access-denied error messages involves trade-offs
that should be evaluated depending on the specific scenario that adopts the
proposed architecture.

The security of the Resource Proxy component also deserves further con-
sideration. In the proposed design the resource trusts its Resource Proxy for
policy enforcement. Designing a survivable Resource Proxy would certainly en-
hance the security guarantees of the architecture. However, we conjecture that
components responsible for access control enforcement must be trusted by de-
pendent components (resources in our case). Our conjecture is supported by
the fact that many related intrusion tolerant architectures independently ob-
tain designs similar to ours by adopting trusted components for access control
enforcement [55, 86, 87, 88, 45]. Designing a survivable enforcement point is an
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interesting challenge for future work.
As anticipated at the beginning of this section, we note that the attacker is

still able to eavesdrop on user requests. This may allow the attacker to infer
enough information about the requested resource to compromise its confiden-
tiality. However, we claim that protecting request confidentiality may have
negative impact on system performance and on security. The confidentiality of
the request must be protected at multiple points in the proposed architecture:
it must be protected from a compromised the Access Proxy and it must be
protected from any compromised Access Control Engine replica. To motivate
the negative impact on system performance, we point out that to allow Access
Control Engine replicas to evaluate policies while protecting request confiden-
tiality, we must adopt universally verifiable multiparty computation schemes,
such as [110]. These schemes allow a set of parties (the Access Control Engine
replicas) to evaluate a function over secret inputs (provided by the user) and pro-
duce a result whose correctness can be publicly verified by the Resource Proxy
which did not participate in the computation. These schemes are far from being
practical and would impose a severe overhead on policy evaluation. Moreover,
they have a negative impact on security because confidential requests prevent
external tools from providing contextual threat information to the Access Con-
trol Engine, such as in the case of intrusion detection systems [11]. Therefore,
guaranteeing confidentiality of requests and contextual request information may
be conflicting requirements.

2.7 Security Analysis

In this section we analyze the overall security of the proposed survivable ZTA.
In the reference threat model we identify sequences of attacks that allow

the adversary to gain unauthorized access to a resource. These attacks are also
relevant to the proposed survivable ZTA. The difference is that attacks against
a survivable component must compromise an amount of replicas that exceeds
the component security threshold.

To quantitatively assess the effectiveness of our design choices we introduce
novel definitions of survivability in the context of ZTAs.

Definition 2.7.1 (Zero trust survivability level). The survivability level of the
zero trust architecture is the minimum amount of replicas that an attacker must
compromise to gain unauthorized access to a resource in any attack sequence.

Intuitively, we say that a ZTA is survivable if there is no attack sequence that
allows an adversary to gain unauthorized access to a resource by compromising
a single replica. We formalize this intuition in Definition 2.7.2.

Definition 2.7.2 (Survivable ZTA). A zero trust architecture is survivable if
its survivability level is greater than one.

Given Definition 2.7.1, Definition 2.7.2 and the attack sequences that apply
to the proposed architecture, we can derive a meaningful criterion to assign
values to the security threshold of each replicated component to determine the
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amount of its replicas. We consider components that are not replicated as a
single replica. We define the security thresholds of replicated components as
follows:

• kDIdb: device inventory database

• kAPdb: access policy database

• kUGdb: user group database

• kACE : access control engine

• kSSO: single sign-on

In Table 2.4 we report the costs of the identified attack sequences in terms of
number of replicas that the attacker must compromise. We note that attack

Attack sequence
Attacked

component(s)
Attack cost Attacker type

A1 Device CA - -
A2 Infrastructure CA ✗ external
A3 Device Inventory database - -
A4 Access Policy database kAPdb + 1 external
A5 Access Control Engine kACE + 1 external
A6 Single Sign-On - -
A7 User Group database kUGdb + 1 internal
A8 Access Proxy ✗ external

A3 +A6
Device Inventory database

Single Sign-On
kDIdb + kSSO + 2 internal

A1 +A3 +A6
Certification Authority

Device Inventory database
Single Sign-On

kDIdb + kSSO + 3 external

A1 +A3 +A7
Certification Authority

Device Inventory database
User Group database

kDIdb + kUGdb + 3 external

✗: prevented attack
-: attack not effective even in reference ZTA

Table 2.4: Attack costs

sequences that include attacks A1 involve the compromise of the certification
authority, which is not a replicated component and therefore counts as a sin-
gle replica. We also note that the above costs are reported considering the
best case scenario in which all components and replicas are failure indepen-
dent. As already discussed in Section 2.4, it is essential to guarantee failure
independence among components (inter-component independence) and within
components replicas (intra-component independence). Otherwise, all compo-
nents and replicas that share common mode failures count as a single replica in
evaluating the complexity of attack sequences.

Attacks A4, A5, A1+A3+A6 and A1+A3+A7 allow an external adversary
to access a resource, whereas attacks A7 and A3 + A6 allows only an internal
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adversary to gain unauthorized access to a resource. As shown in Section 2.6.4,
the proposed solution prevents attack A8 because an adversary that compro-
mises the Access Proxy is not able to gain unauthorized access to resources.
Moreover, attack A2 is also prevented by certificate whitelisting.

The costs of the attacks highlight the importance of adopting a survivable
Access Policy database, a survivable User Group database and survivable Access
Control Engine. Adopting non-survivable alternatives (kAPdb = 0 and kACE = 0
respectively) does not allow to design a survivable ZTA that satisfies the pro-
posed survivability definition. The costs of attack sequences A1 + A3 + A6,
A1 + A3 + A7 and A3 + A6 highlight possible trade-offs in terms of compo-
nent replication during a real deployment. It is sufficient to guarantee that the
cost of these attack sequences is greater than one to obtain a survivable ZTA.
As an example, to achieve the minimum survivability level it is sufficient to
guarantee that the Device Inventory and Single Sign-On components are failure
independent, while it is necessary to adopt a survivable Access Policy database,
a survivable User Group database and a survivable Access Control Engine. To
achieve higher survivability levels it is required to adopt the intra-component
trust distribution techniques also for the Device Inventory and Single Sign-On.

To evaluate the security of the proposal it is also interesting to consider
threats identified by NIST against ZTAs [104].

Subversion of ZTA decision process. The Subversion of ZTA Decision Process
maps directly to attack A5 that alters the integrity of the decision process of
the Access Control Engine. This attack is mitigated through BFT replication
of the Access Control Engine.

Denial-of-Service or network disruption. The Denial-of-Service attack con-
sidered by NIST involves impeding availability of the Access Proxy and the
Access Control Engine. The proposed solution mitigates unavailability of the
Access Control Engine through BFT replication. Moreover, the Access Proxy
can be geographically replicated with well-known techniques, thus mitigating
unavailability.

Stolen credentials or insider threat. Insider threats or attackers that lever-
age stolen credentials are already considered and their impact mitigated. As
discussed in Section 2.4, credential theft can be mitigated through multi-factor
authentication. Moreover, stolen credentials are not sufficient because the ad-
versary requires control of the user device. Finally, we consider insider threats
and mitigate possible attacks that they can launch, such as A7 and A3 +A6.

Visibility on the network. NIST identifies encrypted traffic as a limitation
in network visibility through traffic inspection. The proposal preserves network
visibility by allowing inspection of user requests received by the Access Proxy
which terminates confidential communication channels.

Storage of system and network information. Another identified threat in-
volves gaining reconnaissance information by violating the confidentiality of
Sources (e.g. Access Policies database) and supporting systems (e.g. SIEM).
Access to security critical components must be restricted to administrators only.
Moreover, the proposed architecture is secure even against adversaries that have
complete knowledge of the architecture by minimizing single points of vulnera-
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bility through survivable design practices.
Reliance on proprietary data formats or solutions. Lack of interoperability

constitutes a relevant practical concern, especially in the context of survivable
zero trust which relies on design diversity to mitigate common mode failures.
Indeed, future challenges in the field of zero trust involve standardization efforts
to guarantee interoperability and prevent vendor lock-in.

Use of non-person entities (NPE) in ZTA administration. Finally, the com-
promise of automated administration tools may allow attackers to perform unau-
thorized actions on the ZTA. As automated administration tools perform actions
on behalf of administrators, they inherit their trust assumptions and thus it is
essential to restrict access and protect them from abuse.

2.8 Feasibility of the architecture

In this section we analyze the performance of the proposal and discuss some
limitations that could be addressed by future research.

2.8.1 Performance analysis

The proposal of an innovative architecture opens the important question of
whether the overheads related to the survivable ZTA can be really applied to
protect accesses to cloud computing environments.

We evaluate the overall response times of the two most expensive operations
of the survivable ZTA from the user point of view (Section 2.3): user authentica-
tion and request authorization. We can anticipate that the proposed architecture
is characterized by response times of less than two seconds for user authentica-
tion and in the order of some hundreds of milliseconds for request authorization.
Hence, we can consider this architecture feasible from the performance point of
view.

User authentication is based on the survivable SSO component. In Sec-
tion 2.6.2, we identify PROTECT [123] as the best candidate for our survivable
ZTA. Considering realistic scenarios where the threshold of tolerable malicious
servers is set to one or two units, PROTECT offers authentication response
times in the order of two seconds even for low-powered devices. This timing
is considered acceptable even with non-survivable access control architectures,
where the security of password-based authentication is based on the adoption
of password-hashing operations that introduce significant delays [27, 66].

Request authorization is based on the survivable Access Control Engine and
BFT databases. We first consider the performance of the survivable Access
Control Engine, which relies on BFT state machine replication protocols, such
as [71, 15, 55, 84]. These proposals analyze the protocols by adopting a security
threshold of k = 1 that complies with our recommendations for the Access
Control Engine in Section 2.7. For example, the authors in [71] implement an
intrusion tolerant system by relying on the Prime protocol [9], which allows BFT
state machine replication with strong upper bounds on response times. The
authors evaluate performance in a local area network and show that requests
can be processed with response times in the order of 35ms. The same Prime
protocol is adopted by the intrusion tolerant system proposed in [15], where
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performance evaluations show that the system processes 99.999% of requests
within a response time in the order of 100ms in a wide area network. In [55] the
authors adopt the MOD-SMaRt state machine replication protocol implemented
through the BFT-SMaRt library [24] that can process requests with an average
response time of less than 10ms in a local area network. The Prime protocol
is the best candidate to implement the Access Control Engine as a replicated
state machine because it guarantees upper bounds on response times even in
wide area networks, which is relevant in cloud applications, while the MOD-
SMaRt protocol does not guarantee response times upper bounds. To analyze
the performance of BFT databases, we consider MITRA [84] that is based on
the already mentioned BFT-SMaRt library) and HRDB [114]. In Section 2.6.1
we identified them as the best trade-off solutions among the examined BFT
databases. These proposals evaluate the performance with security threshold
set to k = 1, which also complies with our survivability recommendations for
ZTA. Their response times are in the order of 200ms [114].

As expected, survivable SSO appears as the component responsible for the
highest response times of the ZTA. When a similar authentication is required,
the total response time of a user request is typically below 2 seconds because
modern devices have characteristics much better than those used in PROTECT
experiments. It is worth to note that an SSO authentication must be executed
only when a user initiates a session. Further requests can leverage the valid
token which can be verified with negligible overhead with respect to Access
Control Engine and BFT databases response times [123]. After the initial SSO
authentication, the response time of each user request remains in the order of
hundreds of milliseconds or below.

2.8.2 Possible limitations

We now summarize the design trade-offs of the proposed architecture and high-
light limitations that may be addressed by future work. Our architecture re-
lies on survivable databases to securely store data even in presence of intru-
sions. Proposals such as MITRA [84] and HRDB [114] guarantee the best
trade-offs in terms of security and performance among the examined databases
(Section 2.6.1) and they are good candidates to obtain a real implementation.
Each database has different assumptions about survivability: MITRA assumes
a bounded amount of faulty replicas over the whole architecture lifetime; HRDB
assumes a trusted component. These assumptions are acceptable trade-offs to
guarantee survivability. Relaxing them deserves further research efforts in the
field of survivable databases that go beyond the scope of this proposal.

A relevant design aspect is represented by the reduction of the amount of
trust in the Access Proxy by separating policy enforcement in a distinct com-
ponent that we identify as the Resource Proxy. This choice has several security
benefits (Section 2.5) but requires each resource to trust the corresponding Re-
source Proxy for correct policy enforcement. Ideally, the Resource Proxy should
be designed as a survivable component so that resources can rely on untrusted
components for policy enforcement. While we are not aware of any theoretical
limit to this extension, trusting enforcement points seems an intrinsic require-
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ment of access control architectures.
It is worth to note that the proposed architecture adopts a novel protocol

guaranteeing end-to-end confidentiality of the response sent by the resource to
the user. The proposed version of the Access Control Engine requires plaintext
requests to evaluate access control policies and thus the protocol does not guar-
antee end-to-end request confidentiality. Adopting cryptographic protocols that
allow to evaluate policies on encrypted requests would add significant perfor-
mance overhead and would prevent full operation of intrusion detection systems.
The design of a feasible protocol for end-to-end confidentiality with limited neg-
ative effects on performance and operation is an open research challenge that
can be considered for future work even for different application contexts.

2.9 Final remarks

Zero trust architectures are emerging as solutions that solve the limitations of
cyber defenses based on traditional perimeter for the protection of modern orga-
nizations. Existing designs assume that cyber attackers are confined to the data
plane enforcing access control policies and that they cannot compromise the con-
trol plane components establishing access control policies. We present a novel
survivable zero trust architecture that overcomes this strong assumption. The
proposed design distributes trust among multiple control plane components so
that the architecture can tolerate intrusions and recover from successful attacks.
The proposed architecture is appropriate whenever combining cyber resilience
and security is an important requirement, as in the case of critical infrastruc-
tures. This proposal is feasible even from the performance point of view, but it
is open to future research improvements in the field of databases satisfying sur-
vivability, and survivable protocols that can combine end-to-end confidentiality
and access control policy evaluation.
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Chapter 3

Flexible and Survivable Single Sign-On

3.1 Introduction

Single sign-on (SSO) is a popular protocol to authenticate users requiring ac-
cess to multiple Web-based services. Typically, an identity provider manages
one logical identity server that issues authentication tokens proving user identity
to service providers. The centralized design of SSO protocols is vulnerable to
authentication tokens forgery as demonstrated by recent incidents [39, 4] where
cyber attackers compromised the identity server and forged tokens that falsely
impersonated users towards service providers. As discussed in Section 2.6.2,
this issue can be addressed by so-called survivable SSO protocols that can pre-
vent user impersonation even in presence of attacks (e.g., [5, 17, 123]). In
survivable SSO, the identity provider manages multiple identity servers. A user
authenticates himself to a subset of identity servers that collectively sign an au-
thentication token and demonstrate the user identity to service providers. The
amount of signing identity servers must be greater than a security threshold
which defines the maximum number of identity servers that the adversary can
violate.

Existing proposals achieve survivable token release by signing tokens through
threshold signatures, and survivable user authentication through distributed
password-based authentication protocols [5, 17, 123]. The problem is that
threshold signatures tend to be unrealistic in practice because they do not guar-
antee flexibility. They prevent service providers from dynamically adjusting
the value of the security threshold during protocol execution and they are not
backwards-compatible with existing SSO systems. The lack of flexibility and
of backwards compatibility prevent service providers from offering services with
different identity assurance levels [3, 63], and from the possibility of dynamically
adjusting the threshold based on user contextual information as suggested by
the recent zero trust paradigm [104].

We propose an original survivable SSO protocol where survivable token re-
lease is achieved by signing authentication tokens through conventional digital
signatures instead of threshold signatures as in literature. This approach enables
the design of a survivable token release scheme that guarantees flexibility and
preserves backwards compatibility with non-survivable SSO solutions. More-
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over, we show that it is possible to guarantee survivable user authentication
through password-based protocols even if they are not designed for distributed
architectures. We evaluate the security of the proposed token release scheme and
show the security of the overall SSO protocol by considering existing password-
based authentication methods.

The practical relevance of the proposal is twofold. First, flexible and surviv-
able SSO can be leveraged to mitigate emerging attacks to access confidential
cloud resources through rogue authentication tokens [39]. Moreover, the high
security level that is guaranteed by flexible and survivable SSO protocols is a
perfect combination for mission critical systems requiring robust and reliable
authentication mechanisms even under attack [52].

The chapter is organized as follows. Section 3.2 discusses related work.
Section 3.3 describes the system model and the single sign-on framework. Sec-
tion 3.4 describes the threat model. Section 3.5 discusses the details and guar-
antees of the proposed novel survivable token release scheme. Section 3.6 shows
the security level of the proposal. Section 3.7 evaluates the security and flexibil-
ity of the proposal and of related SSO protocols when integrated with different
credential management systems. Section 3.8 highlights final remarks.

3.2 Related Work

This work is related to recent results investigating SSO protocols with different
trade-offs between survivable security guarantees and flexible configuration [5,
17, 123]. For example, the authors in [5] propose a SSO protocol that tolerates
the violation of up to a threshold of identity servers. The value of the threshold
can be configured at setup time to tolerate from one compromised identity server
up to a dishonest majority including a single honest identity server. The problem
is that this protocol does not guarantee recoverability because it does not include
the due procedures to recover compromised identity servers to a safe state. As a
result, the protocol cannot be considered survivable because recoverability is a
mandatory security guarantee in these systems [13]. We propose a protocol that
guarantees survivability by defining specific procedures to recover compromised
identity servers.

The guarantee of survivability is also analyzed by the proposal of a password-
based survivable SSO protocol [17]. The authors consider a strong adversarial
model that requires to trade token unforgeability for availability, as the pro-
tocol does not terminate if a single identity server is unavailable. We assume
a different model called mobile adversarial model [65]. Although it is weaker
than that considered in [17], the mobile adversary is a realistic model for SSO
scenarios and allows the proposed protocol to guarantee termination even in
presence of a fully malicious minority of identity servers. The authors of [17]
achieve survivable token release by signing authentication tokens through an
original RSA-based threshold signature scheme. However, the lack of flexibility
of threshold signatures represents a major problem as they force the identity
provider to set the value of the security threshold at setup time. Moreover,
threshold signatures cause management issues as they cannot guarantee back-
wards compatibility with non-survivable SSO protocols.
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The proposed protocol guarantees flexible SSO and offers the possibility of
choosing the value of the security threshold at verification time. This allows a
service provider to offer multiple services with different identity assurance levels
(e.g., [3, 63]) and to choose the most suitable threshold for each of them. More-
over, it is possible to dynamically adjust the security threshold depending on
user contextual information, as suggested by the zero trust paradigm [104], and
to tailor the best trade-off between performance and security for each service.
Finally, the proposed flexible and survivable SSO can preserve compatibility
with non-survivable SSO. This would enable a gradual transition of existing
service providers towards survivable SSO. A service provider can enable back-
wards compatible support to survivable SSO by updating the authentication
token verification algorithm.

The password-based survivable SSO proposed in [123] obtains a better trade-
off in terms of threshold configuration and survivability with respect to [5]
and [17]. It allows the configuration of the security threshold at setup time
and guarantees survivability. Although the authors do not explicitly specify an
adversarial model, their proposal seems to consider a mobile adversary similar
to that proposed in this work. While their protocol obtains good trade-offs, it
lacks flexibility due to the adoption of threshold signatures during the token
authentication phase.

3.3 System Model

We describe the survivable SSO protocol by referring to Figure 3.1 showing
the main entities, data and operation flows. The proposed protocol involves
four entities: user, service provider, identity provider, and a set of identity
servers. The user denotes a person who wants to access services and resources
maintained by the service provider. The identity provider denotes an authority
that defines and operates a set of identity servers to offer the survivable single
sign-on protocol. The protocol involves the following types of data:

• user credentials: unique information held by each user presented to iden-
tity servers for authentication;

• credentials databases: data structures independently maintained by iden-
tity servers to verify users credentials;

• partial tokens: assertions about users identities authenticated by a single
identity server;

• authentication tokens: assertions about users identities whose authenticity
is guaranteed by a subset of identity servers;

• token signing keys: secret cryptographic material held by each identity
server to authenticate authentication tokens;

• identity provider certificate: public cryptographic material used by the
service provider to verify authentication tokens;
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• identity provider signing key : secret cryptographic material used by the
identity provider to authenticate the identity provider certificate.

The proposed protocol consists of five operations.

• Setup: the identity provider defines the initial set of identity servers, and
releases a certificate that authenticates identity servers public keys. We
assume that the certificate is distributed to all actors by using orthogonal
public key distribution protocols [28];

• Register : the user registers his credentials to all identity servers credentials
databases;

• Sign-on: the user requests an authentication token to identity servers.
This operation is composed by the following steps:

– Verify credential : an identity server verifies user credentials against
his credential database;

– Release partial : an identity server releases a partial token to an au-
thenticated user;

– Combine: the user combines the partial tokens collected by a thresh-
old of identity servers in an authentication token;

• Verify token: the service provider uses the identity provider certificate to
verify the authenticity and validity of the authentication token presented
by the user;

• Refresh: the identity provider updates identity servers secret cryptographic
material.
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Figure 3.1: Architecture and high level protocol flow

44



The protocol requires that users establish secure (confidential and authenti-
cated) bidirectional communication channels with legitimate identity servers by
using public keys of identity servers distributed during the Setup phase. Com-
munication channels allow users to authenticate identity servers, and not vice
versa, as it is common for standard HTTPS communications.

The proposed framework represents a novel contribution to model the op-
erations of survivable single sign-on protocols. It captures common operations
shared by related proposals which were not highlighted by previous literature,
and allows us to compare the proposed protocol with related works [5, 17, 123].
The framework extends existing non-survivable single sign-on frameworks by
introducing the Release partial and Combine procedures. Existing related sur-
vivable SSO protocols adopt a similar system model where identity servers are
coordinated through decentralized protocols which do not require an identity
provider [5, 17, 123]. However, they do not guarantee flexibility (see Section 3.6).
The proposed architecture introduces the additional role of the identity provider
because the considered scenarios, such as cloud-based SSO, are characterized by
centralized governance where the identity provider acts as an authority that op-
erates identity servers during Setup and Refresh operations. At Setup time, the
identity provider defines the infrastructure while at Refresh time it proactively
secures it.

The proposal does not limit the identity provider from being a decentralized
entity because it can be extended to support decentralized execution of the Setup
and Refresh operations by leveraging ideas from [96]. For ease of presentation
and without loss of generality, in the remainder of this chapter we consider the
identity provider as one entity.

We enable identity providers to offer flexible and survivable SSO as a service.
An identity provider can execute the Setup operation by defining the maximum
security threshold kmax and by provisioning an infrastructure of 2kmax + 1
failure-independent identity servers. Service providers can choose the most ap-
propriate security threshold value between zero and kmax to enforce survivabil-
ity on their services. A security threshold equal to zero maintains compatibility
with existing non-survivable SSO. A security threshold equal to kmax allows
service providers to enforce the highest level of identity assurance even in pres-
ence of kmax compromised identity servers. Guaranteeing a practical failure
independence of all servers against benign and malicious faults tends to become
quickly an intractable challenge as demonstrated in [54, 67]. Hence, we can
assume that in practice the value of kmax is at most of few units. If we accept
stronger security assumptions on identity servers, then the value of kmax can
be increased above the few units. For example, some identity servers may share
the same operating system. This security trade-off simplifies the technological
challenge of provisioning and maintaining several operating systems to enable
the deployment of a larger yet less diverse set of identity servers.

3.4 Threat model

We discuss possible attacks from a twofold perspective: we discuss violation
and recovery patterns throughout the protocol lifetime; we analyze the multiple
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classes of attacks that an adversary can adopt to subvert the protocol secu-
rity. We use these analyses to assess the security guarantees of the proposal in
Sections 3.6 and 3.7.

For the threat analysis, we consider the popular mobile adversary model
that aims at subverting the survivable single sign-on protocol. This model was
proposed in the context of distributed function evaluation [99] and applied to
secret sharing [65], multiparty computation [47], intrusion tolerant certification
authorities [124], key management systems [42], cloud-based secure logging [102]
and secure software update systems [91]. It assumes that identity servers are
failure-independent and that at any instant an identity server is either honest
or compromised. A compromised identity server can be recovered and become
honest after that its hardware and software have been reset to a known clean
state and its secret cryptographic material has been obsoleted. A recovery of
all identity servers is periodically executed by the identity provider during the
Refresh operation. The proposed protocol tolerates that a minority of identity
servers is compromised simultaneously, that is, it guarantees security against
adversaries that violate up to k < n/2 identity servers, where n is the total
number of identity servers. This is the typical security level guaranteed by
related works using the mobile adversary model (e.g., [65, 42]).

We discuss violation and recovery patterns between periodic Refresh oper-
ations by referring to Figure 3.2. The time horizon is divided in time periods,
where each begins with the execution of the Refresh operation. We denote the
remaining part of the time period after the completion of the Refresh as oper-
ation period. During the operation period, honest identity servers operate the
single sign-on protocol according to initial specification. Each highlighted area
represents a time interval during which the adversary has compromised up to k
identity servers.
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Figure 3.2: Violation patterns

The mobile adversary model considers four attack patterns. The first pat-
tern captures an adversary that has corrupted up to k identity servers during
the operation period and that is removed by the identity provider during the
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next Refresh operation. The second pattern considers an adversary that has
corrupted up to k identity servers during the Refresh operation. The adversary
has the additional power to interfere with the identity provider during Refresh.
The third and fourth patterns capture a powerful and elusive adversary that
is able to move laterally among identity servers and ensures a persistent pres-
ence at the identity provider infrastructure even after Refresh operations. An
attacker cannot control more than k identity servers during each period.

An adversary can perform different types of attacks to subvert the surviv-
able single sign-on protocol. We label attacks to reference each of them when
analyzing security guarantees in Sections 3.6 and 3.7.

• A. Violation of the token release system within identity servers:

– A1: the adversary violates the confidentiality of the token signing
keys within identity servers to forge authentication tokens;

– A2: the adversary violates the integrity of the token release system
by returning bogus partial tokens to users;

– A3: the adversary violates the availability of the token release system
by deleting token signing keys or by not returning partial tokens to
users.

• B. Violation of the identity verification protocols within identity servers:

– B1: the adversary compromises the integrity of the credentials database
of an identity server to forcefully set known credentials to users ac-
counts;

– B2: the adversary violates the availability of the identity verification
protocol by deleting the credential database or by not completing
credential verification;

– B3: the adversary violates the confidentiality of the credentials database
of an identity server to recover users credentials;

– B4: the adversary reads an identity server internal state during cre-
dential verification to recover users credentials;

– B5: the adversary executes Man-in-The-Middle attacks from com-
promised identity servers to impersonate the user at honest identity
servers during the Sign-on operation.

• C. Violation of the identity provider:

– C1: the adversary violates the confidentiality of the identity provider
signing key.
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3.5 Survivable token release

A comprehensive analysis of the proposed SSO protocol is in Section 3.7. Here,
we focus on the token release scheme. The key insight of the proposed token
release scheme is twofold. First, signing authentication tokens through conven-
tional digital signatures allows to achieve flexibility. Second, proactively rotating
token signing keys allows to guarantee security against lateral movement of the
mobile adversary while the identity provider allows to efficiently authenticate
rotated public keys and modified system parameters. We consider a black box
digital signature scheme defined by the following operations framework:

• ⟨sk, pk⟩ ← KeyGen(): generate secret key sk and public key pk;

• σ ← Sign(sk,m): compute signature σ on message m with secret key sk;

• 0 ∨ 1 ← Verify(pk,m, σ): if signature σ authenticates message m under
public key pk output 1, 0 otherwise.

We assume that the identity provider has established the security level of
the adopted cryptographic schemes and that the resulting public parameters are
known to all actors. For ease of notation, we omit public parameters from the
scheme operations. The proposed token release scheme implements the following
operations.

crt ← Setup(skIdP , kmax, {⟨pk1, π1⟩ . . . , ⟨pkn, πn⟩}). The identity provider,
given his secret key skIdP and security threshold kmax verifies the identity
servers certificate signing requests {π1, . . . , πn} and authenticates the corre-
sponding public keys {pk1, . . . , pkn} by computing the identity provider certifi-
cate crt. To this aim it executes the following steps:

• the service provider defines the value kmax and a set of n = 2kmax + 1
identity servers;

• each identity server executes the KeyGen() algorithm to compute the sign-
ing key pair ⟨ski, pki⟩;

• each identity server i then computes a certificate signing request πi for
pki, and sends πi to the identity provider over a secure channel. Cer-
tificate signing requests can be computed with well-established standard
algorithms [98].

• the identity provider collects the public keys PK = {pk1, . . . , pkn} and
verifies each certificate signing request in {πi};

• if all received certificate signing requests {πi} are valid, the identity provider
authenticates the corresponding set of public keys and the value kmax
by signing the pair ⟨PK, kmax⟩ with his private key skIdP , producing
crt = ⟨PK, kmax, σcrt⟩;

• the identity provider publicly distributes crt.
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The authentication methods used in procedures Register and VerifyCredential
are orthogonal to the proposed token release scheme in terms of functionality,
hence we can omit details. A comprehensive discussion about integration with
different user authentication methods is in Section 3.7.

σi ← ReleasePartial(ski, id): identity server i with secret key ski, given iden-
tity id produces partial token σi. The ReleasePartial procedure assumes that
identity id has been already verified during VerifyCredential. The identity server
signs id with his secret key ski by executing algorithm Sign(ski, id) of the sig-
nature scheme. The identity server then sends the resulting signature σi to the
user over a secure channel.
⟨id, {σi}, L⟩ ← Combine(id, {σi}i∈L): the user verifies partial tokens {σi}i∈L

collected from the set of identity servers L, and outputs the authentication token
⟨id, {σi}, L⟩. To this aim he executes the following steps:

• when the user has collected k + 1 partial tokens, as required by the ser-
vice provider, the user determines the set of servers L that produced the
collected partial tokens;

• the user then verifies that each of the collected partial tokens is authentic,
by executing the Verify(pki, id, σi) for each i ∈ L;

• if all partial tokens are authentic, the user outputs the authentication
token ⟨id, {σi}, L⟩.

0∨1← VerifyToken(⟨id, {σi}, L⟩ , crt, k): the service provider verifies whether
all signatures in {σi}, produced by the set of identity servers L, authenticate id
by using crt. It outputs 0 if any σi does not authenticate id or if |L| < k+ 1, 1
otherwise. To this aim it executes the following steps:

• the service provider verifies the authenticity of the identity provider cer-
tificate crt = ⟨PK, kmax, σcrt⟩ by verifying signature σcrt. The result of
this operation can be cached as long as the set PK is not refreshed;

• it verifies that |L| ≥ k + 1;

• it verifies all signatures in {σi} by executing Verify(pki, id, σi);

• if any of the previous checks fails it outputs 0, otherwise it outputs 1.

crt′ ← Refresh(skIdP , crt, PKa, PKr): the identity provider sets the new
identity provider certificate crt′, given the current identity provider certificate
crt, the new set of public keys PKa and the set of revoked public keys PKr.
To this aim he executes the following steps:

• the identity provider recovers all compromised identity servers and estab-
lishes the set of additional identity servers, if any.

• each additional or recovered identity server in the new set computes his
signing key pair ⟨ski, pki⟩ by executing the KeyGen() algorithm, produces
the corresponding certificate signing request πi and sends it to the identity
provider.
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• the identity provider collects the set of new public keys PKa, verifies the
corresponding certificate signing requests {πi}i∈|PKa|, and defines the set
PKr of public keys to revoke. PKr includes the old public keys of recov-
ered servers and any disposed server that is excluded from the protocol.

• the identity provider sets the new set of public keys PK ′ = PK ∪ PKa \
PKr such that |PK ′| = |PK|, and authenticates the pair ⟨PK ′, kmax⟩ by
signing it with his private key, producing crt′ = ⟨PK ′, kmax, σcrt′⟩ which
is made publicly available.

3.6 Security guarantees

In this section we discuss the security of the token release scheme against attack
classes A and C that we presented in Section 3.4. We devote Section 3.7 to
consider class B attacks and evaluate the security of the overall SSO protocol
when the token release scheme is integrated with different credential manage-
ment systems. Here, we show how to mitigate class C attacks that violate the
confidentiality of the identity provider signing key. Moreover, we show that the
proposed token release scheme is secure against class A attacks that aim to vio-
late the token release system within identity servers. Furthermore, we show that
security against class A attacks holds during all violation patterns (Figure 3.2)
that is, violation during: one operation period (1), one Refresh execution (2),
consecutive operation periods (3) and consecutive Refresh executions (4).

A1. The attacker can violate the confidentiality of the token signing key
of up to k identity servers through any of the violation patterns. The attacker
can force a compromised identity server to execute the ReleasePartial operation
on identities of the attacker’s choice. We note that the attacker can obtain
the same level of violation even if it only controls the key without knowing
its value (e.g. the key is protected by an HSM). Attack A1 with violation
pattern 1 is ineffective because an attacker that controls no more than k identity
servers is not able to forge a valid authentication token. Attack A1 is ineffective
even with the violation pattern 2. Here, the identity provider verifies that
the certificate signing request submitted by identity servers is legitimate before
certifying the new public keys. Moreover, an adversary that has access to the
new secret keys produced during Refresh execution is unable to obtain a valid
authentication token since he does not control enough (k + 1) identity servers.
Finally, attack A1 is also ineffective with violation patterns 3 and 4. Given that
identity servers are recovered at the beginning of the Refresh procedure, the
adversary can never control more than k identity servers within any time period.
Therefore, the adversary does not control enough (k + 1) identity servers to
forge authentication tokens. Moreover, the public keys of the recovered identity
servers are revoked during Refresh. We note that the attacker may try to exploit
race conditions during revocation of public keys (e.g., CRL propagation delays)
to force the service provider to verify authentication tokens with revoked public
keys. To prevent this type of attacks we rely on the identity provider as an
online certification authority. In this way the service provider always validates
authentication tokens with a fresh copy of the new set of public keys PK ′.
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As a result, the service provider can easily detect invalid authentication tokens
authenticated by revoked public keys.

A2. Attack A2 is ineffective in any violation pattern because the proposed
token release scheme allows the user to detect bogus partial tokens, discard
them and repeat the Sign-on operation with another honest identity server; its
existence is guaranteed by to the presence of an honest majority.

A3. Attack A3 is ineffective in any violation pattern because the Refresh
operation ensures that at any moment there is an available honest majority of
k + 1 identity servers that is able to respond to users.

C1. The attacker may try to violate the identity provider signing key. How-
ever, we note the identity provider secret key skIdP can be kept offline as it
must be used only during Setup and Refresh operations which occur on a much
broader frequency than operations involving the identity servers signing keys.
As a result, the signing key of identity provider can be protected to ensure
it less vulnerable than the signing keys of identity servers. We remind that
the survivability of the proposal could be extended to the identity provider by
instantiating it as a collective entity as already discussed in Section 3.3.

The proposed protocol guarantees also the accountability security property
that is, it allows an identity provider to attribute protocol deviations to spe-
cific compromised identity servers. This property is important because it allows
an identity provider to prioritize recovery operations when servers are compro-
mised, and can be complementary to already deployed approaches for moni-
toring system infrastructure [10]. All cryptographic material issued by identity
servers is accountable. For example, each partial token σi produced during the
ReleasePartial procedure is accountable because it can be verified through the
public key of identity server i. Moreover, the authentication token ⟨id, {σi}, L⟩
computed during the Combine procedure is accountable because the set of sign-
ers L explicitly indicates the identity servers that contributed to signatures {σi}.
It is important to note that related works [5, 17, 123] relying on threshold sig-
natures are not completely accountable. Partial tokens computed by identity
servers during the Release partial procedure may be accountable depending on
the adopted scheme, whereas authentication tokens are not accountable. Other
papers (e.g., [5, 123]) adopt the threshold signature scheme of Boldyreva [30]
which allows accountability of partial tokens because identity servers publish
a commitment of their secret shares after the Setup and Refresh procedures.
The work in [17] proposes an original RSA-based threshold signature scheme
which blinds partial tokens thus preventing partial token accountability. The
authentication token computed during the Combine procedure of [5, 17, 123] is
not accountable because a key property of threshold signatures is that they do
not reveal the identity of individual signers but only the cardinality of the set
of signers [30].

The proposed original token release scheme guarantees several flexibility ben-
efits: adjustable security threshold, adjustable performance overhead and com-
patibility with non-survivable SSO, that we discuss below. The proposed token
release scheme guarantees an adjustable security threshold because the service
provider can decide the value of k during the VerifyToken operation. This allows
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the choice of the best trade-off between security and performance for the ser-
vice he offers, provided that 0 ≤ k ≤ kmax = ⌊n2 ⌋. The constraint kmax = ⌊n2 ⌋
guarantees availability in case of kmax disconnected identity servers.

The scheme also guarantees an adjustable performance overhead because
it allows the service provider to adjust the value of k to the best trade-off
between performance and security. Higher values of k imply higher security in
terms of token unforgeability and availability, as the adversary is required to
violate k+1 identity servers to issue rogue authentication tokens or impede their
release. However, these higher k values imply higher overheads because a user
executes the sign-on procedure with k+1 servers. Previous proposals [5, 17, 123],
which are based on threshold signatures, do not achieve a comparable flexibility
because the value k is not decided by the service provider, but by the identity
provider during the Setup operation. This value cannot be changed afterwards.

As a final attribute, the proposed token release scheme preserves compat-
ibility with non-survivable SSO. If a service provider sets k = 0 during the
VerifyToken operation, its users execute the SSO procedure with one identity
server as in traditional non-survivable SSO.

3.7 Integration with credentials verification and storage
protocols

We consider different credentials storage and verification protocols to evaluate
their impact on the security of the SSO protocol. To this aim, we consider the
attack category B described in Section 3.4, which involve credentials verification
and storage protocols as follows:

• B1: integrity violation of credentials database;

• B2: unavailable identification protocol;

• B3: credentials database leak;

• B4: internal state leak;

• B5: Man-In-The-Middle (MITM) attacks from compromised identity servers.

We do not consider impractical credential storage and verification protocols
that require users to maintain multiple credentials for identification, even if this
is a naive solution to achieve survivable SSO.

We consider the following categories of authentication protocols that can be
adopted to build a survivable SSO system:

• P1: a strawman approach based on plaintext storage and verification;

• P2: approaches that protect password storage but where verification is
operated in plaintext [26];

• P3: approaches where passwords are protected at verification and storage
time [66];
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• P4: approaches that use secret sharing techniques to distribute passwords
over multiple servers [5, 17, 123];

The presence of a majority of honest servers guarantees security against
attacks B1 and B2 independently of the adopted authentication protocol and
violation pattern. Even if the adversary registers malicious credentials (B1),
he is unable to obtain enough valid partial tokens. Moreover, if the adver-
sary prevents the completion of the authentication protocol in compromised
identity servers (B2), the remaining honest majority ensures availability. If an
authentication protocol is vulnerable to attacks B3 and B4, then the adversary
can recover user credentials and impersonate him by compromising one identity
server. Hence, violation patterns are not relevant to evaluate the security of
protocols that are vulnerable to B3 and B4 because they already fail with one
compromised sever.

P1. As a strawman approach, we consider a protocol in which each identity
server stores and verifies plaintext passwords. The user sends the password over
the secure channel to the identity server which verifies that it matches the stored
password. This protocol yields a SSO protocol that is vulnerable to attacks B3,
B4 and B5. The protocol is not survivable as an adversary that either compro-
mises a single credentials database (B3) or observes the password verification
procedure of one identity server (B4), can naively recover the password. The
protocol is vulnerable to R5 (MITM) because, even if the communication chan-
nel is authenticated, the adversary may forward messages from compromised
identity servers which are legitimate endpoints of the authenticated channel.

P2. Protocols that protect password storage but verify passwords in plain-
text rely on password-hashing techniques [26]. Adopting these protocols in the
considered distributed SSO scenario requires the user to transmit his password
over a secure channel to each identity server which compares the password with
its corresponding digest. This protocol is not completely secure against attack
B3 because an adversary that captures the credentials database of any identity
server can mount offline dictionary attacks (ODA). This may allow the attacker
to recover the password to impersonate the user at the other identity servers.
Moreover, the resulting SSO protocol is vulnerable to attacks B4 and B5 if an
identity server is compromised. This protocol is vulnerable to B4 because a
compromised identity server receiving the plaintext password can impersonate
the user. It is also vulnerable to B5 because an adversary can forward the
received plaintext password and impersonate the user to other identity servers.

P3. Security against server violation can be achieved through authentication
protocols where identity servers never access plaintext passwords. The current
state-of-the-art is represented by the OPAQUE scheme [66], which allows a user
to store a secret key encrypted with his password at the registration phase.
During authentication, only a user who knows the correct password can decrypt
the secret key to prove his identity. The scheme adopts an oblivious PRF [53]
which does not disclose any information about the password nor the secret key to
the identity server during the registration and authentication phases. OPAQUE
is not vulnerable to B5 because adopts channel bindings to prevent MITM
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B3
verification key

B4
internal state

B5
MITM

P1 - Strawman # # #
P2 - Pwd Hashing H# # #
P3 - OPAQUE H# H#  
P4 - Secret sharing    

#: vulnerable, H#: partially vulnerable (offline dictionary attack),  : not
vulnerable

Table 3.1: Security guarantees of survivable single sign-on systems with different
authentication protocols

attacks. While the SSO protocol obtained by different OPAQUE instances
with each identity server is not vulnerable to B5, it is not completely secure
against B3 and B4 because an adversary that captures the credentials database
or observes the verification procedure of a single identity server may be able to
mount offline dictionary attacks.

P4. We conclude by evaluating proposals that are secure against attacks
B3, B4 and B5 relying on schemes based on secret sharing, such as Threshold
Oblivious PRFs (TOPRF) [5, 17, 123]. The work of [5] is secure against these
attacks considering static corruptions of identity servers, whereas [17, 123] are
secure in all violation patterns as they are proven secure against mobile ad-
versaries. They are secure against B3 and B4 because they rely on techniques
based on secret sharing to store and transmit the password. Hence, individual
messages and credential databases do not contain enough information to mount
attacks that can recover the password, such as offline dictionary attacks. These
proposals are also secure against B5 because they are proven secure against
active adversaries that can eavesdrop communications of up to a threshold of
other identity servers.

The trade-offs of different authentication protocols are summarized in Ta-
ble 3.1, where columns denote SSO requirements and rows denote the considered
protocols. Password-based protocols that are not designed to be survivable, are
either insecure against B3, or only partially secure. We note that when a proto-
col is partially secure against B3 due to possible offline dictionary attacks, the
user can choose a strong password to make these attacks ineffective.

3.8 Final remarks

We propose the first flexible and survivable SSO protocol that relies on a dis-
tributed architecture of identity servers that collectively authenticate users and
issue SSO tokens through a novel scheme. Flexibility allows service providers
to choose the best trade-off between performance and security for each service
and to preserve compatibility with non-survivable SSO. Survivability allows the
identity provider to guarantee a high level of identity assurance even in presence
of successful intrusions. We evaluate the security of the overall survivable SSO
by considering several state of the art authentication protocols. Moreover, we
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show that the proposed token release scheme is secure against a comprehensive
set of attack classes. Flexibility and survivability make the proposal a viable
solution to offer secure and robust authentication to cloud services and any
mission critical system that must rely on SSO, as in the case of survivable Zero
Trust Architectures described in Chapter 2. The results of this work are open
to different developments. It should be interesting to investigate how emerg-
ing passwordless authentication protocols may impact flexibility in the context
of survivable SSO systems. Moreover, we think that it is possible to extend
this proposal to support decentralized management systems as in the context of
multi-cloud environments.
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Chapter 4

SPOC: Survivable Passwordless Single Sign-

On

4.1 Introduction

Single Sign-On (SSO) is a popular delegated authentication protocol where an
identity provider authenticates users that need to prove their identity to service
providers. To this aim the identity provider adopts a logical identity server
that authenticates users and that reports the authentication outcome by issu-
ing an identity attestation. Recent serious incidents (e.g., [39, 4]) show the
vulnerability of this centralized authentication design. Attackers that are able
to compromise the identity server can access user credentials or, even worse,
issue arbitrary attestations to impersonate users. A recent line of research
proposes survivable SSO to tolerate intrusions in the identity provider infras-
tructure [5, 17, 123]. In survivable SSO, the identity provider adopts multiple
logical identity servers that collectively issue identity attestations. In such a
way, a user must demonstrate identity to a service provider by presenting at-
testations issued by multiple identity servers. The number of identity servers
issuing an attestation must be greater than the number of malicious identity
servers that the protocol can tolerate.

To date, only password-based survivable SSO protocols have been proposed [5,
17, 123]. These protocols address the challenge of protecting weak credentials
against offline dictionary attacks and identity attestation forgery in presence
of intrusions. However, they inherit typical vulnerabilities related to password
usage, including phishing attacks targeting user passwords. Passwordless au-
thentication is the last line of defense against a successful phishing attack, yet
no existing survivable SSO protocol provides the phishing resistance guarantees
offered by passwordless authentication.

We propose SPOC, the first survivable passwordless SSO protocol, that
extends the state-of-the-art FIDO2 passwordless authentication protocol and
OpenID Connect (OIDC) single sign-on protocol. In our proposal, the iden-
tity provider deploys multiple failure-independent identity servers and manages
their cryptographic material. A user authenticates at multiple identity servers
by using a FIDO2 authenticator through a user agent which collects an identity
attestation from each server. The user agent then sends the collected attesta-
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tions to the service provider, which accepts the user identity only if the number
of valid attestations exceeds a given threshold. The proposed protocol achieves
the following benefits. Security : it considers the same threat model of FIDO2
and OIDC standards and adds additional security guarantees related to surviv-
ability, without weakening any security assumption considered by FIDO2 and
OIDC. Usability : its distributed nature is transparent to users, and does not
hinder usability with regard to the original non-survivable protocols. Compati-
bility : it is compatible with unmodified FIDO2 authenticators; hence, it allows
the use of existing hardware security tokens available on the market. Perfor-
mance: it achieves response times that are accepted by established performance
metrics for usable authentication systems [62].

As no prior work exists on survivable passwordless authentication, we first
identify the novel attack classes that emerge in this context. Then, we design
the proposed protocol through a modular approach. We give a formal definition
of a Survivable Passwordless Challenge-response (SPC) protocol which considers
the concurrent execution of multiple challenge-response protocols between the
client and each identity server. We propose a specification based on the FIDO2-
WebAuthn protocol (Survivable WebAuthn (SWA)). Then, we formally define
a Survivable Passwordless SSO (SPS) protocol by extending the SPC protocol
with SSO. We denote as SPOC a specification of SPS based on the combination
of SWA and an extension of the implicit flow of OpenID Connect. To prove both
SWA and SPOC secure, we formalize security properties that capture both novel
attack classes, and existing attack classes that have never been formalized by
the literature. This formalization can be of independent interest. Finally, we
evaluate usability and performance on a software prototype1.

Section 4.2 discusses related work. Section 4.3 presents the system model.
Section 4.4 discusses overall design challenges. Section 4.5 introduces the SPC
protocol and the SWA specification. Section 4.6 describes the SPS protocol and
the SPOC specification. Section 4.7 discusses experimental results. Section 4.8
includes examples of novel attacks. Sections 4.9 and 4.10 include SWA and
SPOC security proofs. Section 4.11 proofs security of the composition of SPOC
with the FIDO2-CTAP2 standard. Section 4.12 concludes the chapter with final
remarks on future work.

4.2 Related work

We propose SPOC, the first survivable passwordless authentication protocol
that is compatible with the state-of-the art FIDO2 standard for passwordless
authentication [1]. As no prior work exists in this area, we are the first to con-
sider passwordless usability requirements in survivable authentication. Recent
research shows that non-survivable passwordless authentication such as FIDO2
is considered usable by end-users [85, 49, 76]. As a result, we argue that surviv-
able passwordless authentication protocols should preserve the same usability
level of their non-survivable counterparts. In particular, survivable passwordless
authentication protocols should require a single user mediation [117] to confirm

1The software will be open-sourced in case of acceptance
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the user’s willingness to complete an authentication procedure, even if authen-
tication involves the execution of a distributed protocol with multiple servers.
This requirement rules out strawman implementations that sequentially execute
non-survivable authentication protocols with multiple servers, as they would re-
quire a single user mediation for each server. We consider security and usability
as the most important requirements and we design SPOC accordingly.

We also consider the deployability of SPOC, in the sense of Bonneau et al.
framework for evaluating Web authentication schemes [32]. The framework does
not consider a novel deployability benefit of token compatibility that is relevant
to our effort, as we preserve compatibility with existing authenticator imple-
mentations. Existing authenticators require no modifications to participate in
the SPOC protocol. Moreover, the protocol is also browser-compatible in the
sense of Bonneau et al. framework, as client-side computation can be executed
with standard browsers technologies (e.g., JavaScript) thus not requiring any
modification to existing browser software.

This work is closely related to a recent line of research that proposes intrusion-
tolerant SSO protocols based on password authentication [5, 17, 123]. PASTA [5]
considers an adversary that can corrupt up to a threshold of identity servers dur-
ing the whole system lifetime. However, this protocol does not define the due
procedures to recover compromised identity servers to a safe state. The abil-
ity to recover after a successful intrusion is essential in proactively secure and
survivable systems [37, 48]. SPOC allows us to recover compromised identity
servers so to provide proactive security guarantees. As a result, it tolerates also
mobile adversaries [99, 121] that perpetually try to compromise a threshold of
identity servers in a given time unit and ensure persistent presence by moving
laterally among identity servers. Even PESTO [17] considers a mobile adversary
under an adaptive corruption model, which gives stronger security guarantees
than our static corruption model. However, PESTO authentication does not
complete if one identity server is unavailable. On the other hand, through suffi-
cient redundancy SPOC can guarantee completion by tolerating unavailability
of a threshold of identity servers. PROTECT [123] also obtains good trade-offs
in terms of proactive security and completion guarantees. Although the au-
thors do not formally specify their adversarial model, their proposal seems to
consider a mobile adversary. We observe that SPOC requires a trusted third
party (the identity provider) to execute system setup and to periodically refresh
cryptographic keys by communicating with each identity server. Nonetheless,
we remark that these are offline operations, which are typically much harder
to compromise, and that SPOC does not have any online attack surface which
represents a single point of failure. This design choice allows more efficient pro-
tocols and a simpler deployment, and we consider it as an acceptable trade-off
for an intrusion-tolerant system with centralized governance. We leave inves-
tigating decentralized key refresh for SPOC as a future work. In comparison,
PROTECT has a decentralized setup and decentralized key refresh that requires
synchronous communications among servers, PESTO has centralized setup and
decentralized key refresh which requires no communications among servers, and
PASTA has trusted centralized setup (and does not support key refresh). Al-
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though all these proposals do not explicitly state assumptions for the considered
communication model, they seem to consider the same synchronous and reliable
point-to-point communication channels that we consider for SPOC.

The formal model used in this work to prove the security of the proposal
is related to the analyses in [16] on FIDO2 [1]. That work adopts the Bellare-
Rogway model [20] to formally analyze the security of the WebAuthn [116] and
CTAP2 [7] protocols and their composition in the FIDO2 standard. We follow
an analogous approach: we adopt the formal model of [16] and use it to extend
the security definitions of the original WebAuthn protocol to our distributed
scenario. Moreover, we rely on the same security assumptions of existence of
collision-resistant hash functions [43] and existentially unforgeable under chosen
message attacks signature schemes [61].

For our security definitions we use a related work [51] that formally defines
the security properties of the OIDC protocol [107], although their model is
incompatible with the model used in this proposal. We translate the formal
security properties of OIDC introduced by [51] to our model and extend them
to capture distributed SSO security guarantees. In particular, to the best of
our knowledge we are the first to consider SSO as a key transport protocol [33]
and to formalize its security by considering the Bellare-Rogway requirements
for key establishment protocols. The translation to the Bellare-Rogway model
and extension to the distributed setting of OIDC security properties may be
considered original contributions of independent interest.

4.3 System model and notation

The protocols involve a set of parties P. The set of parties is composed of the
following finite, disjoint, non-empty sets: users U , authenticators T , clients C,
identity servers S, identity providers I, service providers V. A party P ∈ P
is named by a string of finite length id which uniquely identifies P in P. We
call F : S→ I a public surjective function that maps identity servers to identity
providers. Function F models a membership relation of an identity server to the
administrative domain of an identity provider. Given identifier idS of identity
server S ∈ S, F (idS) returns the identifier idI of its corresponding identity
provider I ∈ I. We say that identity provider I controls or owns identity server

S if F (idS)
?
= idI and we write idS ∈ idI . We denote the set of all identity

servers owned by identity provider I as SI and its cardinality as nI . In practice,
identifiers for identity servers and identity providers can be implemented via
domain names, and function F returns the domain of a subdomain [94].

Authenticator T maintains an authenticator key pair ⟨akT , vkT ⟩ and a set of
authenticator registration contexts {rctT }. An authenticator registration context
rctT includes an authenticator user identifier auid and a public key credential
that is uniquely bound to an identity provider I. Each identity server S stores a
set of server registration contexts {rcsS}. Each server registration context rcsS
includes the public key and authenticator user identifier of an authenticator
registration context rctT associated with identity provider I that owns server S.
Both authenticator and server registration contexts also include other stateful
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Figure 4.1: System model

information used for authentication procedures. Each identity server also stores
an identity map, which is an associative array im that maps an authenticator
user identifier auid to a user identity uid, and stores a signing key pair ⟨skS , pkS⟩
to authenticate identity attestations of user identities. The service provider V
maintains a set of verification keys {pkS}S∈SI

for each identity provider I to
verify authenticity of identity attestations released by servers SI owned by I.
Clients do not store persistent information.

We assume a synchronous system where all parties can access a shared clock
and adopt synchronous and reliable point-to-point communication channels.
Identity provider I divides time into time periods. Each time period is uniquely
identified by label ωℓI in the ordered set of time periods ΩI , where ℓ ∈ N denotes
the ℓ-th time period. In a time period, each identity server is either malicious
or honest. We denote as kI the number of allowed malicious identity servers
during the same time period.

Further notation. We denote as {rctT } ({rcsS}) the set of all the au-
thenticator (server) registration contexts maintained by authenticator T (server
S). We denote as ⟨rcsS⟩S∈SI

the tuple of all the server registration contexts
associated with the same authenticator and maintained by all servers in SI . We
denote identities with distinct superscripts (e.g., îd, īd, ĩd) and call them intended
identities to capture attacks that exploit inconsistent views on the identities of
protocol participants (e.g., phishing). We use ← and ←$ to assign the output
of deterministic and randomized algorithms, and ⊥ is a special return value
that denotes failure. We use {a|b} to express mutually exclusive return values
a or b. We denote as ←$ {0, 1}λ uniform sampling of bit strings of length λ,
where λ denotes the security level parameter (e.g, 128-bit). We denote as [n]
the set of integers {1, . . . , n}, as Q the set of identity servers that participate
in a protocol run, as |Q| its cardinality, as |Q|min the minimum cardinality
value required by the protocol, as H a collision-resistant hash function [43], as
Sig = ⟨Gen,Sign,Verify⟩ a digital signature scheme [61].

We recall definitions of H and Sig. Let H be a function family H = K×D → R
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such that |D| > |R| and Hk = H(k, ·) can be computed efficiently on any input
given key k ∈ K. In the security experiment, adversary A takes as input a
random k ←$ K and outputs a pair of messages ⟨a, b⟩ ∈ D × D. The adversary
advantage AdvcollH (A) against collision-resistance of function H is the probability
that a ̸= b ∧ Hk(a) = Hk(b). Hash function H is collision resistant if AdvcollH (A)
is negligible. In practice H is not a keyed function family, but consists of a
single hash function for which it should be infeasible to construct an efficient
adversary against collision resistance.

A signature scheme Sig is a tuple of efficient algorithms ⟨Gen,Sign,Verify⟩
defined as follows:

• ⟨sk, pk⟩ ← Gen(): outputs pair ⟨sk, pk⟩, where sk is a private signing key,
and pk is a public verification key.

• σ ← Sign(sk,m): outputs signature σ on message m given secret signing
key sk.

• {0|1} ← Verify(pk,m, σ): outputs 1 if signature σ for message m is verified
by public verification key pk, 0 otherwise.

Correctness requires that for any ⟨sk, pk⟩ ← Gen() and any m, Verify(pk,m,
Sign(sk,m)) = 1. For security, consider a security experiment between a chal-
lenger, and adversary A that has access to signing oracle Signsk(·) = Sign(sk, ·).
First, the challenger runs ⟨sk, pk⟩ ← Gen() and gives pk to A. Then A outputs a
message-signature pair ⟨m,σ⟩. The adversary advantage Adveuf−cma

Sig (A) against
existential unforgeability under chosen message attack of signature scheme Sig is
the probability that Verify(pk,m, σ) = 1 andA has not queried oracle Signsk(m).
Signature scheme Sig is euf − cma secure if Adveuf−cma

Sig (A) is negligible.

4.4 Overall design and challenges

As SPOC is a specification of the Survivable Passwordless SSO (SPS) pro-
tocol, we overview the design of SPS to also give an intuition of SPOC. We
design SPS through a modular approach. First, we design a Survivable Pass-
wordless Challenge-response (SPC) protocol that performs a distributed proof-
of-possession among a FIDO2-compliant authenticator and a set of identity
servers. Then, we design SPS as an extension of SPC to support SSO architec-
tures. Intuitively, the design of SPC differs from a typical challenge-response
protocol because the prover (the pair client/authenticator) proves possession of
a secret by authenticating a set of challenges, and the verifier (each identity
server) checks that its own challenge belongs to the authenticated set. With
regard to a typical SSO protocol, SPS requires the service provider to check
that the number of verifiers that accepted an SPC execution exceeds a thresh-
old that depends on the number of malicious identity servers. In the following,
we describe the overall operations flow of SPS, we introduce the novel attack
classes, and we overview the security experiments structure and novelties.

Overall flow. SPS consists of three protocols: registration, authentication
and refresh. Registration allows a set of identity servers to associate an authen-
ticator to a known user identity. Authentication allows users to demonstrate
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Figure 4.2: SPS registration flow

their identity at a service provider by proving possession of their credentials via
the authenticator to a set of identity servers. Refresh allows an identity provider
to proactively rotate compromised signing keys and corrupted registration con-
texts on identity servers. Below we overview registration and authentication to
ease understanding of the protocol and of the main contributions.

Figure 4.2 shows SPS registration, which inherits the same four routines of
SPC registration and introduces an additional routine. Each identity server ex-
ecutes rchallenge to compute a challenge. The client receives servers challenges
and executes rcommand to aggregate them into a command data structure (com-
mand), which includes the aggregated challenges (cc). The authenticator signs
the aggregated challenges with rresponse to generate a command attestation
(cmdatt) and creates a new authenticator registration context (rct). The client
forwards the command attestation and the aggregated challenges to all identity
servers. Each server validates the aggregated challenges with rcheck, creates a
new server registration context (rcs) and binds the created context to the user
identity with idbind.

Figure 4.3 shows SPS authentication, which inherits three routines from
SPC and introduces four additional routines. The service provider establishes
collective session information by executing abegin, which is separated by the
client into distinct session information data, each forwarded to a different iden-
tity server. Each identity server generates a challenge with achallenge. The
client receives server challenges and executes acommand to aggregate them into
a command data structure, which includes the aggregated challenges (cc). The
authenticator signs the aggregated challenges with aresponse to generate a com-
mand attestation (cmdatt) and updates the appropriate authenticator registra-
tion context. The client forwards the command attestation and the aggregated
challenges to the identity servers. Each server runs acheck to verify them and
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updates the registration context. Moreover, each server executes release to issue
an identity attestation (idatt). The client aggregates identity attestations into
a collection and sends it to the service provider. The service provider executes
count to verify the identity attestation collection and to issue a session cookie
to the client.

We observe that both Registration and Authentication adopt unmodified
FIDO2-WebAuthn routines and associated data structures to interact with
FIDO2 authenticators (command and response routines within dashed boxes in
Figures 4.2 and 4.3). The other routines and data structures have been modified
to support the decentralized setting (see Sections 4.5.1 and 4.6.1).

Novel security threats. To define the security of SPS we extend existing
authentication and session integrity security properties of non-survivable SSO
protocols [51] by considering a mobile adversary [99, 121] that can compromise
a subset of identity servers within a time period. The authentication prop-
erty refers to the inability of an adversary to impersonate a user at a service
provider without compromising the identity provider (e.g., obtaining an identity
attestation via a compromised communication channel). The session integrity
property refers to the inability of an adversary to authenticate a user: i) at a
service provider without the user’s explicit consent (e.g., a replay attack), or
ii) under an identity that is different from the identity proved to the identity
provider (e.g., cross-site request forgery attacks).

We identify three novel security threats: clone detection evasion, attestation
mixing and shared session attacks. We describe their impact on authentication
and session integrity and hint at how SPS defends against them. Section 4.8
includes visual examples of these threats. In Section 4.5.2 and 4.6.2 we design
novel security games to capture these attacks and design SPS accordingly.

Authenticator clone detection evasion consists in the undetectable creation
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of multiple instances of the same credentials to perform stealth impersonation.
In FIDO2, the identity server guarantees authenticator clone detection by rely-
ing on signature counters stored in registration contexts. We show that clone
detection in a distributed environment is a harder challenge which cannot be
exclusively enforced by identity servers alone. Since a subset of identity servers
may be malicious, adversarial interleavings of authentication sessions may evade
clone detection. SPS defends against clone detection evasion by: i) cryptograph-
ically binding each identity attestation to a SPC session; ii) requiring the service
provider to verify that the number of legitimate identity attestations is at least
2kI + 1, and that they are bound to the same SPC session; iii) limiting the
total number of identity servers to [2kI + 1, 3kI + 1]. We note that while the
2kI + 1 lower bound is required to guarantee the overall security, the 3kI + 1
upper bound is specific to prevent clone detection evasion.

An attestation mixing attack refers to the ability of an adversary to mix and
replay identity attestations collected from multiple sessions in different time
periods, possibly issued by malicious identity servers, to exceed the allowed
security threshold of malicious servers and break authentication. SPS defends
against this attack by scoping each attestation to a time period through a cryp-
tographic binding.

A shared session attack refers to the ability of an adversary to inject an iden-
tity attestation collection in the victim authentication session to authenticate
the victim under the adversary’s identity, thus breaking session integrity. This
attack is possible if the service provider uses the same session information for all
identity servers. The adversary can obtain the victim’s session information via
a malicious identity server, and start a concurrent SPC authentication session
to obtain valid identity attestations of the adversary identity which however are
bound to the victim’s session. The victim session can then be forced to use the
adversary attestations via injection attacks. SPS defends against shared session
attacks by requiring the service provider to generate distinct and unpredictable
session information for each identity server.

Security experiments. We define SPS security with three security exper-
iments. Experiment 1 in Section 4.5.2 and Experiment 3 in Section 4.6 capture
security of SPC and SPS respectively. Experiment 3 extends Experiment 1 as we
show that SPC security is a necessary condition to SPS security. To prove that
the proposed SPC specification (SWA) is a secure SPC protocol in the sense of
Experiment 1, we also define Experiment 2 in Section 4.5.3 to capture attacks
against the SWA specification of the SPC Refresh protocol. The experiments
capture both the novel attack classes outlined above as well as known threats re-
lated to authenticator cloning and secure session cookie establishment that were
not formalized in previous literature. To capture authenticator cloning in Ex-
periments 1 and 3 we introduce a Clone query. To capture secure session cookie
establishment in Experiment 3 we adopt Reveal and Test queries introduced by
Bellare and Rogaway [20] in the context of secure key establishment.
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4.5 Survivable Passwordless Challange-response (SPC) pro-
tocol

4.5.1 SPC operations framework

The proposed Survivable Passwordless Challenge-response (SPC) protocol is
composed of the key generation, register, authenticate and refresh subprotocols.

Key generation: ⟨akT , vkT ⟩ ←$ Spc.Kgen(): executed once for each au-
thenticator T to generate the authenticator key pair ⟨akT , vkT ⟩.

Register (Spc.Register): allows a client to register an authenticator T (ini-
tialized with authenticator key pair ⟨akT , vkT ⟩) at identity provider īdI , where
īdI denotes the identity provider intended identity observed by the client (see
Section 4.3). The client interacts with a set of identity servers SI to establish
the authenticator and server registration contexts rctT and ⟨rcsS⟩S∈SI

. Register
is composed of the following routines:

• rcS ←$ Spc.rchallenge(idS): executed by each identity server S ∈ SI , it
generates a challenge rcS , given the server identity idS .

• ⟨Mr, cc, auid⟩ ← Spc.rcommand(īdI , ⟨rcS⟩S∈SI
): executed by the client,

it generates authenticator user id auid, collective challenge cc and regis-
tration command Mr, given challenges ⟨rcS⟩S∈SI

and intended identity

īdI .

• ⟨Rr, {rctT }′⟩ ←$ Spc.rresponse(akT , {rctT },Mr): executed by authentica-
tor T , returns registration response Rr and the updated authenticator
registration contexts {rctT }′, given authenticator private key akT , the
existing authenticator registration contexts {rctT } and registration com-
mand Mr.

• {rcsS}′ ← Spc.rcheck(idI , idS , {rcsS}, vkT , rcS , Rr, cc, auid): executed by
each identity server S, returns the updated server registration contexts
{rcsS}′, given provider and server identities idI and idS , the existing server
registration contexts {rcsS}, authenticator public key vkT , server challenge
rcS , registration response Rr, collective challenge cc and authenticator
user identifier auid.

Authenticate (Spc.Authenticate): allows a client to authenticate to a subset

of identity servers Q ⊆ SI of the identity provider îdI by using registered au-
thenticator T , which update the previously established server and authenticator
registration contexts ⟨rcsS⟩S∈Q and rctT . We assume that the client can obtain

identities (i.e. FQDNs) of servers owned by provider îdI , which the client uses
to contact them and start execution of the protocol (e.g., the service provider
of SPS returns the list of identities in the abegin routine, see Section 4.6.1).
Authenticate is composed of the following routines:

• acS ←$ Spc.achallenge(idS): executed by each identity server S, returns
challenge acS given identity idS .
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• ⟨Ma, cc⟩ ← Spc.acommand(îdI , ⟨acS⟩S∈Q): executed by the client, it gen-
erates collective challenge cc and authentication command Ma, given chal-
lenges ⟨acS⟩S∈Q and provider identity îdI .

• ⟨Ra, {rctT }′⟩ ←$ Spc.aresponse({rctT },Ma): executed by authenticator T ,
returns authentication response Ra and the updated authenticator regis-
tration contexts {rctT }′, given registration contexts {rctT } and authenti-
cation command Ma.

• ⟨bS , {rcsS}′⟩ ← Spc.acheck(idI , idS , {rcsS}, acS , Ra, cc): executed by each
identity server S, returns vote bS (accept if server S accepts, reject other-
wise) and the updated server registration contexts {rcsS}′, given provider
and server identities idI and idS , registration contexts {rcsS}, challenge
acS , authentication response Ra and collective challenge cc.

Refresh: {rcs}′ ← Spc.Refresh(idI , kI , {rcsS1}, . . . , {rcsSnI
}): executed at

the beginning of each time period ωℓI ∈ ΩI by identity provider identified by
idI on all of its identity servers SI , it terminates pending registration and au-
thentication sessions. It returns a new set of server registration contexts {rcs}′,
given security threshold kI and server registration contexts {rcsS} of all identity
servers S ∈ SI .

Intuitively, SPC correctness requires that each server idS ∈ Q ⊆ SI , even
after multiple Spc.refresh executions, always accepts an authentication that is
consistent with a prior registration (îdI = īdI) if and only if the identity server

belongs to the client’s intended identity provider (idS ∈ îdI).

Correctness (SPC). Correctness requires that for any identity provider identities

idI , îdI , īdI and server identity idS , for all kI , nI ∈ N such that kI < nI and for
all S ∈ Q ⊆ SI if:

⟨akT , vkT ⟩ ←$ Spc.Kgen()
rcSi ←$ Spc.rchallenge(idSi), ∀i ∈ [nI ]
⟨Mr, cc, auid⟩ ← Spc.rcommand(īdI , ⟨rcSi⟩i∈[nI ]

)〈
Rr, {rctT }′

〉
←$ Spc.rresponse(akT , {rctT },Mr)

{rcsSi}
′ ← Spc.rcheck(idI , idSi , {rcsSi}, vkT , rcSi , Rr, cc, auid),∀i ∈ [nI ]

{rcs}′ ← Spc.Refresh(idI , kI , {rcsS1}, . . . , {rcsSnI
})

acSi ←$ Spc.achallenge(idSi), ∀i ∈ [|Q|]
⟨Ma, cc⟩ ← Spc.acommand(îdI , ⟨acSi⟩i∈[|Q|])〈
Ra, {rctT }′

〉
←$ Spc.aresponse({rctT },Ma)〈

bSi , {rcsSi}
′〉← Spc.acheck(idI , idS , {rcsSi}, acSi , Ra, cc),∀i ∈ [|Q|]

then the condition:

bSi
= (idI

?
= īdI) ∧ (idI

?
= îdI) ∧ (idSi

∈ îdI),∀i ∈ [|Q|] (4.1)

holds with probability 1.

We highlight that condition (4.1) prevents an honest authenticator to be
partnered with identity servers belonging to distinct identity providers.
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Comparison with WebAuthn. We observe that the Spc.rresponse and Spc.
aresponse routines are compliant with FIDO2-WebAuthn, making the frame-
work compliant with FIDO2 authenticators interfaces. The two routines output
only a single response, thus registration response Rr is the same for all iden-
tity servers in SI , and authentication response Ra is the same for all identity
servers in Q ⊆ SI . Instead, we modify the other interfaces: while, in FIDO2-
WebAuthn the auid value is generated by rchallenge, in the SPC framework it
is generated by Spc.rcommand. This modification avoids distributed generation
of auid among multiple identity servers, which would require consensus. Ad-
versarial auid values are not a problem: duplicate auid values are rejected by
honest servers, and new inconsistent auid values do not affect existing registra-
tion contexts and only render completion of future authentications impossible
to byzantine client-authenticator pairs.

4.5.2 SPC security model

Trust assumptions. We assume that communication channels between au-
thenticators and clients, and between clients and identity servers are not au-
thenticated, nor private. Authenticators are tamper-proof: the adversary can
only read the authenticator internal state and cannot write it.

Session oracles. As in [16], during execution there may be many instances
of party P ∈ T ∪S. We call instance i of party P a session oracle, and we denote
it as πi,jP . When j = 0, πi,0P is party P i-th registration session. When j ≥ 1,

πi,jP is party P j-th authentication session following the completed registration

session πi,0P . Thus, each party P is associated with a set of session oracles

{πi,jP }⟨i,j⟩∈N2
0

that for ease of notation we denote simply as {πi,jP }. Moreover, at

the beginning of each time period ωℓI ∈ ΩI all pending sessions are terminated
by the Refresh procedure. Thus, each session oracle operates in and is associated
with exactly one time period ωℓI ∈ ΩI . All session oracles of party P in time
period ωℓI share the same storage.

Session identifiers. The protocol implementation must define a session
identifier sidSPC that allows to uniquely identify the session between an au-
thenticator oracle and a set of identity server oracles. To uniquely identify a
session, the sidSPC can be defined as a function of the protocol transcript in-
cluding messages of each participant that are unique among all possible protocol
executions with an overwhelming probability.

Partnering. We extend the partnering notion of [16]. In our context,
partnering captures the intuitive idea that an honest server session that outputs
an accept vote, has accepted a conversation with an authenticator session of an
authenticator that previously registered at that same server. More formally, we
say that authenticator oracle πi,jT and server oracle πq,lS are partnered if both
oracles accept and: i) S is honest; ii) if j = 0 ∧ l = 0, they share the same
sidSPC ; iii) if j > 0 ∧ l > 0, they share the same sidSPC and πi,0T and πq,0S are
partnered. In our distributed scenario, partnership is a surjective relation that
maps a set of identity server oracles to an authenticator oracle.

Security experiment 1 (Survivable passwordless challenge response). The
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security experiment is run between a challenger and an adversary A. At the
beginning of the experiment the challenger defines the set of identity providers
I, the set of authenticators T , the set of identity servers S, and identities idI for
all I ∈ I and idS for all S ∈ S. The challenger generates authenticator key pairs
⟨akT , vkT ⟩ ← Spc.Kgen() for all authenticators T ∈ T and gives each authen-
ticator public key vkT to A and to server oracles. The challenger also defines
and gives A public values nI , kI for all I ∈ I. The adversary chooses a target
identity provider It ∈ I and sends It to the challenger. All remaining identity
providers are under the adversary control, i.e. servers S ∈ I ∈ I\It are corrupt.
After the setup phase, the security experiment proceeds in a series of rounds.
The adversary chooses when to terminate a round and proceed to the next. At
the beginning of round ℓ adversary A chooses a subset Σℓ ⊂ SIt of at most kI
identity servers of the target identity provider It, and gives Σℓ to the challenger.
Identity servers in Σℓ are corrupt, while the others (SIt \ Σℓ) are honest. The
adversary may set the server registration contexts {rcsS}S∈Σℓ of corrupt servers
to arbitrary values. At the beginning of each round the challenger executes the
Spc.Refresh algorithm. In each round, A can interact with authenticators in T
and identity servers in S via the following queries:

• Start(πi,jS ): the challenger instructs server oracle πi,jS to execute Spc.rchallenge(idS)
if j = 0 or Spc.achallenge(idS) if j > 0. The resulting challenge is returned
to A.

• Challenge(πi,jT ,M): the challenger instructs authenticator oracle πi,jT to
execute
Spc.rresponse(akT , {rctT },M) if j = 0 or Spc.aresponse({rctT },M) if j >
0 with the given command M . The resulting response is returned to A.

• Clone(T ): the challenger marks T as cloned, adds a new authenticator T ′

to T , marks T ′ as cloned, sets T ′ internal state equal to T internal state
(⟨akT , vkT ⟩, {rctT }), and returns the internal state to A.

• Complete(πi,jS , T,R, cc, auid): if T is cloned then the challenger extracts
all challenges ⟨ch⟩ in cc and then executes the following: if j = 0 it com-
putes ⟨Mr, cc

′, auid′⟩ ← Spc.rcommand(idI , ⟨ch⟩), instructs oracle πi,jT ′ for
all clones T ′ of T to execute ⟨Rr, {rctT ′}′⟩ ← Spc.rresponse(akT ′ , {rctT ′},
Mr) and instructs oracle πi,jS to execute Spc.rcheck(idI , idS , {rcsS}, vkT ′ ,
rcS , Rr, cc, auid); if j > 0 it computes ⟨Ma, cc

′⟩ ← Spc.acommand(idI , ⟨ch⟩),
instructs oracle πi,jT ′ for all clones T ′ of T to execute ⟨Ra, {rctT ′}′⟩ ←
Spc.aresponse({rctT ′},Ma) and instructs oracle πi,jS to execute Spc.acheck(
idI , idS , {rcsS}, acS , Ra, cc). Then, in any case (T cloned or not cloned),
the challenger instructs server oracle πi,jS to execute Spc.rcheck(idI , idS ,
{rcsS}, vkT , rcS , R, cc, auid) if j = 0, or Spc.acheck(idI , idS , {rcsS}, acS , R,
cc) if j > 0; the result is given to A.

The adversary wins the experiment if an honest identity server oracle outputs
accept but it is not uniquely partnered with an authenticator oracle or if there
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exists distinct disjoint subsets of |Q|min − k honest identity server oracles that
output accept and are partnered with the same authenticator oracle.

We note that although the ability of the challenger to extract all individ-
ual challenges from a collective challenge may restrict the validity of the se-
curity experiment to a certain number of specifications of Spc.rcommand and
Spc.acommand where public extraction is possible, we argue that in practice
this is not a major limitation because cc can be specified with data structures
that allow public extraction (e.g., an array of challenges). The complexity of
the Complete query is meant to prevent trivial ways of winning the game with
zero partnered authenticator oracles if the adversary clones an authenticator.

Definition 4.5.1 (SPC advantage). Let Π be a survivable passwordless challenge-
response protocol. We define AdvspcΠ (A) as the probability that adversary A wins
the security experiment.

Definition 4.5.2 (Secure SPC). A survivable passwordless challenge-response
protocol Π is secure if the quantity AdvspcΠ (A) is negligible.

We note that for Definition 4.5.2 to hold, all honest servers oracles that
output an accept vote must have a unique authenticator partner. However, an
authenticator oracle can be partnered with multiple server oracles. Moreover,
we note that Definition 4.5.2 does not require the decisions of honest identity
servers in Q to be consistent. With Definition 4.5.2 we guarantee that in a secure
SPC protocol, in all possible identity servers subsets Q ⊆ SI : |Q| ≥ |Q|min,
there is always at least an honest identity server that rejects authentication
sessions from unregistered or cloned authenticators. To this aim, a secure SPC
protocol specification in the sense of Definition 4.5.2 must define the bounds of
public values |Q|min and n.

4.5.3 Survivable WebAuthn (SWA) specification

We describe and discuss the security of Survivable WebAuthn (SWA): a WebAuthn-
compliant SPC protocol specification. We detail the SWA specifications of the
Register and Authenticate subprotocols and related subroutines in Figures 4.4
and 4.5. We now describe the most relevant design choices and data structures.
We define SWA authenticator registration contexts as rctT = ⟨idI , auid, cid, sk, sc⟩,
where idI denotes the associated identity provider which acts as scope, cid and
auid denote the identifiers of the credential and of the user that owns it, sk
denotes the secret key of the public key credential, and sc denotes the signature
counter incremented each time sk is used for signing. We define SWA server
registration contexts as rcsS = ⟨auid, cid, pk, sc, cc, σ⟩. Notations auid, cid and
sc preserve the same semantics of authenticator registration contexts. Nota-
tion pk denotes the public key of the credential, cc and σ denote the latest
collective challenge and latest command attestation signature received by the
server (see Sections 4.4 and 4.5.1). For compatibility with FIDO2 authentica-
tors, the SWA authenticator registration are identical to FIDO2-WebAuthn au-
thenticator registration contexts. Instead, we extend FIDO2-WebAuthn server
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Authenticator T Client C Identity Server S
(akT , vkT , {rctT }) īdI (idI , idS , vkT , {rcsS})
Spc.Register:

rchallenge :
rcommand : chS ←$ {0, 1}≥λ

⟨idS , chS⟩ ← rcS
rcS rcS ← ⟨idS , chS⟩

if idS /∈ īdI : abort
cc[idS ]← chS

rresponse : auid←$ {0, 1}≥4λ

〈
īdI , auid, hc

〉
←Mr

Mr Mr ←
〈
īdI , auid,H(cc)

〉

⟨pk, sk⟩ ←$ Sig.Gen()
sc← 0, cid←$ {0, 1}≥λ

ad←
〈
H(īdI), sc, cid, pk

〉
rcheck :

σ ← Sig.Sign(akT , ⟨ad, hc⟩)
Rr = ⟨ad, σ⟩ , cc, auid

−−−−−−−−−−−−−−−−−−−−−−−−−−→ ⟨h, sc, cid, pk⟩ ← ad
{rctT }.insert(

〈
īdI , auid, cid, sk, sc

〉
) if h ̸= H(idI) or sc ̸= 0

or Sig.Verify(vkT , ⟨ad,H(cc)⟩ , σ) = 0
or auid ∈ {rcsS}

or cc[idS ] ̸= chS : abort
{rcsS}.insert(⟨auid, cid, pk, sc, cc, σ⟩)

1

Figure 4.4: SWA specification of the SPC Register subprotocol

Authenticator T Client C Identity Server S

(akT , vkT , {rctT }) îdI (idI , idS , vkT , {rcsS})
Spc.Authenticate: achallenge :

acommand : chS ←$ {0, 1}≥λ

⟨idS , chS⟩ ← acS
acS acS ← ⟨idS , chS⟩

if idS /∈ îdI : abort
aresponse : cc[idS ]← chS〈
îdI , hc

〉
←Ma

Ma Ma ←
〈
îdI ,H(cc)

〉

⟨auid, cid, sk, sc⟩ ← {rctT }.get(îdI)
sc← sc+ 1, ad←

〈
H(îdI), sc

〉
acheck :

σ ← Sig.Sign(sk, ⟨ad, hc⟩)
Ra = ⟨cid, ad, σ, auid⟩ , cc

−−−−−−−−−−−−−−−−−−−−−−−−−−→
〈
auid

′
, pk, sc

′〉← {rcsS}.get(cid)
{rctT }.insert(

〈
îdI , auid, cid, sk, sc

〉
) ⟨h, sc⟩ ← ad

if h ̸= H(idI) or sc ≤ sc′
or Sig.Verify(pk, ⟨ad,H(cc)⟩ , σ) = 0

or cc[idS ] ̸= chS or auid ̸= auid
′
: reject

sc
′ ← sc; output accept

{rcsS}.insert(⟨auid, cid, pk, sc, cc, σ⟩)

1
Figure 4.5: SWA specification of the SPC Authenticate subprotocol
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Spc.Refresh(idI , kI , {rcsS1
}, . . . , {rcsSnI

})
1 : ∀i ∈ [nI ] : RSi

← {⟨auid, cid, pk⟩ : ⟨auid, cid, pk, sc, cc, σ⟩ ∈ {rcsSi
}}

2 : O ←
⊎

i∈[nI ]

RSi
, G←

⋃

i∈[nI ]

{rcsSi
}

3 : V ← {v : v ∈ O∧ ∥v∥≥ (kI + 1)}
4 : W ← {⟨auid, cid, pk, sc, cc, σ⟩ ∈ G : ⟨auid, cid, pk⟩ ∈ V ∧

((sc = 0 ∧ Sig.Verify(pk, ⟨⟨H(idI), sc, cid, pk⟩ ,H(cc)⟩ , σ) = 1)
∨ (sc > 0 ∧ Sig.Verify(pk, ⟨⟨H(idI), sc⟩ ,H(cc)⟩ , σ) = 1))}

5 : W
′ ← {⟨auid, cid, pk, sc, cc, σ⟩ ∈ W :

sc = max({sc′ :
〈
auid

′
, cid

′
, pk

′
, sc

′
, cc

′
, σ

′〉 ∈ W ∧ ⟨auid, cid, pk⟩ =
〈
auid

′
, cid

′
, pk

′〉})}
6 : return W

′

Figure 4.6: SWA specification of the SPC Refresh subprotocol

registration contexts by including cc and σ that are used in the Refresh sub-
protocol. Registration and authentication challenges rcS and acS are identical
to FIDO2-WebAuthn challenges, and defined as ⟨idS , chS⟩, where chS is a uni-
formly sampled λ-bit string and idS is the identity of the server that generates
the challenges. Registration and authentication commands Mr and Ma are syn-
tactically identical to FIDO2-WebAuthn commands but semantically different,
as the identity included in the command for scoping the credential is that of
the identity provider that owns the servers (instead of that of the server itself
as in FIDO2-WebAuthn). As in FIDO2-WebAuthn, the identity information is

that observed by the client (īdI for registration and îdI for authentication). We
define collective challenge cc as an associative array which uses identity servers
identities idS as keys to access the individual servers challenges (rcS for reg-
istration and acS for authentication). Finally, for compatibility with FIDO2
authenticators, the registration and authentication command attestations Rr
and Ra are identical to FIDO2-WebAuthn command attestations.

Refresh. Figure 4.6 shows the SWA specification of the Spc.Refresh sub-
protocol, executed by identity provider I at the beginning of each time period
ωℓI . First, for each set of server registration contexts {rcsS}, the protocol re-
moves possible duplicate credentials ⟨auid, cid, pk⟩ (Line 1). Second, it creates a
credential multiset that includes the registration contexts of all identity servers
(Line 2) to compute the set of credentials with multiplicity at least equal to
(kI + 1) (Line 3, where ||v|| denotes multiplicity of v). Third, it computes the
set W of authentic registration contexts (i.e. satisfying Sig.Verify, Line 4) with
sufficient multiplicity (⟨auid, cid, pk⟩ ∈ V ). Finally, it returns the set W ′ of
authentic registration contexts with the highest signature counter sc (Lines 5
and 6). The identity provider can reset the registration contexts of all identity
servers with set W ′.

Security. We take a modular approach to demonstrate the security of the
proposed SWA protocol. We first notice that the security of Spc.Refresh is
a necessary condition for the security of the proposed protocol. In fact, an
adversary may abuse Spc.Refresh to gain write privileges to the registration
contexts of honest identity servers it does not control. For example, this may
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be exploited to set signature counters on honest identity servers to evade clone
detection. We define the security of Spc.Refresh in terms of Experiment 2, prove
that the proposed SWA specification of Spc.Refresh is secure in Lemma 1 and
finally prove the security of SWA in Theorem 1.

Security experiment 2 (SPC Refresh). The security experiment is run be-
tween a challenger and adversary A. The challenger defines identity idI and val-
ues n, kI , ℓ ∈ N, computes ⟨sk, pk⟩ ←$ Sig.Gen(), and builds an n× ℓ matrixM,
where scij ∈ N for i ∈ [n], j ∈ [ℓ] such that scij−1 ≤ scij, auid←$ {0, 1}≥λ, cid←$

{0, 1}≥λ, ccj ←$ {0, 1}≥nλ, and σi1 ←$ Sig.Sign(sk,
〈
H(idI), sc

i
1, cid, pk,H(cc1)

〉
)

and σij ←$ Sig.Sign(sk,
〈
H(idI), sc

i
j ,H(ccj)

〉
) for j > 1.

M =

(auid, cid, pk, sc11, cc1, σ
1
1) ... (auid, cid, pk, sc1ℓ , ccℓ, σ

1
ℓ )

... ... ...
(auid, cid, pk, scn1 , cc1, σ

n
1 ) ... (auid, cid, pk, scnℓ , ccℓ, σ

n
ℓ )


The challenger then gives A value kI and matrix M. A returns to the

challenger set Σ ⊂ [n] : |Σ| ≤ k, and a vector m such that mi = Mi,ℓ for
i /∈ Σ. The challenger executes v ← Spc.Refresh(idI , kI , {m1}, . . . , {mn}) and

returns v. Let
〈

ˆauidi, ˆcidi, p̂ki, ŝci, ĉci, σ̂i

〉
= vi. The adversary wins the ex-

periment if ˆauidi ̸= auid or ˆcidi ̸= cid or p̂ki ̸= pk, or ŝci < sciℓ for i /∈ Σ

and Sig.Verify(σ̂i, ⟨H(idI), ŝci,H(ĉci)⟩ , p̂ki) = 1, or ŝci > maxh/∈Σ(schℓ ) and

Sig.Verify(σ̂i, ⟨H(idI), ŝci,H(ĉci)⟩ , p̂ki) = 1.

Experiment 2 captures an adversary trying to swap or overwrite registered
credentials, trying to decrement signature counters on honest identity servers
to evade clone detection after time period ωℓI , or trying to increment signature
counters on honest identity servers to introduce possible false positives in clone
detection.

Definition 4.5.3 (SPC Refresh advantage). Let Π be a SPC Refresh protocol.

We define Advspc.refreshΠ (A) as the probability that adversary A wins the security
experiment.

Definition 4.5.4 (Secure SPC Refresh). A SPC Refresh protocol Π is secure

if the quantity Advspc.refreshΠ (A) is negligible.

Lemma 1 (Secure SWA Refresh). If the amount of malicious identity servers
kI < ⌈nI/2⌉ for any time period ωℓI ∈ ΩI , for any adversary A against the
Spc.Refresh protocol, there exists an adversary D such that:

Advspc.refreshswa.refresh(A) ≤ Adveuf−cma
Sig (D)

The proposed SWA protocol adopts ⟨ad,H(cc)⟩ as session identifier. In
Section 4.9 we prove Lemma 1 and the following theorem, which shows that
if H is a collision-resistant hash function [43], Sig is an existentially unforge-
able signature scheme [61], SWA Refresh is a secure SPC Refresh protocol, and

72



|Q|min = 2kI + 1, nI ∈ [2kI + 1, 3kI + 1] then the proposed SWA protocol is a
secure SPC protocol in the sense of Definition 4.5.2.

Theorem 1 (Survivable WebAuthn security). If the SWA Refresh specification
is a secure SPC Refresh protocol and |Q|min = 2kI + 1, nI ∈ [2kI + 1, 3kI + 1]
then, for any efficient adversary A against the survivable WebAuthn protocol
that makes at most η queries to Start and θ queries to Complete, there exist
efficient adversaries B, D such that:

AdvspcSWA(A) ≤ AdvcollH (B) + θ · Adveuf−cma
Sig (D) + (η2 + θ2) · 2−λ

As Theorem 1 shows, one can reduce the security of the SWA protocol
to collision-resistance of hash function H and existential unforgeability under
chosen message attack of signature scheme Sig.

4.6 Survivable Passwordless SSO (SPS) protocol

4.6.1 SPS operations framework

A SPS protocol consists of six subprotocols: authenticator key generation, iden-
tity provider setup, identity server key generation, register, authenticate, refresh.

Authenticator Key Generation
⟨akT , vkT ⟩ ←$ Sps.Akgen(): executed once by authenticator T , returns the

authenticator key pair ⟨akT , vkT ⟩. It coincides with the Spc.Kgen routine of
SPC.

Identity provider Setup
⟨kI , nI ,ΩI⟩ ← Sps.Ppgen(): executed once for each identity provider I ∈ I,

returns security threshold kI , number of identity servers nI and the set of time
periods ΩI .

Identity Server Key Generation
⟨skS , pkS⟩S∈SI

←$ Sps.Skgen(ωℓI , nI): executed by identity provider I, re-
turns key pairs ⟨skS , pkS⟩S∈SI

(one key pair for each identity server S owned

by I), given a time period ωℓI ∈ ΩI and the number of identity servers nI .
Register (Sps.Register): executed among client C, authenticator T , and

the set of all identity servers SI of identity provider I. The parties first ex-
ecute Spc.Register. Then, after executing the last Spc.rcheck subroutine, all
identity servers (which know user identity uid that is controlling the client, see
Section 4.4) also execute an additional routine:

• im′ ← Sps.idbind(im, auid, uid): executed by each identity server, takes as
input identity map im, user identity uid and authenticator user identifier
auid (returned by Spc.command). It returns the updated identity map
im′ which binds uid to auid;

Authenticate (Sps.Authenticate): allows service provider V to verify the
outcome of a SPC authentication session among a client C, authenticator T ,
and a subset of identity servers Q ⊆ SI . We denote the identity provider
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intended identities for the service provider as ĩdI , for the client as îdI , and the
service provider intended identity for each identity server as īdV . Authenticate
consists of the following subprotocols:

•
〈
idV ,

〈
ĩdS , aS

〉
S∈SI

〉
← Sps.abegin(ĩdI): executed by service provider V ,

returns collective session information
〈
ĩdS , aS

〉
S∈SI

, where aS denotes

session information for identity server ĩdS ∈ ĩdI , given intended identity
ĩdI .

• ⟨bS , {⊥ |Ra}⟩ ← Spc.Authenticate(îdI ,
〈
îdS

〉
S∈Q

): client C uses identity

servers
〈
îdS

〉
S∈Q

owned by îdI to execute the SPC Authenticate subpro-

tocol. At the end of the protocol execution, each server obtains vote bS
and Ra (returned by Spc.acheck and Spc.aresponse): if bS is accept, Ra is
used in the next routine, ⊥ otherwise.

• {⊥, vS} ← Sps.release(idS , īdV , Ra, skS , aS , bS , im): executed by each iden-
tity server S, if bS = reject it returns ⊥, otherwise it returns identity attes-
tation vS of the authenticated user identity, authenticated by secret key
skS , given identities idS and īdV , authentication response Ra, the identity
server signing key skS , session information aS and identity map im.

• {⊥, cV } ← Sps.count(kI , idV , ĩdI , ⟨vS , pkS , aS⟩S∈Q): executed by service
provider V , returns session cookie cV if enough identity attestations ⟨vS⟩S∈Q
are considered valid, otherwise ⊥, given security threshold kI , service
provider identity idV , identity provider intended identity ĩdI , and pub-
lic keys and session information ⟨pkS , aS⟩S∈Q. If count returns cV we say
the service provider has accepted the authentication for the user identity
in vS .

Refresh (Sps.Refresh): executed by identity provider I at the beginning of
each time period ωℓI ∈ ΩI on all of its identity servers S ∈ SI . It terminates
pending sessions and restores possibly corrupt identity servers to a safe state.
Refresh consists of two routines. First, a trivial extension of Spc.Refresh which
we omit for brevity, to restore possibly corrupt registration contexts and identity
maps for all identity servers SI ; Sps.Skgen to generate new keys for all identity
servers ⟨skS , pkS⟩S∈SI

, given time period ωℓI and the number of identity servers
nI .

Intuitively, SPS correctness requires that a client and a service provider al-
ways share the same secret session cookie created as a result of an authentication
that is voted by enough identity servers of an identity provider, and which is
consistent with a prior registration at the identity servers of the same identity
provider, if and only if the client collected all identity attestations from identity
servers belonging to the same identity provider required by the service provider.
To formally capture the correctness requirement of service provider and client
sharing the same session cookie at the end of a correct SPS authentication, we
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introduce a match function. The match function serves as an abstraction for the
correctness definition and does not model the behavior of any protocol partici-
pant. At the end of the protocol the client inputs the received session cookie ĉV
and the service provider inputs the generated session cookie cV . The function
b← match(ĉV , cV ) returns b = 1 if ĉV = cV , b = 0 otherwise.

Correctness (SPS). Correctness requires that for any identity provider identities

idI , îdI , īdI , ĩdI , service provider identities idV , īdV , server identity idS , and
user identity uid, for all kI , nI ∈ N such that kI < nI , for all S ∈ Q ⊆ SI ,
every distribution Dλ over {0, 1}ρ(λ), and for all secret session cookies ĉV , cV ∈
{0, 1}ρ(λ) for some polynomial ρ(λ) and security parameter λ ∈ N if:

⟨kI , nI ,ΩI⟩ ← Sps.Ppgen()
⟨akT , vkT ⟩ ←$ Sps.Akgen()
im← {}
⟨skSi , pkSi⟩i∈[nI ]

←$ Sps.Skgen(ωℓ
I , nI)

rcSi ←$ Spc.rchallenge(idSi), ∀i ∈ [nI ]
⟨Mr, cc, auid⟩ ← Spc.rcommand(īdI , ⟨rcSi⟩i∈[nI ]

)〈
Rr, {rctT }′

〉
←$ Spc.rresponse(akT , {rctT },Mr)

{rcsSi}
′ ← Spc.rcheck(idI , idSi , {rcsSi}, vkT , rcSi , Rr, cc, auid), ∀i ∈ [nI ]

im′ ← Sps.idbind(im, auid, uid)〈
⟨skSi , pkSi⟩i∈[nI ]

, {rcs}′
〉
← Sps.Refresh(idI , kI , ω

ℓ
I , {rcsS1}

′, . . . , {rcsSnI
}′)

{rcsSi}
′′ ← {rcs}′,∀i ∈ [nI ]〈

idV ,
〈
ĩdSi , aSi

〉
i∈[|Q|]

〉
← Spc.abegin(ĩdI)

acSi ←$ Spc.achallenge(idSi), ∀i ∈ [|Q|]
⟨Ma, cc⟩ ← Spc.acommand(îdI , ⟨acSi⟩i∈[|Q|])〈
Ra, {rctT }′′

〉
←$ Spc.aresponse({rctT }′,Ma)〈

bSi , {rcsSi}
′′′〉← Spc.acheck(idI , idSi , {rcsSi}

′′, acSi , Ra, cc), ∀i ∈ [|Q|]
vSi ← Sps.release(idSi , īdV , Ra, skSi , aSi , bSi , im

′), ∀i ∈ [|Q|]
cV ← Sps.count(kI , idV , ĩdI , ⟨vSi , pkSi , aSi⟩i∈[|Q|])
b← match(ĉV , cV )

then condition:

b = (cV
?∼ Dλ) ∧ (idI

?
= ĩdI) ∧ (idI

?
= īdI) ∧ (idI

?
= îdI)

∧
i∈[|Q|]

(idSi ∈ idI)

where cV
?∼ Dλ is true if cV is distributed according to Dλ, holds with proba-

bility 1 for all time periods ωℓI ∈ ΩI .

4.6.2 SPS security model

Trust assumptions. The trust assumptions of the SPS protocol include the
same assumptions adopted for the SPC protocol (see Section 4.5.2), with addi-
tional ones due to the new actors and communication channels. First, we require
server-to-client authenticated communication channels. As in [16], this is done
to guarantee to the user and the client the true identity of identity servers during
registration, to enforce credential scope to a single identity provider and prevent
reusing a credential to authenticate at different identity providers. Moreover,
we require confidential and authenticated channels between the client and the
service provider, otherwise the attacker can trivially impersonate a user. We
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assume that the client is honest, that the authenticator is tamper-proof (the
adversary has read-only access to the authenticator internal state), and that
communication channels between the authenticator and the client are mutually
authenticated. In Section 4.11 we prove that the composition with the CTAP2
protocol allows to drop the latter assumption and still obtain a secure protocol.

Session oracles. The protocol is executed by session oracles of party P ∈
T ∪S∪V ∪C. Session oracle πi,jP when P ∈ T ∪S maintains the same semantics
of the SPC protocol. Session oracle πiV for V ∈ V and πiC for C ∈ C is the i-th
pending or completed authentication session of service provider V and client C
respectively.

Session identifiers. The protocol must define a global session identifier
sidSPS to uniquely identify an authentication session between a service provider,
a client, an authenticator and identity servers. Moreover, the protocol must
define a subsession identifier ssidSPS , to uniquely identify individual identity
server sessions that are created to participate in the global session sidSPS . If
ssidSPS is a subsession of sidSPS we say that ssidSPS belongs to sidSPS , and we
write ssidSPS ∈ sidSPS .

SPS subsession attestation binding. To prevent shared session attacks
(see Section 4.4) the protocol must bind an identity attestation to the subses-
sion ssidSPS of the identity server that released the attestation. This binding
acts as a scope that allows to detect attestations injected on a different SPS
authentication session.

Time period-bound attestations. To prevent attestation mixing attacks
(see Section 4.4) the protocol must limit the scope of an identity attestation to
a single time period.

SPC session-bound attestations. To guarantee authenticator clone de-
tection and detect malicious interleaving of distinct SPC sessions (see Sec-
tion 4.4) the protocol must bind identity attestations to the SPC authentication
session.

Partnership. To capture the idea that a set of identity servers participate
in independent subsessions of an authentication session initiated by a service
provider, we introduce a novel notion of partnering. A service provider oracle
πhV is partnered with an identity server oracle πi,jS for j > 0 if πhV accepts and

πi,jS outputs an identity attestation, and both oracles share the same subsession
identifier ssidSPS . A service provider oracle πhV is partnered with a set of identity

server oracles {πi,jS } for j > 0 if πhV accepts in global session sidSPS , πhV is

partnered with each identity server oracle πi,jS for j > 0 and the subsession

identifier ssidSPS of πi,jS belongs to sidSPS . Finally, we say that client oracle πgC
and service provider oracle πhV are partnered if both oracles accept and share
the same global session identifier sidSPS .

Session cookie security. We model session cookie cV established between
client and service provider at the end of Count as a shared cryptographic key.
Even if this modeling may seem too strong for data meant to be used as a browser
cookie, it allows us to adopt well-studied models and provide the strongest
security guarantees with known efficient and practical implementations. As
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a result, we require the protocol to guarantee freshness and confidentiality of
session cookie, as in key transport protocols [33]. We model freshness by allowing
the adversary to ask session cookie to partnered client or service provider oracles.
Session cookies and oracles asked by the adversary in this manner are said
unfresh, otherwise they are fresh. We model confidentiality with the following
well-known indistinguishability game [20, 19, 33]. Let λ ∈ N be a security
parameter and Dλ over {0, 1}ρ(λ) for some polynomial ρ(λ) be the distribution
from which a target fresh session cookie cV is drawn. A fair coin is flipped. If
it lands heads, then cV is returned to the adversary. If it lands tails, a random
element from Dλ is returned. The adversary must guess whether it was given
the target cV or a random element from Dλ. We denote the probability that
adversary A wins the indistinguishability game as AdvIND(A).

SPS security guarantees. As anticipated in Section 4.4 we extend the
definitions of authentication and session integrity of [51] to our distributed sce-
nario, and we denote them as SPS authentication and SPS session integrity.
Intuitively:

• SPS authentication captures that, in any time period, even if an adversary
has compromised up to kI identity servers of an honest identity provider I,
the adversary learns nothing about the established session cookie between
client and service provider, nor can evade cloned authenticator detection;

• SPS session integrity captures that, in any time period, even if an ad-
versary has compromised up to kI identity servers of an honest identity
provider I, an honest service provider does not accept an authentication by
counting unsolicited attestations from identity servers of identity provider
I, and an honest service provider does not accept a user identity uid′ if
the user authenticated to identity servers for a different user identity uid.

We propose Definitions 4.6.1 and 4.6.2 for a formal treatment.

Definition 4.6.1 (SPS Authentication). A SPS protocol Π guarantees secure
authentication if when fresh service provider oracle πhV accepts then (i) πhV is

partnered with at least |Q|min identity server oracles {πi,jS }S∈SI
of distinct iden-

tity servers S of the same identity provider I that are uniquely partnered with
the same authenticator oracle πq,lT , (ii) there do not exist distinct disjoint subsets

of |Q|min − kI honest identity server oracles {πi,jS }S∈SI
that output accept and

are partnered with πq,lT , (iii) πhV is uniquely partnered with fresh client oracle
πgC , and (iv) AdvIND(A) is negligible.

Definition 4.6.2 (SPS Session integrity). A SPS protocol Π guarantees session
integrity if when service provider oracle πhV accepts then πhV has also executed
Sps.abegin, πhV is uniquely partnered with πgC , and if πhV accepts for user identity
uid, then πgC accepts for the same user identity uid and at least |Q|min identity

server oracles {πi,jS }S∈SI
uniquely partnered with πhV have output accept for the

same user identity uid.
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Security experiment 3 (SPS). The setup of this security experiment proceeds
identically to Experiment 1. Moreover, adversary A chooses a target service
provider Vt ∈ V and sends Vt to the challenger. All remaining service providers
(V ∈ V \ Vt) are under the adversary control, and the challenger marks them
as unfresh. The experiment then proceeds in rounds as Experiment 1 with the
following differences. At the beginning of round i the challenger executes the
Spc.Refresh subprotocol and gives public keys of all identity servers S ∈ SIt to
A and service provider oracles. At the beginning of round ℓ the challenger also
gives secret keys skS of corrupt identity servers S ∈ Σℓ to A. At the end of
round ℓ the challenger gives the secret keys skS of all identity servers S ∈ SIt to
A. During each round, the adversary can interact with authenticators, clients,
identity servers and service providers in T ∪ C ∪ I∪V via the following queries:

• Init(πhV , π
g
C , id): the challenger instructs service provider oracle πiV to ex-

ecute Sps.abegin(id) and returns all aS values such that S ∈ Σℓ to A and
all aS values to πgC .

• Start({πi,jS }S∈SIt
, ⟨c⟩): the challenger instructs up to nIt − kIt identity

server oracles {πi,jS }S∈SIt
of distinct servers to execute Spc.rchallenge(idS)

if j = 0 or Spc.achallenge(idS) if j > 0. The generated challenges are
returned to A. W.l.o.g. either j = 0 or j > 0 for all {πi,jS }S∈SIt

. The
challenger then executes Spc.rcommand if j = 0 or Spc.acommand if j >
0 with the returned challenges along with the tuple of kIt challenges ⟨c⟩
and the identities {idS} of server oracles {πi,jS }S∈SIt

and corresponding
identity provider idI . The challenger then delivers the resulting command
both to A and πq,lT . If l = 0 the challenger delivers the resulting command

to πq,0T which executes Spc.rresponse, otherwise if l > 0 it delivers the

command to πq,lT which executes Spc.aresponse and returns the result to
A.

• Clone(T ): the challenger marks T as cloned, adds a new authenticator T ′

to T , marks T ′ as cloned, sets T ′ internal state equal to T internal state
(⟨akT , vkT ⟩, {rctT }), and returns the internal state to A.

• Complete(πi,jS , πgC , idV , T,R, aS , cc, auid): if T is cloned then the challenger
extracts all challenges ⟨ch⟩ in cc and then executes the following: if j = 0
it computes ⟨Mr, cc

′, auid′⟩ ← Spc.rcommand(idI , ⟨ch⟩), instructs oracle
πi,jT ′ for all clones T ′ of T to execute ⟨Rr, {rctT ′}′⟩ ← Spc.rresponse(akT ′ ,

{rctT ′},Mr) and instructs oracle πi,jS to execute Spc.rcheck(idI , idS , {rcsS},
vkT ′ , rcS , Rr, cc, auid); if j > 0 it computes ⟨Ma, cc

′⟩ ← Spc.acommand(idI ,
⟨ch⟩), instructs oracle πi,jT ′ for all clones T ′ of T to execute ⟨Ma, cc

′⟩ ←
Spc.aresponse({rctT ′},Ma) and instructs oracle πi,jS to execute Spc.acheck(
idI , idS , {rcsS}, acS , Ra, cc). Then, in any case (T cloned or not), the chal-
lenger instructs identity server oracle πi,jS to execute Spc.rcheck(idI , idS ,
{rcsS}, vkT , rcS , R, cc, auid) if j = 0 or Spc.acheck(idI , idS , {rcsS}, acS , R,
cc) if j > 0. The resulting bit bS is returned to A. If j > 0, then the chal-
lenger also instructs server oracle πi,jS to execute Sps.release(idS , idV , R, skS ,
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aS , bS , im) with subsession information aS and returns the resulting iden-
tity attestation to πgC .

• Count(πhV , π
g
C , ⟨v⟩ , id, a): the challenger instructs service provider oracle

πhV to execute Sps.count with authentication session information a on the
tuple of identity attestations ⟨v⟩ and attestations owned by πgC , if any.
πhV verifies the received attestations with public keys of identity servers
owned by identity provider id. The challenger returns values ⟨v⟩, a, and
the resulting session cookie cV to πgC .

• Reveal(πiP ): the challenger instructs πiP (P ∈ C ∪ V) to return session
cookie cV , authentication session information a and attestations ⟨v⟩. Or-
acle πiP , its partner (if any), and values cV , a and ⟨v⟩ are said unfresh.

• Test(πiP ): if πiP (P ∈ C∪V) is fresh, has accepted and owns session cookie
cV , then the challenger flips a fair coin b←$ {0, 1}. If b = 0 the challenger
returns a random sample from Dλ, otherwise it instructs πiP to return cV .
The adversary then outputs bit b′ and wins the indistinguishability game
if b′ = b. A can execute this query only once.

The adversary wins the SPS game if conditions of Definition 4.6.1 or Defi-
nition 4.6.2 do not hold.

We note that the Start query captures authenticated and reliable communi-
cation channels from honest identity servers to the client and mutually authenti-
cated communication channels between the client to the authenticator. Queries
Init, Complete and Count model confidential and authenticated channels, which
the adversary can read via the Reveal query to capture compromise of proto-
col participants, or the fact that the adversary may be a user of the protocol.
However, the Reveal query makes oracles unfresh to prevent trivial ways of win-
ning the game. Finally, the Reveal query also allows to capture session fixation
attacks [51] which may let the adversary win the indistinguishability game and
break SPS authentication.

Definition 4.6.3 (SPS advantage). Let Π be a SPS protocol. We define AdvspsΠ (A)
as the probability that adversary A wins Experiment 3.

Definition 4.6.4 (Secure SPS). A SPS protocol Π is secure if the quantity
AdvspsΠ (A) is negligible.

According to Definition 4.6.1, having a secure SPC protocol is a necessary
condition to obtain a secure SPS protocol. An adversary that breaks SPC can
also break SPS since there may be less than |Q|min uniquely partnered identity
server oracles (condition i), or there may exist disjoint subsets of |Q|min − k
honest identity servers that output accept on the same authenticator partner
(condition ii). To capture the requirement of session-bound attestations, Defini-
tion 4.6.1 introduces the additional constraint of identity servers being uniquely
partnered to the same authenticator oracle to guarantee that identity attesta-
tions correspond to the same SPC session. An important consequence of this
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partnership constraint is that the adversary does not violate the security of a
SPS protocol if it collects less than |Q|min identity attestations on distinct SPC
sessions.

4.6.3 Survivable Passwordless OpenID Connect (SPOC) specifica-
tion

We describe Survivable Passwordless OpenID Connect (SPOC): a specification
for SPS based on OpenID Connect implicit flow [107] that extends the SWA
(WebAuthn-compliant) specification. The proposal can be easily adapted with
minor modifications to support other popular flows as well.

The SPOC specification of the SPS Register subprotocol is a straightforward
extension of the SWA Register specification, which defines that the Sps.idbind
routine stores the binding of uid to auid by denoting im as an associative
array, such that uid ← im[auid]. Similarly, the SPOC Refresh subprotocol is
a straightforward extension of the SWA Refresh specification, which restores
possibly corrupt identity maps. For brevity, we omit the SPS Refresh security
definition which naturally extends the SPC Refresh experiment.

We detail the SPOC specification of the SPS Authenticate subprotocol in
Figure 4.7 and related subroutines Sps.release and Sps.count in Figures 4.8a
and 4.8b. We focus on relevant design choices and data structures. We define
SPOC session information aS = ⟨stS , nnS⟩, where stS corresponds to OIDC
state information, and nnS to nonce which are used to prevent different forms
of attacks to browser sessions. Both values are uniformly sampled for each
identity server for each SPS subsession to prevent shared session attacks. We
define SPOC identity attestations vS = ⟨⟨⟨uid, idS , idV , sidSPC , nnS⟩ , σ⟩ , stS⟩
where uid denotes the attested user identity, idS denotes the attestation issuer,
idV the attestation audience, nnS is the nonce value received within the session
information aS , σ denotes the attestation digital signature. The attestation
introduces the authenticated parameter sidSPC = ⟨ad,H(cc)⟩ to bind SPOC
identity attestations to SWA authentication sessions and prevent clone detection
evasion attacks. The attestation also forwards the non-authenticated value stS ,
received in session information aS .

The count algorithm shown in Figure 4.8b extends the OIDC ID token val-
idation algorithm with the following additional checks: there must be at least
2kI + 1 identity attestations (Line 1), each issuer t.idS must belong to the in-
tended identity provider ĩdI (Line 7), all attestations must have been issued as
an outcome of the same Survivable WebAuthn session (Lines 11 to 15). If at
least 2kI + 1 are valid, it returns a freshly sampled random session cookie cV .

SPOC adopts ⟨stS , nnS , sidSPC⟩ as subsession identifier, where sidSPC is the
session identifier of the Survivable WebAuthn protocol, and adopts〈
⟨stS , nnS⟩S∈SI

, sidSPC , cV
〉

as global session identifier. A subsession ⟨stS , nnS , sidSPC⟩
belongs to the session

〈
⟨st′S , nn′S⟩S∈SI

, sid′SPC , cV
〉

if sidSPC = sid′ and stS =

st′S ∧nnS = nn′S . In Section 4.11.5 we prove the following theorem which shows
that, under the same assumptions of Theorem 1, SPOC is a secure Survivable
Passwordless Single Sign-On (SPS) protocol in the sense of Definition 4.6.4.
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Authenticator T Client C Identity Server S Service Provider V

(akT , vkT , {rctT }) îdI (idI , idS , vkT , {rcsS}, skS , im) (ĩdI , {ĩdS}, ⟨pkS⟩S∈SI
, kI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Start SPOC Authenticate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
abegin :
aV ← {}
for ĩdS ∈ ĩdI do

stS ←$ {0, 1}λ, nnS ←$ {0, 1}λ
aS ← ⟨stS , nnS⟩
aV .insert(

〈
ĩdS , aS

〉
)〈

îdV ,
〈
îdS , aS

〉
S∈SI

〉 〈
idV ,

〈
ĩdS , aS

〉
S∈SI

〉 〈
idV , aV =

〈
ĩdS , aS

〉
S∈SI

〉

for S in Q ⊆ SI do
〈
îdV , aS

〉 〈
îdV , aS

〉 〈
īdV , aS

〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Start SWA Authenticate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⟨acS⟩S∈Q
acS acS ← achallenge(idS)

acommand(îdI , ⟨acS⟩S∈Q)
↓

aresponse({rctT },Ma) Ma Ma

↓〈
Ra, {rctT }′

〉 Ra, cc−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ acheck(idI , idS , {rcsS}, acS , Ra, cc)
↓〈
bS , {rcsS}′

〉
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . End SWA Authenticate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vS release(idS , īdV , Ra, skS , aS , bS , im)⟨vS⟩S∈Q ⟨vS⟩S∈Q count(kI , idV , ˜idI , ⟨vS , pkS , aS⟩S∈Q)
↓

cV
cV cV

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .End SPOC Authenticate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

Figure 4.7: Survivable Passwordless OIDC Authenticate and Count subproto-
cols: solid arrow = authenticated, dashed arrow = authenticated and confiden-
tial

Theorem 2 (SPOC security). If Sps.Refresh is a secure registration context
refresh protocol, and |Q|min = 2k+ 1, n ∈ [2k+ 1, 3k+ 1] then, for any efficient
adversary A against the SPOC protocol that makes at most α queries to Init,
there exist efficient adversaries D and E such that:

AdvspsSPOC(A) ≤ AdvspcSWA(E) + Adveuf−cma
Sig (D) + α2 · 2−λ

4.7 Experimental results

We have implemented the authentication subsystem of the architecture (Fig-
ure 4.1) that is detailed in Figure 4.9. The main subprotocols are labeled with
numbers where (1) is Server Key Generation (and distribution), (2) is Authen-
ticate and (3) is Count. The Web services (identity provider, identity servers
and service provider) are implemented through a NGINX 1.18.0 reverse proxy
and Flask 2.0.2/GUnicorn 20.1.0 backend. The Web browser is Google Chrome
96, which allows to use as authenticator the Google Virtual WebAuthn Authen-
ticator that mimics in software the behavior of CTAP2 devices. In this way, we
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release(idS , ĩdV , Ra, skS , aS , bS , im)

1 : if bS = 0 return ⊥
2 : ⟨stS , nnS⟩ ← aS
3 : ⟨cid, ad, σ, auid, cc⟩ ← Ra

4 : sidSPC ← ⟨ad,H(cc)⟩
5 : uid← im[auid]

6 : t←
〈
uid, idS , ĩdV , sidSPC , nnS

〉

7 : σ ← Sig.Sign(skS , t)
8 : return ⟨⟨t, σ⟩ , stS⟩

(a) Release algorithm

count(kI , idV , ĩdI , ⟨vS , pkS , aS⟩S∈Q)

1 : if |d| < 2kI + 1 return reject
2 : m← dict()
3 : for S in Q do
4 : if Sig.Verify(pkS , t, σ) = 0 continue
5 : if vS .stS ̸= aS .stS continue
6 : if vS .t.idS ̸= idS continue

7 : if vS .t.idS /∈ ĩdI continue
8 : if vS .t.idV ̸= idV continue
9 : if vS .t.nnS ̸= aS .nnS continue

10 : j ← ⟨vS .t.uid, vS .t.sidSPC⟩
11 : if j not in m
12 : m[j]← 1
13 : else
14 : m[j]← m[j] + 1
15 : if m[j] ≥ 2kI + 1

16 : return cV ←$ {0, 1}λ
17 : return reject

(b) Count algorithm

Figure 4.8: SPOC count and release algorithms
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Figure 4.9: Architectural diagram of the prototype

can automate our testbed and exclude non-deterministic user mediation that is,
physical interaction with the authenticator. The code running on the Identity
Servers extends Python-FIDO2 [120], a library developed by Yubico to imple-
ment a WebAuthn relying party. The code running on the browser is a set
of custom Javascript scripts that implement the Authenticate procedure with
asynchronous and concurrent requests whenever possible.

We propose a performance evaluation of the authentication procedure with
the aim of verifying that it meets acceptable requirements in terms of response
times. (For this reason, a full OIDC-compliant implementation of the implicit
flow is out of the scope for this proposal.) We follow the Google RAIL user-
centric performance model [62] that breaks down user experience into key actions
(tap, scroll, click, load) carried out by the Web browser as a sequence of tasks
(loading pages, changing views). This approach helps us to define performance
goals for each action. We know that delays above 1 second for an action should
be avoided because they induce users to lose their focus on the task they are
performing. Thus, our main goal is to assess whether the authentication pro-
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cedure started by clicking the “Sign In” interface button terminates within 1
second.

We define the end-to-end authentication time tauth as the time interval oc-
curring between the beginning of (2) (the user clicks on the “Sign In” button)
and the end of (3) (the Web browser receives the Count subprotocol response
from the Service Provider). We use the Chrome DevTools Performance Tab
functions to obtain a detailed profile of the authentication procedure, which is
processed with custom Python scripts to compute tauth. We ignore deliberately
the registration procedure as it only occurs once per user and has response
times compatible with authentication. We do not consider signature computa-
tion times of non-virtual authenticators because they are out of the protocol’s
scope.

4.7.1 Testbed

The prototype components shown in Figure 4.9 are executed in containers de-
ployed in three different scenarios: local, continental, intercontinental.

Local scenario. Every container executes on a single off-the-shelf desktop
with the following characteristics: Intel i7 8665U CPU running at 1.9GHz, WDC
PC SN730 Sandisk (500GB), 16GB RAM. The average latency between the Web
browser and the containers is negligible. This scenario represents the lowest
bound of tauth in the most favorable network conditions.

Continental scenario. Each container is executed as a shared e2-standard-2

Google Compute Engine instance with the following characteristics: 2 virtual
Intel Xeon(R) CPUs running at 2.2GHz, Google PersistentDisk (16GB), 8GB
RAM. The region is europe-west (Belgium, Germany, England). The aver-
age ICMP round-trip time to the client is in the order of 35ms. This scenario
evaluates tauth in a network setup where all nodes are reasonably close to the
client.

Intercontinental scenario. The container characteristics are the same as
those in the Continental scenario, but each container executes in a different
region among asia-east, europe-west, us-central and australia-south.
The average ICMP round-trip time to the client is in the order of 250ms. This
scenario evaluates tauth in a network where most nodes are reasonably far from
the client.

We evaluate tauth also for different combinations of the security threshold k
(the amount of tolerated malicious servers). Since the Continental and Intercon-
tinental scenarios are subject to latency fluctuations, we take 30 measurements
of tauth and present them as boxplots with averages (dashed line) and medians
(solid line).

4.7.2 Evaluation

Figure 4.10 compares tauth for all scenarios in a baseline setup characterized by
k = 0 and nI = 1. This setup does not tolerate any malicious identity server
that is, our protocol is de facto disabled. The goal is to provide a lower bound
to tauth that may serve as a reference for subsequent experiments.

The overhead of our implementation can be assessed by analyzing the Local
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Figure 4.10: Baseline setup comparison in different scenarios
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Figure 4.11: Overhead of varying security thresholds
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Figure 4.12: Overhead of a failing server

scenario that has negligible network overhead. As expected, the distribution
of tauth exhibits low variance with samples ranging from 45.22ms to 117.61ms.
In geographically distributed scenarios, we observe that the prototype executes
well within the target 1s deadline even in the most challenging Intercontinental
scenario. We can observe an interesting trade-off between performance and
failure independence: more distant identity servers give higher guarantees of
failure independence in terms of availability at the cost of increased network
latency. If we make the reasonable assumption that the nodes offered by Google
Computing Platform in different regions are failure-indipendent, the Continental
scenario offers the best trade-off.

Figure 4.11 compares tauth for varying values of k = 0, 1, 2 and nI = 2k + 1
in the Continental scenario. The goal is to assess the impact on tauth of an
increased level of tolerance to malicious identity servers.

The protocol overhead is limited. Average tauth increases at most by 21.6%
when shifting from k = 0 to k = 2. If we consider the worst-case (outliers), the
maximum tauth increases by circa 50%. The reason behind this behavior lies in
the asynchronous prototype implementation that allows concurrent authentica-
tion requests to the identity servers. Since the overhead of k on the protocol is
low, the choice of k depends on the ability to solve the economic and techno-
logical challenges behind the design, implementation and deployment of 2k + 1
failure-independent nodes at the hardware and software level. An interesting
trade-off is between the level of failure-independence (application, libraries, OS
or hardware) and the economic investment needed to achieve it. In this work, we
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Figure 4.13: Clone detection evasion via authentication interleaving

limit k to 1 or 2, because k ≥ 3 constitutes a technological challenge with often
prohibitive costs. Even current literature on intrusion tolerance (e.g., Byzan-
tine fault-tolerant systems) also assumes k = 1, 2 when evaluating performance
(e.g., [73, 24, 82]). For the Continental scenario, the most adequate value for k
is 1 or at most 2.

Figure 4.12 considers the same prototype in the Continental scenario under
two different setups to assess the impact on tauth of a failing identity server. In
the first one no identity server may crash (d = 0). In the second scenario, one
identity server may crash (d = 1). We compare the results for both k = 1 and
k = 2.

As one can expect, the boxplots show a slight increase of the authentication
time when an identity server fails: for k = 1 the average increases is from
371.83ms to 403.08ms (8%) while for k = 2 the increment is below 2%. The
main reason behind this result is that the prototype code running concurrently
on the Web browser sends identity tokens to the service provider as soon as it
receives the first 2k + 1 responses from the identity servers. We can conclude
that the protocol incurs in no tangible performance loss when an identity server
fails. All these results demonstrate that the proposed protocol is theoretically
robust and even usable in real scenarios.

4.8 Attacks examples

4.8.1 Example of clone detection evasion

Figure 4.13 shows an example of clone detection evasion where T and Tclone
denote the legitimate authenticator and its clone. We denote as ϕi, i ∈ [0, 5]
the challenge-response sessions participated by authenticators, and as vj the
identity attestation released by identity server j. Denied authentications are
denoted as x. Authenticators T and Tclone execute the protocol in interleaved
sessions: Tclone executes sessions ϕ1, ϕ3 and ϕ5, while T executes sessions ϕ2
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Figure 4.14: Attestation mixing

and ϕ4. In each session, Tclone only collects attestations from single distinct
identity servers. All T sessions receive a denied authentication from the server
that interacted with Tclone because, from the server’s view, T presents a stale
counter. However, T completes successfully because it receives a number of
denied authentications that does not exceed the number of allowed malicious
server kI = 1. Thus, T does not detect the presence of Tclone. As a result, Tclone
is able to authenticate after ϕ5 by presenting interleaved identity attestations
{v1, v2, v3}.
4.8.2 Attestation mixing

Figure 4.14 shows an example of identity attestation mixing in which malicious
identity servers S2 and S3 release rogue attestations v2 and v3 in distinct time
periods ω1

I and ω2
I . The attack is successful if the service provider counts identity

attestations v2 and v3 together and does not detect that they belong to distinct
time periods.

4.8.3 Shared session attack

Figure 4.15 shows an example of a shared session attack. The adversary controls
identity server S1 and is correctly registered at all remaining identity servers,
which are assumed to be honest. The client starts SPS authentication with ser-
vice provider V and forwards SPS session information to each identity server, as
required by the protocol. The adversary obtains the victim session information
and starts SPC authentication with honest identity servers by using the victim
session information. As a result, each identity server issues an identity attesta-
tion of the adversary identity which is bound to the victim session information.
Meanwhile, the client has opened a parallel communication channel with the
adversary as a result of other attacks (e.g., CSRF, phishing). To conclude the
attack the adversary builds an identity attestation collection and injects it into
the parallel channel. The client sends the injected attestation collection to the
service provider which authenticates the client under the adversary identity.

4.9 Survivable WebAuthn (SWA) security proof

We extend the proof of [16], which demonstrates the security of non-survivable
WebAuthn, to prove the security of the proposed Survivable WebAuthn (SWA)
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protocol defined in Theorem 1. As in [16] we follow the sequence of games
technique of [111].

Proof of Lemma 1. The adversary wins Experiment 2 in three cases: i) if the
challenger produces at least a registration context vi = ⟨auid, cid, pk, sc, cc, σ⟩
for an honest identity server i /∈ Σ such that the new credential ⟨auid, cid, pk⟩
is different from the honest server credential ⟨auidi, cidi, pki⟩, ii) the authenti-
cated signature counter value sc is strictly less than the honest server signature
counter value sciℓ, or iii) the authenticated signature counter value sc is greater
than the signature value sciℓ of any honest identity server i /∈ Σ. The first con-
dition cannot hold because the honest majority of identity servers (|Σ| ≤ k and
n ∈ [2k + 1, 3k + 1]) shares the same credential ⟨auidi, cidi, pki⟩. The second
condition cannot hold because the new signature counter value sc is set equal to
the maximum authenticated signature counter value of credential ⟨auid, cid, pk⟩
among all identity servers, and thus sc is guaranteed to be monotonically in-
creasing on all identity servers. If the third condition holds, we can construct an
adversary D that wins the existential unforgeability game of signature scheme
Sig.

Proof of Theorem 1. Consider a sequence of games and let Pri be the probabil-
ity of adversary A winning Game i.

Game 0: This game proceeds exactly as in Experiment 1, so Pr0 = AdvspcSWA(A).
Game 1: This game proceeds as Game 0, except that it aborts if a hash

collision on H occurs. For example, this may allow A to replay a past response
to honest identity servers. If a hash collision occurs, it is easy to construct
an efficient adversary B against the collision-resistance of H (i.e. B prints the
collision). Thus we have that |Pr0 − Pr1| ≤ AdvcollH (B).
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Game 2: This game proceeds as Game 1, except that it aborts if there
exists a collision on collective challenge cc, which occurs if belongs(cc, chS , idS) =
1∧belongs(cc, ch′S , idS) = 1, where belongs returns 1 if challenge chS is associated
to identity idS in data structure cc, 0 otherwise. This would allow A to replay
a past response to honest identity servers. Associative array cc guarantees that
each challenge is scoped to a well-defined identity server idS . Thus, condition
belongs(cc, chS , idS) = 1 ∧ belongs(cc, ch′S , idS) = 1 holds only if chS = ch′S .
As a result, the probability that two identical instances of cc occur is at most
equal to the probability of an honest identity server producing a pair of identical
challenges chS . Assuming A makes at most η queries to Start, the probability
that there is at least a pair of equal chS challenges among η is, from the union
bound, less or equal to

(
η
2

)
· 2−λ ≤ η2 · 2−λ.

Game 3: This game aborts if an honest server oracle outputs an accept vote
without having a unique authenticator oracle partner. If such an event occurs,
we can construct an efficient adversary D against existential unforgeability of
signature scheme Sig. Adversary D guesses the offending server oracle πi,jS with
a probability of at least 1/θ, and then simulates the game by answering all
queries related to the credential involved in session πi,jS with the signing oracle

Sig.Sign. If the server oracle πi,jS accepts without a unique partner then there

are two cases: πi,jS has at least two partners, or it has no partner.
We first consider the Registration phase (j = 0). If an honest server oracle

has at least two partners, it means that at least two authenticator oracles signed
the same message. This only happens if at least two authenticator oracles gen-
erate the same random cid, which can happen with probability at most θ2 ·2−λ.
In fact we do not require that the probabilistic Sig.Gen algorithm accepts freshly
generated randomness. Such randomness can be deterministically derived from
the authenticator internal state, and thus cloned authenticators may generate
the same credentials. Instead, if an honest server oracle has no partners, then
D has forged a valid signature and wins the existential unforgeability game.

We now consider the Authentication phase (j ≥ 1). In Authentication we
know that if server oracle πi,jS outputs an accept vote, then the corresponding

server registration oracle πi,0S verified a signature with public key pk estab-

lished during registration with its unique partner authenticator oracle πq,0T . So

if πi,jS has at least two partners, it means that they are either sessions of the

same authenticator oracle following πq,0T or sessions of authenticators cloned af-

ter πq,0T completed registration and thus sharing the same credentials in their
registration contexts. However, this is not possible because an authenticator
oracle and honest identity server oracles increment the signature counter sc in
every authentication session. Moreover, for Lemma 1 honest identity servers
are guaranteed to have a monotonically increasing value of sc after each Re-
fresh phase. Instead, if πi,jS has no partner but still accepts despite πi,0S be-

ing partnered with πq,0T , then this means that D has forged a valid signature
and thus wins the existential unforgeability game. As a result we have that
|Pr2 − Pr3| ≤ θ · Adveuf−cma

Sig (D) + θ2 · 2−λ.
Game 4: This game aborts if there exist disjoint subsets of |Q|min−k honest
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identity server oracles that output accept and are partnered with the same
authenticator oracle. This cannot happen if n− k− (|Q|min − k) < |Q|min − k.
The configuration |Q|min = 2k + 1 and n ∈ [2k + 1, 3k + 1] satisfies the said
condition.

Final analysis: The adversary now has probability 0 of winning the exper-
iment as unique partnership is guaranteed, session identifiers ⟨ad,H(cc)⟩ cannot
collide, and no disjoint groups of honest identity servers output accept for the
same authenticator oracle.

4.10 Survivable Passwordless OpenID Connect (SPOC)
security proof

According to Definition 4.6.4 the adversary wins Experiment 3 if it can break
secure authentication (Definition 4.6.1) and session integrity for authentication
(Definition 4.6.2). The adversary breaks secure authentication if a fresh service
provider oracle πhV accepts and any of the following conditions does not hold:

1. πhV is partnered with a set of at least |Q|min identity server oracles {πi,jS };

2. each oracle πi,jS in the set {πi,jS } is an oracle of a distinct identity server
S;

3. each oracle πi,jS in the set {πi,jS } is an oracle of an identity server S that
belongs to the same identity provider I;

4. each oracle πi,jS in the set {πi,jS } is uniquely partnered with an authenti-

cator oracle πq,lT ;

5. there do not exist distinct disjoint subsets of |Q|min − kI identity server

oracles {πi,jS }S∈SI
that output accept and are partnered with πq,lT ;

6. all oracles πi,jS in the set {πi,jS } are partnered with the same authenticator

oracle πq,lT ;

7. πhV is uniquely partnered with πgC ;

8. the adversary cannot win the indistinguishability game.

Moreover, it breaks session integrity for authentication if πhV outputs accept and
any of the following conditions does not hold:

9. for πhV , st ̸= ϵ and nn ̸= ϵ, where ϵ denotes the empty string;

10. πhV has output accept for identity uid and is partnered with a unique set

of at least |Q|min identity server oracles {πi,jS } that have output accept on
the same identity uid.

Proof sketch of Theorem 2. Let’s consider the requirements listed above.
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(1) The count algorithm accepts only if πhV has received |Q|min = 2kI + 1
identity attestations. Requirement 1 does not hold if there is a collision
on any pair ⟨stS , nnS⟩, which can happen with probability at most α2 ·2−λ,
where α is the number of Init queries allowed to A. Otherwise, given that
the client is honest and that pairs ⟨stS , nnS⟩ are sent over confidential
and authenticated communication channels, then πhV is guaranteed to be
partnered with |Q|min identity server oracles;

(2, 3) If πhV is partnered with at least two oracles πi,jS of the same identity server

S, or is partnered with at least two oracles πi,jS , πk,rW such that idS ∈ îdI ∧
idW ∈ īdI , and îdI ̸= īdI , then we can construct an adversary D against
the existential unforgeability of signature scheme Sig used to authenticate
identity attestations in the Sps.release algorithm;

(4, 5) We can prove that 4 and 5 hold by a direct reduction to the SPC game:
we can construct an adversary E that simulates the SPS experiment and
uses the Start, Challenge and Complete queries of the SPC experiment to
simulate the Start and Complete queries of the SPS experiment. Given
that there is no restriction on adversarial queries in the SPC experiment,
if 4 or 5 are violated in the SPS experiment, then they are also violated
in the SPC experiment;

(6) The count algorithm accepts only if all identity attestations include the
same sidSPC . For the unique partnership property proved above, it follows
that all identity server oracles are partnered to the same authenticator
oracle;

(7) Requirement 7 does not hold if πhV accepts but its partnership is not
unique. If πhV is partnered with zero client oracles, then we can construct
and adversary D against existential unforgeability of the signature scheme
Sig used to authenticate identity attestations in the Sps.release algorithm.
If πhV is partnered with at least two client oracles, then two client oracles
share the global session identifier. However, session cookie cV is freshly
chosen at each Sps.count execution and thus global session identifiers can
collide only with negligible probability.

(8) If A wins the indistinguishability game then we can construct an efficient
adversary E that can read confidential channels, thus contradicting our
assumptions on confidential channels.

(9) The count algorithm outputs accept only if values nn and st of πhV are not
equal to ϵ, which can only happen if πhV has executed abegin.

(10) Service provider oracle πhV outputs accept on identity uid only if it has re-
ceived at least |Q| attestations on identity uid. Thus, if uid ̸= uid′, where
uid′ is the user identity voted by honest identity server oracles in Q, then
the adversary is able to send |Q| − k attestations {vS} authenticated by
honest identity servers idS /∈ Σi such that vS .t.stS = aS .stS ∧ vS .t.nnS =
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aS .nnS . However, this is not possible because the adversary does not
know values nnS and stS of honest identity servers idS /∈ Σi.

4.11 Composition of SPOC and CTAP2

In this section we demonstrate that the composition of SPOC with the CTAP2
protocol of the FIDO2 specification is secure. In Sections 4.11.1 and 4.11.2 we
give the due background knowledge on CTAP2. In Section 4.11.1 we report
the CTAP2 protocol specification by referring to the PIN-based access control
for authenticators (PACA) operations framework introduced in [16]. In Sec-
tion 4.11.2 we focus on PACA security definitions that apply to CTAP2 and
omit stronger security definitions that do not capture the security of any cur-
rently standardized CTAP2 version. In Section 4.11.3 we give the composed
protocol operations framework and in Section 4.11.4 its security model. Finally,
in Section 4.11.5 we prove the security of the composed protocol.

4.11.1 PIN-based Access Control for Authenticators (PACA) oper-
ations framework

We first give a minimal description of how [16] models user interaction, and refer
the interested reader to the original paper for further details. User interaction
is modeled as a predicate {0, 1} ← G(x, y) on information x input to the client,
and information y input to the authenticator. This allows to capture a user
playing the role of an out-of-band secure channel that validates the consistency
of information exchanged between the authenticator and the client.

We now give the verbatim PACA specification as introduced in [16]. A PACA
protocol is an interactive protocol involving a human user, an authenticator, and
a client. The state of authenticator T , denoted by stT , consists of static storage
stT .ss that remains intact across reboots and volatile storage stT .vs that gets
reset after each reboot. stT .ss is comprised of: i) a private secret stT .s and ii)
a public retries counter stT .n, where the latter is used to limit the maximum
number of consecutive failed active attacks (e.g., PIN guessing attempts) against
the authenticator. stT .vs consists of: i) power-up state stT .ps and ii) binding
states stT .bsi (together denoted by stT .bs). A client C may also keep binding
states, denoted by bsC,j . All states are initialized to the empty string ϵ.

A PACA protocol is associated with an arbitrary public gesture predicate G
and consists of the following algorithms and subprotocols, all of which can be
executed a number of times, except if stated otherwise:

• Reboot: this algorithm represents a power-down/power-up cycle and it
is executed by the authenticator with mandatory user interaction. We
use stT .vs ←$ reboot(stT .ss) to denote the execution of this algorithm,
which inputs its static storage and resets all volatile storage. Note that
one should always run this algorithm to power up the aythenticator at the
beginning of PACA execution.
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• Setup: this subprotocol is executed at most once for each authenticator.
The user inputs a PIN through the client and the authenticator inputs its
volatile storage. In the end, the authenticator sets up its static storage
and the client (and through it the user) gets an indication of whether the
subprotocol completed successfully.

• Bind: this subprotocol is executed by the three parties to establish an
access channel over which commands can be issued. The user inputs its
PIN through the client, whereas the authenticator inputs its static storage
and power-up state. At the end of the subprotocol, each authenticator and
client terminating successfully get a (volatile) binding state and sets the
session identifier. In either case (success or not), the authenticator may
update its static retries counter. We assume the client always initiates
this subprotocol once it gets the PIN from the user.

• Authorize: this algorithm allows a client to generate authorized com-
mands for the authenticator. The client inputs binding state bsC,j and
command M . We denote ⟨M, t⟩ ←$ authorize(bsC,j ,M) as the generation
of an authorized command.

• Validate: this algorithm allows a authenticator to verify authorized com-
mands sent by a client with respect to a user decision (where the human
user inputs the public gesture predicate G). The authenticator inputs a
binding state stT .bsi, an authorized command ⟨M, t⟩, and a user decision
d = G(x, y). We denote b ← validate(stT .bsi, ⟨M, t⟩ , d) as the validation
performed by the authenticator to obtain an accept or reject indication.

Correctness (PACA). For an arbitrary public predicate G, we consider any au-
thenticator T and any sequence of PACA subprotocol executions that includes
the following (which may not be consecutive): i) a Reboot of T ; ii) a successful
Setup using PIN fixing stT .ss via some client; iii) a Bind with PIN creating
authenticator-side binding state stT .bsi and client-side binding state bsC,j at a
client C; iv) authorization of commandM by C as ⟨M, t⟩ ←$ authorize(bsC,j ,M);
and v) validation by T as b ← validate(stT .bsi, ⟨M, t⟩ , d). If no Reboot of T is
executed after iii), then correctness requires that b = 1 if and only if G(x, y) = 1
(i.e., d = 1) holds.

4.11.2 PACA security model

Trust assumptions. As we are interested in capturing CTAP2 security guar-
antees, we directly inherit the trust assumptions required to prove CTAP2 se-
cure. In particular, we assume that Setup is executed on an authenticated, yet
non-confidential, communication channel between the client and the authenti-
cator. Moreover, we assume that the client is honest, that is, the adversary
cannot corrupt any client instance that is bound to the authenticator, nor can
it mount active attacks against clients during the Binding execution. However,
the adversary can still launch active attacks against authenticators.
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Session oracles. To capture parallel instances of PACA protocols, each
party P ∈ C ∪ T is associated with a set of oracles {πiP }, where πiP models the
i-th instance of P .

Partnership. An authenticator oracle πiT and a client oracle πjC are each
other’s partner if both have completed their binding executions and share the
same session identifier, which must be specified by the PACA protocol. When an
authenticator is rebooted then all of its existing session oracles are invalidated.

We now give the PACA security experiment, which extends the PACA se-
curity game defined in [16] by introducing Clone queries.

Security experiment 4 (PACA). The security experiment is executed between
a challenger and an adversary A. At the beginning of the experiment, the chal-
lenger fixes an arbitrary distribution D over PIN dictionary PIN associated
with PACA; it then samples independent user PINs according to D, denoted

by
〈
pinU

D← PIN
〉
U∈U

. Without loss of generality, we assume that each user

holds only one PIN. The challenger also initializes states of all oracles to the
empty string. Then, A is allowed to interact with the challenger via the following
queries:

• Reboot(T ): the challenger runs Reboot for authenticator T , marking all
previously used instances πiT (if any) as invalid and setting stT .vs ←$

reboot(stT .ss).

• Setup(πiT , π
j
C , U): the challenger inputs pinU through πjC , runs Setup be-

tween πiT and πjC ; it returns the trace of communications to A. After this
query, T is set up, i.e., stT .ss is set and available for the rest of the ex-
periment. Oracles created in this query, i.e. πiT and πjC , must never have
been used before and are always marked invalid after Setup completion.

• Execute(πiT , π
j
C): the challenger runs Bind between πiT and πjC using the

same pinU that set up T ; it returns the trace of communications to A.
This query allows the adversary to access honest Bind executions in which
it can only take passive actions, i.e., eavesdropping. The resulting binding
states on both sides are kept as stS .bsi and bcC,j respectively.

• Connect(T, πjC): the challenger asks πjC to initiate the Bind subprotocol
with T using the same pinU that set up T ; it returns the first message
sent by πjC to A. Note that no client oracles can be created for active
attacks if Connect queries are disallowed, since we assume the client is
the initiator of Bind. This query allows the adversary to launch an active
attack against a client oracle.

• Send(πiP ,m): the challenger delivers m to πiP and returns its response (if
any) to A. If πiP completes the Bind subprotocol, then the binding state is
kept as stT .bsi for an authenticator oracle and as bsC,i for a client oracle.
This query allows the adversary to launch an active attack against an
authenticator oracle or completing an active attack against a client oracle.
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• Clone(T ): the challenger marks T as cloned, adds a new authenticator T ′

to T , marks T ′ as cloned, sets T ′ static storage equal to T static storage
(stT .ss), and returns the static storage to A.

• Authorize(πjC ,M): the challenger asks πjC to authorize command M ; it
returns the authorized command ⟨M, t⟩ ←$ authorize(bsC,j ,M).

• Validate(πiT , ⟨M, t⟩): the challenger asks πiT (that received a user decision
d) to validate ⟨M, t⟩; it returns the validation result b ← validate(stT .bsi,
⟨M, t⟩ , d).

• Compromise(πjC): the challenger returns bsC,j and marks πjC as compro-
mised.

• Corrupt(U): the challenger returns pinU and marks pinU as corrupted.

Security goals. We focus on the unforgeability with trusted binding (UF-t)
advantage measure for a PACA protocol Π introduced in [16], which we extend
to account for Clone queries. For clarity, we denote our UF-t security formulation
as UF-t-c.

Definition 4.11.1 (UF-t-c advantage). Advuf−t−cΠ (A) is the probability that
if there exists an authenticator oracle πiT that accepts an authorized command
⟨M, t⟩ for gesture G and:

• T is not cloned;

• A does not make Connect queries;

• A does not corrupt pinU used to setup T before πiT accepted ⟨M, t⟩;

• A does not make Compromise queries on any of T partners created after
T ’s last reboot and before πiT accepted ⟨M, t⟩

then at least one of the following conditions does not hold:

1. G approves M , i.e., G(x, y) = 1

2. ⟨M, t⟩ was output by one of T ’s valid partners πjC

We note that for UF-t-c security we do not allow the adversary to win the
experiment with a cloned authenticator. We also note that the Clone query
reveals static storage stT .st to the adversary which, considering the CTAP2
specification, consists of the user pin digest stT .s ← H(pinU ) and the public
signature counter stT .n. Considering the CTAP2 specification, the adversary
can already obtain user pin digest stT .s via the Connect query with a client
C that has already executed the Setup procedure with authenticator T . As a
result, the Clone query does not give the adversary any additional information
that could not already be obtained via other queries. Therefore, UF-t-c security
of CTAP2 reduces to UF-t security of CTAP2, and the authors in [16] already
prove that CTAP2 protocol is UF-t secure.

95



4.11.3 Operations framework of the SPS + PACA composition

The composition of SPS and PACA is an interactive protocol among a human
user, authenticator T , client C, a service provider V and a set of identity servers
SI of identity provider I. The state of authenticator T , denoted by stT , consists
of PACA volatile storage stT .vs and the following static storage: i) a SPS at-
testation key pair ⟨akT , vkT ⟩, ii) a set of SPS registration contexts stT .rct, and
iii) PACA static storage ssT .ss. Identity server S keeps registration contexts
stS .rcs. A client C may keep binding states bsC,j . All states are initialized to
the empty string ϵ.

The operations framework is associated with a public gesture predicate G
and consists of the following algorithms and subprotocols:

• Authenticator Key Generation: same as SPS.

• IdP Parameters Setup: same as SPS.

• Server Key Generation: same as SPS.

• Refresh: same as SPS.

• Reboot: same as PACA and should be executed to power up the authen-
ticator before executing the following subprotocols.

• Setup: same as PACA.

• Bind: same as PACA.

• Register: is executed among a human user, authenticator T , a client C
and all nI identity servers S ∈ SI of identity provider I. The user inputs
the public gesture predicate G, authenticator T inputs its attestation secret
key akT and a binding state stT .bsi, client C inputs an intended identity
provider identity īdI and a binding state bsC,j , each identity server S
inputs its identity idS and the authenticator attestation public key vkT . At
the end of the execution, if successful, authenticators and identity servers
that successfully terminate obtain a new registration context, which may
be different, bound to the corresponding user identity uid. Note that when
authenticator T successfully completes the subprotocol, a server may fail
to do so in the same run. Moreover, all parties that terminate successfully
obtain a session identifier.

• Authenticate: is executed among a human user, authenticator T , a client
C, a subset Q of identity servers SI of identity provider I, and service
provider V . The user inputs the public gesture predicate G, the authen-
ticator inputs its registration contexts stT .rct and a binding state stT .bsi,
the service provider inputs the intended identities of the identity provider
ĩdI and its identity servers ĩdS , the client inputs the intended identity of
the identity provider îdS and a binding state bsC,j , each server S in sub-
set Q ⊆ SI inputs its own identity idS ∈ idI and registration contexts
{stS .rcs}. Each identity server that successfully terminates outputs an
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identity attestation vS , and authenticators and identity servers that suc-
cessfully terminate may update their registration contexts. At the end of
the subprotocol if service provider V successfully validates enough identity
attestations, then V generates and sends session cookie cV to the client,
reject otherwise.

Correctness (SPS + PACA). Correctness follows naturally from an extension of
the SPS correctness that includes a correct setup of PACA binding states. We
omit a formal definition.

4.11.4 SPS + PACA security model

Trust assumptions. As in PACA, we assume that Setup is executed on an
authenticated, yet non-confidential, communication channel between the client
and the authenticator. We assume that the client is honest and that the adver-
sary cannot mount active attacks against clients during the Binding execution.
The adversary can still mount active attacks against authenticators, which are
assumed to be tamper-proof (i.e., read only access). As in SPS, we require
server-to-client authenticated communication channels and we assume a public
key infrastructure (PKI) that binds each public key to its owner’s identity id.
Contrary to SPS, we drop the assumption of authenticator-to-client mutually
authenticated communication channels.

Session oracles. The protocol is executed by session oracles of party P ∈
T ∪ S ∪ V ∪ C. Authenticators have PACA oracles πiT , and registration and

authentication SPS oracles πi,0T and πi,jT for j > 0. Clients have PACA oracles πjC
and SPS oracles π̂jC . Identity servers have SPS registration and authentication

oracles πi,0S and πi,jS for j > 0. Finally, service providers have SPS oracles πiV .
Partnership. We do not introduce new notions of partnership. The com-

posed protocol naturally inherits partnership definitions from PACA and SPS
protocols.

Security experiment 5 (SPS + PACA). The challenger executes experiment
setup as in SPS Experiment 3 and PACA Experiment 4. The experiment pro-
ceeds in rounds as SPS Experiment 3. During each round the challenger accepts
the same queries defined in PACA Experiment 4, except for Clone, Authorize
and Validate, that are replaced with the following queries:

• Init(πhV , π̂
g
C , id): the challenger instructs service provider oracle πiV to ex-

ecute Sps.abegin(id) and returns all aS values such that S ∈ Σℓ to A and
all aS values to π̂gC .

• Start(πgC , {π
i,j
S }S∈SIt

, ⟨c⟩): the challenger instructs up to nIt −kIt identity

server oracles {πi,jS } of distinct servers S ∈ SIt to execute Spc.rchallenge(idS)
if j = 0 or Spc.achallenge(idS) if j > 0. The generated challenges (⟨rc⟩ if
j = 0, ⟨ac⟩ if j > 0) are returned to A. W.l.o.g. either j = 0 or j > 0 for
all {πi,jS }S∈SIt

. The challenger then gives the generated challenges along
with challenges ⟨c⟩ to πgC , which takes its binding state bsC,g and the iden-

tities idS of server oracles {πi,jS }S∈SIt
and corresponding identity provider
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idI to authorize the command output by Spc.rcommand(idI , ⟨rc⟩) if j = 0
or Spc.acommand(idI , ⟨ac⟩) if j > 0 and returns the resulting command to
A.

• Challenge(πiT , π
j,h
T , ⟨M, t⟩): the challenger delivers an authorized command

⟨M, t⟩ to πiT , which executes b ← Paca.validate(stT .bsi, ⟨M, t⟩ , d) with its
binding state stT .bsi and user decision d sent to πiT to validate ⟨M, t⟩. If

validation is successful, the challenger instructs πj,hT to process command
M using Spc.rresponse if h = 0 or Spc.aresponse if h > 0 and returns the
response to A.

• Clone(T ): the challenger marks T as cloned, adds a new authenticator T ′

to T , marks T ′ as cloned, sets T ′ internal state equal to T internal state
(⟨akT , vkT ⟩, {rctT }, stT .st), and returns the internal state to A.

• Complete(πi,jS , πgC , idV , T,R, aS , cc, auid): if T is cloned then the challenger
extracts all challenges cS in cc and then executes the following: if j = 0 it
computes ⟨Mr, cc

′, auid′⟩ ← Spc.rcommand(idI , ⟨cS⟩), instructs oracle πi,jT ′

for all clones T ′ of T to execute ⟨Rr, {rctT ′}⟩ ← Spc.rresponse(akT ′ , {rctT ′},
Mr) and instructs oracle πi,jS to execute Spc.rcheck(idI , idS , {rcsS}, vkT ′ , cS ,
Rr, cc, auid); if j > 0 it computes ⟨Ma, cc⟩ ← Spc.acommand(idI , ⟨cS⟩), in-
structs oracle πi,jT ′ for all clones T ′ of T to execute Spc.aresponse({rctT ′},Ma)

and instructs oracle πi,jS to execute Spc.acheck(idI , idS , {rcsS}, acS , R, cc).
Then, in any case (T cloned or not), the challenger instructs identity
server oracle πi,jS to execute Spc.rcheck(idI , idS , {rcsS}, vkT , rcS , R, cc, auid)
if j = 0 or Spc.acheck(idI , idS , {rcsS}, acS , R, cc) if j > 0. The resulting bit
bS is returned to A. If j > 0, then the challenger also instructs server or-
acle πi,jS to execute Sps.release(idS , idV , R, skS , aS , bS , im) with subsession
information aS and returns the resulting identity attestation to πgC .

• Count(πhV , π
g
C , ⟨v⟩ , id, a): the challenger instructs service provider oracle

πhV to execute Sps.count with authentication session information a on the
tuple of identity attestations ⟨v⟩ and the set of attestations owned by πgC ,
if any. πhV verifies the received attestations with public keys of identity
servers owned by identity provider id. The challenger returns values ⟨v⟩,
a, and the resulting session cookie cV to πgC .

• Reveal(πiP ): the challenger instructs πiP (P ∈ C ∪ V) to return session
cookie cV , authentication session information a and attestations ⟨v⟩. Or-
acle πiP , its partner (if any), and values cV , a and ⟨v⟩ are said unfresh.

• Test(πiP ): if πiP (P ∈ C∪V) is fresh, has accepted and owns session cookie
cV , then the challenger flips a fair coin b←$ {0, 1}. If b = 0 the challenger
returns a random sample from Dλ, otherwise it instructs πiP to return cV .
The adversary then outputs bit b′ and wins the indistinguishability game
if b′ = b. A can execute this query only once.
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Let ⟨rc⟩ and ⟨ac⟩ be registration and authentication challenges, a be ses-
sion information, ⟨Mr, tr⟩ and ⟨Ma, ta⟩ be authorized commands, Gr and Ga be

gestures, and the following be oracles for SPS: πhV , {π
i,j
S }, π

q,l
T , π̂xC , π̂

w
C′ ; and

PACA: πmT , πpT , π
y
C and πzC′ . The adversary wins the game if a fresh identity

provider oracle πhV outputs accept and any of the following conditions does not
hold:

1. πhV is partnered with a set of at least |Q|min identity server oracles {πi,jS };

2. each oracle πi,jS in the set {πi,jS } is an oracle of a distinct identity server
S;

3. each oracle πi,jS in the set {πi,jS } is an oracle of an identity server S that
belongs to the same identity provider I;

4. each oracle πi,jS in the set {πi,jS } is uniquely partnered with an authenticator

oracle πq,lT ;

5. there do not exist distinct disjoint subsets of |Q|min − k identity server

oracles {πi,jS }S∈SI
that output accept and are partnered with πq,lT ;

6. all oracles πi,jS in the set {πi,jS } are partnered with the same authenticator

oracle πq,lT ;

7. πhV is uniquely partnered with π̂wC′ ;

8. the adversary cannot win the indistinguishability game;

9. for πhV , a ̸= ϵ, where ϵ denotes the empty string;

10. πhV has output accept for identity uid and is partnered with a unique set

of at least |Q|min identity server oracles {πi,jS } that have output accept on
the same identity uid;

11. πq,0T was created as a consequence of πmT accepting command ⟨Mr, tr⟩ under
gesture Gr;

12. πq,lT was created as a consequence of πpT accepting command ⟨Ma, ta⟩ under
gesture Ga;

13. πmT and πpT are unique PACA partners of πyC and πzC′ respectively;

14. challenges ⟨rc⟩ were produced by {πi,0S }, received by π̂xC and used by πyC as
input to generate ⟨Mr, tr⟩ at a time when πmT was valid;

15. challenges ⟨ac⟩ were produced by {πi,jS }, received by π̂wC′ and used by πzC′

as input to generate ⟨Ma, ta⟩ at a time when πpT was valid;

16. idS was the server-side input to πi,0S for all S ∈ Q, and idI such that
idS ∈ idI was the client-side input to πyC and πzC′ ;

17. the registration contexts of {πi,0S } and π
q,0
T encode idI .
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4.11.5 SPOC + CTAP2 security proof

Theorem 3 (SPOC + CTAP2 security). If |Q|min = 2k+1, n ∈ [2k+1, 3k+1]
then, for any efficient adversary A against the SPOC+CTAP2 protocol that
makes at most α queries to Init, we can construct adversaries E and B such
that:

Advsps+paca
SPOC+CTAP2(A) ≤ Advuf−tCTAP2(B) + AdvspcSWA(E) + α2 · 2−λ

The full composition proof builds upon SPOC security proof (Section 4.10)
and the composition proof of [16], as Experiment 5 shares similar winning con-
ditions with both.

Proof sketch of Theorem 3. Let’s consider the winning conditions of Experi-
ment 5.

(1-3) can be proven as in Section 4.10 proof sketch.

(4, 5) we can prove that 4 and 5 hold with a reduction to the SPC game:
we can construct an adversary E that simulates the SPS+PACA experi-
ment. It uses PACA queries Send, Authorize and Validate along with SPC
queries Start, Challenge and Complete to simulate the Start, Challenge and
Complete queries of the SPS+PACA experiment. Given that there is no
restriction on adversarial queries in the SPC experiment, if 4 or 5 are vi-
olated in the SPS+PACA experiment, then they are also violated in the
SPC experiment;

(6-10) can be proven as in Section 4.10 proof sketch.

(11-13) given points 1 through 10, it follows that registration and authentication
commands ⟨Mr, tr⟩ and ⟨Ma, ta⟩ must have been accepted by authentica-

tor oracles πmT and πpT , otherwise πq,0T and πq,lT would not have generated
any response to terminate registration and authentication session with the
corresponding partners πi,jS . Furthermore, if 13 does not hold, i.e. πmT and
πpT are not uniquely partnered with πxC and πyC′ or gestures Gr and Ga do
not exist, we can construct an adversary B against PACA security.

(14, 15) if 14 or 15 do not hold, it means that SPS client oracles π̂xC and π̂wC′ , or
PACA client oracles πyC and πzC′ have received different challenges than

⟨rc⟩ and ⟨ac⟩ from registration and authentication server oracles {πi,0S }
and {πi,jS }. However, this would contradict point 4 and thus violate SPC
security. This can be handled by E as a special case.

(16, 17) given the points proved above it follows that the commands accepted by
authenticator oracles πmT and πpT partnered with client oracles πxC and
πyC′ are correct, and thus 16 holds. Moreover, due to SPC partnership

proved above, identity server oracles {πi,0S } partnered with authenticator

oracle πq,0T would not have output accept if the authenticator response was
different from the server input. Therefore 17 holds.
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4.12 Final remarks

This work proposes SPOC, the first survivable passwordless single sign-on pro-
tocol. SPOC is practical because it is compatible with standard FIDO2 au-
thenticators available on the market and achieves acceptable performance for
modern user experience requirements. We formally demonstrate that this pro-
tocol is secure against the same types of adversaries considered by FIDO2 and
OIDC. Moreover, we analyze novel attack vectors and introduce new formal-
izations of security properties that can be of independent interest. This work
is open to different research directions, such as investigating which security
trade-offs can be obtained by dropping compatibility with standard FIDO2 au-
thenticators, whether it is possible to guarantee a provably secure survivable
passwordless SSO which guarantees flexibility in the sense of the protocol de-
scribed in Chapter 3, or whether it is possible to preserve compatibility with
FIDO2 authenticators in a scenario of decentralized governance where identity
servers belong to distinct identity providers.
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Chapter 5

Scalable, Confidential and Survivable Soft-

ware Updates

5.1 Introduction

The ability of deploying efficient and secure software updates is one of the
most critical aspects of any modern information system. Although update
systems have always existed, they do not ensure high security against ad-
vanced attacks [69, 92, 97]. Numerous efforts have identified that essential
security properties of software updates are authenticity, freshness and trans-
parency [21, 38, 108, 96, 6], and that software update systems must guarantee
availability and provide fast, resilient and scalable dissemination of software
updates to ensure prompt application of security patches [79, 68, 8].

We focus on proprietary software update systems, that impose additional
design constraints that do not characterize open source software update sys-
tems. In particular, proprietary software update systems must guarantee also
access control to prevent unauthorized clients from installing unauthorized up-
dates, and confidentiality of software updates to protect from reverse engineer-
ing. Moreover, we aim at a highly secure system that provides two essen-
tial properties, that are recoverability, that allows administrators to rapidly
recover the system to a safe state after a security incident, and survivability,
that guarantees security even if the software update system is partially com-
promised [108, 112, 75, 74, 96]. Survivability implies avoiding the presence of
single points of failure or vulnerability within the system, making it more diffi-
cult for an attacker to compromise software updates in any part of the software
development or distribution process.

Previous proposals only satisfied subsets of the mentioned security require-
ments without presenting a unified solution for the distribution of proprietary
software updates [96, 6, 8]. Some proposals focus on open source software,
thereby not considering access control and confidentiality requirements [96, 6].
Other work focuses on confidentiality and access control but does not consider
survivability and recoverability requirements [8].

To bridge this gap in the literature, we propose a novel comprehensive frame-
work that is able to provide the security guarantees that modern software update
systems for proprietary software should have. In particular, we design the first
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survivable framework for the secure distribution of confidential updates for pro-
prietary software that satisfies availability, scalability, resiliency, survivability
and recoverability requirements, while guaranteeing authenticity, confidential-
ity, freshness, timeliness and transparency of software updates to clients. The
framework enforces fine-grained access control policies over untrusted distribu-
tion infrastructures, to comply with distinguished business driven practices. To
this aim, our proposal includes two novel contributions of independent interest.
First, we extend existing Multi-Authority Attribute-Based Encryption schemes
through a novel technique that allows survivable generation of decryption keys
so that compromising a threshold of key-generating actors does not allow attack-
ers to violate update confidentiality. Second, we design a novel protocol that
allows distributed authentication and encryption of software updates without
single points failure. We demonstrate the practicality of the proposed framework
through a performance evaluation of our novel Multi-Authority Attribute-Based
Encryption extension and distributed authentication and encryption protocol.

The remainder of the chapter is organized as follows. Section 5.2 discusses
related work. Section 5.3 describes the system and threat model. Section 5.4
outlines the overall design. Section 5.5 describes the details of each operation.
Section 5.6 discusses the security of the proposed system. Section 5.7 evaluates
performance and costs. Section 5.8 reports conclusions and future work.

5.2 Related work

This work proposes the first survivable software update framework that inte-
grates all five attributes that should characterize software updates (authentic-
ity, availability, freshness, transparency and confidentiality) and ensures all five
guarantees of a software update framework (to be fast, scalable, resilient, sur-
vivable and recoverable) that does not use a trusted third party for software
distribution. In the following we highlight our original contributions over previ-
ous proposals, which involve the attributes of survivability, confidentiality and
authenticity.

Confidentiality of software update binaries at rest and in motion is important
to protect software updates from automatic exploit generation [35]. To guaran-
tee confidentiality of software updates on untrusted distribution infrastructures,
related works adopt different types of encryption schemes. The proposal of [68]
makes black-box use of symmetric encryption to encrypt updates with a single
symmetric key to allow scalability in the number of clients. The symmetric
key is then broadcast to clients to allow decryption. The proposal does not
protect the confidentiality of the key during broadcast and therefore is not suit-
able for proprietary software. The authors in [8] adopt the Ciphertext-Policy
Attribute-based Encryption (CP-ABE) scheme proposed in [25] to protect the
symmetric key by producing a single ciphertext for all clients. However, in both
proposals the key generation procedure of the adopted encryption schemes is
not designed to be distributed. This choice represents a single point of failure
for the security of the system which, if compromised, would allow the attacker
to issue new keys and violate the confidentiality of past and possibly future up-
dates. For this reason, the approaches proposed in [68] and [8] do not guarantee
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full survivability. We enhance the survivability of the framework by decentral-
izing the decryption key generation process by extending the Multi-Authority
Ciphertext-Policy Attribute-Based Encryption (MA-CP-ABE) scheme of [105].
In particular, with an appropriate choice of encryption policies we can tolerate
the compromise of a threshold of key-generating actors while guaranteeing the
confidentiality of previous and future updates. As a result, our proposal is the
first survivable software update system which can guarantee confidentiality of
software updates. Furthermore, our original extension is fully recoverable as,
once a compromise is detected, administrators can easily restore the system to
a safe state, thereby ensuring service continuity.

Software updates frameworks should allow distribution through untrusted
infrastructures, hence it is mandatory to guarantee end-to-end software authen-
ticity [21]. The authors of [96] guarantee end-to-end authenticity of software
updates through a public and permissioned blockchain that stores authenti-
cated update metadata. However, their proposal cannot guarantee authenticity
of confidential software updates because it is designed for open-source software.
To guarantee authenticity of confidential software updates, we improve over [96]
in multiple ways. First, we design a novel distributed protocol that authenti-
cates encrypted software updates without single points of failure and that allows
clients to verify that any update has been approved by a number of authorized
actors by means of multi-signatures. Second, we extend the architecture of their
proposed blockchain to account for additional roles required to authenticate con-
fidential updates. Moreover, our proposal extends their proposed blockchain to
include the due authenticated, survivable and non-equivocable mechanisms and
procedures that indicate the software update location to clients. These mecha-
nisms and procedures offer to system administrators the flexibility of choosing
and changing the update location and the distribution infrastructure operator
as needed. These possibilities are not provided by the authors in [96] that im-
plicitly assume a way of authenticating the update location and do not provide
mechanisms to authenticate a location change.

Finally, we integrate our original contributions by extending the architecture
and ideas of [96], which allow our proposal to inherit the attributes of availabil-
ity, freshness, timeliness and transparency. Moreover, our proposal guarantees
fast, scalabile and resilient dissemination of software updates by adapting the
strategy introduced in [8] of producing a single ABE ciphertext per update, to
our protocols based on Multy-Authority ABE.

5.3 System and threat model

5.3.1 System model

The typical scenario for proprietary software update systems involves three en-
tities: software house, (software) distribution infrastructures and clients.

The software house includes a set of roles that share the same interests.
Within the software house, we denote as developers a set of employees that can
access source code, compile it, produce software binaries, and are responsible for
approving new software versions that are identified by increasing alphanumerical
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strings. Depending on the characteristics of the software house, this role can
be accomplished by actual developers or by other specialized personnel, such
as that dedicated to DevOps practices. The software house approves updates
that must be delivered to clients. Each update consists of binaries and related
source code.

The software house relies on distribution infrastructures, which could be
managed by third parties such as Content Delivery Networks (CDN) or community-
managed mirror servers. The software house also defines access control policies
over software updates which are enforced by a trusted distribution infrastruc-
ture.

Finally, clients represent the devices that store and execute the version of
the installed software binaries produced and maintained by the software house.
Clients periodically query the distribution infrastructure to check whether a
new update is available and, if so, they can download it from the distribution
infrastructure.

In the following we describe our proposal’s system model. We extend the
reference software house by adding three roles: admins, authentication server
and Attribute-based Encryption (ABE) servers. We consider a software house
with nd developers, na admins, nr ABE servers and one authentication sever.
Each developer d ∈ [nd] has a signing key pair dkd = ⟨skd, pkd⟩ and has access
to the software source code (src). Admins are responsible for managing security-
critical cryptographic material for authenticating roles and enforcing access con-
trol policies. Each admin a ∈ [na] has a signing key pair aka = ⟨ska, pka⟩ and
has access to the access control policies (P) that must be used for encrypt-
ing software update binaries through MA-CP-ABE. Authentication and ABE
servers are responsible for managing cryptographic material. ABE servers are
authorities responsible for issuing ABE keys to authenticated clients for de-
crypting software updates. Each ABE server r ∈ [nr] has an ABE authority key
pair rkr = ⟨skr, pkr⟩ and the set Aζ(r) of attributes to compute the decryption
keys for clients. The authentication server maintains the database of registered
clients and the corresponding authentication information, and assigns attributes
to clients after a successful authentication.

The distribution infrastructure maintains encrypted software updates (en-
crypted binaries) associated with location information that is used by other
parties to retrieve updates. Our proposal relies on untrusted distribution infras-
tructures by making use of Multi-Authority Ciphertext-Policy Attribute-Based
Encryption (MA-CP-ABE) [105], which guarantees confidentiality and enforces
policy-based access control over software updates even on untrusted distribution
infrastructures. In this scheme an authority issues to clients one or more private
keys each encoding an attribute. The encryption algorithm accepts a message
and a policy expressed as a monotonic boolean formula over attributes, and pro-
duces a ciphertext. A client is able to decrypt the ciphertext if the attributes of
his private keys satisfy the boolean formula associated to the ciphertext. To this
aim, each registered client has a set SKcid of ABE keys for decrypting software
updates.

Finally, our system requires two additional roles that are inherited from

105



the scenario in [96]: validators and witnesses. Validators audit and validate
new software updates through reproducible builds. Witnesses are nodes of a
multi-layer skipchain which is an authenticated append-only data structure in-
troduced by [96], that stores public cryptographic material and software update
metadata. Witnesses share the same version of the multi-layer skipchain by
using a Byzantine-fault-tolerant state-machine-replication consensus algorithm.

The proposed system considers nv validators and nw witnesses. Each val-
idator v ∈ [nv] has a signing key pair vkv = ⟨skv, pkv⟩ and a signed copy of the
source code for update validation. Each witness w ∈ [nw] has a signing key pair
wkw = ⟨skw, pkw⟩ and maintains a copy of the multi-layer skipchain.

5.3.2 Threat model

We consider an attacker that may be interested in violating confidentiality, au-
thenticity, availability or integrity of software updates. Violating confidentiality
means that the attacker can reverse engineer the update and look for vulnera-
bilities in the previous or in the update version. Compromising the authenticity
and integrity of updates may induce clients to download and install backdoored
software versions. Denying an update forces a client to keep an outdated soft-
ware version which may contain vulnerabilities that an attacker can exploit.

Our proposal protects software updates binaries and clients against the men-
tioned attacks by using cryptographic protocols, and assuming a computation-
ally bound attacker which is unable to break the security of the adopted proto-
cols or the security of their underlying cryptographic primitives.

We inherit the following threshold assumptions from [96]. We assume that
all actors communicate over authenticated channels that can be eavesdropped
by the adversary. Survivability is guaranteed through threshold variants of
cryptographic schemes.

We assume that no more than a threshold of kd out of nd developers is
malicious. A developer is malicious if he colludes with the attacker, if his signing
key has been compromised or if the attacker has compromised other parts of
the developers’ systems, such as by covertly installing a compromised compiler.

We assume that no more than a threshold ka out of na admins is malicious
and that no more than kr out of nr ABE servers is malicious. For simplicity
we assume that the authentication server is honest and that the authentication
mechanism adopted to authenticate clients is secure. We could relax these
simplifying assumptions by adopting survivable authentication mechanisms such
as the ones described in Chapters 3 and 4 to remove single points of failure in
client authentication phases.

We assume that no more than kv validators and no more than kw = ⌊nw/3⌋
witnesses are malicious. These thresholds protect the correctness of data in-
serted by admins in the multi-layer skipchain and the security of its consensus
mechanism, that is executed by witnesses. Moreover, we assume that validators
do not leak source code. Indeed, since validators must receive the project source
code in plaintext form to validate it, developers must trust all validators not
to collude with the adversary. The validator role represents a trade-off between
source code confidentiality and transparency of software updates. To the best of
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Figure 5.1: Architecture of the framework for secure software updates

our knowledge, enabling software transparency without relying on third parties
is still an open problem.

The distribution infrastructure may be untrusted that is, attackers can re-
place, eavesdrop and modify software updates during its distribution, but they
cannot impede availability for an unbounded amount of time.

A client with proper attributes can decrypt the update, and an attacker
that compromises or disguises as a client can obtain access to the decrypted
update and reverse engineer it. To protect against malicious clients, it is possible
to adopt orthogonal solutions, such as patch obfuscation, to thwart reverse
engineering of the released binary. However, protections against similar threats
are out the scope of this proposal. We assume that the client is honest and
that an attacker cannot break the update confidentiality by compromising or
impersonating a client.

5.4 Framework design

5.4.1 Framework components and operations

We describe the proposed framework for secure software updates by referring
to Figure 5.1. This figure represents the components of the system and its
main operation flows. The secure software distribution framework includes nine
operations: (1) update authentication, (2) update validation, and (3) publish
are used by the software house members to make a new update available for
clients. The operations (5) check for update and (6) download and decrypt
update are used by clients to detect and obtain new released updates, and
possibly detect attacks. The other operations are used for additional security-
related tasks: (4) client key refresh allows clients to obtain new decryption keys;
(7) key management, (8) update policies and (9) change location allow admins
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to rotate public keys, ABE attributes and update the location of the encrypted
binaries, respectively.

These operations are executed as follows. When a new update is ready,
admins and developers authenticate it (1) and send the authenticated update
to validators that check the source-to-binary correspondence and return an au-
thenticated validity attestation (2). Admins append to the multi-layer skipchain
the authenticated metadata and update attestations, and publish the authenti-
cated binaries (3) to the distribution infrastructure. A client, who has already
obtained a valid set of ABE keys (4), checks whether new updates are available
(5) by querying the multi-layer skipchain. If available, the client downloads
them from the distribution infrastructure and decrypts them with his ABE
keys (6). In case the new update requires a policy change, admins execute the
update policies procedure (8) before authenticating the update. If keys of any
role need to be rotated because of a security incident or because of key expi-
ration, admins execute the key management procedure (7). If admins need to
change the location of the latest update, for example due to change in distri-
bution infrastructure provider, admins execute the change location procedure
(9).

In the following two subsections, we outline the operations of the multi-layer
skipchain and of the information flow, respectively. Details of each operation
are described in Section 5.5.

5.4.2 Multi-layer skipchain

The witnesses maintain a multi-layer skipchain that guarantees freshness and
non-equivocation of software update metadata to clients and that allows admins
survivable and authenticated modification of the corresponding cryptographic
material. Our original design extends that proposed in [96] and consists of eight
layers shown in Figure 5.2. Layers are stacked in the following order and are
identified by labels: admins (Lad), witnesses (Lw), validators (Lv), ABE servers
(Lr), attributes (Lat), update (Lu), location (Ll), time (Lt). Each layer has specific
constraints that newly appended data must satisfy.

The first four layers (admins, witnesses, verifiers, ABE servers) store public
keys of admins, witnesses, verifiers, and ABE servers, respectively. They allow
admins to rotate the public keys of these actors. We collectively refer to these
layers as keys metadata layers. A new set of public keys can be added to any
of the keys metadata layers only if it is authenticated by at least a threshold of
admins.

The attributes layer maintains the set of ABE attributes that are adopted
in the access control policy used to encrypt the latest update with ABE. A new
set of attributes can be added to this layer only if the set is authenticated by
at least a threshold of admins. This layer allows admins to change the set of
valid attributes when needed, and allows clients to receive the list of valid ABE
attributes to determine if they need to refresh their ABE keys (for details about
ABE key refresh, see Section 5.5.6). We note that admins cannot change the set
of ABE attributes of already released encrypted binaries because the skipchain
is append-only. Any change would have no effect on existing ciphertexts already
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Figure 5.2: The multi-layer skipchain for secure software updates

published in the distribution infrastructure. A policy change, and consequently
an attribute change, has effect only on future updates.

The update layer maintains metadata about encrypted binaries. New update
metadata can be added to the update layer only if they have been authenticated
by a threshold of admins, developers and validators. In particular, validators
are in charge of verifying the correspondence between source code, encrypted
binaries and metadata (see Section 5.5.5).

The location layer maintains authenticated location information, such as a
URL, about how to retrieve encrypted update binaries from the distribution
infrastructure. New location information can be added to the location layer
only if it is authenticated by at least a minimum threshold of admins. This
layer allows admins to change the update location when necessary.

The time layer maintains multi-signed, timestamped hash pointers to the
location layer, that are periodically computed by witnesses. A new timestamp
can be added to the time layer only if it is authenticated by at least a minimum
threshold of witnesses and only if the timestamp is greater than the previous
timestamp, and not too far into the future. Assuming that a client has a trusted
and reliable time source, this layer allows clients to detect freeze attacks by
comparing the most recent timestamp with the client’s current timestamp, and
verifying that the difference between the two timestamps is within an upper
bound (freshness tolerance) that is determined by the admins in the update
metadata. We assume that a client can safely bootstrap his copy of the multi-
layer skipchain by securely obtaining the admins public keys included in the
genesis skipblock of the admins layer.
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5.4.3 Information flow

We describe the main operations supported by the system. Details of each
operation are reported in Section 5.5 and 5.6.

Setup. The goal of the setup operation is to authenticate the public keys
of all actors in the system. This operation is orchestrated by admins who act
as trust anchor. Each admin, witness, validator, ABE server and developer
generates a key pair and maintains the secret key confidential. Then, admins
act as certification authorities and gather the public keys of witnesses, validators
and ABE servers. They collectively authenticate them through multi-signatures
and by assigning validity periods that produce key metadata. Finally, admins
store key metadata in the appropriate skipchain layers.

Update policies. When the software house defines a new access control
policy or modifies an existing policy or when admins rotate the ABE servers
keys, admins compute a new set of attributes and assign each attribute to an
ABE server. Admins communicate the new set of attributes to the authentica-
tion server and append the new set to the attributes skipchain layer.

Update authentication. When a new software update is ready to be re-
leased, the source code must be approved by validators. To this aim, developers
and admins must issue to them the source code together with cryptographic ma-
terial that assesses the compilation and encryption procedures used to produce
the encrypted binaries distributed to clients. The overall procedure includes five
phases. A threshold of admins authenticates the access control policy (A), the
freshness tolerance value that must be enforced on the released software, and the
set of developers that are authorized to sign the update source code. Then, the
same admins communicate the authenticated access control policy, the freshness
tolerance and the developers public keys to each authenticated developer. After
these operations, a threshold of developers compiles the source code through re-
producible builds procedures, and all of them obtain the same binary data. To
obtain the same encrypted binaries, the same developers collaboratively gener-
ate a shared secret cryptographic key and encrypt the resulting software binaries
through a deterministic symmetric encryption procedure. The developers also
compute a digest of the encrypted binaries and ABE-encrypted key. Finally,
the involved developers use a multi-signature scheme to authenticate the source
code and the generated public cryptographic material.

Update validation. Admins send the authenticated source code, the en-
cryption key and authentication material to validators for validation. Validators
compile the source code through reproducible build procedures and encrypt it
through deterministic encryption using the received encryption key. Then, they
verify the correctness of the resulting encrypted binaries against the received
authentication material. If verification is valid, the validators apply a multi-
signature to the received authentication material by interacting with admins
according to the required validation phase of the consensus protocol used by
witnesses. Finally, admins send the location information, the authentication
material and the validators multi-signature to witnesses to update the multi-
layer skipchain.
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Publish. Any admin can publish the encrypted software binaries to the
distribution infrastructure at the location inserted in the multi-layer skipchain.
We observe that the encrypted binaries could also be published before the com-
pletion of the validate update algorithm to ensure the availability of the update
to clients as soon as the multi-layer skipchain is updated.

Client key refresh. To decrypt the encrypted binaries, a client must ob-
tain valid ABE keys from ABE servers of the software house. We describe
the procedure by assuming, without loss of generality, that clients are already
registered in the authentication server’s clients database. Each client authen-
ticates himself at the authentication server. This server determines the ABE
attributes that qualify it and sends them to a threshold of ABE servers. ABE
servers respond with ABE keys and the authentication server forwards them to
the client. We highlight that the keys obtained by a client are related to the
access control policy used to encrypt binaries, and can be reused for unlimited
software releases as long as admins do not operate key rotations that invalidate
the client decryption keys, or use new attributes for encrypting new software
releases that are mandatory to decrypt binaries. Only in these cases, and only
if the client still complies to the software house policies, a client must obtain
new ABE keys by re-executing the client key refresh procedure.

Check for updates. Clients periodically check for updates by requesting
to witnesses the last skipchain updates. Clients must always be able to obtain a
response from witnesses, and the response must always include updated times-
tamps of the time layer. A missing response or a response with stale or old time
information are considered as violations of the system availability, possibly due
to ongoing attacks. Clients verify the authenticity and integrity of the received
skipblocks by using admins and witnesses public keys, and verify the authen-
ticity of skipblocks payloads by using admins, validators and developers public
keys. A new software release is available if and only if there is a new authentic
skipblock in the update layer. In this case, clients extract the most-updated
location information and can proceed to obtain encrypted binaries.

Download and decrypt. Clients use the obtained location information to
query the distribution infrastructure for the encrypted binaries. We assume that
the distribution infrastructure is always available and responds to client queries.
Clients download the encrypted binaries, verify their authenticity and decrypt
them by using ABE decryption keys to obtain plaintext software binaries. At
this point, the clients can install the software update binaries.

Key management. Occasionally, admins may have to rotate, revoke or
issue new keys to substitute compromised keys, replace or remove misbehaving
actors or add new actors to the system. Admins rotate, revoke and issue keys by
collectively authenticating a new set of public keys and sending it to witnesses
that update the appropriate keys metadata layer.

Change location. Finally, admins may need to change the location of an
update. Admins can notify clients about the location change by appending new
location information in the corresponding layer of the skipchain. Thanks to the
design of the skipchain layers, this operation does not require any modification
to the update metadata and can be operated without the intervention of the
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validators.

5.5 Framework Details

We describe the details of the proposed framework. For simplicity, we assume
that the parameters of the adopted schemes are already defined, including el-
liptic curves, symmetric ciphers and different types of hash functions (standard
hash functions and those required to produce elliptic curve points). Moreover,
we omit technicalities such as translations between monotonic boolean formulas,
used in this work, and monotone span programs, on which ABE schemes are
based (see [18] for details).

5.5.1 Adopted schemes and notations

We describe the operations frameworks of the adopted Multi-Authority Ciphertext-
Policy Attribute-Based Encryption scheme (MA-CP-ABE) [105], multi-signatures
scheme [30] and multi-layer skipchain (see Section 5.4.2).

MA-CP-ABE includes the following algorithms:
⟨skr, pkr⟩ ← AuthSetup(r): is a randomized algorithm executed by each

authority r ∈ R where R is the set of authorities identifiers. The algorithm
returns a key pair ⟨skr, pkr⟩.

sk ← KeyGen(cid, skr, er): is a randomized algorithm that takes a client
global unique identifier cid, authority’s r secret key skr and an attribute er.
The algorithm is executed by the authority r responsible for attribute er and
returns a secret key sk for attribute er to the client identified by the global
unique identifier cid.

c ← EncryptABE(m,A, {pkr}): is a randomized algorithm that takes a mes-
sage m, an access-control policy A expressed as a monotonic boolean formula
over attributes, and the set of public keys {pkr} of the authorities that con-
trol at least an attribute in the policy. The algorithm, which can be publicly
executed, returns the ciphertext c.

m← DecryptABE({sk}, c): is a deterministic algorithm run by a client that
takes the set of secret keys {sk} and a ciphertext c. The algorithm returns
plaintext m only if the attributes associated with the client’s secret keys satisfy
the ciphertext policy.

Multi-signatures allow any subgroup L of a group of n players {V1, . . . , Vn}
to collectively sign a message m and prove to a verifier that all members of L
participated in producing the message signature. We consider using the scheme
proposed in [30] based on BLS signatures [31], that includes the following three
algorithms.
⟨ski, pki⟩ ← KeyGen(1λ): is a randomized key generation algorithm run by

each player Vi that returns key pair ⟨ski, pki⟩.
⟨L, σ,m⟩ ← MultiSign({ski}i∈L, m): is a possibly randomized two-step in-

teractive algorithm run by any subset of players L ⊆ {V1, . . . , Vn}.
b ← Verify({pki}i∈L, σ,m): is a deterministic algorithm run by the veri-

fier and outputs b = 1 if and only if signature σ has been generated with
MultiSign({ski}i∈L, m), 0 otherwise.

Multi-layer skipchain includes the following algorithms:
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σ ← Append(l, d): is an interactive algorithm executed between a client and
the nodes maintaining the multi-layer skipchain. The algorithm, started by the
client, takes a layer identifier l and the data d the client wants to append to
layer l. If data d satisfies the constraints of layer l, then d is added as payload
of layer’s l new skipblock and nodes return to the client a multi-signature σ of
the pair ⟨l, d⟩ to confirm that d has been appended to layer l.

(π, S) ← GetLatestSkipblocks(t): is an interactive algorithm executed be-
tween the client and the nodes maintaining the multi-layer skipchain. The
algorithm, started by the client, takes the latest timestamp t indicating the last
time the client updated the multi-layer skipchain, and returns the set of skip-
blocks S the client lacks, and a proof π that the set S is valid and fresh. In
particular, the proof π contains the latest timestamp t′ of the time layer, and
the minimum set of forward pointers and witnesses layer skipblocks required to
validate the set S.

0, 1 ← Validate(now, ⟨π, S⟩ ): is an algorithm executed by the client that
takes the client’s current time, denoted as now, and the pair ⟨π, S⟩ obtained by
the client with GetLatestSkipblocks(·). The algorithm returns 1 if the proof π for
skipblocks S is valid and if the difference between now and the proof timestamp
t′ is within a certain threshold, 0 otherwise. We note that the threshold value
may be an application-defined value included in skipblocks payload.

5.5.2 Setup

We model the setup operation as:

Setup(1λ) (5.1)

where 1λ is the security parameter.
Key metadata attestations are attached to multi-signatures to demonstrate

the chain of trust between signers and admins, and include metadata established
by admins to define authenticity threshold requirements. We define the Key
Metadata Attestation (KMA) as follows:

KMA = ⟨⟨{pk}, s, vb, ve⟩ , ka, σKMA⟩ (5.2)

σKMA ← MultiSign(SK, ⟨⟨{pk}, s, vb, ve⟩ , ka⟩ ),
SK ⊆ {ska} : |SK| > ka

(5.3)

where s is the threshold on the minimum number of public keys in {pk} used to
verify multi-signatures, vb and ve denote the begin and end of the attestation
validity period and ka is the threshold of tolerable malicious admins. KMA is
valid only if σKMA is a valid multi-signature computed by at least ka+1 admins,
and vb < ve.

Each admin generates his multi-signature key pair:

⟨ska, pka⟩ ← KeyGen(1λ) (5.4)

Admins compute the admins KMA (AKMA), which includes the admins public
keys, as following:

AKMA =
〈〈
{pka}a∈[na], ka, vb, ve

〉
, ka, σAKMA

〉
(5.5)
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We note that, in this particular case, AKMA has the further constraint of requir-
ing verification by using a subset of the public keys included in the attestation
itself, similarly to self-signed root certificates in PKI systems. We highlight
that the signing operation denotes a distributed protocol for computing the
multi-signature among mutually untrusted parties, in this case admins.

Witnesses generate their multi-signature signing keys:

⟨skw, pkw⟩ ← KeyGen(1λ) (5.6)

and send their public keys {pkw} to admins. Admins compute the witnesses
KMA (WKMA), which includes the witnesses public keys, as following:

WKMA =
〈〈
{pkw}w∈[nw], kw, vb, ve

〉
, ka, σWKMA

〉
(5.7)

where kw = ⌊nw/3⌋.
Validators generate their multi-signature signing keys:

⟨skv, pkv⟩ ← KeyGen(1λ) (5.8)

and send their public keys {pkv} to admins. Admins compute the validators
KMA (VKMA), which includes the validators public keys, as following:

VKMA =
〈〈
{pkv}v∈[nv ]

, kv, vb, ve

〉
, ka, σVKMA

〉
(5.9)

In the following we denote as r ∈ R the identifier of an ABE server, where
R is the set of identifiers of all ABE servers. Each ABE server generates his
key pair ⟨skr, pkr⟩:

⟨skr, pkr⟩ ← AuthSetup(r) ∀r ∈ R (5.10)

All ABE servers send their public keys {pkr} to admins. Admins compute the
ABE servers KMA (RKMA), which includes the ABE servers public keys, as
following:

RKMA =
〈〈
{pkr}r∈R, kr, vb, ve

〉
, ka, σRKMA

〉
(5.11)

Any admin initializes the appropriate skipchain layer by executing Append(·, ·),
as described in Section 5.5.1, using all metadata obtained so far (AKMA, WKMA,
VKMA, RKMA). The admin then verifies that the returned multi-signatures are
valid and that the set of signers is a subset of the witnesses specified in WKMA.

Developers generate their multi-signature signing keys:

⟨skd, pkd⟩ ← KeyGen(1λ) (5.12)

and send their public keys {pkd} to admins. We note that developers public
keys are authenticated during the update authentication procedure (see Sec-
tion 5.5.4).

We highlight that admins, developers, witnesses and verifiers also generate
the due cryptographic keys to establish authenticated and confidential point-
to-point communication channels, and to generate the required cryptographic
material in following phases. For ease of exposition we do not specify their
generation and usage as we rely on well known cryptographic primitives.
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5.5.3 Update policies

We model the update policies procedure as UpdatePolicy(P, v, kr,R), where P
denotes the access control policy, v denotes the minimum version number to
which the policy applies, kr denotes the security threshold for ABE servers,
and R is the set of ABE servers.

The procedure must be used before releasing the first software update, be-
fore releasing a new software update that requires a novel policy, or whenever
ABE servers public keys are rotated. It transforms access control information
defined by the software house based on a single-authority paradigm to the multi-
authority setting of the proposed architecture. It is composed of two phases:

• attribute derivation transforms the access control attributes and produces
an authenticated attributes matrix A that assigns multi-authority attributes
to each ABE server. The matrix A is also appended to the attributes layer
of the multi-layer skipchain to be available for clients to detect whether a
key refresh is needed (Section 5.5.6);

• policy translation transforms the single-authority policy P into the multi-
authority policy A, which is used in the update authentication procedure
(Section 5.5.4).

We observe that attribute derivation must be operated only in case of policies
modifications that use novel attributes or in case of ABE servers key rotations.
Moreover, we note that introducing novel attributes and rotating ABE servers
keys does not require re-executing the setup procedure because the ABE scheme
adopted in our proposal does not fix the set of ABE servers and attributes during
its setup (see Section 5.5.1 for details about the ABE scheme, and Section 5.5.9
for details about ABE servers key rotation). This is a very important property
because it enables recoverability as we discuss in Section 5.6. We highlight that,
to the best of our knowledge, the proposed approach in attribute derivation
and policy translation procedures is the first practical solution that enables a
survivable generation of ABE keys.

Attribute derivation. Admins receive the set of the attributes that are
used by the software house to define the access control policy P. In the follow-
ing, we denote these attributes as original attributes for disambiguation, and we
model them as binary strings of potentially variable length. To guarantee sur-
vivability, all ABE attributes of each ABE server must be associated to original
attributes in a bijective relation. To this aim, admins enumerate all of original
attributes in an ordered set that we denote as P (e.g., by sorting them with
lexicographic comparisons). We denote as pj ∈ P the jth original attribute,
where j ∈ [|P |].

Given the set P of all original attributes and the set R of all ABE servers,
a selected admin computes the set of ABE attributes assigned to each ABE
server as following. To this aim, he generates the ABE attributes matrix A of
size |R| × |P |. Each original attribute pj is mapped to column j. Moreover, we
assume that a function ζ(·) : R → [|R|] exists to map each ABE server r ∈ R
to a row of the matrix. Each element αjζ(r) in the matrix A is computed as
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the concatenation of the public key of the row’s ABE server with the column’s
original attribute:

er,j := pkr||pj , r ∈ R, j ∈ [|P |] (5.13)

A :=
(
αjζ(r) : αjζ(r) ← er,j

)
,∀r ∈ R, j ∈ [|P |] (5.14)

Uniqueness of public keys implies uniqueness of ABE attributes. All ABE at-
tributes that differ only for the public key part are syntactically different and
semantically equivalent. The jth column of A, denoted as Aj , contains all
semantically equivalent representations of original attribute pj assigned to dif-
ferent ABE servers. The ζ(r)th row of A, denoted as Aζ(r), contains all ABE
attributes of ABE server r.

Admins compute the Authenticated Attributes Map (AAM) as:

AAM := ⟨⟨A, v⟩ , σAAM⟩ (5.15)

where v is the update version and σAAM is admins multi-signature on tuple
⟨A, v⟩. A designated admin writes AAM to the attributes layer of the multi-
layer skipchain, by executing Append(Lat,AAM). Witnesses append AAM only
if σAAM is valid.

Finally, a designated admin sends the pair
〈〈
Aζ(r), v

〉
, σr

〉
to ABE server

r, ∀r ∈ R. Each ABE server obtains the latest version of admins public keys
from the admins skipchain layer and accepts the pair

〈〈
Aζ(r), v

〉
, σr

〉
only if σr

is valid.
Policy translation. In this phase, admins translate access control policy

P into a semantically equivalent policy A expressed over the ABE attributes
computed in the previous attribute derivation phase. Without loss of general-
ity, we describe the translation phase by representing access control policies P
and A as boolean formulas expressed over original and ABE attributes, respec-
tively. The boolean formula representing P must be translated so that satisfying
a threshold of kr + 1 semantically equivalent ABE attributes implies satisfying
the corresponding original attribute. We recall that kr is the maximum amount
of malicious ABE servers. A designated admin translates the original access
control policy by substituting each original attribute pj with a boolean expres-
sion that returns true only if at least a threshold of kr + 1 ABE attributes that
are semantically equivalent to the original attribute are true. To this aim, the
admin computes the set Sj of all possible subsets Sj of Aj of cardinality equal
to kr + 1, that is:

Sj :=
{
Sj : Sj ⊆ Aj , |Sj | = kr + 1

}
(5.16)

where nr is the total number of ABE servers and is greater than kr. The
resulting boolean formula A is computed by substituting each attribute pj of
the original boolean formula P as following:

pj ←
∨
Sj∈Sj

 ∧
e∈Sj

e

 ,∀pj ∈ P (5.17)
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Example. To clarify the update policies procedure we propose an example,
where we consider a scenario in which a new software update for “premium”
users who have paid a subscription fee is about to be published. The software
house defines the access control policy P as the following formula:

“premium” ∧ “paid” (Ex. 1)

We assume that admins have configured three ABE servers (R = {r1, r2, r3}),
and that they want to ensure 1-out-of-3 survivability, that is, tolerating the
compromise of one ABE server. Admins extract and enumerate attributes of
Formula (Ex. 1) obtaining “premium” and “paid” (P = {“premium”, “paid”}).
In the following we use the binary operator ∥ to denote the concatenation of the
binary representation of the operands. The attribute matrix A is:

ABE
servers

Attributes

premium paid

r1 “pkr1∥premium” “pkr1∥paid”

r2 “pkr2∥premium” “pkr2∥paid”

r3 “pkr3∥premium” “pkr3∥paid”

Table 5.1: Example attribute matrix A

In Formula Ex. 2 we represent semantically equivalent attributes of Table 5.1
with the original attribute name and with the row index as subscript. Admins
can finally translate formula Ex. 1 with the following semantically equivalent
formula:

(“pkr1∥premium” ∧ “pkr2∥premium”) ∨
(“pkr2∥premium” ∧ “pkr3∥premium”) ∨
(“pkr1∥premium” ∧ “pkr3∥premium”)

∧
(“pkr1∥paid” ∧ “pkr2∥paid”) ∨
(“pkr2∥paid” ∧ “pkr3∥paid”) ∨
(“pkr1∥paid” ∧ “pkr3∥paid”)

(Ex. 2)

5.5.4 Update authentication

We model the update authentication procedure as AuthenticateUpdate(src, {pkd},
v,A,∆t), where src is the update source code, {pkd} is the set of developers pub-
lic keys authorized to authenticate src, v is the update version, A is the multi-
authority policy and ∆t is the freshness tolerance value. The goal of this phase
is to compute two categories of authenticated update metadata: Authenticated
Update Validation Metadata (AUVM), intended to be used by validators in the
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update validation phase (Section 5.5.5), and Authenticated Binaries Metadata
(ABM), intended to be used by clients during update retrieval (Section 5.5.7
and Section 5.5.8). This procedure includes two phases operated by admins
and developers, respectively.

Admins bind the update version to the multi-authority policy A and to the
freshness tolerance value ∆t by multi-signing tuples ⟨A, v⟩ and ⟨∆t, v⟩, produc-
ing signatures σAv and σ∆tv:

σAv ← MultiSign({ska}, ⟨A, v⟩ ) (5.18)

σ∆tv ← MultiSign({ska}, ⟨∆t, v⟩ ) (5.19)

We observe that the two bindings are computed separately because they must be
verified in different procedures. Admins compute the developers KMA (DKMA),
which includes the developers public keys {pkd} authorized to authenticate the
update at version v, as following:

DKMA =
〈〈
{pkd}d∈[nd], v, kd

〉
, ka, σDKMA

〉
(5.20)

We note that the DKMA attestation has the update version v in place of the
validity period bounds vb and ve defined in KMA because the set of keys {pkd}
is valid only for version v.

Admins send DKMA and the tuples ⟨σAv,A, v⟩ and ⟨σ∆tv,∆t, v⟩ to each
developer who verifies the multisignatures σAv and σ∆tv.

A subset D ⊆ [nd] such that |D| > kd of developers authorized in DKMA
participates in the following operations. Each developer in D builds through
reproducible builds procedures the update source code src, obtaining the update
binaries bin:

bin← DeterministicBuild(src) (5.21)

Developers agree on a shared deterministic encryption key ψ by using an au-
thenticated group key agreement [34]:

ψ ← KeyAgree(1µ, {pkd}d∈D) (5.22)

where 1µ is the security parameter. Each participating developer encrypts the
update binaries bin through deterministic encryption with ψ and produces eb:

eb← EncryptDET(ψ, bin) (5.23)

Then, each participating developer uses a secure hash function H( · ) to compute
the digests hψ, heb, hsrc and hbin:

hψ ← H(ψ) heb ← H(eb) (5.24)

hsrc ← H(src) hbin ← H(bin) (5.25)

Each developer in D encrypts the deterministic encryption key ψ through
MA-CP-ABE encryption by using the multi-authority policy A received by ad-
mins, and computes its digest heψd

with a secure hash function H( · ):

eψd ← EncryptABE(ψ,A, {pkr}r∈R) ∀d ∈ D (5.26)

heψd
← H(eψd) ∀d ∈ D (5.27)
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One designated developer determines the timestamp t of the current update
and computes the update validation metadata uvm and binaries metadata bm:

bm := ⟨hbin, heb, hψ,DKMA, t, ⟨v,∆t, σ∆tv⟩⟩ (5.28)

uvm := ⟨hsrc, bm⟩ (5.29)

The developer sends both of them to all other participating developers. Each
developer verifies their correctness by:

• recomputing hsrc and hbin, and by verifying that they match the corre-
sponding values in uvm and bm;

• verifying signature σ∆tv;

• verifying that digests hψ and heb are equal to the digests computed in
Equation 5.24;

• verifying that DKMA is valid, as defined in Section 5.5.2;

• verifying that t is a timestamp indicating a plausible time of creation of
tuples bm and uvm.

Developers in D multi-sign uvm, producing AUVM:

AUVM = ⟨uvm, σAUVM⟩ (5.30)

Finally, participating developers gather the digests heψd
and multi-sign the tuple〈

bm, {heψd
}
〉
, producing ABM:

ABM =
〈〈
bm, {heψd

}
〉
, σABM

〉
(5.31)

We highlight that the digests hsrc, hbin, heb and hψ along with signatures
σAUVM and σABM are used to guarantee integrity and authenticity of source
code, binaries and related cryptographic material to validators and clients, re-
spectively.

5.5.5 Update validation

We model the update validation procedure as ValidateUpdate(src, ψ,AUVM,ABM,
location), where src is the update source, ψ is the deterministic encryption key,
AUVM and ABM are authentication material, location is the address of encrypted
binaries. The goal of this procedure is validate source-to-binary correspondence
and append ABM and location to the update and location layers of the multi-
layer skipchain, respectively.

A designated developer sends AUVM, ABM and ⟨src, ψ⟩ to validators over
a confidential and authenticated channel. Each validator obtains the admins
public keys {pka} and the latest update version value v′ from the admins and
update skipchain layers, and verifies that AUVM, ABM, the tuple ⟨src, ψ⟩ and
version value v′ are correct and authentic information by executing Algorithm 1.
If all checks pass, validators multi-sign ABM producing σVABM:

VABM := ⟨ABM, σVABM⟩ (5.32)
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Algorithm 1 Metadata validation

1: function Validate({pka}, AUVM, ABM, src, ψ, v′ )
2: uvm← AUVM.uvm
3: bm← uvm.bm
4: DKMA← bm.DMKA
5: {pkd} ← DKMA.{pkd}
6: Verify({pkd},AUVM.σAUVM,AUVM)
7: Verify({pkd},ABM.σABM,

〈
bm,ABM.{heψd

}
〉

)
8: Verify({pka}, bm.σ∆tv, ⟨bm.v, bm.∆t⟩ )
9: Verify({pka},DKMA.σDKMA,DKMA)

10: v′
?
< bm.v

11: AUVM.hsrc
?
= H(src)

12: bin← DeterministicBuild(src)

13: bm.hbin
?
= H(bin)

14: bm.hψ
?
= H(ψ)

15: eb← EncryptDET(ψ, bin)

16: bm.heb
?
= H(eb)

Then, a designated validator sends VAUM to admins.
Admins multi-sign the location of the update at version ABM.v producing

Authenticated Location AL which we define as follows:

location := {loceb, loceψ1 , . . . , loceψ|D|} (5.33)

AL := ⟨⟨location, ⟨ABM.bm.v, vc⟩⟩ , σAL⟩ (5.34)

where loceb is the location of encrypted updates eb, loceψ1 , . . . , loceψ|D| are the
locations of encrypted keys eψd and vc is a unique counter value used to denote
the number of location changes for the same version v which, in this procedure,
is initialized to zero. Value vc is increased in case of updates to the location
and controlled by the witnesses accordingly. A designated admin starts the
PBFT-CoSi protocol with witnesses by sending VAUM and AL to the witness
leader. During the pre-prepare phase of the PBFT-CoSi protocol, witnesses ver-
ify multi-signatures σVAUM and σAL with the latest validators and admins public
keys specified in the validators and admins skipchain layers, respectively. If ver-
ification succeeds, witnesses append VAUM and AL to the update and location
layers, respectively. At the end of PBFT-CoSi commit phase, the witnesses
leader returns to the designated admin an attestation of the correct execution
of the protocol.

5.5.6 Client key refresh

We model the client key refresh procedure as ClientKeyRefresh(cid, Pcid,A),
where cid is the unique identifier of the client, Pcid is the set of original attributes
associated to the client by the software house and A is the latest version of the
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ABE attributes matrix (Section 5.5.3). The procedure generates a set of ABE
keys SKcid assigned to the client to decrypt update binaries (Section 5.5.8).

A client first authenticates to the authentication server by presenting ap-
propriate credentials that include the client identifier cid. If authentication is
successful, the authentication server retrieves the client original attributes Pcid
from its own database. By using the ABE attributes matrix A, the authentica-
tion server assigns the set of client ABE attributes C depending on the original
attributes Pcid associated to the client.

For ease of presentation, we model Pcid as a set of indexes to the enumer-
ated set of original attributes, as described in the update policies procedure
(Section 5.5.3), that is: Pcid ⊆ [|P |].

Let us consider a key reliability parameter fk ∈ [0, nr − kr] that regulates
the clients tolerance to ABE servers key rotations. As an example, a value
fk = 1 guarantees that even if one ABE server rotates his keys, the client
is still able to decrypt future updates. The authentication server chooses a
subset of ABE servers R̄ ⊆ R for which he releases decryption keys, such that
|R̄| = (fk + kr + 1).

The matrix of client ABE attributes C is computed as:

C =
(
αjζ(r) : αjζ(r) ∈ A

)
,∀r ∈ R̄,∀j ∈ Pcid (5.35)

For ease of presentation, we denote as Cr the row of C associated to server r.
The authentication server sends to each ABE server r ∈ R̄ the row Cr over a
secure channel. Each server r computes a set of ABE keys SKcid,r as:

SKcid,r := {sk : sk ← KeyGen(cid, skr, er),∀er ∈ Cr} (5.36)

where we recall that skr is server’s r secret key. Each ABE server r ∈ R̄
sends the set of keys SKcid,r to the client through the authentication server.
Once all ABE servers in R̄ have responded, the client can compute the matrix
SKcid = (SKcid,r),∀r ∈ R̄.

The authentication server can adopt multiple strategies to establish the value
fk and the servers of the set R̄. The number of keys the client receives depends
on the value fk. The value fk must lie in the range [0, nr − kr − 1] and |R̄| =
(fk + kr + 1) because, if fk = 0 then |R̄| = kr + 1 and thus the client is able
to satisfy policy A because ABE servers issue the minimum amount of kr + 1
keys required to satisfy an original attribute (see Section 5.5.3). Moreover,
fk must not exceed nr − kr − 1 because |R̄| ≤ nr. To one extreme, choosing
fk = 0 minimizes the number of keys sent and managed by the client, however it
forces to refresh his keys when any of the keys belonging to ABE servers in R̄ is
rotated. On the other extreme, choosing fk = nr−kr−1 maximizes the number
of keys sent to the client, but the client is forced to refresh his keys only when
nr − kr ABE servers keys have been rotated. As long as fk < nr − kr − 1, the
authentication server can choose which ABE servers issue the new keys. This
may be useful to load balance the key generation process among ABE servers
in case of bursty key refresh workloads.
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5.5.7 Check for updates

The goal of this procedure, which is started by a client, is to efficiently update
the client’s copy of the multi-layer skipchain so that the client can determine
whether new software updates are available. We model the check for updates
procedure as CheckForUpdates(τt), where τt is the last authenticated timestamp
belonging to the time skipchain layer that is known by the client and t denotes
the tth execution of check for updates. The procedure returns the skipblocks
between the current latest skipblock of each layer of the multi-layer skipchain
maintained by witnesses, and the skipblocks pointed by τt. Moreover, it returns
the latest authenticated timestamp that the client uses in the next invocation
of check for updates.

The client requests the latest timestamp τ ′t+1 to at least kw witnesses over
an authenticated channel. If all timestamps are equal, then the client sends〈
τt, τ

′
t+1

〉
to any witness over an authenticated channel. The witness deter-

mines the client’s last skipblock for each skipchain layer by following the hash
pointer to the parent skipchain of each layer, starting from the location skip-
block pointed by τt. For each layer, the witness determines the shortest chain
of multi-signed forward pointers between the client ’s last skipblock and the cur-
rent latest skipblock. The witness sends to the client the required skipblocks
of the admins and witnesses layers, the multi-signature chains and the latest
skipblock of all other layers. The client validates the multi-signature chains by
using the public keys contained in the witnesses skipblocks, validates the wit-
nesses skipblocks with the public keys contained in the admins skipblocks, and
finally validates the timestamp τ ′t+1 obtained in the beginning by using the lat-
est set of witnesses public keys and by checking that the timestamp respects the
latest freshness tolerance value ∆t (see Section 5.4.2). If skipchain validation
succeeds, the client sets τt+1 = τ ′t+1 for the following invocation of the same
check for updates procedure. The client checks the latest attributes skipblock
and executes the client key refresh procedure if he needs to refresh his keys (see
Section 5.5.6). If a new update skipblock is present, then the client executes the
download and decrypt procedure described in Section 5.5.8.

Moreover, we observe that the network cost of transferring the multi-signature
chains to clients is logarithmic in the amount of skipblocks of each layer between
τt and τt+1 [96].

5.5.8 Download and decrypt

The goal of the download and decrypt procedure is to let the client download,
authenticate and decrypt a new software update after he determines its avail-
ability through the check for updates procedure (Section 5.5.7). We model the
procedure as DownloadAndDecrypt(VABM,AL, SKcid), where VABM and AL are
authenticated data structures obtained from the check for updates procedure,
and SKcid is the client ABE keys obtained from the client key refresh procedure.

We represent the procedure in Algorithm 2. In lines 2 through 10 the client
downloads and decrypts eψi, which is the deterministic encryption key ψ en-
crypted by developer i with ABE encryption (Equation 5.26). If the digest of the
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Algorithm 2 Download and decrypt

1: function DownloadDecrypt(VABM, AL, SKcid)
2: i← 0
3: repeat
4: i← i+ 1
5: loceψi

← AL.location.loceψi

6: eψi ← Download(loceψi
)

7: H(eψi)
?
= VABM.ABM.heψi

8: ψ ← DecryptABE(SKcid, eψi)
9: h← VABM.ABM.bm.hψ

10: until i
?
= |D| ∥ H(ψ)

?
= h

11: loceb ← AL.location.loceb
12: eb← Download(loceb)

13: H(eb)
?
= VABM.ABM.bm.heb

14: bin← DecryptDET(ψ, eb)

decrypted key is not equal to the digest included in the VABM data structure,
he tries to download and decrypt the deterministic key encrypted by developer
i+ 1 for all possible developers. When the client finds a valid key, he can start
the decryption procedure of the update binaries. To this aim, he downloads
the encrypted binaries from the distribution infrastructure (line 12), validates
their authenticity (line 13) and decrypts them (line 14). We recall that the
authenticity of digest heb is guaranteed by σVABM included in VABM and vali-
dated during the check for updates procedure. Finally, the client can install the
update binaries bin and complete the update procedure.

5.5.9 Key management

The key management operations are accomplished by admins, who collectively
act as a root certification authority, and thus are the only role responsible
for rotating the public keys of other roles. Each key management operation
produces a new authenticated set of public keys for a specific role. With the
only exception of the developers role, the new set is sent to witnesses, who verify
its authenticity, validate its correctness and append it to the corresponding
keys metadata skipchain layer. In the following we describe key management
operations for the different roles: admins, witnesses, validators, ABE servers
and developers.

Admins. Admins manage their keys {pka}, authenticated in attestation
AKMA, by self-authenticating a new set of public keys {pka}′a∈[na]

in a new at-

testation AKMA′. Admins must specify the new validity period ⟨AKMA′.vb,AKMA′.ve⟩,
which must not overlap with the validity period ⟨AKMA.vb,AKMA.ve⟩ (Equa-
tion 5.5). Admins may also change the multi-signature threshold by specifying
AKMA′.ka ̸= AKMA.ka. A threshold of AKMA.ka+1 admins multi-sign AKMA′

and send it to witnesses, that append it only if it satisfies the security constraints
(non-overlapping validity periods, threshold and validity of signing keys).
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Algorithm 3 Rotate ABE servers

1: function RotateABEServers({ska}, Rc, R′, v)
2: R = (R \Rc) ∪R′
3: ⟨skr, pkr⟩ ← AuthSetup(r) ∀r ∈ R′
4: σRKMA′ ← MultiSign({ska},

〈
{pkr}r∈R, kr, v′b, v′e

〉
)

5: RKMA′ =
〈〈
{pkr}r∈R, kr, v′b, v′e

〉
, ka, σRKMA′

〉
6: A′ ← UpdatePolicy(P, v, kr,R)
7: σAAM′ ← MultiSign({ska}, ⟨A′, v⟩ )
8: AAM′ = ⟨⟨A′, v⟩ , σAAM′⟩
9: Append(Lr,RKMA′)

10: Append(Lat,AAM
′)

Witnesses, validators. Admins manage the public keys of witnesses
and validators, authenticated in a key metadata attestation KMA (specifically,
WKMA, VKMA for the two roles, see Section 5.5.2), by computing a new attes-
tation KMA′. Admins must specify the new validity period ⟨KMA′.vb,KMA′.ve⟩
which must not overlap with the validity period ⟨KMA.vb,KMA.ve⟩. A threshold
of KMA.ka + 1 admins multi-sign the new KMA′ and send it to witnesses, that
append it only if it satisfies the due security constraints.

ABE servers. Admins manage the public keys of ABE servers, authenti-
cated in a key metadata attestation RKMA (see Section 5.5.2), by computing
a new attestation RKMA′ as outlined in Algorithm 3. If admins rotate ABE
servers public keys, admins must also execute the attribute derivation phase of
the update policies procedure to update the authenticated attributes matrix A
(Section 5.5.3). If admins change the value of kr to k′r after removing or adding
new ABE servers, admins must also execute the policy translation phase of
the update policies procedure to compute a new multi-authority policy A that
complies to the new k′r. Admins can rotate ABE servers keys to promptly re-
cover from the compromise of up to kr ABE servers without executing Setup(1λ)
again, by executing Algorithm 3. In line 2 admins update the set of ABE servers
by excluding the set of compromised ABE servers Rc ⊂ R and including the
set of new ABE servers R′ (where |Rc| = |R′|). In line 3 each new ABE server
in R′ generates his signing key pair. In lines 4 and 5 admins authenticate the
new set of ABE servers public keys. In lines 6 through 8 admins update and
authenticate the new attribute matrix A′ in a new attestation AAM′ and finally
in lines 9 and 10 admins append the new authenticated data structures AAM′

and RKMA′ to the appropriate skipchain layers.
Developers. Admins authenticate developers keys with the DKMA attes-

tation at every execution of the update authentication procedure (see Equa-
tion 5.20). For this reason, developers can freely rotate keys between software
releases, and no skipchain layer is dedicated to tracking their evolution.

We highlight that key management operations that alter the number of ac-
tors within a specific role might impact the security and the performance of the
system. Removing an actor might require the remaining actors within the same
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role to guarantee higher level of availability or to operate higher workloads to
comply to the required multi-signatures threshold. At the same time, lowering
the threshold would guarantee the same level of performance but decrease the
security level of the system. As an example, reducing the number validators
without also reducing the corresponding multi-signature threshold VKMA.kv
implies that a higher percentage of validators must be available during the up-
date validation procedure. However, reducing VKMA.kv implies tolerating a
lower amount of malicious validators. We note that the number of witnesses is
nw = 3kw + 1 due to the use of PBFT protocol, therefore witnesses must not
be less than 4.

5.6 Security analysis

Survivability is guaranteed by the adoption of multi-signatures coupled with
validity thresholds and by the accurate definition of access control policies, as
described in Section 5.5.3. This design choice allows the compromise of up to a
threshold of actors (admins, developers, ABE servers, witnesses, verifiers) still
guaranteeing that an adversary cannot forge any authenticated cryptographic
material produced in the procedures of our proposal. The key rotation procedure
(Section 5.5.9) ensures recoverability. In fact, if a threshold of admins, witnesses,
verifiers, ABE servers or developers keys are compromised, then admins can
recover the system to a safe state by rotating the compromised keys as soon as
the incident is detected.

Authenticity of software updates is protected by admins and developers
multi-signatures, who digitally sign software updates data and metadata during
the update authentication procedure (Section 5.5.4). The authenticity of de-
velopers and admins digital signatures is in turn guaranteed by the multi-layer
skipchain that allows admins to manage keys and act as a certification authority.

An adversary can try to break authenticity in several ways: by compromis-
ing admins to issue rogue keys, by compromising developers to authenticate
malicious source code, by compromising validators to approve malicious update
binaries or witnesses to equivocate or fork the multi-layer skipchain. However,
authenticity does not suffer from single points of failure as the validity of a role’s
multi-signature is determined by an admin-defined threshold on the number of
signers, which is authenticated through attestations published on the multi-layer
skipchain (Section 5.5.2). As a result, an adversary is unable to break authen-
ticity of software updates because we assume it is not able to compromise more
than a threshold of actors for each role.

Confidentiality. We evaluate confidentiality guarantees by distinguishing
the confidentiality of software updates binaries and of source code. The former
is protected against an adversary who intercepts the binaries, either by compro-
mising the distribution infrastructure or by intercepting them while being sent
to and downloaded from the distribution infrastructure. The adversary can try
to break the confidentiality of intercepted software update binaries by violating
ABE servers to recover the decryption key ψ. As a result, the confidentiality of
software update binaries does not suffer from single points of failure because,
as described in Section 5.5.3, the adversary must violate at least kr + 1 ABE
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servers to be able to obtain the decryption key.
The confidentiality of software update source code could be violated by cor-

rupting a developer or a validator during the validation phase. Concerning
this issue, we consider the typical approach of the literature assuming that the
confidentiality of software updates source code is based on weakest-link secu-
rity. Attacks by one developer could be even minimized by adopting software
management techniques that segment source code and prevent one developer to
access the whole code and/or by detailed logging and forensics mechanisms, but
the integration of similar solutions is out of the scope of this proposal.

Freshness and timeliness. The multi-layer skipchain ensures freshness of
software updates. The adoption of PBFT along with non-equivocation mecha-
nisms guarantees to clients a consistent view of the skipchain state and, more
specifically, of its latest skipblocks. As described in Section 5.5.7, non-equivocation
is obtained by querying at least kw + 1 witnesses so that at least an honest wit-
ness is queried. The honest witness guarantees to detect equivocation attacks if
he returns a response which is inconsistent with the responses of other possible
malicious witnesses. Moreover, the time skipchain layer allows clients to detect
freeze attacks by an adversary who controls the communication channel of the
client and presents a stale view of the skipchain.

The timely and scalable distribution of software updates is made possible by
the design of the software update encryption mechanism that produces a single
ABE ciphertext for all clients, thus allowing us to leverage existing distribution
infrastructures, such as Content Delivery Networks.

Transparency is guaranteed by validators through the update validation
procedure (Section 5.5.5). Assuming that validators use a trusted compiler,
they can detect attacks against source-to-binary correspondence in which an
adversary induces developers into signing backdoored software update binaries
that do not correspond to the original update source code.

5.7 Costs analysis and performance evaluation

We evaluate the overhead introduced by the proposed framework and demon-
strate that it achieves practical performance. First, we analyze the compu-
tational, network and storage costs of our contributions: MA-CP-ABE exten-
sion and distributed update authentication protocol. Then, we evaluate the
framework performance by considering timings of actual state-of-the-art cryp-
tographic libraries at multiple security levels and scenarios of increasing com-
plexity.

5.7.1 Costs analysis

We analyze the computational costs of MA-CP-ABE in terms of relevant prim-
itive cryptographic operations and complexity of access control policy formulas
by referring to Table 5.2. We denote the pairing operation as e, exponentiation
in G1, G2 and GT as p1, p2 and pT respectively, and hash to G2 operation as H.
Moreover, we denote as x the number of rows of the linear secret sharing scheme
(LSSS) matrix used by the ABE scheme, that is equal to the number of logic
gates in the translated access control policy A plus one [78]. As we discussed
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Operation Role Procedure Costs

ABE encryption Developer (1)
pT + x (H + 3 p1+
p2 + 2 pT )

ABE decryption Client (6) x (3 e+H + pT )

ABE keygen ABE server (4) a(2H + p1 + 3 p2)

(1) Auth. update, (4) Key refresh, (6) Download & decrypt

Table 5.2: Computational costs

in Section 5.5.3, the number of logical gates in A can be computed by knowing
the number of gates in the original access control policy P, that we denote as
γ, the number of ABE servers nr, and the ABE server threshold kr. The value
of x can be computed as following:

x = γ + (γ + 1) · [(kr + 1) ·
(

nr
(kr + 1)

)
− 1] + 1 (5.37)

We observe that the encryption and decryption costs are linear in x, which
increases as a binomial function of nr and kr. We recall that the value nr repre-
sents the number of heterogeneous ABE servers that do not share common-mode
failures [13]. Thus, it is unlikely that nr exceeds a few units. We also observe
that decryption is typically more expensive than encryption due to the three
pairing operations (3 · e) and to the possibility of using optimizations for fixed
bases in point scalar multiplication operations in the encryption operation [101]
(only the point scalar multiplication p2 is computed on a variable base). Finally,
the key generation phase depends on the amount of original attributes granted
to the client, that we denote as a (see Section 5.5.6). This represent the worst
case of a client requesting keys for all attributes, such as at setup time. In other
procedures, such as policy updates (see Section 5.5.3), the client may request
keys for a subset of attributes. If some load balancing strategy is applied, then
the procedure in each key generation would involve just a subset of the ABE
servers (see Section 5.5.6).

We discuss network and storage overhead introduced by ABE cryptographic
material by referring to Table 5.3. The first column (data) describes the type
of cryptographic material. The second and third columns (role and procedure)
describe which actors are affected by these costs and in which procedures of
the framework, respectively. The fourth column (type) indicates whether the
material affects storage or network costs for each actor. The last column includes
the costs with regard to the type of material, where we denote the size of an
element belonging to the groups G1, G2 and GT as G1, G2 and GT , the number
of developers that participate in the update authentication procedure as |D|, the
key reliability parameter as fk, and the number of original attributes granted
to a client as a. The size of the ABE ciphertext grows linearly as a function
of x, thus increasing as a binomial function of nr and kr for ABE encryption
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Data Role Proc. Type Costs

ABE
ciphertext

Developer (1) ⊙
GT + x (2G1 +G2 +GT )

Client (6) ⊙
Dist.Inf (3) ⊙� |D| (GT + x (2G1 +G2 +GT ))

ABE
client keys

ABE server (4) ⊙ a (G1 +G2)

Client (4) ⊙� a (fk + kr + 1) (G1 +G2)

(1) Auth. update, (3) Publish, (4) Key refresh, (6) Download & decrypt
�: network costs, �: storage costs

Table 5.3: Storage and network costs

and decryption costs. Moreover, the size of the keys received and maintained
by each client depends on the values a, kr and fk because each of (fk + kr + 1)
ABE servers send a keys of size (G1 +G2) (see Section 5.5.6).

As described in Section 5.5.4, our distributed update authentication protocol
includes the costs due our MA-CP-ABE extension, and costs due to distributed
key agreement and deterministic encryption. We observe that any deterministic
symmetric encryption scheme adds only a minor computational overhead with
respect to probabilistic symmetric encryption schemes [64], that in turn are
negligible with regard to asymmetric encryption schemes. Moreover, they do
not add relevant network overhead. Thus, any role that is able to operate
MA-CP-ABE is also able to support deterministic encryption. We analyze the
costs of the distributed key agreement by considering an instantiation based
on authenticated group key agreement protocol [34]. Each developer executes
2|D| + 1 group exponentiations and 3|D| signatures, where kd < |D| ≤ nd
is the number of developers that participate in the key agreement protocol.
Moreover, the network costs of each developer consist of 3|D| group elements
and 3|D| signatures. If we consider realistic values of |D| being within the
tens of developers, the amount of group elements and digital signatures that
a developer must compute and transmit introduce feasible computational and
network costs.

5.7.2 Performance evaluation

The performance evaluation of our MA-CP-ABE extension is based on two
pairing-friendly curves: BN256 [95] and BN462 [106], which account for security
levels of about 100 and 128 bits. In Table 5.4 we report timings expressed in
clock cycles and group element sizes expressed in bits. We obtained timings by
using the implementations included in the MCL library v1.10 [93] compiled for
Intel i7-8665U processor. Moreover, we analytically computed element sizes by
using the curves parameters. For BN256 G1 = 256 and G2 = GT = k·G1 = 3072
bits, and for BN462 G1 = 462 and G2 = GT = k · G1 = 5544 bits, where G1

is computed by the designers of the curve with regard to the security level and
k = 12 is the embedding degree of both curves. The sizes are computed by
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Curve λ
Timings [Clock cycles] Size [bit]

p1 p2 pT e H G1 G2 GT
BN256 100 97 k 210 k 332 k 638 k 131 k 256 3063 3063
BN462 128 719 k 1.6 M 1.9 M 4.8 M 788 k 462 5535 5535

Table 5.4: Curves parameters and performance

nr kr γ x
BN256 BN462

Enc Dec Size Enc Dec Size
2 1 1 4 1.2 ms 2.0 ms 3.7 kB 7.3 ms 14 ms 6.7 kB
2 1 2 6 1.7 ms 3.0 ms 5.4 kB 11 ms 21 ms 9.7 kB
2 1 5 12 3.3 ms 5.9 ms 10.4 kB 21 ms 43 ms 18.7 kB
2 1 10 22 6.0 ms 11 ms 18.7 kB 38 ms 78 ms 33.7 kB
2 1 50 102 28 ms 51 ms 85.2 kB 177 ms 363 ms 153.8 kB
3 1 1 12 3.3 ms 5.9 ms 10.4 kB 21 ms 43 ms 18.7 kB
3 1 2 18 4.9 ms 8.9 ms 15.4 kB 32 ms 64 ms 27.7 kB
3 1 3 24 6.6 ms 12 ms 20.4 kB 42 ms 85 ms 36.7 kB
3 1 10 66 18 ms 33 ms 55.3 kB 115 ms 235 ms 99.8 kB
3 1 50 306 83 ms 152 ms 255.0 kB 530 ms 1.1 s 460.2 kB
4 1 10 132 36 ms 65 ms 110.2 kB 229 ms 470 ms 198.9 kB
5 2 3 120 33 ms 59 ms 100.2 kB 208 ms 427 ms 180.9 kB

Table 5.5: Evaluation of encryption and decryption times, and of the ciphertext
size

considering compressed elliptic curve coordinates and uncompressed finite field
elements. In such a way, the size of G1 and G2 is equal to the size of an element
of the field over which the curve is defined.

To estimate the performance of the approach in realistic scenarios, in Ta-
bles 5.5 and 5.6 we propose results based on a set of parameters that are
representative for real-world scenarios. In both tables, we compute timings
from the clock cycles reported in Table 5.4 and formulas reported in Tables 5.2
and 5.3, and in Equation (5.37) by considering a modern x86 64 CPU operat-
ing at 4.8GHz. The considered parameters influence the system performance:
nr, kr, γ, a and fk. In Table 5.5 we show encryption and decryption times as
well as ciphertext size which depend on parameters nr, kr and γ. Moreover, in
Table 5.6 we report key generation times and the sizes of decryption keys for
ABE servers and clients, which depend on parameters a, kr and fk.

Results in Table 5.5 highlight that decryption, run by clients, is the most
expensive operation and typically costs twice the encryption, run by developers.
Our proposal is practical in realistic scenarios where the number of ABE servers
nr and the amount of tolerable malicious servers kr is of few units. For example,
when nr = 3, kr = 1 and γ is within tens of logical gates, timings are acceptable
(if γ ∈ [1, 10] then decryption takes between 60ms to 200ms). A possible instance
of the original access policy with γ = 3 is P = A ∧ (D ∨ (B ∧ C)).
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a (fk + kr + 1)
BN256 BN462

Keygen Server Client Keygen Server Client

2
2

413 us 6.7 kB
13.3 kB

3.0 ms 12.0 kB
24.0 kB

3 20.0 kB 36.0 kB
6 39.9 kB 72.1 kB

3 3 619 us 10.0 kB 30.0 kB 4.5 ms 18.0 kB 54.1 kB
30 4 6.2 ms 99.8 kB 399.4 kB 45 ms 180.2 kB 720.7 kB

Table 5.6: Evaluation of key generation timings and key sizes

Table 5.5 also reports the space overhead of a single ABE ciphertext in
columns “Size”, which corresponds to the network cost for clients during the
download and decrypt procedure, and for developers during the authenticate
update procedure (see Table 5.3). As highlighted in Table 5.3, this value must be
multiplied by |D| so to compute the network and storage costs of the distribution
infrastructure bears during the publish procedure. In realistic scenarios where
the number of ABE servers nr and the amount of tolerable malicious ABE
servers kr are within a few units, and the number of logical gates γ of the original
access policy is within tens of gates, the overhead does not exceed 200KB. When
software updates are in the order of hundreds of kilobytes, the space overhead of
one ABE ciphertext has a size comparable to that of the update. This overhead
becomes negligible in scenarios where software updates tend to be in the order
of ten megabytes or more.

Our performance evaluation shows that the timings for generating ABE keys
are acceptable even in cases where a client satisfies several tens of attributes,
as evidenced in Table 5.6. Curve BN256 allows to compute a single ABE key
in 206.5 microseconds, allowing to generate 4842 ABE keys per second. Curve
BN462 allows to compute a single ABE key in 1.5 milliseconds, allowing to gen-
erate 666 ABE keys per second. We note that these throughput values consider
the maximum achievable throughput of a single machine with a single core exe-
cuting the key generation procedure. Higher throughput values can be obtained
by horizontally and vertically scaling ABE servers or by choosing a key reliabil-
ity value fk such that 0 ≤ fk ≤ nr−kr−1, so that the authentication server can
apply load balancing strategies to share the load between ABE servers, as we
discussed in Section 5.5.6. The network costs for ABE servers and the network
and storage costs for clients in scenarios where a client satisfies a few attributes,
tend to be several tens of kilobytes. In extreme scenarios where a client satisfies
several tens of attributes of an unrealistically complex access policy, the space
overhead of ABE keys is several hundreds of kilobytes.

Our analysis shows that the framework is practical for a number of ABE
servers in the order of several units, and a number of developers and logical
gates in access control policies in the order of tens. In particular, the proposed
framework is better suited for scenarios in which software updates tend to be
in the order of megabytes. As a requirement to support the framework, clients
must have enough memory and storage capacity to maintain ABE decryption
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keys and decrypt ciphertexts, that are typically of tens of kilobytes each.

5.8 Final remarks

We propose an original framework that allows the secure and survivable dis-
tribution of confidential software updates. This framework is based on multi-
authority attribute-based encryption, and extends its key generation procedure
with an original technique to guarantee survivability. It is based on a distributed
infrastructure with no single points of failure which is able to guarantee availabil-
ity and security even in the presence of partial compromises. We demonstrate
the practicality of the proposal through a performance evaluation of our orig-
inal key generation technique and of the encryption scheme in the context of
secure software updates. The results show that the proposed framework can
achieve practical performance at 128-bit security level on modern computers in
realistic settings. This framework paves the way to the design of secure and ro-
bust business-oriented architectures for the distribution of confidential software
updates. Our proposal highlights even some interesting open problems, such as
the protection of source code confidentiality with no weakest link security as-
sumption, and the possibility of enabling software transparency without relying
on third parties. These issues may be addressed in future work that may well
be integrated into the proposed framework.
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Chapter 6

Conclusions

Recent incidents show that adversaries are becoming increasingly sophisticated,
to the extent that they are now capable of compromising even the trusted com-
ponents of existing IT systems. These events highlight that, to thwart sophis-
ticated adversaries, IT systems must be able to survive successful attacks. To
address this urgent challenge, in this thesis we consider the most critical IT
systems and redesign them to be survivable. We introduce the first survivable
zero trust architecture, address limitations of existing password-based surviv-
able SSO protocols, propose the first passwordless survivable SSO protocol and
present the first survivable software update framework. The contributions of
this thesis advance the field of survivability and intrusion tolerance which is
still open to several improvements. New research directions could investigate
survivability of IT systems that are going to be essential for future society and
that have not been considered in this thesis, improve usability of existing pro-
posals or address the technological and organizational challenges that need to
be solved to ease the adoption of survivable systems.
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