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1). 
The determination of the midspan displacement as a function of Ma 

was subsequently obtained using the principle of virtual work. As 
reference of the real and fictional schemes, the Eqs. (5) and (6) can be 
drawn, 

MR(z1) = F z1 , Mf (z1) =
1
2

z1, 0 ≤ z1 <
L
3

(5)  

MR(z2) =
F L

3
, Mf (z2) =

L
6
+

z2

2
0 ≤ z2 ≤

L
6

(6)  

and the δ determined as reported in Eq. (7), 

δ = 2

⎛

⎜
⎝

∫ L
3

0

Mf (z1) MR(z1)
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(
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(
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⎞

⎟
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(7)  

where: δ is the midspan deflection for B_SE772, MR(z1) and MR(z2) are 
the bending moments due to the real loading, Mf(z1) and Mf(z2) are the 
bending moments due to the virtual unitary loading, L is the effective 
beam length and J(MR(z1)) is the moment of inertia as a function of the 
bending moment due to the real moment. Shear contributions have been 
neglected. 

3. Results and discussion 

3.1. Compressive test 

The crack pattern observed in the SE772_C-28 is deemed satisfactory 
per the criteria laid out in standard [26], as illustrated in Fig. 8. Table 3 
presents a summary of the engineering properties of SE772 * , derived 
from the tests conducted on the cubic specimens. The obtained standard 
deviation aligns with results from compression tests on earth-based 

materials [5,6,33]. 

3.2. Pull-out test 

Despite the confinement offered by the SE cover at a minimum 
thickness of 12ø, all of the P_SE772 * _l_ ø specimens failed by splitting, 
as shown in Fig. 9. This is mainly due to: (i) the insufficient confinement 
provided by the SE, and (ii) absence of stirrups. 

In Fig. 10, a comparison between the experimental results and the 
CEB-FIP MC90 [15] and CEB-FIP MC2010 [16] predictive models is 
presented in terms of bond stress-vs-slip relation. 

In Fig. 10, the initial curved segment derived from the models cor-
responds to the phase where the ribs penetrate the mortar matrix, a 
process accompanied by micro-cracking. Experimental outcomes for this 
initial segment align well with model predictions, irrespective of the 
embedding length. Upon reaching τmax, the declining phase begins, 
attributed to the splitting failure evident in these results. 

Table 4 details a comparison between the τmax observed for each 
specimen and the values predicted by the two models. For an embedding 
length of 10ø, τmax shows a significant alignment with τmax,CEB-MC2010; 
the relative error for each specimen remains under 17%. Conversely, 
P_SE772 * _15ø _12 typically registers values higher than those antici-
pated by the models. Yet, a consistent pattern emerges, demonstrating 
that τmax augments in tandem with the bonded length. As such, for 
embedding lengths exceeding 10ø, there is a pronounced alignment with 
the predictive model tailored for RC materials under optimal bond 
conditions. This suggests that presuming perfect adhesion between steel 
bars and SE is a plausible approximation—mirroring assumptions in 
traditional RC—given a sufficiently long bonded segment. 

While the experimental bond stress at a 6 mm slip closely mirrors the 
standard proposed by CEB-MC90, the declining segment presents a 
gentler gradient in comparison to anticipated trajectories. This 
discrepancy may stem from residual bond stresses caused by concrete 
shearing between ribs. Future investigations are slated to offer a more 
in-depth characterization of the interplay between SE and steel rebars. 

3.3. Four-point loading bending test 

In Scenario S1, the horizontal LVDTs, which are affixed to the middle 
region of the beam, allow for the approximation of the theoretical cur-

Fig. 7. Ma-χ relationship.  

Fig. 8. Crack patterns of: a) SE772 * _C-28_1, b) SE772 * _C-28_2, c) SE772 * _C-28_3, d) SE772 * _C-28_4.  

Table 3 
Engineering properties of SE772 * .  

Specimens BD 
(kg/m3) 

C-28 
(MPa) 

SE772_C-28_1 
SE772_C-28_2 
SE772_C-28_3 
SE772_C-28_4 

2107.20 
2084.83 
2071.61 
2048.89 

14.38 
13.62 
12.84 
10.04 

Avg.±Std Dev. 2078.13±24.41 12.72±1.89 

C-28: 28-day compressive strength value 
BD: Bulk density after curing 
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vature of the cross-section during loading and unloading cycles, see Eq. 
(8), 

χ =
M0

EMSE772 Jom
+ (δint + δext)

1
lcr

1
h

(8)  

where: M0 is the midspan moment due to the self-weight load of the 
reinforced B_SE772, EMSE772 is the elastic modulus of the SE772 which is 
assumed as reported in [5], Jom is the moment of inertia of the homog-
enized cross section, δint is the extension at the intrados measured by 
horizontal LVDTs glued on the bottom fiber during the S1, δext is the 
shortening at the extrados measured by horizontal LVDTs glued on the 
top fiber during the S1, lcr is the characteristic length of the LVDT, and h 
is the height of the beam cross-section. 

The Fig. 11 shows the total load applied to the beam (P1 + P2) vs the 
midspan deflection. The self-weight deflection contribution 
(δ = 0.93 mm), computed according to the theory of elasticity, has been 
added to the measured midspan displacement. Furthermore, in Fig. 11 
(a) is highlight a comparison between the experimental moment- 
curvature diagram and the Ma - χ relationship as defined in the model 
presented in Section 2.5.2. This comparison is intended to validate the 
theoretical diagram of Fig. 7 in the elastic field. 

Fig. 9. Splitting failure mode for: a) P_SE772 * _10ø_12, b) P_SE772 * _15ø_12.  
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Fig. 10. Bond stress – slip relationship: comparison between experimental results and predictive models.  

Table 4 
Comparison between experimental and predictive models in terms of τmax.  

Specimens τmax 

(MPa) 
τmax/τmax,CEB-MC90 

(MPa) 
τmax/τmax,CEB-MC2010 

(MPa) 

P_SE772 * _10ø_12_1 
P_SE772 * _10ø_12_2 
P_SE772 * _10ø_12_3  

5.27 
4.95 
4.92  

0.81 
0.76 
0.76  

0.88 
0.83 
0.83 

P_SE772 * _15ø_12_1 
P_SE772 * _15ø_12_2 
P_SE772 * _15ø_12_3  

5.36 
6.75 
6.55  

0.82 
1.03 
1.01  

0.90 
1.13 
1.10  

M. Franciosi et al.                                                                                                                                                                                                                              



Engineering Structures 306 (2024) 117739

8

At the end of S1, the S2 is set to measure the mechanical response of 
the beam as the load increases until to reach the complete failure, see  
Fig. 12. The self-weight offset has been considered in S2 too. 

All beams in both phases (S1 and S2) display consistent trends, 
thereby validating the repeatability of the SE manufacturing process. 
Following the elastic phase, the reinforced SE beams demonstrates 
ductile behavior, attributable to the presence of the steel reinforcement. 
Notably, there’s a distinct phase where the midspan deflection amplifies 
while the force remains constant. This behavior closely aligns with that 
observed in RC beams. The flexural performance metrics for the rein-
forced SE beams can be found summarized in Table 5. 

For all beam samples, the first macro-cracks appear upon reaching 
the peak load in the midspan. All the samples display similar crack 
patterns. As seen in reinforced concrete beams, there is an almost ho-
mogeneous distribution of vertical cracks corresponding to the position 
of the steel stirrups embedded in the beam, as shown in Fig. 13. As the 
load increases, the cracks gradually widen and increase particularly in 
the neighboring of the supports. At the failure load, the cracks in the 
central region have an average length of 32 mm and a width of 2 
± 1 mm, while the cracks in proximity to the supports are characterized 
by an average length of 20 mm and a width of 0.2 ± 0.1 mm. 

All the reinforced SE beams exhibited failure in a flexural mode. 
Initially, the steel bars in the bottom fiber undergo plasticization, a 
phenomenon further corroborated by the plateau observed in Fig. 12. 
This is followed by a compression failure in the top fiber, as illustrated in  
Fig. 14(a). The ultimate collapse of the reinforced SE beams arises once 
the steel bars in the bottom fiber break, as depicted in Fig. 14(b). This 
highlights a ductile failure, thus confirming the “good bond behavior” 
[15,16] between SE and steel bars as shown in Section 3.2. This cor-
roborates the assumption of perfect adhesion adopted in Section 2.5.2. 

A comparison between the analytical predictions and experimental 
results in terms of P1 +P2 – δ relationship is shown in Fig. 15. It should be 
noted that the model well approximates the experimental results in both 
the elastic and plastic fields. The maximum failure load provided by the 

model is 123.20 kN with a displacement δ of 50.95 mm. At the theo-
retical failure point, the SE strain is 3‰, while the steel in the in the 
lower tension zone reaches 12‰. The differences covered by the 
experiment are due to a twofold cause: (i) the maximum force of the 
model is lower due to an additional hardening effect near the failure, (ii) 
based on the experimentally observed failure domains, it is reasonable to 
assume the formation of a localized plastic hinge, enabling significant 
displacements under constant load. 

4. Conclusions 

In this research, an experimental campaign was conducted to char-
acterize the adherence between SE772 and steel bars. Subsequently, the 
flexural behavior of reinforced SE772 was examined through four-point 
loading bending tests. Due to the lack of predictive models for earthen 
structures, existing models designed for RC were employed. These 
models aimed to predict both the adherence between SE772 and steel 
bars and the load–displacement relationship of reinforced SE772 
members under bending. The presented models were then validated 
against experimental results. From this research, several conclusions can 
be drawn: 
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Fig. 12. a) Load-midspan deflection in S2, b) Moment-midspan deflection diagram in S2.  

Table 5 
Load, Moment and midspan deflection peaks measured during the four-points 
loading bending test on reinforced SE beams.  

Specimens Pu 

(kN) 
Mu 

(kNm) 
δ (Mu) 
(mm) 

B_SE772_1 
B_SE772_2 
B_SE772_3 

139.04 
135.88 
133.80 

92.08 
90.08 
88.76 

97.16 
90.92 
85.33 

Avg. ±Std Dev 136.24±2.64 90.31±2.64 91.14±5.92 

Pu: ultimate load 
Mu: ultimate moment 
δ(Mu): Midspan displacement at ultimate moment 
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1. A comparison of suitable predictive models for RC structures with 
experimental results from pull-out tests supports the hypothesis of 
perfect adhesion between steel bars and SE materials. 

2. The model based on the stress-strain relationship, tailored for con-
crete, accurately anticipates the behavior of reinforced earth beams 
under bending. This suggests that the model has potential utility in 
designing steel-reinforced SE beams with an optimal reinforcement 
configuration to fulfill specific structural requirements. Moreover, 
the adoption of this model might address challenges related to 

limited understanding of the behavior of earthen materials and their 
interaction with steel reinforcement. 

In conclusion, this study underscores the potential of projected steel- 
reinforced earthen materials. It also indicates that methodologies from 
existing RC structure models can be applied to reinforced SE structures, 
offering a potential avenue towards more sustainable and cost-efficient 
construction methodologies. 

Fig. 13. a) Undeformed configuration. Crack pattern for: b) B_SE772_1, c) B_SE772_2, d) B_SE772_3.  

Fig. 14. a) SE failure in compression b) Steel failure.  
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