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A B S T R A C T

We study the mechanics of sheet straight cutting in terms of a linear elastic fracture mechanics
(LEFM) problem for a infinite thin elastic Kirchhoff plate partly supported by a Winkler
foundation. The plate features a semi-infinite crack that is located at the edge of the supported
zone and that is subjected to shear and bending loads, representing the action of the cutting
tool (e.g. scissors blades). The fact that the plate is only partly supported by the foundation
significantly complicates the analysis for it creates a non-symmetric framework, both locally
and globally. Yet, a semi-analytical solution is obtained through casting the matrix Wiener–Hopf
problem in terms of a pair of convolution integral equations defined on a semi-infinite domain.
Stress intensity factors (SIFs) are obtained which converge to the known limits for a symmetric
and skew-symmetric free plate. This analysis reveals the fundamental role played by the support
in affecting the SIFs in an opposing manner, by enhancing/decreasing the symmetric/skew-
symmetric components. Consequently, changing the support stiffness is capable of shifting the
failure mechanism, from bending to shear. This observation may be taken advantage of when
cutting materials which are more sensitive to either of these failure mechanisms. Also, it proves
that the role of the support cannot be neglected when developing mechanical models of any
cutting process.

. Introduction

In a typical sheet cutting process, a sheet of material is divided in two parts through application of a pair of large enough forces
s to cause material failure. A common example is metal sheet cutting, which usually occurs by applying a shearing force, for
xample through a punch, to the sheet resting on a die (in which case the process is named ‘‘punching’’). This process is sometimes
eferred to as shearing cutting (Fig. 1) and it belongs to the large family of manufacturing procedures aimed at deforming a metal,
uch as blanking (making holes in a sheet), bending, calendering and slitting. The same basic process occurs when tearing paper
ith a ruler or along a table edge, as in Fig. 2, for the edge operates as the cutting tool and, most importantly, the paper has to be

arefully kept well in place (like from a die) for the operation to take place smoothly.
Alternatively, a pair of blades may be used, as in familiar scissor cutting. The cutting process is generally delicate and error prone,

n dependence of material flaws but also of imperfections in applying the right constraining conditions, which prove crucial (Atkins,
009). In particular, it is easy to see that, at the microscale, crack formation and propagation induced by the cutting process proceed
n zig-zag fashion, although this may not appear so clearly at the macroscale. However, this feature may sometimes also emerge at
he macroscale, when the material crack unexpectedly deviates from the straight path. In fact, we show that this behaviour is not
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Fig. 1. Schematics of shearing cutting of a steel sheet.

Fig. 2. Tearing paper along a table edge.

extraneous to the classical theory of cracks, which is traditionally based on linear elastic fracture mechanics (LEFM) results that
are crucially supplemented by a local symmetry requirement to predict the crack path (Gol’dstein & Salganik, 1974; Liebowitz &
Sih, 1968). This is well straightforward inasmuch as the geometry under consideration indeed supports such symmetry requirement,
at least locally, and this is in fact the case of many fracture mechanics problems which may be solved explicitly (Ang, Folias, &
Williams, 1963; Nobili, Radi, & Lanzoni, 2014, 2017; Sih, 1969). Remarkably, they form the basis of many technical solutions that
are applied, in the form of guidelines or codes, for the design of thin light structures, especially in the shape of shells and plates
for the aerospace and high performance sectors (Gallagher, 1984; Kumar, German, & Shih, 1981; Sih, 1969). The matter becomes
blurred when general non-symmetric conditions are dealt with, precisely in the close neighbourhood of the crack tip.

Clearly, the problem of cutting, even in the case of brittle materials, cannot be fully represented within the framework of
LEFM, given that elasto-plastic, nonlinear, thermo-mechanical and irreversible processes may play an important role (Atkins, 2009;
Piccolroaz, Gorbushin, Mishuris, & Nieves, 2020). Consequently, for the full picture, numerical methods have to be reverted to in
order to solve the nonlinear coupled model which emerges. However, even then, the starting point is often the stress intensity factor
(SIF) of LEFM, to avoid attacking an overwhelmingly complicated problem, see, for example, Deibel, Raemy, and Wegener (2014)
and Zhuang, Liu, Cheng, and Liao (2014, Chap.6). Moreover, it is most striking that, to our best knowledge, no contributions are
available in the literature which take into consideration the role of the support (the die) in affecting the mechanics of the cutting.
This is all the more remarkable if one considers that any cutting, say scissor cutting, cannot take place without the action of a
support, if only in consideration of the fact that cutting forces can never be fully self-equilibrated (whence the role of the clearance
in Fig. 1). Further, we mention that other pathways to failure exist beside cracking, as described in Zhang, Zhou, Chudnovsky, and
Pham (2020) for delamination.

Only a limited number of crack problems have been solved analytically within elastic plate theory (Sih, 2012), and this despite
the utmost practical importance of these structures in engineering applications (Miedlar, Berens, Gunderson, & Gallagher, 2002,
Chap.11). The reasons behind this shortcoming may be traced to the difficulties attached to solving a fourth order PDE with
2



International Journal of Engineering Science 193 (2023) 103964T. Shugailo et al.

a
f
s
f
t
k
(
(
A
a
n

2

C

i

complicated boundary conditions, for which the superposition principle is of limited help. Consequently, only symmetric or skew-
symmetric conditions could be solved in general (Sih, 1971). When introducing an elastic foundation, matters become even more
intricate, because, from a mathematical standpoint, the presence of the foundation destroys the homogeneous character of the plate
PDE. In their pioneering work, Ang et al. (1963) could work out the SIFs in bending of a fully supported plate, that is a symmetric
setting. This work was later extended to a weakly nonlocal foundation (Nobili et al., 2014; Nobili, Radi, & Lanzoni, 2016) and then
generalized to dynamical effects (Nobili et al., 2017). Incidentally, these problems are also very relevant to the engineering design
of pavements (Ramsamooj, 1993). The case of a finite crack and of a shell were considered by Folias (1970) and later by Mohamed,
Bichir, Matbuly, and Nassar (1996), while a simplified 3D theory was adopted in Hartranft and Sih (1970). In Cheng and Reddy
(2004), a closed-form Green function for a Griffith crack or a rigid line inclusion (anticrack) in an infinite anisotropic elastic plate
could be obtained. These results were recently improved by Hsu and Hwu (2020) to reconcile the rigid body motions of the plate
with that of the inclusion. The problem of studying the role of the foundation in affecting crack propagation is conceptually similar to
that recently considered in Pronina, Maksimov, and Kachanov (2020), where crack penetration is antagonized by contrast in fracture
toughness. In such studies, analysis of the Energy Release Rate (ERR) or, equivalently, of the SIF, plays a crucial role (Piccolroaz,
Peck, Wrobel, & Mishuris, 2021). Moreover, specific boundary conditions may significantly influence not only the fracture measures,
but even lead to different singularities at the crack/defect tip. For example, if one considers surface stress prescribed along the body
surface, the relations between the ERR and SIFs may change, as well as the stress singularity itself (Gorbushin, Eremeyev, & Mishuris,
2020) that requires an additional separate analysis in terms of possible fracture initiation/propagation.

In this paper, we investigate the fundamental LEFM problem of an infinite thin elastic Kirchhoff plate partially supported by
n elastic local (Winkler) foundation (the die). The plate sustains a semi-infinite rectilinear crack, located precisely along the
oundation edge, which is loaded, in continuous fashion, at the crack flanks, to simulate the cutting tool action, for example the
cissors blades. Spotlight is set on determining the stress intensity factors and, in particular, on being able to assess the role of the
oundation properties on the cutting process and specifically on its path. The problem is laid out in Section 2 and then recast in
he Fourier domain in Section 3 in the form of a pair of inhomogeneous Wiener–Hopf functional equations (Noble, 1958). Since the
ernel matrix is non-diagonal, this coupled problem cannot be tackled in general. This difficulty is overcome first by regularization
Section 4) and subsequently by reduction to a pair of Fredholm convolution equations (Section 5), which are then solved numerically
Section 6). In an attempt to lighten the mathematical structure of the manuscript, detailed derivations have been moved to the
ppendix. Conclusions are drawn in Section 7. Results compare favourably with the limiting cases of a free plate under symmetric
nd skew-symmetric global conditions (see Appendix A). Interestingly, the limiting case of an exceedingly stiff (weak) support does
ot correspond to the solution of a built-in (free) half-plate, unless special symmetries are assumed for the loading.

. Governing equations

Let us consider an infinite Kirchhoff plate partially supported by a Winkler elastic foundation and partially free (Fig. 3). A
artesian reference frame is attached to the plate in such a manner that the 𝑥-axis coincides with the transition line at the

supported/free zone. We assume that the supported plate occupies the upper half-plane A, 𝑦 > 0, and the free plate is located
n the lower half-plane B, 𝑦 < 0. A semi-infinite rectilinear crack is located at negative values of the 𝑥-axis. The governing equation

for the transverse displacement of the plate 𝑢𝑧 reads

𝐷 ▵▵ 𝑢𝑧 = 𝑞 − 𝜋, (1)

being ▵= 𝜕𝑥𝑥 + 𝜕𝑦𝑦 the Laplace operator in two dimensions, 𝑞 the transverse distributed load, 𝐷 = 𝐸ℎ3∕(12(1− 𝜈2)) the plate bending
stiffness and 𝜋 the soil reaction. Here, 𝐸 is Young modulus and 𝜈 Poisson’s ratio. For the case at hand, the soil reaction is given by

𝜋 =
{

𝑘𝑢𝑧, 𝑦 > 0,
0, 𝑦 < 0,

(2)

wherein 𝑘 is Winkler elastic modulus. Assuming no applied external loading, Eqs. (1), (2) may be rewritten as (cf. Nobili & Volpini,
2021 in the static framework)

{

▵▵ 𝑢𝑧 + 𝜆−4𝑢𝑧 = 0, 𝑦 > 0,
▵▵ 𝑢𝑧 = 0, 𝑦 < 0.

(3)

having let the plate bending length scale

𝜆 = 4

√

𝐷
𝑘
.

Hereinafter, we adopt the dimensionless variables

(𝑥1, 𝑥2, 𝑤) = 𝜆−1(𝑥, 𝑦, 𝑢𝑧). (4)

Besides, we denote by 𝑤𝐴,𝐵 the restriction of 𝑤 to the domain above (below) the crack line, namely 𝑤𝐴,𝐵(𝑥1, 𝑥2) = 𝑤(𝑥1, 𝑥2) with
𝑥2 ≷ 0. Further, we let the dimensionless quantities: slope (along 𝑥2), bending moment and Kirchhoff equivalent shearing force
(acting across the crack line)

𝜙 = 𝜕𝑥2𝑤,

𝑚 =
(

𝜕𝑥2𝑥2 + 𝜈𝜕𝑥1𝑥1
)

𝑤,

𝑣 = 𝜕
[

𝜕 + (2 − 𝜈)𝜕
]

𝑤,

(5)
3
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Fig. 3. A Kirchhoff elastic plate partially supported by a Winkler elastic foundation (zone A, 𝑦 > 0) and cracked at 𝑥 < 0.

where the last two have been brought in dimensionless form dividing by 𝐷𝜆−1 and 𝐷𝜆−2, respectively.
The boundary conditions demand continuity beyond the crack-tip

𝑤𝐴(𝑥1, 0) = 𝑤𝐵(𝑥1, 0)

𝜙𝐴(𝑥1, 0) = 𝜙𝐵(𝑥1, 0)

𝑚𝐴(𝑥1, 0) = 𝑚𝐵(𝑥1, 0)

𝑣𝐴(𝑥1, 0) = 𝑣𝐵(𝑥1, 0)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

𝑥1 > 0, (6)

and a prescribed continuous (and symmetric) loading at the crack flanks

𝑚𝐴(𝑥1, 0) = 𝑀0(𝑥1)

𝑚𝐵(𝑥1, 0) = 𝑀0(𝑥1)

𝑣𝐴(𝑥1, 0) = 𝑉0(𝑥1)

𝑣𝐵(𝑥1, 0) = 𝑉0(𝑥1)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

𝑥1 < 0, (7)

where it is understood that 𝑀0(𝑥1) and 𝑉0(𝑥1) are the bending moment and shearing force applied at the crack faces. Symmetry in
the applied load is not really important here and it is only assumed for simplicity because, otherwise, additional balance conditions
would be needed.

We further assume that the given loads are not singular and decay at infinity:

|𝑀0(𝑥1)|, |𝑉0(𝑥1)| < ∞, 𝑥1 ∈ (−∞, 0], (8)

and

𝑀0(𝑥1) = 𝑂 (𝑒𝛾∞𝑥1 ) , 𝑉0(𝑥1) = 𝑂 (𝑒𝛾∞𝑥1 ) , 𝑥1 → −∞, (9)

𝑀0(𝑥1) = 𝑂
(

|𝑥1|
𝛾0
)

, 𝑉0(𝑥1) = 𝑂
(

|𝑥1|
𝛾0−1

)

, 𝑥1 → 0−, (10)

where 𝛾∞ > 0, 𝛾0 > 1∕2 are any constants not weaker than the specific behaviour of the solution. Those conditions may be weakened
but it is not our goal in this paper.

We agree to add a subscript zero to denote the restriction of a function to the crack line 𝑥2 = 0, i.e. 𝑤0(𝑥1) = 𝑤(𝑥1, 0). Clearly,
Eqs. (6) and (7) imply continuity of bending moment and shearing force along the entire 𝑥1 axis. Indeed, taking the difference, we
get

[[𝑤]] = 0, [[𝜙]] = 0, 𝑥1 > 0, (11a)

[[𝑚]] = 0, [[𝑣]] = 0, −∞ < 𝑥1 < ∞, (11b)

𝑚𝐵
0 (𝑥1) = 𝑀0(𝑥1), 𝑣𝐵0 (𝑥1) = 𝑉0(𝑥1), 𝑥1 < 0. (11c)

where [[𝑓 ]] = 𝑓𝐴
0 − 𝑓𝐵

0 at 𝑥2 = 0.
Assuming sufficient decay at infinity, one can observe that the following balance conditions should be satisfied for any 𝑥2 ≤ 0

(that is in the free plate)

∫

∞

−∞
𝑣𝐵(𝑥1, 𝑥2)d𝑥1 = 0, ∫

∞

−∞
𝑚𝐵(𝑥1, 𝑥2)d𝑥1 = 0, ∫

∞

−∞
𝑥1𝑣

𝐵(𝑥1, 𝑥2)d𝑥1 = 0, (12)

expressing vertical and rotational equilibrium about 𝑥1 and 𝑥2, respectively. In particular, along the supported/free plate transition
line 𝑥2 = 0, taking into account the conditions (11b), one gets

∞
𝑚𝐴,𝐵(𝑥1)d𝑥1 = 0,

∞
𝑣𝐴,𝐵(𝑥1)d𝑥1 = 0,

∞
𝑥1𝑣

𝐴,𝐵(𝑥1)d𝑥1 = 0. (13)
4

∫−∞ 0 ∫−∞ 0 ∫−∞ 0
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Besides, we anticipate that

𝑤(𝑟, 𝜃) = 𝑃𝑤(𝑥1, 𝑥2) + 𝑟3∕2
[

𝑒𝑤𝑒(𝜃) +𝑜𝑤𝑜(𝜃)
]

+ 𝑂
(

𝑟2
)

, as 𝑟 → 0, (14)

where 𝜃 ∈ [−𝜋, 𝜋], 𝜃 = ±𝜋 corresponding to the upper/lower crack flank, and we have let the rigid body motion (rbm)

𝑃𝑤(𝑥1, 𝑥2) = 0 +1𝑥1 +2𝑥2.

Here, we have introduced the polar coordinates (𝑟, 𝜃) such that (𝑥1, 𝑥2) = 𝑟(cos 𝜃, sin 𝜃). Also, 𝑤𝑒,𝑜(𝜃) is the even/odd part in 𝜃 of the
first asymptotic term in the displacement (Williams, 1961, Eq.(8))

𝑤𝑒(𝜃) = − cos 3𝜃
2

+
3(1 − 𝜈)
𝜈 + 7

cos 𝜃
2
, 𝑤𝑜(𝜃) = sin 3𝜃

2
−

3(1 − 𝜈)
3𝜈 + 5

sin 𝜃
2
, (15)

where 𝑒,𝑜 are the normalized stress intensity factors (SIFs). From the asymptotics (14), we can easily compute the slope, bending
moment and shearing force across a surface with normal in the 𝜃 direction

𝜙𝜃(𝑟, 𝜃) = 2 + 𝑟1∕2
(

𝑒𝜙𝑜(𝜃) +𝑜𝜙𝑒(𝜃)
)

+ 𝑂 (𝑟) , as 𝑟 → 0, (16a)

𝑚𝜃(𝑟, 𝜃) = 𝑟−1∕2
(

𝑒𝑚𝑒(𝜃) +𝑜𝑚𝑜(𝜃)
)

+0 + 𝑂
(

𝑟1∕2
)

, as 𝑟 → 0, (16b)

𝑣𝜃(𝑟, 𝜃) = 𝑟−3∕2
(

𝑒𝑣𝑜(𝜃) +𝑜𝑣𝑒(𝜃)
)

+ 1𝑟
−1 + 𝑂

(

𝑟−1∕2
)

, as 𝑟 → 0, (16c)

where

𝜙𝑒(𝜃) =
3
2

(

cos 3𝜃
2

− 1 − 𝜈
3𝜈 + 5

cos 𝜃
2

)

, 𝜙𝑜(𝜃) =
3
2

(

sin 3𝜃
2

− 1 − 𝜈
𝜈 + 7

sin 𝜃
2

)

,

𝑚𝑒(𝜃) =
3
4
(1 − 𝜈)

(

cos 3𝜃
2

+ 3𝜈 + 5
𝜈 + 7

cos 𝜃
2

)

, 𝑚𝑜(𝜃) = −3
4
(1 − 𝜈)

(

sin 3𝜃
2

+ sin 𝜃
2

)

,

𝑣𝑒(𝜃) = −3
8
(1 − 𝜈)

(

cos 3𝜃
2

+ 𝜈 + 7
3𝜈 + 5

cos 𝜃
2

)

, 𝑣𝑜(𝜃) = −3
8
(1 − 𝜈)

(

sin 3𝜃
2

+ sin 𝜃
2

)

.

As well known, the squares of 𝑒,𝑜 are proportional to the energy release rate.

2.1. Apriori asymptotic estimate of the solution components at infinity

To deliver the unique solution to the problem, we demand that it decays within the supported plate as

𝑤𝐴(𝑟, 𝜃) ∼ 𝜙𝐴(𝑟, 𝜃) = 𝑂(𝑟−5∕2), 𝜃 ∈ [0, 𝜋], as 𝑟 → +∞, (18)

whence, by continuity, the same occurs in the free plate at 𝜃 = 0. Motivation of these assumptions is given in Appendix C.1.
Conversely, little knowledge is available concerning the behaviour of the solution in the free plate outside the line 𝜃 = 0. For this
reason, we look at some auxiliary problems which emerge from taking symmetric or anti-symmetric conditions (see Appendix A).
From these, we deduce

𝑤𝐵(𝑟,−𝜋) = 𝑊 ∞
1 𝑟 +𝑊 ∞

2 + 𝑂(𝑟−1∕2), as 𝑟 → +∞, (19a)

𝜙𝐵(𝑟,−𝜋) = 𝛹∞
1 log 𝑟 + 𝛹∞

2 + 𝑂(𝑟−1∕2), as 𝑟 → +∞, (19b)

where the constants (which may also vanish) are to be found in the following. The corresponding estimates for the jumps across
the crack line easily follow, also in light of the fact that all functions vanish at infinity in the supported zone, namely

[[𝑤]] = 𝛷0𝑥1 −𝑊 ∞
0 + 𝑂(|𝑥1|

−1∕2), [[𝜙]] = 𝛹0|𝑥1|
1∕2 + 𝑂(|𝑥1|

−1∕2), 𝑥1 → −∞. (20)

Furthermore, we point out that those estimates emerge by assuming the fastest growing scenario, and may well be slower than
assumed, also in dependence of the applied loading. Yet, for specific external forces, these estimates may be sharpened at the
expense of generality. Instead, we prefer to stick with general results to show that the solution technique does not rely on specific
assumptions on the given functions.

For the remaining two unknowns

𝑚(𝑟, 𝜃) = 𝑂(𝑟−5∕2), 𝑣(𝑟, 𝜃) = 𝑂(𝑟−7∕2), 𝜃 ∈ (−𝜋, 0), as 𝑟 → +∞. (21)

Having all these information in place, we are now in position to develop the solution to the problem. For this, we move to the
Fourier space and use Abelian- and Tiberian-type of theorems (Piccolroaz, Mishuris, & Movchan, 2009) to evaluate the corresponding
asymptotic behaviour for the unknowns.

3. Application of the Fourier transform and asymptotics of the Fourier images

3.1. Fourier analysis of the general equations

In the following, we take advantage of the Fourier transform method, which has proven extremely useful in several problems
5

dealing with continuum as well as discrete media (and even for hybrid solids, see Slepyan, 2022). We therefore introduce the
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(two-sided or bilateral) Fourier transform

�̄�(𝑠, 𝑥2) = ∫

∞

−∞
𝑤(𝑥1, 𝑥2) exp(i𝑠𝑥1)d 𝑥1, (22)

longside the half-transforms

�̄�±(𝑠, 𝑥2) = ∫

∞

−∞
𝑤±(𝑥1, 𝑥2) exp(i𝑠𝑥1)d 𝑥1, (23)

here 𝑤±(𝑥1, 𝑥2) = 𝐻(±𝑥1)𝑤(𝑥1, 𝑥2) and 𝐻(𝑥1) is Heaviside’s step function. Immediately, we have

�̄�(𝑠, ⋅) = �̄�+(𝑠, ⋅) + �̄�−(𝑠, ⋅). (24)

In the same way we denote the Fourier transforms of the remaining fields 𝜙, 𝑚 and 𝑣, noting only that, for the last, the respective
integral should be treated in the sense of distributions.

We are now in a position to take the Fourier transform of the transmission conditions (11a), (11b)

[[�̄�+]] = [[�̄�+]] = [[�̄�]] = [[�̄�]] = 0, (25)

whence, clearly,

[[�̄�]] = [[�̄�−]], [[�̄�]] = [[�̄�−]]. (26)

In similar fashion, the balance conditions (13) may be rewritten as

�̄�𝐴
0 (0) = �̄�𝐵

0 (0) = �̄�𝐴0 (0) = �̄�𝐵0 (0) =
d �̄�𝐴0
d 𝑠

(0) =
d �̄�𝐵0
d 𝑠

(0) = 0, (27)

where the notation 𝑓𝐴,𝐵
0 stands for

𝑓𝐴
0 (⋅) = lim

𝑥2→0+
𝑓𝐴(⋅, 𝑥2), 𝑓𝐵

0 (⋅) = lim
𝑥2→0−

𝑓𝐵(⋅, 𝑥2).

Besides, we recall the inverse Fourier transform
[

𝑤,𝑤+, 𝑤−
]

(𝑥1, 𝑥2) = (2𝜋)−1 ∫

∞

−∞

[

�̄�, �̄�+, �̄�−](𝑠, 𝑥2) exp(−i𝑠𝑥1)d 𝑠. (28)

Taking the bilateral Fourier transform along 𝑥1 of the first of Eqs. (3) lends a linear constant coefficient ODE whose general
solution is

�̄�𝐴(𝑠, 𝑥2) = 𝐴1𝑒
−𝛼1𝑥2 + 𝐴2𝑒

−𝛼2𝑥2 , 𝛼𝑗 =
√

𝑠2 + i(−1)𝑗 , 𝑗 = 1, 2, 𝑥2 > 0, (29)

where 𝐴𝑗 = 𝐴𝑗 (𝑠) and i is the imaginary unit, i.e. i2 = −1. Here, provision should be taken so that the square roots lend positive
eal values on the real axis and branch cuts are not intersecting the real axis (for example, branch cuts may be taken parallel to the
maginary axis, see Noble, 1958). Denoting by 𝑧∗ = ℜ(𝑧) − iℑ(𝑠) the complex conjugate of 𝑧 = ℜ(𝑧) + iℑ(𝑠), we have

𝛼1(0) = 𝛼∗2 (0) = 𝑒−i𝜋∕4, (30)

so that 𝛼21,2(0) = ∓i. Similarly, the solution of the second of Eqs. (3) reads (free domain)

�̄�𝐵(𝑠, 𝑥2) =
(

𝐵1 + 𝑥2𝐵2
)

exp
(

𝛽𝑥2
)

, 𝑥2 < 0, (31)

and it is understood that 𝐵𝑗 = 𝐵𝑗 (𝑠) (𝑗 = 1, 2) and we have 𝛽(𝑠) =
√

𝑠2 such that sign 𝑠 = 𝛽(𝑠)∕𝑠 for 𝑠 ∈ R. Moreover, to prevent
aving branch cuts reaching the real axis, we may perturb 𝛽(𝑠) = lim𝜖→0

√

𝑠2 + 𝜖2 so that no zero sits right on the real axis (Noble,
1958). With this, we are now able to introduce the splitting

𝛽(𝑠) = 𝛽+(𝑠)𝛽−(𝑠), 𝛽+(𝑠) =
√

0 − i𝑠, 𝛽−(𝑠) =
√

0 + i𝑠, (32)

where we take the standard definition of the square root with the cut on the negative part of real axis. It is emphasized that Fourier
transforms are defined on the real axis only, but can be extended by analytic continuation into the complex plane.

In terms of the general solution, we have, in the supported plate 𝑥2 ≥ 0,

�̄�𝐴(𝑠, 𝑥2) = −𝛼1𝐴1𝑒
−𝛼1𝑥2 − 𝛼2𝐴2𝑒

−𝛼2𝑥2 , (33a)

�̄�𝐴(𝑠, 𝑥2) = 𝐴1𝑒
−𝛼1𝑥2

(

𝛼21 − 𝜈𝑠2
)

+ 𝐴2𝑒
−𝛼2𝑥2

(

𝛼22 − 𝜈𝑠2
)

, (33b)

�̄�𝐴(𝑠, 𝑥2) = −𝛼1𝐴1𝑒
−𝛼1𝑥2

(

𝛼21 + (𝜈 − 2)𝑠2
)

− 𝛼2𝐴2𝑒
−𝛼2𝑥2

(

𝛼22 + (𝜈 − 2)𝑠2
)

, (33c)

and in the free plate 𝑥2 ≤ 0

�̄�𝐵(𝑠, 𝑥2) = 𝑒𝛽𝑥2
[

𝛽
(

𝐵2𝑥2 + 𝐵1
)

+ 𝐵2
]

, (34a)

�̄�𝐵(𝑠, 𝑥2) = 𝑒𝛽𝑥2
[

−(𝜈 − 1)𝑠2
(

𝐵2𝑥2 + 𝐵1
)

+ 2𝛽𝐵2
]

, (34b)

�̄�𝐵(𝑠, 𝑥 ) = 𝑒𝛽𝑥2
[

𝛽(𝜈 − 1)𝑠2
(

𝐵 𝑥 + 𝐵
)

+ 𝐵 (𝜈 + 1)𝑠2
]

. (34c)
6
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Finally, substituting (33) and (34) into the transmission conditions (25), we have:

[[�̄�]] = 𝐴1(𝑠) + 𝐴2(𝑠) − 𝛽−1𝐵∗(𝑠) = [[�̄�−]], (35a)

[[�̄�]] = −𝛼1𝐴1(𝑠) − 𝛼2𝐴2(𝑠) − 𝐵∗(𝑠) − 𝐵2(𝑠) = [[�̄�−]], (35b)

0 = (𝛼21 − 𝜈𝑠2)𝐴1(𝑠) + (𝛼22 − 𝜈𝑠2)𝐴2(𝑠) + (𝜈 − 1)𝛽𝐵∗(𝑠) − 2𝛽𝐵2(𝑠), (35c)

0 = −𝛼1(𝛼21 + (𝜈 − 2)𝑠2)𝐴1(𝑠) − 𝛼2(𝛼22 + (𝜈 − 2)𝑠2)𝐴2(𝑠) − (𝜈 − 1)𝑠2𝐵∗(𝑠) − (𝜈 + 1)𝑠2𝐵2(𝑠), (35d)

aving introduced the convenient shorthand (see Appendix B)

𝐵∗(𝑠) ≡ 𝛽(𝑠)𝐵1(𝑠). (36)

n the equations above (33)–(36), it is understood that 𝛼𝑗 = 𝛼𝑗 (𝑠), 𝛽 = 𝛽(𝑠) and 𝑠 ∈ R, while (35a) and (35b) can be analytically
xtended into the complex half-plane 𝑠 ∈ C−.

.2. Derivation of the Wiener–Hopf system

In light of (25), the boundary conditions (7) reads

�̄�−
0 (𝑠) ≡ �̄�𝐴,𝐵

0
−(𝑠) = �̄�−

0 (𝑠), (37a)

�̄�−0 (𝑠) ≡ �̄�𝐴,𝐵0
−(𝑠) = 𝑉 −

0 (𝑠). (37b)

We consider the linear system of algebraic Eqs. (35) in the unknowns 𝐴1, 𝐴2, 𝐵1, 𝐵2. This system is regular, because its
determinant has no zeros. Upon solving these unknowns in terms of [[�̄�−]] and [[�̄�−]] and then plugging the result into (37), we
get the system of inhomogeneous functional equations of the Wiener–Hopf type

{

−𝐾11[[�̄�−]] +𝐾12[[�̄�−]] = 𝑚0
+ + �̄�−

0 (𝑠),

−𝐾12[[�̄�−]] + 𝑠2𝐾22[[�̄�−]] = 𝑣0+ + 𝑉 −
0 (𝑠),

(38)

where

𝛿0𝐾11 = (1 − 𝜈)𝑠4
[(

𝛼1 + 𝛼2
)

(3 + 𝜈) + 2(1 + 𝜈)𝛽
]

+ 4(1 − 𝜈)𝑠2𝛼1𝛼2𝛽 + 2𝛽,

𝛿0𝐾12 = 𝑠2
{

(1 − 𝜈)2
(

𝑠2 − 𝛼1𝛼2
)

𝑠2 + 1 + 𝜈
}

,

𝛿0𝐾22 = 𝛿0𝐾11 + i(1 − 𝜈)(3 + 𝜈)𝑠2
(

𝛼1 − 𝛼2
)

,

and having let

𝛿0(𝑠) =
(

𝛼1(𝑠) + 𝛽(𝑠)
)2 (𝛼2(𝑠) + 𝛽(𝑠)

)2 . (39)

It is observed that, when the plate is everywhere free, that is for 𝜆 → ∞, the system (38) decouples owing to symmetry, i.e. 𝐾12 → 0.
Besides, it is 𝐾11 → 𝐾22.

At the origin, we have the following asymptotics for the components, that are even functions of 𝑠 ∈ R,

𝐾11 = 𝐾22 = 2𝛽(𝑠)
(

1 + 𝑂(𝛽(𝑠))
)

𝐾12 = (1 + 𝜈)𝑠2
(

1 + 𝑂(𝛽(𝑠))
)

}

as 𝑠 → 0, (40)

thus, by (C.13), (C.36), we get asymptotic consistency at zero

𝐾11[[�̄�−]] = 𝑂(𝑠3∕2), 𝐾12[[�̄�−]] = 𝑂(𝑠3∕2), 𝑚0
+ + �̄�−

0 (𝑠) = 𝑂(𝑠3∕2),

𝐾12[[�̄�−]] = 𝑂(𝑠5∕2), 𝑠2𝐾22[[�̄�−]] = 𝑂(𝑠5∕2), 𝑣0+ + 𝑉 −
0 (𝑠) = 𝑂(𝑠5∕2),

𝑠 → 0.

We point out that individual terms at RHS of (38) have different asymptotics than their sum, namely

�̄�+
0 (𝑠), �̄�

−
0 (𝑠), �̄�

+
0 (𝑠), 𝑉

−
0 (𝑠) = 𝑂(1), 𝑠 → 0, (41)

as it appears from (C.35a), (C.35b). Indeed, this result comes from the balance conditions (27)

�̄�+
0 (0) + �̄�−

0 (0) = �̄�+0 (0) + 𝑉 −
0 (0) =

d �̄�+0
d 𝑠

(0) +
d𝑉 −

0
d 𝑠

(0) = 0, (42)

and accounting for (C.12)

d �̄�+
0

d 𝑠
(0) +

d �̄�−
0

d 𝑠
(0) =

d2�̄�+0
d 𝑠2

(0) +
d2𝑉 −

0

d 𝑠2
(0) = 0. (43)

At infinity we have

𝐾11 = 𝐾22 = 𝑐𝛽(𝑠) + 𝑂(𝑠−3)
1+4𝜈−𝜈2 −2 −6

}

as |𝑠| → +∞, (44)
7
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where we have let

𝑐 = 1
4 (1 − 𝜈)(3 + 𝜈). (45)

esides, from (C.37c), (C.37d), it is

𝑠�̄�+
0 (𝑠) ∼ �̄�+0 (𝑠) = 𝑂(𝑠1∕2), 𝑠�̄�−

0 (𝑠) ∼ 𝑉 −
0 (𝑠) = 𝑂(𝑠−𝛾0 ), |𝑠| → ∞ and 𝛾0 > 1∕2.

Thus, by (C.39), we see that diagonal terms asymptotics match that of the RHS

𝐾11[[�̄�−]] = 𝑂(𝑠−1∕2), 𝐾12[[�̄�−]] = 𝑂(𝑠−9∕2), 𝑚0
+ + �̄�−

0 (𝑠) = 𝑂(𝑠−1∕2),

𝐾12[[�̄�−]] = 𝑂(𝑠−7∕2), 𝑠2𝐾22[[�̄�−]] = 𝑂(𝑠1∕2), 𝑣0+ + 𝑉 −
0 (𝑠) = 𝑂(𝑠1∕2),

𝑠 → ∞. (46)

Besides, for the determinant we have

𝛥(𝑠) = 𝐾2
12 − 𝑠2𝐾11𝐾22 = −4𝑐𝑠4𝛿−10

((

1 − 𝜈2
)

𝑠4 + 2𝛼1𝛼2(1 − 𝜈)𝑠2 + 1
)

, (47)

whence

𝛥(𝑠) = 4𝑐𝑠4 + 𝑂(𝑠6), 𝑠 → 0, (48)

𝛥(𝑠) = 𝑐2𝑠4 + 𝑂(𝑠2), 𝑠 → ∞. (49)

Thus, the determinant of this Wiener–Hopf system tends to zero as 𝑠 → 0 and to infinity, which fact suggests that the unknown
quantities are not properly normalized. Consequently, in the following, we transform the system (38) so that it has total index zero
and both partial indices also equal to zero.

4. Regularization of the Wiener–Hopf system

Let us transform the system (38) by dividing the first equation by 𝛽 and the second by 𝑠𝛽
{

𝛽−1𝐾11ℎ̄−1 + (𝑠𝛽)−1𝐾12ℎ̄−2 = 𝛽−1
(

�̄�+
0 + �̄�−

0
)

,

(𝑠𝛽)−1𝐾12ℎ̄−1 + 𝛽−1𝐾22ℎ̄−2 = (𝑠𝛽)−1
(

�̄�+0 + 𝑉 −
0
)

,
(50)

where we have let the new unknowns

ℎ̄−1 (𝑠) = −[[�̄�−]], ℎ̄−2 (𝑠) = 𝑠[[�̄�−]].

For these, recalling (26) and using (C.36), (C.39), we get, in their domains of analyticity:

ℎ̄−1 (𝑠) ∼ ℎ̄−2 (𝑠) = 𝑂(𝑠1∕2), 𝑠 → 0, (51a)

ℎ̄−1 (𝑠) ∼ ℎ̄−2 (𝑠) = 𝑂(𝑠−3∕2), 𝑠 → ∞. (51b)

Similarly, by (40),

𝛽−1𝐾11 = 𝛽−1𝐾22 = 2 + 𝑂(𝛽(𝑠)),
(𝑠𝛽)−1𝐾12 = (1 + 𝜈) sign 𝑠 + 𝑂(𝑠),

}

as 𝑠 → 0, (52)

whence terms in the W-H system have the following balanced asymptotics at zero

𝛽−1𝐾11ℎ̄−1 (𝑠) = 𝑂(𝑠1∕2), (𝑠𝛽)−1𝐾12ℎ̄−2 (𝑠) = 𝑂(𝑠1∕2), 𝛽−1
(

�̄�+
0 (𝑠) + �̄�−

0 (𝑠)
)

= 𝑂(𝑠1∕2),

(𝑠𝛽)−1𝐾12ℎ̄−1 (𝑠) = 𝑂(𝑠1∕2), 𝛽−1𝐾22ℎ̄−2 (𝑠) = 𝑂(𝑠1∕2), (𝑠𝛽)−1
(

�̄�+0 (𝑠) + 𝑉 −
0 (𝑠)

)

= 𝑂(𝑠1∕2),

}

𝑠 → 0.

Likewise, at infinity, we have, by (44),

𝛽−1𝐾11 = 𝛽−1𝐾22 = 𝑐 + 𝑂(𝑠−4),

(𝑠𝛽)−1𝐾12 = 1+4𝜈−𝜈2
32 𝑠−4 sign 𝑠 + 𝑂(𝑠−7𝛽),

}

as |𝑠| → +∞. (53)

whereby

𝛽−1𝐾11ℎ̄−1 (𝑠) = 𝑂(𝑠−3∕2), (𝑠𝛽)−1𝐾12ℎ̄−2 (𝑠) = 𝑂(𝑠−11∕2), 𝛽−1
(

�̄�+
0 (𝑠) + �̄�−

0 (𝑠)
)

= 𝑂(𝑠−3∕2),

(𝑠𝛽)−1𝐾12ℎ̄−1 (𝑠) = 𝑂(𝑠−11∕2), 𝛽−1𝐾22ℎ̄−2 (𝑠) = 𝑂(𝑠−3∕2), (𝑠𝛽)−1
(

�̄�+0 (𝑠) + 𝑉 −
0 (𝑠)

)

= 𝑂(𝑠−3∕2),

}

𝑠 → ∞.

In anticipation of splitting plus and minus terms in (50), we need to make sure that, besides their sum, also each individual term
t RHS is well behaved. To this effect, we set

�̄�+
∗ (𝑠) = �̄�+

0 (𝑠) +
�̄�−

0 (0) + 𝑠𝑞𝑚
(1 − i𝑠)𝜁𝑀

, �̄�∗(𝑠) = �̄�−
0 (𝑠) −

�̄�−
0 (0) + 𝑠𝑞𝑚
(1 − i𝑠)𝜁𝑀

, (54)

nd

�̄�+(𝑠) = �̄�+(𝑠) +
𝑉 −
0 (0) + 𝑠𝑞𝑣1 + 𝑠2𝑞𝑣2

, 𝑉∗(𝑠) = 𝑉 −(𝑠) −
𝑉 −
0 (0) + 𝑠𝑞𝑣1 + 𝑠2𝑞𝑣2

. (55)
8
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Here, 𝜁𝑀 , 𝜁𝑉 > 𝛾0 + 2 are some constants, to be specified later for convenience, which warrant fast enough decay at infinity. The
mportant point here is that, with these definitions, the starred unknowns �̄�+

∗ (𝑠) and �̄�+∗ (𝑠) preserve the same plus character as well
s behaviour at infinity of the original variables �̄�+

0 (𝑠) and �̄�+0 (𝑠), respectively. Furthermore, �̄�+
∗ (𝑠) and �̄�+∗ (𝑠) satisfy the same balance

onditions (42), (43) as �̄�(𝑠) and �̄�(𝑠). This is achieved by simply letting

𝑞𝑚 = −i𝜁𝑀�̄�−
0 (0) +

d �̄�−
0

d 𝑠
(0), 𝑞𝑣1 = −i𝜁𝑉 𝑉 −

0 (0) +
d𝑉 −

0
d 𝑠

(0), (56)

𝑞𝑣2 =
1
2

(

𝜁𝑉 (1 − 𝜁𝑉 )𝑉 −
0 (0) − 2i𝜁𝑉

d𝑉 −
0

d 𝑠
(0) +

d2𝑉 −
0

d 𝑠2
(0)

)

, (57)

aving used (42), (43) to rewrite the last terms at RHS in terms of the applied load. With such provisions and recalling (C.35),
C.37), (C.38), we obtain the asymptotics of each term

𝑠�̄�+
∗ (𝑠), �̄�

+
∗ (𝑠) = 𝑂(𝑠5∕2), 𝑠�̄�∗(𝑠), 𝑉∗(𝑠) = 𝑂(𝑠3), 𝑠 → 0, (58a)

𝑠�̄�+
∗ (𝑠), �̄�

+
∗ (𝑠) = 𝑂(𝑠−1∕2), 𝑠�̄�∗(𝑠), 𝑉∗(𝑠) = 𝑂(𝑠−𝛾0 ), 𝑠 → ±∞. (58b)

herefore, the W-H system now reads
{

𝛽−1𝐾11ℎ̄−1 + (𝑠𝛽)−1𝐾12ℎ̄−2 = 𝛽−1
(

�̄�+
∗ + �̄�∗

)

,

(𝑠𝛽)−1𝐾12ℎ̄−1 + 𝛽−1𝐾22ℎ̄−2 = (𝑠𝛽)−1
(

�̄�+∗ + 𝑉∗
)

,

hat, multiplying through by 𝛽−, becomes
{

𝛽−1𝐾11ℎ̂−1 + (𝑠𝛽)−1𝐾12ℎ̂−2 = �̂�+
∗ + �̂�∗,

(𝑠𝛽)−1𝐾12ℎ̂−1 + 𝛽−1𝐾22ℎ̂−2 = �̂�+∗ + 𝑉∗,
(59)

aving lumped minus terms together in the new unknowns

ℎ̂−1,2(𝑠) = 𝛽−(𝑠)ℎ̄−1,2(𝑠), (60)

nd similarly for the plus terms at RHS

�̂�+
∗ = 1

𝛽+
�̄�+
∗ , �̂�+∗ = 1

𝑠𝛽+
�̄�+∗ , �̂�∗ = 1

𝛽+
�̄�∗, 𝑉∗ = 1

𝑠𝛽+
𝑉∗. (61)

The relative estimates are easily obtained from (51) and (58),

ℎ̂−1 (𝑠), ℎ̂
−
2 (𝑠), �̂�

+
∗ (𝑠), �̂�

+
∗ (𝑠) = 𝑂(𝑠), 𝑠 → 0, (62)

ℎ̂−1 (𝑠), ℎ̂
−
2 (𝑠), �̂�

+
∗ (𝑠), �̂�

+
∗ (𝑠) = 𝑂(𝑠−1), 𝑠 → ∞, (63)

while the terms representing the applied loading �̄�∗(𝑠) and 𝑉∗(𝑠) behave better than the unknown functions in the W-H system at
both zero and infinity. As a result, we eventually arrive at the vectorial Wiener–Hopf problem:

𝐍(𝑠)𝑯−(𝑠) +𝑯+(𝑠) = 𝑭 (𝑠), (64)

where

𝑯−(𝑠) = 𝑐[ℎ̂−1 , ℎ̂
−
2 ], 𝑯+(𝑠) = −[�̂�+

∗ , �̂�
+
∗ ], 𝑭 (𝑠) = [�̂�∗, 𝑉∗], (65)

and clearly

𝐍(𝑠) = 𝑐−1
[

𝛽−1𝐾11 (𝑠𝛽)−1𝐾12

(𝑠𝛽)−1𝐾12 𝛽−1𝐾22

]

. (66)

The matrix 𝐍(𝑠) has the following asymptotics at zero

𝐍0(𝑠) = 2𝑐−1
⎡

⎢

⎢

⎣

1 + 𝑂(𝛽) 1
2 (1 + 𝜈) 𝑠𝛽 + 𝑂(𝑠)

1
2 (1 + 𝜈) 𝑠𝛽 + 𝑂(𝑠) 1 + 𝑂(𝛽)

⎤

⎥

⎥

⎦

, 𝑠 → 0, (67)

nd at infinity

𝐍∞(𝑠) = 𝐈 + 𝑂
(

𝑠−4
)

, 𝑠 → ∞. (68)

he determinant of this matrix is different from zero along the closed real axis (including infinity) and it is an even function. As
result, by Gohberg and Krein’s theorem (see for example, Rogosin & Mishuris, 2016), the index of the matrix is equal to zero

ind det𝐍 = 0). Next, the matrix 𝐍(𝑠) is symmetric and even on the main diagonal and odd on the off-diagonal terms, thus it is also
ositive definite. As a result, its partial indices are both equal to zero. The unknowns components asymptotics at infinity along the
eal axis are related to the SIFs as follows:

𝐻−
1 (𝑠), −𝐻

+
1 (𝑠) ∼ ±12

√

𝜋𝑒i𝜋∕4𝑒
𝑐

7 + 𝜈
|𝑠|−1, 𝑠 → ±∞, (69a)

𝐻−(𝑠), −𝐻+(𝑠) ∼ ±12
√

𝜋𝑒−i𝜋∕4 𝑐
|𝑠|−1, 𝑠 → ±∞. (69b)
9
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a

C
f

5. Transformation to a system of Fredholm convolution equations

Note that, due to the estimate of the sought for solution of the W-H equation (64), there exists a vector function 𝐡 ∈ 𝐿1(R) such
that

±𝒉 = 𝑯±, (70)

and this function is unique. Here, as usual,  is the full Fourier transform and ± are the projectors defined through multiplication
by the characteristic functions 𝐻(𝑥) and 1−𝐻(𝑥) of the respective half axes R±. We note that + +− is the identity operator thus,
using (70), the system (64) takes the form

𝒉(𝑠) + (𝐍(𝑠) − 𝐈)−𝒉(𝑠) = 𝑭 (𝑠).

Applying now the inverse Fourier transform (28), we get

𝒉(𝜉) + −1 [(𝐍(𝑠) − 𝐈)−𝒉(𝑠)
]

(𝜉) = 𝒈(𝜉) ≡ −1[𝑭 (𝑠)](𝜉). (71)

Reversing the order of integration, on application of Fubini’s theorem, Eq. (71) may be rewritten as an integral equation of the
second kind, namely

𝒉(𝜉) + ∫

0

−∞
𝐊(𝜉 − 𝑦)𝒉(𝑦)d𝑦 = 𝒈(𝜉), 𝜉 ∈ R, (72)

where the kernel is the well defined and easily computed matrix-function

𝐊(𝜆) = 1
2𝜋 ∫

∞

−∞

(

𝐍(𝑠) − 𝐈
)

𝑒−i𝜆𝑠d𝑠.

Remark. Interestingly, to solve the integral Eq. (72) we begin by considering the half-axis 𝑥 ∈ R− and, once the solution 𝒉∗(𝑥) is
obtained there, it may be extended to the positive half-axis by direct computation, in a sort of post-processing stage, through

𝒉(𝜉) = 𝒈(𝜉) − ∫

0

−∞
𝐊(𝜉 − 𝑦)𝒉(𝑦)d𝑦, 𝜉 ∈ R+.

In contrast, when considering the classical approach to systems of integral equations defined on either half axis, one moves in the
opposite direction to reduce it in Wiener–Hopf form, namely one needs to introduce an auxiliary function on the other half-axis and
then one transforms the system to have a difference kernel.

To establish a link between the solution of the system of integral Eq. (72) and the SIFs, we integrate by parts

𝐻− = ∫

0

−∞
ℎ(𝑥)𝑒i𝑠𝑥d𝑥 =

ℎ(𝑥)
i𝑠

𝑒i𝑠𝑥||
|

0
−∞ − 1

i𝑠 ∫

0

−∞

dℎ
d𝑥

(𝑥)𝑒i𝑠𝑥d𝑥 = ∓iℎ(0)|𝑠|−1 + 𝑜(𝑠−1), 𝑠 → ±∞,

𝐻+ = ∫

∞

0
ℎ(𝑥)𝑒i𝑠𝑥d𝑥 =

ℎ(𝑥)
i𝑠

𝑒i𝑠𝑥||
|

∞
0 − 1

i𝑠 ∫

−∞

0

dℎ
d𝑥

(𝑥)𝑒i𝑠𝑥d𝑥 = ±iℎ(0)|𝑠|−1 + 𝑜(𝑠−1), 𝑠 → ±∞,

nd, upon recalling the asymptotics (69), we get the sought for relationships:

ℎ1(0) = −12𝑒−i𝜋∕4
𝑐
√

𝜋
7 + 𝜈

𝑒, ℎ2(0) = 12𝑒i𝜋∕4
𝑐
√

𝜋
5 + 3𝜈

𝑜. (73)

6. Numerical solution

Let us assume for the dimensionless crack loading

𝑀0(𝑥1) =
𝜆𝑀𝑑

𝑦

𝐷
= 𝐶𝑚𝜁𝑓𝑚(−𝜁𝑥1), 𝑉0(𝑥1) =

𝜆2𝑉 𝑑
𝑦

𝐷
= 𝐶𝑣𝜁

2𝑓𝑚(−𝜁𝑥1), 𝑥1 < 0, (74)

where 𝑀𝑑
𝑦 and 𝑉 𝑑

𝑦 are the dimensional bending moment and shearing force applied at the crack line in terms of the dimensional
coordinate 𝑥

𝑀𝑑
𝑦 = 𝑄𝑚𝑓𝑚

(

− 𝑥
𝑥0

)

, 𝑉 𝑑
𝑦 = 𝑄𝑣𝑓𝑣

(

− 𝑥
𝑥0

)

, 𝑥 < 0. (75)

learly, the constants 𝑄𝑚 and 𝑄𝑣 have dimensions of force and force over length, respectively, and they are brought in dimensionless
orm as 𝐶𝑚 = 𝑄𝑚𝑥0𝐷−1 and 𝐶𝑣 = 𝑄𝑣𝑥20𝐷

−1. Here, we have introduced the dimensionless parameter 𝜁

𝜆 = 𝑥0𝜁, or, equivalently, 𝑘 = 𝐷
𝑥40

𝜁−4 ≡ 𝑘0𝜁
−4, (76)

𝑥0 > 0 being a reference length. We point out that, due to the introduced normalization, the original dimensional stress intensity
factors 𝐾𝑑

𝑒 , 𝐾𝑑
𝑜 are related to their dimensionless counterparts through

√

𝑥0
𝐷

𝐾𝑑
𝑒 = 𝜁−1∕2𝑒(𝜁 ),

√

𝑥0
𝐷

𝐾𝑑
𝑜 = 𝜁−1∕2𝑜(𝜁 ). (77)

In the following, we consider two cases, namely 𝐶 = 1, 𝐶 = 0 and 𝐶 = 0, 𝐶 = 1.
10
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Fig. 4. Numerical solution of the system of integral Eqs. (72), in the absence of shearing force, for different values of the Winkler parameter 𝑘 = 𝑘0𝜁−4 (compare
(76)). It appears that the first solution component, ℎ1, is very close to the right hand side already, while the contribution from ℎ2 is negligible.

6.1. Bending moment applied to the crack faces (𝐶𝑚 = 1, 𝐶𝑣 = 0)

We first consider the following function in (75)

𝑓𝑚(𝑡) = 𝑡𝑛𝑚𝑒−𝑡.

By applying the Fourier transform we obtain

�̄�−
0 (𝑠) =

𝜁𝑛𝑚+1𝛤 (𝑛𝑚 + 1)
(𝜁 + i𝑠)𝑛𝑚+1

, (78)

while the Mellin transform lends

�̃�0(𝑠) = ∫

∞

0
𝑟𝑠+1𝜁𝑛𝑚+1𝑟𝑛𝑚𝑒−𝜁𝑟d𝑟 = 1

𝜁 𝑠+1
𝛤 (𝑠 + 𝑛𝑚 + 2). (79)

Note that �̄�0(0) = �̃�0(−1) = 𝛤 (𝑛𝑚 +1) ≠ 0 independent of 𝜁 . This behaviour warrants that the displacement 𝑤𝐵
0 (𝑥1) in the free plate

grows linearly to infinity along the crack line, i.e. as 𝑥1 → −∞. After the transformations of Eqs. (54), (61), one finds

�̂�∗ =
𝜁𝑛𝑚+1𝛤 (𝑛𝑚 + 1)

𝛽+(𝑠)

(

1
(𝜁 + 𝑖𝑠)𝑛𝑚+1

− 1
(1 − i𝑠)𝜉𝑀 𝜁𝑛𝑚+1

+ i
𝑠(𝜁𝜉𝑀 + 𝑛𝑚 + 1)
(1 − i𝑠)𝜉𝑀 𝜁𝑛𝑚+2

)

.

Hereinafter, for the numerics, we take

𝜈 = 0.25, 𝑛𝑚 = 4, 𝑛𝑣 = 3, 𝜉𝑀 = 𝜉𝑣 = 7. (80)

Owing to the absence of the sharing force, the second component of the vector from the right-hand side of the system of integral
Eqs. (72), namely 𝑔2(𝜉), equals zero, while the first component, 𝑔1(𝜉), can be computed in closed form, as presented in Appendix B.1.
However, it was not possible to obtain an analytical representation for the kernel 𝐊(𝜉), which is therefore computed numerically.
As discussed in Section 5, we first compute the solution on the negative 𝜉-axis and then reconstruct it on the positive axis. Since the
system is well defined and the projection methods converge (Rogosin & Mishuris, 2016), we reduce the infinite domain of integration
to a finite one through controlling the behaviour of the solution at infinity. Computations are carried out on a finite grid of points
whose density guarantees that the relative error is of the order of 10−4.

Fig. 4 shows the real part of the components in the unknown vector 𝒉(𝜉) as well as the nonzero right-hand side 𝑔1(𝜉) for the
system of the integral Eqs. (72). Interestingly, the first component ℎ1(𝜉) is very similar to the right-hand side 𝑔1(𝜉), while the second
component ℎ2(𝜉) is 2 order of magnitude smaller. This means that, within this loading, the system is almost symmetric and the
numerical system diagonal. Clearly, results depend significantly on the Winkler parameter, especially near the crack-tip.

Fig. 5 illustrates the mechanical unknowns over the line 𝑦 = 0 (that is along the crack surfaces and at the interface between
the supported and the unsupported plate). It is emphasized that the jumps of the displacement and of the slope are identically zero
beyond the crack-tip (𝑥 > 0), while the bending moment and the shearing force correspond to the applied load on the crack line
(𝑥 < 0).

To highlight the behaviour of the solution in the far-field, Fig. 6 presents the jump of the displacement on a wider interval.
Here, we observe a linear growth of the displacement at infinity (compare (20)) for large value of 𝜁 (small 𝑘). On the other hand,
for small values of 𝜁 , square root growth represents the dominant asymptotics, that is related to the skew-symmetric part of the
solution. This is in the agreement with the analysis provided in Appendix A (see Table A.1) and is a direct consequence of the
condition �̃�0(−1) ≠ 0.

Finally, Fig. 7 shows the normalized SIFs as functions of the Winkler parameter 𝜁 , as computed through the relationships
(73). In particular, the limiting value of 𝑒 as 𝜁 → ∞ matches the corresponding SIF obtained setting 𝜈 = 0.25 in (A.9), namely
𝑒𝜁−1∕2 = −3.67085. This appears in Fig. 7 as a horizontal asymptote. A curve fitting by the Least SQuare (LSQ) method for 𝑒(𝜁 )𝜁−1∕2
on the interval 𝜁 = [65, 100] is given by 𝑜(𝜁 )𝜁−1∕2 ≈ −3.668977 + 3.237402𝜁−1 as 𝜁 → ∞, with relative error of 5.1𝑒 − 04, that is
consistent with the accuracy achieved when computing the solution of the system of the integral equations.
11
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Fig. 5. Jump of the displacement, rotation, bending moment and shearing force across the crack line 𝑦 = 0. For 𝑥 < 0, a distribution of bending moment 𝑀0 is
applied, in the absence of shearing force, i.e. 𝑉0 ≡ 0. The dimensional coordinate 𝑥 is used as the abscissa to bring about the role of the foundation through 𝜁 .

Fig. 6. Far-field behaviour of the jump of the displacement along the crack surfaces for the case of nonzero bending moment and zero shearing force, i.e. 𝑉0 ≡ 0.

6.2. Shearing force applied to the crack faces (𝐶𝑚 = 0, 𝐶𝑣 = 1)

In this case, we take 𝑔1 ≡ 0 and 𝑔2(𝑥) = i−1[𝑉∗(𝑠)](𝑥) as the right hand side of the system of integral Eqs. (72). Consequently, it
is

𝑉 −
0 (𝑠) = i𝑠�̄�−

0 (𝑠),

where the function �̄�0(𝑠) is defined in (78). It is easy to see that the condition 𝑉 −
0 (0) = 0 is satisfied automatically. The original

function (after normalization) takes the form

𝑉0(𝑥1) = 𝜁𝑛𝑣+1(𝜁𝑥1 + 𝑛𝑣)(−𝑥1)𝑛𝑣−1𝑒𝜁𝑥1 . (81)

and its Mellin transform is

𝑉 −
0 (𝑠) = −2 + 𝑠

𝜁 𝑠+1
𝛤 (𝑛𝑣 + 𝑠 + 2). (82)

Hereinafter, we assume 𝜉 = 6.
12
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Fig. 7. Normalized stress intensity factors 𝜁−1∕2𝑒(𝜁 ) and 𝜁−1∕2𝑜(𝜁 ) (compare (77)) as functions of the auxiliary parameter 𝜁 representing changes in the Winkler
parameter 𝑘 (see (76)): Case of nonzero bending moment and zero shearing force, i.e. 𝑉0 ≡ 0. The horizontal dashed line corresponds to 𝜁−1∕2𝑒 for a free plate
under symmetric conditions, see (A.9).

Fig. 8. Numerical solution of the system of integral Eqs. (72) in the case of nonzero shearing force and zero bending moment, for various values of the Winkler
parameter 𝑘 = 𝑘0𝜁−4 (compare (76)). The first two graphs correspond to the two components of the solution ℎ1 and ℎ2, while the third represents the right hand
side: It appears that the latter is mainly given by ℎ2, with little contribution from ℎ1.

The counterparts of Figs. 4–7 are presented in Figs. 8–11, this time for the shearing force, given that 𝑀0 ≡ 0. In particular, Fig. 8
reveals that ℎ2(𝜉) is really the dominating component of the solution, with a small contribution from ℎ1(𝜉), which fact suggests that
the loading condition is close to skew-symmetry.

Fig. 9 presents the mechanical unknowns for the case when a shearing force is applied. Once again we see that no jump of
displacement and slope occurs beyond the crack-tip (𝑥 > 0), while the applied loading appears along the crack faces (𝑥 < 0).

To highlight the behaviour of the solution in the far field, e.g. as 𝑥 → −∞, Fig. 10 presents the jump of the displacement and of
the slope on a wide interval. Here, we observe square root growth of the displacement at infinity (compare (20)) for large 𝜁 (small
𝑘). On the other hand, for small 𝜁 (large 𝑘), the displacement tends to the symmetric part of the solution and grows linearly. This
again is in the agreement with the limiting analysis provided in Appendix A (see Table A.1) and is a direct consequence that the
condition 𝑉0(−1) ≠ 0.

As it can be seen in Fig. 11, the normalized SIF 𝑜𝜁−1∕2 asymptotes, as 𝜁 → ∞, to the limiting case of a free plate under skew-
symmetric conditions, given in (A.6) (see Appendix A). The corresponding horizontal asymptote is drawn in the picture. Comparing
this limiting value, 𝑜𝜁−1∕2 = 0.831818, with the approximated SIF computed from the solution of the system of integral equations
provides the relative error of the order of 3.6 ⋅ 10−4, that again is consistent with the accuracy of the computations.

7. Conclusions

In this paper, we consider the Linear Elastic Fracture Mechanics (LEFM) problem of a thin Kirchhoff plate partially supported
by a Winkler foundation, in an attempt to incorporate the role of the support in any model related to sheet cutting. Indeed, almost
any (possibly nonlinear) thermo-mechanical dissipative model of cutting, at some stage, takes into consideration the LEFM stress
intensity factors (SIFs). In fact, our deepest motivation lies in the observation that providing good mechanical constraining conditions
is crucial for any quality cutting process. The Kirchhoff plate is endowed with a semi-infinite rectilinear crack that sits right at the
boundary of the supported zone. As a result, the problem is no longer symmetric even locally, in the neighbourhood of the crack-tip.
The problem is first formulated in terms of a pair of coupled functional equations of the Wiener–Hopf type, whose kernel cannot be
13
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Fig. 9. Jump of the displacement, rotation, bending moment and shearing force across the line 𝑦 = 0, for the case of applied shearing force and zero bending
moment (𝑀0 ≡ 0).

Fig. 10. Jump of the displacement and of the slope across the crack line 𝑦 = 0, as it appears in a wide range for 𝑥 < 0, to capture the far-field asymptotics, for
the case of nonzero shearing force and zero bending moment, i.e. 𝑀0 ≡ 0.

Fig. 11. Normalized stress intensity factors 𝜁−1∕2𝑒(𝜁 ) and 𝜁−1∕2𝑜(𝜁 ) (compare (77)) as functions of the auxiliary parameter 𝜁 representing changes in the
Winkler parameter 𝑘 (see (76)): Case of nonzero shearing force and zero bending moment, i.e. 𝑀0 ≡ 0. Clearly, the limit of an exceedingly stiff foundation lends
the SIF for a skew-symmetric free plate.
14
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factored in general. To circumvent this shortcoming, the problem is then recast in terms of a pair of integral equations on a half-
domain, which are then easily solved numerically. However, to guarantee that the numerical solution is meaningful, the problem
structure is manipulated and regularized, taking advantage of the features of the mechanical setup, mostly the global equilibrium
conditions in the free (unsupported) plate.

The resulting numerical system is very stable and may be efficiently computed. The numerical solution reveals that the supporting
ondition is very relevant in determining (a) the fields in the neighbourhood of the crack-tip and (b) their asymptotic value in far-
ield on the crack line. Indeed, while the observation (a) is consistent with the intuition and with the fact that stable cutting requires
olid support, finding (b) is somewhat surprising because it reveals that little support imperfections may be amplified in the far-field
ehaviour of the free plate. In fact, we show how the loading properties determine the far-field behaviour. Besides, we show that,
or the limiting situation of an exceedingly stiff support and in dependence of the applied loading, SIFs converge to the case of a
ree plate in either symmetric or skew-symmetric deformation, or, in general, to a linear combination thereof.

Contrarily to intuition, in neither case the situation of a clamped plate is retrieved, because it possesses a different decay rate in
he neighbourhood of the crack tip. In general, we find that both symmetric and skew-symmetric SIFs appear simultaneously, which
epend on the support stiffness in opposing fashion, namely one increases while the other decreases. As a result, although no optimal
upport stiffness may be envisaged, it is deduced that the role of the support is to couple the symmetric and the skew-symmetric part
f the solution. Therefore, the nature of the support affects the failure mode in a fundamental manner, and it is capable of shifting
ailure from mode II (bending) to mode III (shear). This observation may produce far reaching consequences, once it is associated
ith the fact that, in general, materials behave in a very different manner when subjected to different failure modes (e.g. in shear
r bending).
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ppendix A. Limiting problems

xceedingly weak foundation
When the stiffness of the support is exceedingly week (𝑘 → 0), the corresponding solution for a free plate loaded along the crack

urfaces can be found in closed form and it will be a combination of two fundamental solutions, symmetric or skew-symmetric, in
ependence of the prescribed loading. On the other hand, when the stiffness of the foundation becomes infinite 𝑘 → ∞ (𝜁 → 0), the
late becomes fixed on the crack line beyond the crack tip. Again, the solution is obtained by combining the symmetric and skew-
ymmetric fundamental loading conditions. In either case, solutions may be readily found in terms of Mellin transforms (hereinafter
enoted by an overtilde),

�̃�−
0 (𝑠) = ∫

∞

0
𝑟𝑠−1𝑤(𝑟,−𝜋)d𝑟, �̃�−

0 (𝑠) = ∫

∞

0
𝑟𝑠𝜙(𝑟,−𝜋)d𝑟, (A.1a)

�̃�−
0 (𝑠) = ∫

∞

0
𝑟𝑠+1𝑚(𝑟,−𝜋)d𝑟, �̃�−0 (𝑠) = ∫

∞

0
𝑟𝑠+2𝑣(𝑟,−𝜋)d𝑟, (A.1b)

uitably defined to have the same strip of analyticity for all functions. The inverse of Mellin is accordingly defined as

𝑤(𝑟,−𝜋) = 1
2𝜋i ∫

𝑐+i∞

𝑐−i∞
𝑟−𝑠�̃�−

0 (𝑠)d𝑠, 𝜙(𝑟,−𝜋) = 1
2𝜋i ∫

𝑐+i∞

𝑐−i∞
𝑟−𝑠−1�̃�−

0 (𝑠)d𝑠, (A.2a)

𝑚(𝑟,−𝜋) = 1
2𝜋i ∫

𝑐+i∞

𝑐−i∞
𝑟−𝑠−2�̃�−

0 (𝑠)d𝑠, 𝑣(𝑟,−𝜋) = 1
2𝜋i ∫

𝑐+i∞

𝑐−i∞
𝑟−𝑠−3�̃�−0 (𝑠)d𝑠. (A.2b)

We look for solutions which abide by the zero asymptotics (14), whence

− 3 < ℜ(𝑠) < ℜ(𝑠 ). (A.3)
15
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Table A.1
Behaviour of the solutions of the limiting problems as 𝑟 → ∞.
Skew-symmetric 𝑉0(𝑠) ≡ 0 �̃�0(𝑠) ≡ 0

𝑤−
0 (𝑟) 𝑂(1) if �̃�0(−1) = 0, 𝑂(𝑟) otherwise 𝑂(𝑟−1∕2) if 𝑉0(−1∕2) = 0, 𝑂(

√

𝑟) otherwise
𝜙−
0 (𝑟) 𝑂(1) if �̃�0(−1) = 0, 𝑂(ln(𝑟)) otherwise 𝑉0(𝑟) if 𝑉0(−1) = 0, 𝑂(1) otherwise

Symmetric 𝑉0(𝑠) ≡ 0 �̃�0(𝑠) ≡ 0

𝑤−
0 (𝑟) 𝑂(1) if �̃�0(−1) = 0, 𝑂(𝑟) otherwise 𝑂(1) if 𝑉0(−1) = 0, 𝑂(ln 𝑟) otherwise

𝜙−
0 (𝑟) 𝑂(1∕

√

𝑟) 𝑉0(𝑟) if 𝑉0(−1) = 0, 𝑂(1) otherwise

Skew-symmetric cracked free plate
We now consider a skew-symmetric problem along the crack line for a free plate, whence 𝑤+

0 = 𝑚+
0 ≡ 0. This solution is given

by

�̃�−
0 (𝑠) =

− (1 + 𝜈)
(3 + 𝜈) (1 − 𝜈)𝑠(𝑠 + 1)

�̃�0(𝑠) +
2 tan(𝜋𝑠)

(3 + 𝜈) (1 − 𝜈)𝑠(𝑠 + 1)(𝑠 + 2)
𝑉0(𝑠), (A.4)

�̃�−
0 (𝑠) =

−2 cot(𝜋𝑠)
(3 + 𝜈) (1 − 𝜈)(𝑠 + 1)

�̃�0(𝑠) +
(1 + 𝜈)

(3 + 𝜈) (1 − 𝜈)(𝑠 + 1)(𝑠 + 2)
𝑉0(𝑠). (A.5)

For 𝑉0(𝑠) ≡ 0, if we have the balance condition �̃�0(−1) = 0 due to symmetry, then ℜ(𝑠) < 0, and the behaviour at infinity of 𝑤−
0 (𝑟)

s 𝑂(1). Similarly, we have 𝜙−
0 (𝑟) = 𝑂(1) at infinity. Conversely, assuming �̃�0(−1) ≠ 0, we have ℜ(𝑠) < −1 and 𝑤−

0 (𝑟) = 𝑂(𝑟) and
−
0 (𝑟) = 𝑂(ln(𝑟)) at infinity. Studying the behaviour of the solution near the point 𝑠 = −3∕2, we conclude that in this case both SIFs
re equal to zero:

𝑜 = 𝑒 = 0.

For �̃�0(𝑠) ≡ 0, we have − 3
2 < ℜ(𝑠) < − 1

2 , and the behaviour at infinity of 𝑤−
0 (𝑟) is 𝑂(𝑟1∕2). Conversely, for �̃�−

0 (𝑠), it is ℜ(𝑠) < +∞
ssuming the skew-symmetric equilibrium condition 𝑉0(−1) = 0, whence 𝜙−

0 (𝑟) behaves like 𝑉0(𝑟) at infinity. If, instead, 𝑉0(−1) ≠ 0,
e have 𝜙−

0 (𝑟) = 𝑂(1) at infinity.
Finally, computing the residue of �̃�(𝑠, 𝜃) at 𝑠 = −3∕2, we find

𝑤(𝑟, 𝜃) = 𝑜𝑤𝑜(𝜃)𝑟3∕2 + 𝑂(𝑟), as 𝑟 → 0,

hich matches the asymptotic analysis (14) and provides the displacement intensity factor

𝑜 = −i
4(3𝜈 + 5)

3(𝜈 + 3)(1 − 𝜈)
𝑉0(−3∕2), 𝑒 = 0. (A.6)

Symmetric cracked free plate
The symmetric solution whereby 𝜙+

0 = 𝑣+0 = 0 lends

�̃�−
0 (𝑠) =

(1 + 𝜈)
(3 + 𝜈) (1 − 𝜈)𝑠(𝑠 + 1)

�̃�0(𝑠) −
2 cot(𝜋𝑠)

(3 + 𝜈) (1 − 𝜈)𝑠(𝑠 + 1)(𝑠 + 2)
𝑉0(𝑠), (A.7)

�̃�−
0 (𝑠) =

2 tan(𝜋𝑠)
(3 + 𝜈) (1 − 𝜈)(𝑠 + 1)

�̃�0(𝑠) +
(1 + 𝜈)

(3 + 𝜈) (1 − 𝜈)(𝑠 + 1)(𝑠 + 2)
𝑉0(𝑠). (A.8)

Again, we first consider the case 𝑉0(𝑠) ≡ 0 and observe that, for 𝑤−
0 , we find no poles assuming the equilibrium condition �̃�0(−1) = 0

and it follows that 𝑤−
0 (𝑟) behaves just like 𝑀0(𝑟) does as 𝑟 tends to infinity. Conversely, assuming �̃�0(−1) ≠ 0, we have ℜ(𝑠) < −1

and 𝑤−
0 (𝑟) = 𝑂(𝑟) at infinity. For 𝜙−

0 (𝑟) we have ℜ(𝑠) < −1∕2 and 𝜙−
0 (𝑟) = 𝑂(𝑟−1∕2) at infinity. The residue of 𝑤 at 𝑠 = −3∕2 lends

𝑒 = −2i 𝜈 + 7
3(1 − 𝜈)(𝜈 + 3)

�̃�0(−3∕2), 𝑜 = 0. (A.9)

In case �̃�0(𝑠) ≡ 0, we have ℜ(𝑠) < −1 and 𝑤−
0 (𝑟) = 𝑂(ln 𝑟) as 𝑟 goes to infinity. If 𝑉0(−1) = 0, 𝜙−

0 (𝑟) behaves like 𝑉0(𝑟) at infinity,
otherwise 𝜙−

0 (𝑟) = 𝑂(1). In this case both SIFs are zeros.
The following table collects information on the behaviour of all possible solutions at infinity.

Half-plate clamped and cracked along the boundary
We consider an infinite half-plate, with a rectilinear boundary at 𝑥2 = 0. The plate is clamped along this boundary for 𝑥1 > 0,

and it is cracked for 𝑥1 < 0. Demanding 𝑤 = 𝜙 = 0 for 𝑥1 > 0, one gets

�̃�−
0 (𝑠) =

2 (1 + 𝜈) �̃�0 sin
2(𝜋𝑠)

𝑠(𝑠 + 1)𝛥𝑐𝑙(𝑠)
+

2𝑉0 sin(2𝜋𝑠)
𝑠 (𝑠 + 1) (𝑠 + 2)𝛥𝑐𝑙(𝑠)

, (A.10)

�̃�−
0 (𝑠) =

2�̃�0 sin(2𝜋𝑠)
(𝑠 + 1)𝛥𝑐𝑙(𝑠)

−
2 (1 + 𝜈)𝑉0 sin

2(𝜋𝑠)
(𝑠 + 1) (𝑠 + 2)𝛥𝑐𝑙(𝑠)

, (A.11)

where
2

16
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The first pole of this solution is located at 𝑠 = −3∕2 ± i𝜀, where

𝜀 = 1
2𝜋

cosh−1
(

4 + (3 − 𝜈)2

(1 − 𝜈)(3 + 𝜈)

)

> 0.

Thus, the singularity in the displacement takes the form

𝑤(𝑟, 𝜃) = 𝑂(𝑟3∕2∓i𝜀), as 𝑟 → 0,

hich does not match the singularity of the problem in the presence of a foundation, no matter how stiff. Interestingly, a recent
aper (Hu, Zhang, & Li, 2023) has been devoted to analysis of the stress singularity for a partially clamped plate with a crack on
he boundary exhibiting surface stress effects.

ppendix B. Forcing terms in the system of integral equations

.1. Bending moment

𝑔1(𝑥) = −1[�̂�∗(𝑠)](𝑥) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜁𝑛𝑚+1
√

2
1+i (−𝑥)𝑛𝑚+

1
2 𝑒𝜁𝑥𝑈

(

1
2 ,

3
2 + 𝑛𝑚,−𝜁𝑥

)

, 𝑥 < 0,

√

2𝛤 (𝑛𝑚+1)
1+i

(
√

𝜁
𝜋𝑈

(

1
2 ,

1
2 − 𝑛𝑚, 𝜁𝑥

)

− 𝑥
𝜉𝑀−

1
2

𝛤
(

𝜉𝑀+ 1
2

) 𝑀
(

𝜉𝑀 , 𝜉𝑀 + 1
2 ,−𝑥

)

−

(2𝜉𝑀−1)(𝑛𝑚+𝜁𝜉𝑀+1)𝛤 ( 12−𝜉𝑀 )
2𝜋𝜁 cos(𝜋𝜉𝑀 )𝑥𝜉𝑀− 3

2 𝑀
(

𝜉𝑀 , 𝜉𝑀 − 1
2 ,−𝑥

) )

, 𝑥 > 0,

(B.1)

where 𝑀(𝑎, 𝑏, 𝑐) is Kummer’s and 𝑈 (𝑎, 𝑏, 𝑐) Tricomi’s (confluent hypergeometric) function (for the definitions, see Gradshtein &
Ryzhik, 1996).

Appendix C. Asymptotics of the solution components in the frequency domain

C.1. Asymptotic behaviour at 𝑠 = 0

.1.1. Analysis of the balance conditions
The notation (36) is motivated by the following analysis which demonstrates that

𝐴𝑗 (0) = 𝐵𝑗 (0) = 0.

ndeed, rewriting (27) through (33), we get, for the supported plate, an homogeneous systems of three linear equations in the
nknowns 𝐴𝑗 , namely

lim
𝑠→0

[

𝐴1
(

𝛼21 − 𝜈𝑠2
)

+ 𝐴2
(

𝛼22 − 𝜈𝑠2
)]

= 0,

lim
𝑠→0

[

𝛼1𝐴1
(

𝛼21 + (𝜈 − 2)𝑠2
)

+ 𝛼2𝐴2
(

𝛼22 + (𝜈 − 2)𝑠2
)]

= 0,

lim
𝑠→0

d
d𝑠

(

𝛼1𝐴1
(

𝛼21 + (𝜈 − 2)𝑠2
)

+ 𝛼2𝐴2
(

𝛼22 + (𝜈 − 2)𝑠2
)

)

= 0.

Recalling (30), we observe that the first pair of equations provide a regular system with determinant
(

𝛼2(0) − 𝛼1(0)
)

𝛼21 (0)𝛼
2
2 (0) ≠ 0,

whence 𝐴𝑗 (0) = 0, (𝑗 = 1, 2). Consequently, alongside the balance conditions (27), we have

�̄�𝐴
0 (0) = �̄�𝐴

0 (0) = 0. (C.1)

The last equation gives immediately

lim
𝑠→0

[

𝛼31 (0)𝐴
′
1(𝑠) + 𝛼32 (0)𝐴

′
2(𝑠)

]

= 0,

whence, by (30),

𝐴′
1(𝑠) = i𝐴′

2(𝑠) + 𝑂(|𝑠|), 𝑠 → 0. (C.2)

In terms of asymptotic estimates, this gives either (𝑗 = 1, 2)

𝐴 (𝑠) ∼ 𝑎 𝑠𝜛 , 𝑎 = i𝑎 , 𝑠 → 0, 0 < 𝜛 ≤ 1, (C.3)
17
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that will be proved incorrect in Eq. (C.17), or

𝐴𝑗 (𝑠) ∼ 𝑎𝑗𝑠
𝜛𝑗 , 𝑠 → 0, 𝜛𝑗 > 1, (C.4)

with 𝑎1 and 𝑎2 complex-valued constants. The same path of reasoning may be carried out for 𝐵𝑗 (𝑠), but we choose to follow another
pproach.

.1.2. Connecting 𝐵∗, 𝐵2 to the transforms �̄�0 and �̄�0
Specializing (34) to the crack line and accounting for (36), one finds

�̄�0 = −(𝜈 − 1)𝛽𝐵∗ + 2𝛽𝐵2, (C.5a)

�̄�0 = (𝜈 − 1)𝑠2𝐵∗ + (𝜈 + 1)𝑠2𝐵2, (C.5b)

where no superscript appears at LHS in light of (25). This system of equations provides a non-singular constant-coefficient linear
transformation of the functions 𝐵∗ and 𝐵2 to �̄�0 and �̄�0, whence these share the same asymptotics. We may easily solve the linear
system

[

𝐵∗

𝐵2

]

=

[

1 − 𝜈 2

𝜈 − 1 1 + 𝜈

]−1 [
𝛽−1�̄�0

𝑠−2�̄�0

]

= 1
4𝑐

[

1 + 𝜈 −2

1 − 𝜈 1 − 𝜈

][

𝛽−1�̄�0

𝑠−2�̄�0

]

, (C.6)

to get

𝐵∗ =
(1 + 𝜈)�̄�0𝛽−1 − 2�̄�0𝑠−2

(1 − 𝜈)(3 + 𝜈)
, 𝐵2 =

1
3 + 𝜈

(

�̄�0𝛽
−1 + �̄�0𝑠

−2
)

. (C.7)

C.1.3. Refined asymptotics at zero
Taking advantage of the results (35), we can better determine the asymptotics of 𝐵∗ and 𝐵2 (and likewise for 𝐴1, 𝐴2) as 𝑠 → 0. We

egin with the transformed bending moment �̄�0(𝑠). First, it follows from (21) and (16b), that 𝑚𝐴,𝐵
0 (𝑥1) ∈ 𝐿1(R), 𝑥1𝑚

𝐴,𝐵
0 (𝑥1) ∈ 𝐿1(R),

as a result, we conclude that �̄�0(𝑠) = �̄�(𝑠, 0) ∈ C1
𝑙𝑜𝑐 and thus

�̄�0(𝑠) = m0 +m1𝑠 + 𝑂(|𝑠|3∕2), 𝑠 → 0. (C.8)

Similarly, it follows from (21) and (16c), that 𝑣𝐴,𝐵0 (𝑥1) ∈ 𝐿1(R), 𝑥1𝑣𝐴,𝐵(𝑥1) ∈ 𝐿1(R) and 𝑥21𝑣
𝐴,𝐵(𝑥1) ∈ 𝐿1(R), as a result, we conclude

hat �̄�0(𝑠) = �̄�(𝑠, 0) ∈ C2
𝑙𝑜𝑐 near the origin and thus

�̄�0(𝑠) = v0 + v1𝑠 + v2𝑠
2 + 𝑂(|𝑠|5∕2), 𝑠 → 0. (C.9)

rom the transformed balance conditions (27), it immediately follows that m0 = v0 = v1 = 0. Besides, plugging (C.4), (C.7) into
35a), one gets

[[�̄�]] ∼ 𝑎1𝑠
𝜛1 + 𝑎2𝑠

𝜛2 − 1
(1 − 𝜈)(3 + 𝜈)

(

(1 + 𝜈)m1 sign 𝑠 − 2v2
)

𝛽−1 + 𝑂(|𝑠|−1∕2), 𝑠 → 0, (C.10)

and for this to be consistent with the first of (20) it is necessary that the 𝛽−1-term drops out, i.e. ±(1 + 𝜈)m1 = 2v2 as 𝑠 → ±0.
Similarly, using (C.4), (C.7) into (35b) and recalling (30), we get

[[�̄�]] ∼ −𝑒−i𝜋∕4𝑎1𝑠𝜛1 − 𝑒i𝜋∕4𝑎2𝑠
𝜛2 − 1

(1 − 𝜈)(3 + 𝜈)

(

(1 + 𝜈)m1 sign 𝑠 − 2v2
)

− 1
3 + 𝜈

(

m1 sign 𝑠 + v2

)

+ 𝑂(|𝑠|1∕2), 𝑠 → 0, (C.11)

and the constant term needs to disappear, i.e. ±m1 = v2 as 𝑠 → ±0. As a result, one concludes that

m1 = v2 = 0. (C.12)

Then, we can write the respective assumptions for �̄�0(𝑠) and �̄�0(𝑠) more accurately

�̄�0(𝑠) = 𝑂(|𝑠|3∕2), �̄�0(𝑠) = 𝑂(|𝑠|5∕2), 𝑠 → 0, (C.13)

and returning back to (C.7) we conclude that

𝐵∗(𝑠), 𝐵2(𝑠) = 𝑂(|𝑠|1∕2), 𝑠 → 0. (C.14)

With this knowledge, returning back to Eq. (35c) while substituting the asymptotics (C.4), (C.14), we get

�̄�𝐴
0 = −i𝑎1𝑠𝜛1 + i𝑎2𝑠𝜛2 = 𝑂(|𝑠|3∕2), 𝑠 → 0. (C.15)

The same argument, this time applied to (35d), gives

�̄�𝐴 = −𝑒−i3𝜋∕4𝑎 𝑠𝜛1 − 𝑒i3𝜋∕4𝑎 𝑠𝜛2 = 𝑂(|𝑠|5∕2), 𝑠 → 0, (C.16)
18
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and the system (C.15), (C.16) is consistent only if

𝜛1 = 𝜛2 =
3
2
, (C.17)

nd we finally prove that the asymptotics (C.3) is incorrect. Furthermore, plugging this result into (C.16), one sees that

𝑎1 = i𝑎2, (C.18)

hence we obtain the leading asymptotics of �̄�𝐴
0 and �̄�𝐴

0 at the origin, namely

�̄�𝐴
0 = 𝐴1 + 𝐴2 = (1 + i)𝑎2𝑠3∕2, �̄�𝐴

0 = −𝛼1𝐴1 − 𝛼2𝐴2 = −
√

2(1 + i)𝑎2𝑠3∕2, 𝑠 → 0. (C.19)

.2. Asymptotic behaviour at 𝑠 → ±∞

From the Abelian theorem (Piccolroaz et al., 2009) applied to (16b), it follows

�̄�+
0 (𝑠) = m∞𝑒±i𝜋∕4|𝑠|−1∕2 + 𝑂(|𝑠|−1), 𝑠 → ±∞, (C.20)

here, clearly,

m∞ =
12

√

𝜋𝑐
𝜈 + 7

𝑒.

ikewise, from (10), it is

�̄�−
0 (𝑠) ≡ �̄�−

0 (𝑠) = 𝑂
(

𝑠−1−𝛾0
)

, |𝑠| → ∞, ℑ(𝑠) < 0, (C.21)

that, recalling 𝛾0 >
1
2 , decays faster than (C.20). Thus, summing (C.20) and (C.21) together, we have

�̄�0(𝑠) = 𝑏1|𝑠|
−1∕2 = m∞𝑒±i𝜋∕4|𝑠|−1∕2 + 𝑂(|𝑠|−1), 𝑠 → ±∞. (C.22)

In similar fashion, it follows from (16c) and the Abelian theorem that

�̄�+0 (𝑠) = v∞𝑒∓i𝜋∕4|𝑠|1∕2 + 𝑂(1), 𝑠 → ±∞, (C.23)

with

v∞ =
12

√

𝜋𝑐
3𝜈 + 5

𝑜.

Again, the applied shearing force decays faster because it was assumed 𝛾0 >
1
2

�̄�−0 (𝑠) = 𝑉 −
0 (𝑠) = 𝑂(𝑠−𝛾0 ), |𝑠| → ∞, ℑ(𝑠) < 0, (C.24)

whence, summing, one gets

�̄�0(𝑠) = 𝑏2|𝑠|
1
2 = v∞𝑒∓i𝜋∕4|𝑠|

1
2 + 𝑂(1), 𝑠 → ±∞, (C.25)

hose diverging character denotes that this is a Fourier transform in the sense of distributions.
Substituting the asymptotics (C.22) and (C.25) into (33b) and (33c), respectively, we get a linear system for the asymptotics of

1,2(𝑠), namely
{

(𝛼21 − 𝜈𝑠2)𝐴1 + (𝛼22 − 𝜈𝑠2)𝐴2 = 𝑏1|𝑠|
−1∕2,

−𝛼1(𝛼21 + (𝜈 − 2)𝑠2)𝐴1 − 𝛼2(𝛼22 + (𝜈 − 2)𝑠2)𝐴2 = 𝑏2|𝑠|
1∕2,

𝑠 → ±∞. (C.26)

Let us write this system in the form

𝐌𝒂 = 𝒃, 𝑠 → ±∞, (C.27)

here

𝐌 =

[

𝛼21 − 𝜈𝑠2 𝛼22 − 𝜈𝑠2

−𝛼1
(

𝛼21 + (𝜈 − 2)𝑠2
)

−𝛼2
(

𝛼22 + (𝜈 − 2)𝑠2
)

]

, (C.28)

nd

𝒃 ∼
[

𝑏1|𝑠|
−1∕2, 𝑏2|𝑠|

1∕2] , 𝑠 → ±∞, (C.29)

his system is nonsingular (at least at infinity), for we have

det𝐌 = −4i𝑐|𝑠|3 + 𝑂(|𝑠|−1), 𝑠 → ±∞. (C.30)
19
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Table C.2
Asymptotics of the full range Fourier transforms.

𝑠 → 0 |𝑠| → ∞

�̄�𝐴
0 𝑠3∕2 𝑠−5∕2

�̄�𝐴
0 𝑠3∕2 𝑠−3∕2

�̄�0 = �̄�+ 𝑠3∕2 𝑠−1∕2

�̄�0 = �̄�+ 𝑠5∕2 𝑠1∕2

[[�̄�]] = [[�̄�−]] 𝑠−1∕2 𝑠−5∕2

[[�̄�]] = [[�̄�−]] 𝑠1∕2 𝑠−3∕2

Hence, it can be solved giving

⎧

⎪

⎨

⎪

⎩

𝐴1 =
i(𝑏1−𝑏2)
𝜈+3 |𝑠|−1∕2 + 𝑏1(𝜈+1)+2𝑏2

2(1−𝜈)(𝜈+3) |𝑠|
−5∕2 + 𝑜(|𝑠|−5∕2),

𝐴2 = − i(𝑏1−𝑏2)
𝜈+3 |𝑠|−1∕2 + 𝑏1(𝜈+1)+2𝑏2

2(1−𝜈)(𝜈+3) |𝑠|
−5∕2 + 𝑜(|𝑠|−5∕2),

𝑠 → ±∞. (C.31)

By substituting this expansion into the general solution (29) for the supported plate, we obtain, to leading order,

�̄�𝐴
0 = 𝐴1 + 𝐴2 =

𝑏1(𝜈 + 1) + 2𝑏2
(1 − 𝜈)(𝜈 + 3)

|𝑠|−5∕2, 𝑠 → ±∞,

hence

�̄�𝐴
0 = 3

√

𝜋
(

𝑒±i𝜋∕4𝑒
𝜈 + 1
𝜈 + 7

+ 𝑒∓i𝜋∕4𝑜
2

3𝜈 + 5

)

|𝑠|−5∕2, 𝑠 → ±∞. (C.32)

imilarly, substituting (C.31) into (33a), we get

�̄�𝐴
0 = −𝛼1𝐴1 − 𝛼2𝐴2 = −

𝑏2(𝜈 + 1) + 2𝑏1
(1 − 𝜈)(𝜈 + 3)

|𝑠|−3∕2,

thus, to leading order,

�̄�𝐴
0 = −3

√

𝜋𝑒±i𝜋∕4
( 2
𝜈 + 7

𝑒 ± i 𝜈 + 1
3𝜈 + 5

𝑜

)

|𝑠|−3∕2, 𝑠 → ±∞. (C.33)

.3. Asymptotics of the half-transforms �̄�±, �̄�±, �̄�±, �̄�±

In the previous Sections, we have obtained the asymptotics of the full range Fourier transforms, both as 𝑠 → 0 and as 𝑠 → ±∞,
ee Table C.2. Moving from these, we here deduce, the corresponding behaviour of the half-transforms. From the Taylor expansion
f (23) as 𝑠 → 0, we write

�̄�+
0 (𝑠) = ∫

∞

0
𝜙0(𝑥)d𝑥 + 𝑂(𝑠1∕2), �̄�𝐵−

0 (𝑠) = ∫

0

−∞
𝜙𝐵
0 (𝑥)d𝑥 + 𝑂(𝑠1∕2), 𝑠 → 0, (C.34a)

�̄�+
0 (𝑠) = ∫

+∞

0
𝑚0(𝑥)d𝑥 + i𝑠∫

+∞

0
𝑥𝑚0(𝑥)d𝑥 + 𝑂(𝑠3∕2), 𝑠 → 0, (C.34b)

�̄�−
0 (𝑠) = ∫

0

−∞
𝑀0(𝑥)d𝑥 + i𝑠∫

0

−∞
𝑥𝑀0(𝑥)d𝑥 + 𝑂(𝑠2), 𝑠 → 0, (C.34c)

�̄�+0 (𝑠) = ∫

+∞

0
𝑣0(𝑥)d𝑥 + i𝑠∫

+∞

0
𝑥𝑣0(𝑥)d𝑥 − 1

2 𝑠
2
∫

+∞

0
𝑥2𝑣0(𝑥)d𝑥 + 𝑂(𝑠5∕2), 𝑠 → 0, (C.34d)

�̄�−0 = ∫

0

−∞
𝑉0(𝑥)d𝑥 + i𝑠∫

0

−∞
𝑥𝑉0(𝑥)d𝑥 − 1

2 𝑠
2
∫

0

−∞
𝑥2𝑉0(𝑥)d𝑥 + 𝑂(𝑠3), 𝑠 → 0. (C.34e)

ccounting for (C.13), we deduce the asymptotics

�̄�+
0 (𝑠) = −�̄�−

0 (0) − 𝑠
d�̄�−

0
d𝑠

(0) + 𝑂(𝑠3∕2), 𝑠 → 0, (C.35a)

�̄�+0 (𝑠) = −𝑉 −
0 (0) − 𝑠

d𝑉 −
0

d𝑠
(0) − 1

2 𝑠
2
d2𝑉 −

0

d𝑠2
(0) + 𝑂(𝑠5∕2), 𝑠 → 0. (C.35b)

Also, from (C.10) and (C.11) we have

[[�̄�]] = 𝑂(𝑠−1∕2), [[�̄�]] = �̄�𝐴
0 − (�̄�+

0 + �̄�𝐵−
0 ) = 𝑂(𝑠1∕2), 𝑠 → 0, (C.36)

where, recalling (C.19), it is �̄�𝐴
0 = 𝑂(𝑠3∕2) and �̄�𝐴

0 = 𝑂(𝑠3∕2). For the last asymptotics to hold true, it is required that
∞
𝜙0(𝑠)d𝑥 = 0.
20
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The asymptotics at infinity are compute directly taking the positive half-transform of (14), (16)

�̄�+
0 (𝑠) = i𝑊0𝑠

−1 −𝑊1𝑠
−2 + 3

√

𝜋 𝜈 + 1
𝜈 + 7

𝑒±i𝜋∕4𝑒|𝑠|
−5∕2 + 𝑂(𝑠−7∕2), 𝑠 → ±∞, (C.37a)

�̄�+
0 (𝑠) = i𝑊2𝑠

−1 − 3
√

𝜋 𝜈 + 1
3𝜈 + 5

𝑒∓i𝜋∕4𝑜|𝑠|
−3∕2 + 𝑂(𝑠−5∕2), 𝑠 → ±∞, (C.37b)

�̄�+
0 (𝑠) = 12𝑐

√

𝜋 𝑒±i𝜋∕4

𝜈 + 7
𝑒|𝑠|

−1∕2 + 𝑂(𝑠−3∕2), 𝑠 → ±∞, (C.37c)

�̄�+0 (𝑠) = 12𝑐
√

𝜋 𝑒∓i𝜋∕4

3𝜈 + 5
𝑜|𝑠|

1∕2 + 𝐶1 + 𝑂(𝑠−1∕2), 𝑠 → ±∞. (C.37d)

here the first two formulae are valid inasmuch as ℑ(𝑠) > 0 and the last only in the sense of distributions. Similarly, for the negative
alf transforms, we get

�̄�𝐵−
0 (𝑠) = −i𝑊0𝑠

−1 +𝑊1𝑠
−2 − 6

√

𝜋 𝑒∓i𝜋∕4

3𝜈 + 5
𝑜|𝑠|

−5∕2 + 𝑂(𝑠|−7∕2), 𝑠 → ±∞, (C.38a)

�̄�𝐵−
0 (𝑠) = −i𝑊2𝑠

−1 + 6
√

𝜋 𝑒±i𝜋∕4

𝜈 + 7
𝑒|𝑠|

−3∕2 + 𝑂(𝑠−5∕2), 𝑠 → ±∞, (C.38b)

�̄�−
0 (𝑠) = �̄�−

0 (𝑠) = 𝑂(𝑠−𝛾0−1), �̄�−0 (𝑠) = 𝑉 −
0 (𝑠) = 𝑂(𝑠−𝛾0 ), 𝑠 → ∞, (C.38c)

Accounting for (C.32), (C.33), we obtain, to leading order,

[[�̄�]] = �̄�𝐴
0 − (�̄�+

0 + �̄�𝐵−) ∼ 12
√

𝜋 𝑒∓i𝜋∕4

5+3𝜈 𝑜|𝑠|
−5∕2,

[[�̄�]] = �̄�𝐴
0 − (�̄�+

0 + �̄�𝐵−) ∼ −12
√

𝜋 𝑒±i𝜋∕4

7+𝜈 𝑒|𝑠|
−3∕2,

�̄�0 ∼ m∞𝑒±i𝜋∕4𝑒|𝑠|
−1∕2, �̄�0 ∼ v∞𝑒∓i𝜋∕4𝑜|𝑠|

1∕2,

𝑠 → ±∞. (C.39)
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