
Computers & Operations Research 163 (2024) 106484

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Exact algorithms for a parallel machine scheduling problem with workforce
and contiguity constraints
Giulia Caselli a, Maxence Delorme b,∗, Manuel Iori c, Carlo Alberto Magni a

a School of Doctorate E4E (Engineering for Economics - Economics for Engineering), University of Modena and Reggio Emilia, Largo Marco Biagi
10, 41121 Modena, Italy
b Department of Econometrics and Operations Research, Tilburg University, Warandelaan 2, 5037 AB, Tilburg, The Netherlands
c Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy

A R T I C L E I N F O

Dataset link: https://github.com/regor-unimor
e/Parallel-Machine-Scheduling-with-Contiguity

Keywords:
Scheduling
Integer linear programming
Constraint programming
Combinatorial Benders’ decomposition
Resource constraints

A B S T R A C T

We address a real-world scheduling problem where the objective is to allocate a set of tasks to a set of
machines and to a set of workers in such a way that the total weighted tardiness is minimized. Our case
study encompasses four types of constraints: precedence, resource, eligibility, and contiguity. While the first
three constraints are common in the scheduling literature, contiguity constraints, which can be defined as
a form of precedence constraints that requires both a predecessor and its successor to be processed on the
same machine with no intermediate jobs in-between (but idle time is allowed), have never been studied in the
literature. We present four exact methods to solve the problem: two methods use integer linear programming,
one uses constraint programming, and one uses a combinatorial Benders’ decomposition. We introduce method-
specific strategies to model the contiguity constraints for each of the proposed methods. We empirically
evaluate, through an extensive set of computational experiments, the performance of the four methods on
a heterogeneous dataset composed of real, realistic, and random instances, and outline that every method
offers a competitive advantage on a targeted subset of instances. We also show that our algorithms can be
generalized to solve related scheduling problems with contiguity constraints.
1. Introduction

Owing to the numerous practical applications and theoretical prop-
erties, the field of Parallel Machines Scheduling Problems (PMSP) is
one of the most studied in combinatorial optimization. In a PMSP, one
wants to allocate a set of jobs to a set of machines, and determine,
for each machine, the order in which the jobs should be processed
(see, e.g., Baker and Trietsch, 2019). Some PMSPs can be solved in
polynomial time, but most of them are -hard (see Pinedo, 2016).
Over the years, many additional features have been introduced and
studied in PMSPs, by considering the characteristics of the machines
(e.g., machine speed), of the jobs (e.g., precedence constraints), and
of the objective function (e.g., sum of completion time minimization).
A particularly important feature in real-world applications is resource
consumption. In a Resource-Constrained Parallel Machine Scheduling
Problem (RCPMSP), one also considers a set of resources that must be
used in order to process a job on a machine.

Even though RCPMSPs have been extensively studied in the liter-
ature (see Edis et al., 2013 for a complete survey; see also Section 2

∗ Corresponding author.
E-mail addresses: giulia.caselli@unimore.it (G. Caselli), m.delorme@tilburguniversity.edu (M. Delorme), manuel.iori@unimore.it (M. Iori),

magni@unimore.it (C.A. Magni).

below), there are practical applications that have not yet been modeled
in the literature because they either involve a novel combination of
features or because they require a type of constraints that was never
studied before. Our work deals with the latter case and originates from
a collaboration with the engineering test laboratory of Dana Inc., a
company working in the hydraulic automation industry, where complex
and customized components of motion systems (such as pumps, motors,
and valves) require several tests (e.g., performance or endurance tests)
before being delivered to the customers.

The decision problem faced by the company can be modeled as an
RCPMSP where the tests (called jobs in the remainder of the paper
to stick with the most common scheduling notation) are assigned to
machines and workers by meeting a number of operational constraints.
The job occupies the machine entirely for a fixed number of days,
and for each day the worker is required to process the job for a few
hours. A limited number of workers is available every day; each of them
can process one or more jobs, without exceeding their daily maximum
number of hours.
vailable online 20 November 2023
305-0548/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.cor.2023.106484
Received 13 December 2022; Received in revised form 5 October 2023; Accepted 1
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

7 November 2023

https://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
mailto:giulia.caselli@unimore.it
mailto:m.delorme@tilburguniversity.edu
mailto:manuel.iori@unimore.it
mailto:magni@unimore.it
https://doi.org/10.1016/j.cor.2023.106484
https://doi.org/10.1016/j.cor.2023.106484
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2023.106484&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Operations Research 163 (2024) 106484G. Caselli et al.
The problem also requires to consider three sets of eligibility con-
straints: (i) a job can only be performed by a subset of workers (for
example, a test on a valve must be done by a worker who is an
expert in valves); (ii) a job can only be performed by a subset of
machines (for example, a performance test on a valve must be done on a
machine dedicated to valves performance tests); (iii) a worker can only
manipulate a subset of machines (in our case, a worker can only use a
machine for which they have a skill certification). In addition, every
job has a release date, a duration, a desired due date, and a weight
(expressing the priority of the job). The objective is to minimize the
total weighted tardiness.

The main novelty of our application comes from the relations
existing between pairs of jobs. We consider (i) standard precedence
constraints that require a predecessor to be finished before its successor
starts and (ii) contiguity constraints, which are precedence constraints
that additionally require both a predecessor and its successor to be
processed on the same machine with no intermediate jobs in-between
(but idle time is allowed). As defined by the company, precedence
relations occur between two types of jobs that must be performed
on the same product (such as a short performance test followed by
a long endurance test on the same hydraulic component), whereas
contiguity relations take place on a chain of similar jobs that must
be performed on the same product and on the same machine (such as
consecutive performance tests on the same hydraulic component with
different system conditions, like the oil pressure level for example), but
not necessarily by the same worker. To the best of our knowledge,
contiguity constraints were never studied in the RCPMSP literature.
Indeed, as reported by Khatami et al. (2020), there is a research gap in
the area of RCPMSPs with non-ordinary precedence constraints (such
as ‘‘coupled tasks’’ in Khatami et al.’s paper or contiguous tasks in our
case).

In this work, our first objective is to provide a set of exact algorithms
able to solve real instances provided by the company. Inspired by the
recent trends in the scheduling literature (see Koné et al., 2011; Lovato
et al., 2023; Fang et al., 2021), we propose (i) a descriptive Mixed
Integer Linear Programming (MILP) formulation, (ii) an enhanced MILP
model, (iii) a new Constraint Programming (CP) formulation, and (iv)
a new combinatorial Benders’ decomposition that first determines the
starting date of every job and then finds a suitable machine and a
suitable worker to process each job at the scheduled time. For each
method, we also introduce an innovative strategy to model contiguity
constraints. Another objective is to determine the effectiveness of our
techniques on large size realistic instances (i.e., randomly generated
instances aimed at mimicking the dataset provided by the company)
and on artificial instances studying the impact of key features such
as the presence of precedence constraints, the presence of eligibility
constraints, and various worker/machine/job ratios. These experi-
ments show that the effectiveness of the proposed approaches depends
on the instance features and, therefore, that no method consistently
outperforms the others. Our contribution is not only limited to the
problem considered in this work: we show that our algorithms can
easily be generalized to model other scheduling problems with conti-
guity constraints. This can be useful if, for example, Dana Inc. prefers
minimizing the total weighted completion time or the total weighted
flow time in the future.

The rest of the paper is organized as follows. In Section 2, we
provide a review of the RCPMSP literature related to our problem. In
Section 3, we give a detailed description of our RCPMSP and introduce
the descriptive MILP formulation. The enhanced MILP formulation, the
CP model, and the decomposition approach are described in Section 4.
Section 5 gives a summary of the results obtained by an extensive set of
computational experiments. Finally, concluding remarks are provided
in Section 6. A preliminary version of this work in which an MILP
formulation was used to solve a single instance with unrelated parallel
2

machines was presented as Caselli et al. (2022).
2. Literature review

Scheduling problems on parallel machines have been extensively
studied since the early fifties. We refer to Mokotoff (2001) for a
survey on PMSPs, to Pinedo (2016) for a comprehensive review of the
scheduling theory, and to Fuchigami and Rangel (2018) for a discussion
on analysis and perspectives on scheduling case studies. Following
the three-field notation by Graham et al. (1979), our problem can
be denoted as 𝑃 |𝑟𝑒𝑠1,𝑗 , 𝑟𝑗 , 𝑑𝑗 , 𝑝𝑟𝑒𝑐, 𝑐𝑜𝑛𝑡|

∑

𝑤𝑗𝑇𝑗 . Specifically, we
aim to minimize the total weighted tardiness (‘‘∑𝑤𝑗𝑇𝑗 ’’) on identical
parallel machines (‘‘𝑃 ’’), with an additional resource (‘‘𝑟𝑒𝑠1’’), eligi-
bility constraints (‘‘𝑗 ’’), release dates (‘‘𝑟𝑗 ’’), due dates (‘‘𝑑𝑗 ’’), and
precedence (‘‘𝑝𝑟𝑒𝑐’’) and contiguity (‘‘𝑐𝑜𝑛𝑡’’) constraints. To the extent
of our knowledge, characteristic ‘‘𝑐𝑜𝑛𝑡’’ has never been formally defined
in the three-field notation. In the following, we briefly review closely
related scheduling problems and their applications.

Additional resources (𝑟𝑒𝑠1). As stressed by Blazewicz et al. (1983), most
RCPMSPs are -hard, even though some of them with unit-length
jobs are polynomially solvable (see also Lawler et al., 1993; Ventura
and Kim, 2000). Various kinds of additional resources were considered
in the literature, including human workforce (Seifi et al., 2021; Edis and
Ozkarahan, 2011), tools (Ventura and Kim, 2000; Hall et al., 2000), and
automated guided vehicles (Ulusoy et al., 1997; Reddy et al., 2022).
For a complete survey on PMSPs with additional resources, we refer
the reader to Edis et al. (2013). We only mention the work of Edis and
Ozkarahan (2012), who used solution methods similar to the ones we
propose in this paper. The authors solved a real-world RCPMSP with
identical machines by using a two-phase algorithm that first assigns
the jobs to the machines and then finds the optimal sequence of jobs
on every machine. The first phase was solved with a MILP formulation
while both CP and MILP were tested to solve the second phase. The
two resulting algorithms were run on realistic instances with up to 100
jobs, 36 machines, and 12 workers, and consistently outperformed the
original MILP model.

We also point out that in some RCPMSPs, known as parallel machine
flexible-resource scheduling problems, resources can be used to speed-
up the processing time of a job (see Daniels et al., 1997; Chen, 2004).
This is not the case in our problem because assigning two workers to
perform a job does not shorten the job processing time.

Eligibility constraints (𝑗). Eligibility constraints are used in many
practical applications where jobs must be processed on a specific subset
of machines. For a complete survey on PMSPs with eligibility con-
straints, we refer the reader to Leung and Li (2016). Problems closely
related to ours were studied by Afzalirad and Rezaeian (2016) and Edis
and Ozkarahan (2011). The former introduced metaheuristics to solve a
PMSP with unrelated machines, several additional resources, eligibility
constraints, and precedence constraints. The latter used a combination
of CP and MILP to solve a PMSP with identical machines, one additional
resource, and eligibility constraints. To the best of our knowledge, our
work is the first in the RCPMSP literature dealing with multiple eli-
gibility constraints simultaneously: worker/machine, worker/job, and
job/machine. We point out, however, that such multiple eligibility
constraints could be modeled within the framework of the multi-mode
resource-constrained project scheduling problem, with one resource per
machine and per worker, and, for each job, one mode per compatible
(i.e., eligible) machine/worker pair. For an extensive literature review
on multi-mode resource-constrained project scheduling problems, we
refer the reader to Section 2.4 of the recent survey by Hartmann and
Briskorn (2022) focusing on resource-constrained project scheduling
problem extensions, and to Section 5 of the survey by Wȩglarz et al.

(2011) focusing on multi-mode project scheduling problems.

Computers and Operations Research 163 (2024) 106484G. Caselli et al.
Table 1
Categorization of the recent related PMSP literature.

Reference Constraints Approach

𝑟𝑒𝑠1 𝑗 𝑟𝑗 𝑑𝑗 𝑝𝑟𝑒𝑐 𝑐𝑜𝑛𝑡 HM MILP CP DA

Afzalirad and Rezaeian (2016) ✓ ✓ ✓ ✓ ✓ ✓

Chen (2004) ✓ ✓ ✓

Chudak and Shmoys (1999) ✓ ✓

Daniels et al. (1997) ✓ ✓ ✓

Edis and Ozkarahan (2011) ✓ ✓ ✓ ✓

Edis and Ozkarahan (2012) ✓ ✓ ✓ ✓ ✓

Fang et al. (2021) ✓ ✓ ✓ ✓

Fleszar and Hindi (2018) ✓ ✓ ✓ ✓

Gökgür et al. (2018) ✓ ✓

Hooker (2006) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hu et al. (2010) ✓ ✓ ✓

Kramer et al. (2019) ✓ ✓

Li et al. (2022) ✓ ✓ ✓

Mischek and Musliu (2021) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Su et al. (2017) ✓ ✓ ✓

Ventura and Kim (2000) ✓ ✓ ✓

Caselli et al. (2022) ✓ ✓ ✓ ✓ ✓ ✓ ✓

This paper ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Due dates and total weighted tardiness minimization (𝑑𝑗 |
∑

𝑤𝑗𝑇𝑗). Total
weighted tardiness is one of the most common objective functions in
the scheduling literature, because it models many practical problems
in industrial engineering and production management (see, e.g., Cheng
and Sin, 1990). We refer the reader to Koulamas (1994) for a survey
focused on total tardiness minimization in scheduling problems and
to Janiak et al. (2015) for a survey on scheduling problems with due
windows. We also mention the relevant work of Su et al. (2017), who
studied a PMSP with eligibility constraints where the objective was to
minimize the total weighted tardiness, and the recent work of Kramer
et al. (2019), who proposed MILP formulations for a PMSP where the
objective is to minimize the total weighted completion time (equivalent
to the total weighted tardiness if all due dates were set to 0).

Release dates (𝑟𝑗). The addition of release dates for jobs tends to make
PMSPs harder to solve. Graham et al. (1979) showed that 1|𝑟𝑗 , 𝑑𝑗 |
∑

𝑤𝑗𝑇𝑗 is -hard while 1|𝑑𝑗 |
∑

𝑤𝑗𝑇𝑗 can be solved in polynomial
time. We refer the reader to Lee (2004) for a survey on machine
scheduling problems with availability constraints. Several recent works
include release dates in their PMSPs (see, e.g., Afzalirad and Rezaeian,
2016; Li et al., 2022).

Precedence relations between jobs (𝑝𝑟𝑒𝑐). The complexity of scheduling
problems with precedence constraints has been studied since the seven-
ties (see Lenstra and Rinnooy Kan, 1978). Chudak and Shmoys (1999)
introduced approximation algorithms for the PMSP with precedence
constraints where each machine has its own speed. Hu et al. (2010)
proposed a heuristic for a realistic PMSP with precedence and eligibility
constraints. An extended literature on precedence constraints is also
available in the area of assembly line balancing problems (Becker
and Scholl, 2006), bin packing (Kramer et al., 2017), and (resource-
constrained) project scheduling problems (Hartmann and Briskorn,
2022).

Contiguity constraints (𝑐𝑜𝑛𝑡). Contiguity constraints can be seen as a
special form of precedence constraints where the successor of a job
must be processed on the same machine as its predecessor and without
any intermediate jobs in-between (but idle time is allowed). The roots
of contiguity constraints can be found in batch scheduling problems
(see Potts and Kovalyov, 2000 for an extensive survey) and schedul-
ing problems with set-up times and changeover costs (see Bruno and
Downey, 1978), where the concept of families of jobs that must be
performed together was introduced. In recent years, concepts that are
related to contiguity constraints have been introduced. We mention the
recent work of Mischek and Musliu (2021), who introduced the test lab-
3

oratory scheduling problem, an extension of the resource-constrained
project scheduling problem inspired by a real-world problem similar
to ours. They introduced the notion of ‘‘link’’ between two jobs to
indicate that they need to be performed by the same employee. In
contrast, we originally consider the interactions between contiguity
constraints and workforce. Khatami et al. (2020) surveyed coupled
task scheduling problems, where it is required to have an exact time
interval between the two jobs of a pair and this time can be used
to process other jobs (see also Khatami and Salehipour, 2021a,b for
other recent works). While the definition of contiguity in our problem
has a few similarities with the aforementioned constraints, it cannot
exactly be considered just a combination of existing concepts, because
we formalize the notion of contiguity constraints between pairs of jobs,
which enriches the RCPMSP literature. We mention that a different
definition of contiguity in which one requires a pair of jobs to be
scheduled in consecutive machines exists in the cutting and packing
literature. To the best of our knowledge, that definition was only used
to introduce 𝑃 |𝑐𝑜𝑛𝑡|𝐶𝑚𝑎𝑥, a relaxation of the well-known strip packing
problem (see Côté et al., 2014).

We categorize in Table 1 the relevant PMSP literature discussed
in this work and identify, for each paper, the types of constraints
considered (among those studied in our problem) and the type of
approaches used: heuristics and metaheuristics (HM), MILP models, CP
models, or decomposition approaches (DA).

3. Problem statement and descriptive model

In our RCPMSP, we are given a set 𝐽 of jobs that must be scheduled
on a set 𝑀 of machines by a set 𝐾 of workers in the time horizon
 = 0,… , 𝑡𝑚𝑎𝑥 expressed in days. Every job 𝑗 ∈ 𝐽 has a release date
𝑟𝑗 , a due date 𝑑𝑗 , a daily resource consumption 𝑞𝑗 (number of working
hours), a processing time 𝑝𝑗 , and a weight 𝑤𝑗 . The weighted tardiness of
each job is computed by multiplying its weight by its delay with respect
to the due date, if any. The aim of our RCPMSP is to minimize the total
weighted tardiness (𝑧). To this aim, each job 𝑗 must be processed on a
machine 𝑖 that belongs to the subset 𝑀𝑗 ⊆ 𝑀 of machines compatible
with job 𝑗, and by a worker 𝑘 that belongs to the subset 𝐾𝑖𝑗 ⊆ 𝐾
of workers compatible with both job 𝑗 and machine 𝑖. We also define
𝐾𝑗 ⊆ 𝐾 as the set of workers compatible with job 𝑗. We assume that
every machine can be used every day of the time horizon, while every
worker 𝑘 is available for 𝑢𝑘𝑡 hours in day 𝑡 (𝑘 ∈ 𝐾, 𝑡 ∈ ).

We are given a set 𝑃 of precedence relations and a set 𝑄 of
contiguity relations. A precedence relation (𝑗, 𝑙) ∈ 𝑃 between job 𝑗 and
job 𝑙 implies that the starting time of 𝑙 must be greater than or equal to
the completion time of 𝑗. A contiguity relation (𝑗, 𝑙) ∈ 𝑄 between job 𝑗

and job 𝑙 states that the starting time of 𝑙 must be greater than or equal

Computers and Operations Research 163 (2024) 106484G. Caselli et al.
Fig. 1. Numerical example on contiguity relation.
Table 2
Mathematical notation.

Notation Definition

𝐽 Set of jobs
𝑀 Set of available machines
𝑀𝑗 Set of machines compatible with job 𝑗
𝐾 Set of available workers
𝐾𝑗 Set of workers compatible with job 𝑗
𝐾𝑖𝑗 Set of workers compatible with job 𝑗 and machine 𝑖
 Set of days in the time horizon ( = 0,… , 𝑡max)
𝑟𝑗 Release date of job 𝑗
𝑑𝑗 Due date of job 𝑗
𝑞𝑗 Daily resource consumption of job 𝑗 (hours per day)
𝑝𝑗 Processing time of job 𝑗 (days)
𝑤𝑗 Weight of job 𝑗
𝑢𝑘𝑡 Working availability of worker 𝑘 in day 𝑡 (hours)
𝑃 Set of precedence relations
𝑄 Set of contiguity relations
𝑆𝑗𝑡 Set of starting times for which job 𝑗 would not be finished by day 𝑡

to the completion time of 𝑗 and that the two jobs must be processed on
the same machine without any other jobs in-between (but idle time is
allowed).

Interestingly, the notion of contiguity is only relevant in our prob-
lem because of the workers. One could think that the tasks involved in
a contiguity constraint could simply be merged so that they are forced
to be processed one after the other on the same machine. However,
doing so would remove the possibility to slightly postpone the second
task to free its associated worker so that they become available to
perform another (more urgent) job. A numerical example illustrating
this situation is given in Fig. 1. We consider three jobs 𝐽 = {1, 2, 3} (in
white, gray, and black in the figure) with release dates 𝑟𝑗 = {4, 0, 4},
due dates 𝑑𝑗 = {8, 5, 9}, processing times 𝑝𝑗 = {2, 4, 4}, and weights
𝑤𝑗 = {1, 1, 1}. There is a contiguity relation between jobs 2 and 3
(𝑄 = {(2, 3)}). We consider two machines 𝑀 = {𝑀1,𝑀2} with 𝑀1
compatible with job 1 and 𝑀2 compatible with jobs 2 and 3, and a
single worker compatible with every job and every machine who can
perform one job at a time. We show in Figs. 1(a) and 1(b) the two
possible outcomes if contiguous jobs 2 and 3 are merged. In that case,
the total weighted tardiness (𝑧) is either equal to 2 if the merged jobs
are scheduled before job 1 or it is equal to 10 if the merged jobs are
scheduled after job 1. If a contiguity relation is considered between the
two jobs instead, then a better solution with objective value 1 can be
found as displayed in Fig. 1(c). We point out that if there is a contiguity
relation (𝑗, 𝑙) between two jobs 𝑗 and 𝑙, then the sets of compatible
machines 𝑀𝑗 and 𝑀𝑙 should be identical. If this is not the case, then a
simple preprocessing step sets 𝑀𝑗 and 𝑀𝑙 to 𝑀𝑗∩𝑀𝑙 for every (𝑗, 𝑙) ∈ 𝑄.

For each job 𝑗 and day 𝑡, we also define the set of starting times 𝑆𝑗𝑡
for which a machine would still be occupied at day 𝑡 if job 𝑗 were to
start at any day 𝜏 that belongs to 𝑆𝑗𝑡. Set 𝑆𝑗𝑡 is equal to {∅} if 𝑟𝑗 > 𝑡,
to {𝑟𝑗 ,… , 𝑡} if 𝑡 ≥ 𝑟𝑗 ≥ 𝑡− 𝑝𝑗 +1, and to {𝑡− 𝑝𝑗 +1,… , 𝑡} otherwise. The
mathematical notation is summarized in Table 2.

Our RCPMSP can be modeled using a so-called discrete-time for-
mulation (see Pritsker et al., 1969) where binary decision variable 𝑥𝑖𝑗𝑘𝑡
takes the value 1 if job 𝑗 is processed on machine 𝑖 by worker 𝑘 on
day 𝑡 (𝑗 ∈ 𝐽 , 𝑖 ∈ 𝑀 ,𝑘 ∈ 𝐾 , 𝑡 ∈ ) and where continuous decision
4

𝑗 𝑖𝑗
variables 𝐶𝑗 and 𝑇𝑗 indicate the completion time of job 𝑗 and its
tardiness (i.e., the maximum between 0 and 𝐶𝑗 − 𝑑𝑗), respectively. We
obtain the following MILP model:

min
∑

𝑗∈𝐽
𝑤𝑗𝑇𝑗 (1)

s.t.
∑

𝑖∈𝑀𝑗

∑

𝑘∈𝐾𝑖𝑗

∑

𝑡∈
𝑥𝑖𝑗𝑘𝑡 = 1 𝑗 ∈ 𝐽 (2)

∑

𝑗∈𝐽

∑

𝑘∈𝐾𝑖𝑗

∑

𝜏∈𝑆𝑗𝑡

𝑥𝑖𝑗𝑘𝜏 ≤ 1 𝑖 ∈ 𝑀, 𝑡 ∈  (3)

∑

𝑗∈𝐽

∑

𝑖∈𝑀𝑗∶𝑘∈𝐾𝑖𝑗

∑

𝜏∈𝑆𝑗𝑡

𝑞𝑗𝑥𝑖𝑗𝑘𝜏 ≤ 𝑢𝑘𝑡 𝑘 ∈ 𝐾, 𝑡 ∈  (4)

𝐶𝑗 =
∑

𝑖∈𝑀𝑗

∑

𝑘∈𝐾𝑖𝑗

∑

𝑡∈
𝑥𝑖𝑗𝑘𝑡(𝑡 + 𝑝𝑗) 𝑗 ∈ 𝐽 (5)

𝐶𝑙 − 𝑝𝑙 ≥ 𝐶𝑗 (𝑗, 𝑙) ∈ 𝑃 ∪𝑄 (6)
∑

𝑘∈𝐾𝑖𝑗

∑

𝑡∈
𝑥𝑖𝑗𝑘𝑡 =

∑

𝑘∈𝐾𝑖𝑙

∑

𝑡∈
𝑥𝑖𝑙𝑘𝑡 (𝑗, 𝑙) ∈ 𝑄, 𝑖 ∈ 𝑀𝑗 (7)

∑

𝑗′∈𝐽⧵{𝑗,𝑙}

∑

𝑘∈𝐾𝑖𝑗′

𝑥𝑖𝑗′𝑘𝑡 ≤ 1 −
∑

𝑘∈𝐾𝑖𝑗

𝑡
∑

𝜏=𝑟𝑗

𝑥𝑖𝑗𝑘𝜏

+
∑

𝑘∈𝐾𝑖𝑙

𝑡
∑

𝜏=𝑟𝑙

𝑥𝑖𝑙𝑘𝜏 (𝑗, 𝑙) ∈ 𝑄, 𝑖 ∈ 𝑀𝑗 , 𝑡 ∈  (8)

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝑗 𝑗 ∈ 𝐽 (9)
𝑥𝑖𝑗𝑘𝑡 = 0 𝑗 ∈ 𝐽 , 𝑖 ∈ 𝑀𝑗 , 𝑘 ∈ 𝐾𝑖𝑗 ,

𝑡 ∈  ⧵ {𝑟𝑗 ,… , 𝑡𝑚𝑎𝑥 − 𝑝𝑗} (10)

𝑥𝑖𝑗𝑘𝑡 ∈ {0, 1} 𝑗 ∈ 𝐽 , 𝑖 ∈ 𝑀𝑗 , 𝑘 ∈ 𝐾𝑖𝑗 , 𝑡 ∈  (11)

𝐶𝑗 , 𝑇𝑗 ≥ 0 𝑗 ∈ 𝐽 (12)

The objective function (1) minimizes the total weighted tardiness.
Constraints (2) guarantee that each job is processed exactly once and
is assigned to exactly one compatible machine and one compatible
worker. Constraints (3) ensure that each machine processes at most
one job at the same time (i.e., one job per day). Constraints (4)
guarantee that no operator works more than the number of hours they
are supposed to work in each day of the time horizon. Constraints (5)
define the completion time of each job. Constraints (6) guarantee that
the order between jobs defined by precedence and contiguity relations
is respected. Constraints (7) make sure that two contiguous jobs are
processed on the same machine. Constraints (8) forbid any job 𝑗′ to
be processed on a machine 𝑖 at day 𝑡 (i.e., ∑𝑗′∈𝐽⧵{𝑗,𝑙}

∑

𝑘∈𝐾𝑖𝑗′
𝑥𝑖𝑗′𝑘𝑡 = 1)

if that machine has processed a job 𝑗, the first element of a contigu-
ous pair, before day 𝑡 (i.e., ∑

𝑘∈𝐾𝑖𝑗

∑𝑡
𝜏=𝑟𝑗

𝑥𝑖𝑗𝑘𝜏 = 1) but has not yet

processed job 𝑙, the second element of that same contiguous pair, by
day 𝑡 (i.e., ∑𝑘∈𝐾𝑖𝑙

∑𝑡
𝜏=𝑟𝑙

𝑥𝑖𝑙𝑘𝜏 = 0). Constraints (9) define the tardiness
of the jobs, constraints (10) prevent any job from starting before
its release date or finishing after the time horizon (note that in the
model implementation the variables set to zero are not created), and
constraints (11) and (12) limit the variable domains. We point out
that the innovative aspect of this formulation comes from constraints

Computers and Operations Research 163 (2024) 106484G. Caselli et al.

T
i

m

s

𝑥

a
m
b
3

4

e
l
W
b
f
(
a
t
c

b
2
2
a
a
a
d
s
c
r
t
f
p
r
w
t
d
m

p

E
a
c
i
𝑗

(7) and (8), which are used to model contiguity. The other constraints
are fairly common in the scheduling literature (see, e.g., Koné et al.,
2011). Model (1)–(12) can be solved with an MILP solver to produce
an optimal solution, but computational experiments have shown that
the model could quickly become too large to be solved in a reasonable
time (it involves 𝑂(|𝐽 | ⋅ |𝑀| ⋅ |𝐾| ⋅ 𝑡𝑚𝑎𝑥) variables).

4. Advanced algorithms

In this section, we introduce an enhanced MILP model, a CP model,
and a combinatorial Benders’ decomposition for our RCPMSP.

4.1. Enhanced MILP model

There are often more than one MILP formulation to model a given
combinatorial optimization problem. The literature has shown that,
for a given instance of a problem and a given MILP solver, some MILP
formulations could be faster to solve than others, all else being equal.
This difference can be explained by major differences in terms of
number of variables, number of constraints, number of non-zero ele-
ments, and continuous relaxation value (among others). For example,
we refer the reader to Koné et al. (2011) for a comparison of MILP
formulations for the resource-constrained project scheduling problem.
A question frequently arising in MILP modeling is whether or not one
should use a set of 𝛼-index variables or two sets of (𝛼-1)-index variables
together with a set of linking constraints. While the former is usually
shown to have a better continuous relaxation value, the latter tends to
involve much fewer variables. As preliminary results showed that the
model size was an issue with model (1)–(12), we tried a version of the
model using two sets of 3-index variables instead of one set of 4-index
variables: we now define 𝑥𝑚𝑖𝑗𝑡 that takes the value 1 if job 𝑗 is processed
on machine 𝑖 on day 𝑡 (𝑗 ∈ 𝐽 , 𝑖 ∈ 𝑀𝑗 , 𝑡 ∈ ) and 𝑥𝑤𝑗𝑘𝑡 that takes the
value 1 if job 𝑗 is processed by worker 𝑘 on day 𝑡 (𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾𝑗 , 𝑡 ∈ ).

he resulting MILP model, which uses 𝑂(|𝐽 | ⋅ |𝑀 +𝐾| ⋅ 𝑡𝑚𝑎𝑥) variables,
s defined as follows:

in
∑

𝑗∈𝐽
𝑤𝑗𝑇𝑗 (13)

.t.
∑

𝑖∈𝑀𝑗

∑

𝑡∈
𝑥𝑚𝑖𝑗𝑡 = 1 𝑗 ∈ 𝐽 (14)

∑

𝑘∈𝐾𝑗

∑

𝑡∈
𝑥𝑤𝑗𝑘𝑡 = 1 𝑗 ∈ 𝐽 (15)

∑

𝑗∈𝐽

∑

𝜏∈𝑆𝑗𝑡

𝑥𝑚𝑖𝑗𝜏 ≤ 1 𝑖 ∈ 𝑀, 𝑡 ∈  (16)

∑

𝑗∈𝐽

∑

𝜏∈𝑆𝑗𝑡

𝑞𝑗𝑥
𝑤
𝑗𝑘𝜏 ≤ 𝑢𝑘𝑡 𝑘 ∈ 𝐾, 𝑡 ∈  (17)

𝐶𝑗 =
∑

𝑖∈𝑀𝑗

∑

𝑡∈
𝑥𝑚𝑖𝑗𝑡(𝑡 + 𝑝𝑗) 𝑗 ∈ 𝐽 (18)

𝐶𝑙 − 𝑝𝑙 ≥ 𝐶𝑗 (𝑗, 𝑙) ∈ 𝑃 ∪𝑄 (19)
∑

𝑡∈
𝑥𝑚𝑖𝑗𝑡 =

∑

𝑡∈
𝑥𝑚𝑖𝑙𝑡 𝑖 ∈ 𝑀, (𝑗, 𝑙) ∈ 𝑄 (20)

∑

𝑗′∈𝐽⧵{𝑗,𝑙}
𝑥𝑚𝑖𝑗′𝑡 ≤ 1 −

𝑡
∑

𝜏=𝑟𝑗

𝑥𝑚𝑖𝑗𝜏

+
𝑡

∑

𝜏=𝑟𝑙

𝑥𝑚𝑖𝑙𝜏 𝑖 ∈ 𝑀, 𝑡 ∈  , (𝑗, 𝑙) ∈ 𝑄 (21)

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝑗 𝑗 ∈ 𝐽 (22)
∑

𝑡∈
𝑥𝑚𝑖𝑗𝑡 ≤

∑

𝑡∈

∑

𝑘∈𝐾𝑖𝑗

𝑥𝑤𝑗𝑘𝑡 𝑗 ∈ 𝐽 , 𝑖 ∈ 𝑀𝑗 , (23)

∑

𝑖∈𝑀𝑗

𝑥𝑚𝑖𝑗𝑡 =
∑

𝑘∈𝐾𝑗

𝑥𝑤𝑗𝑘𝑡 𝑗 ∈ 𝐽 , 𝑡 ∈  (24)
5

𝑚
𝑖𝑗𝑡 = 0 𝑗 ∈ 𝐽 , 𝑖 ∈ 𝑀𝑗 , 𝑡 ∈  ⧵ {𝑟𝑗 ,… , 𝑡𝑚𝑎𝑥 − 𝑝𝑗} (25)

𝑥𝑤𝑗𝑘𝑡 = 0 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾𝑗 , 𝑡 ∈  ⧵ {𝑟𝑗 ,… , 𝑡𝑚𝑎𝑥 − 𝑝𝑗} (26)

𝑥𝑚𝑖𝑗𝑡 ∈ {0, 1} 𝑗 ∈ 𝐽 , 𝑖 ∈ 𝑀𝑗 , 𝑡 ∈  (27)

𝑥𝑤𝑗𝑘𝑡 ∈ {0, 1} 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾𝑗 , 𝑡 ∈  (28)

𝐶𝑗 , 𝑇𝑗 ≥ 0 𝑗 ∈ 𝐽 (29)

Model (13)–(29) is an adaptation of model (1)–(12) where the
dditional constraints (23) allow a job 𝑗 to be assigned to a compatible
achine 𝑖 only if 𝑗 is assigned to a worker 𝑘 that is compatible with

oth 𝑗 and 𝑖, and the additional constraints (24) link the two sets of
-index variables.

.2. Constraint programming model

In the last decade, the literature has shown that CP is particularly
ffective to solve highly constrained combinatorial optimization prob-
ems (see, e.g., Jain and Grossmann, 2001 and Gedik et al., 2016).

hile CP is sometimes used as a stand-alone approach, it can also
e integrated into more sophisticated algorithms, either to quickly
ind a feasible solution to serve as a warm start for an MILP model
see, e.g., Delorme and Santini, 2022) or to solve the subproblem of
decomposition approach (see, e.g., Delorme et al., 2017). We refer

he reader to Bockmayr and Hooker (2005) for an outline of CP basic
oncepts and its integration with MILP.

Several works using CP models to solve scheduling problems have
een proposed in the PMSP literature (see Hooker, 2006; Gedik et al.,
016; Fleszar and Hindi, 2018; Gökgür et al., 2018 and Lovato et al.,
023). In the following, we describe our CP formulation together with
detailed explanation of every necessary function. To take the worker

vailability into account, we consider that every worker is initially
vailable at full capacity every day and we use a set of worker-
ependent dummy jobs with pre-defined resource consumption and
tarting/ending dates to represent the possible reduction of the full
apacity. To model the eligibility constraints, we use the multi-mode
esource-constrained project scheduling problem transformation men-
ioned in Section 2, which is to consider |𝑀|+|𝐾| resources and create,
or each job 𝑗, one mode for every single compatible machine/worker
air (𝑖, 𝑘) (𝑖 ∈ 𝑀𝑗 , 𝑘 ∈ 𝐾𝑖𝑗) that occupies machine 𝑖 and consumes
esource 𝑘 for 𝑝𝑗 days. To represent the contiguity relations (𝑗, 𝑙) ∈ 𝑄,
e use a dummy job with one mode per compatible machine 𝑖 (𝑖 ∈ 𝑀𝑗)

hat occupies machine 𝑖 and no worker resource for an unrestricted
uration. This dummy job must start exactly when job 𝑗 finishes and
ust stop exactly when job 𝑙 starts.

We make use of the following sets of interval variables to model the
roblem:

• 𝑖𝑣𝑙𝑗 , interval variable that represents the execution of job 𝑗;
• 𝑖𝑣𝑙_𝑚𝑖𝑗𝑘, interval variable that represents the execution of job 𝑗

using the mode that occupies machine 𝑖 and worker 𝑘;
• 𝑖𝑣𝑙𝑑𝑗𝑙, interval variable that represents the execution of the

dummy job associated with the contiguity relation between jobs
𝑗 and 𝑙;

• 𝑖𝑣𝑙𝑑_𝑚𝑖𝑗𝑙, interval variable that represents the execution of the
dummy job associated with the contiguity between jobs 𝑗 and 𝑙
using the mode that consumes machine 𝑖.

very interval variable must be processed in exactly one of its modes,
nd if a constraint applies to a specific interval variable, then this
onstraint is propagated to each of the variable modes. For example,
f a constraint states that 𝑖𝑣𝑙𝑗 cannot start before day 𝑟𝑗 for a given job
, then none of the 𝑖𝑣𝑙_𝑚𝑖𝑗𝑘 involving job 𝑗 can start before day 𝑟𝑗 .

In our CP formulation, we minimize the total weighted tardiness:

min
∑

𝑤𝑗 ∗ 𝚖𝚊𝚡(0, 𝚎𝚗𝚍𝚘𝚏(𝑖𝑣𝑙𝑗) − 𝑑𝑗) (30)

𝑗∈𝐽

Computers and Operations Research 163 (2024) 106484G. Caselli et al.

(
c

𝑖

𝑖

t

𝑖

𝑖

𝑖

𝚊

(
r

f
m
a

w
w
j
a
a
c

𝚎

w
c
a

𝚂

𝙴

𝚊

c
c
r
(
a
𝙴

𝑖
t

4

y
o
(
t
p
t

where endof(𝑖𝑣𝑙𝑗) indicates the completion time of job 𝑗. Constraints
31)–(32) limit the domain of the variables so that the jobs are pro-
essed between their release date and 𝑡𝑚𝑎𝑥:

𝑣𝑙𝑗 .𝚜𝚎𝚝𝚂𝚝𝚊𝚛𝚝𝙼𝚒𝚗(𝑟𝑗) 𝑗 ∈ 𝐽 (31)

𝑣𝑙𝑗 .𝚜𝚎𝚝𝚂𝚝𝚊𝚛𝚝𝙼𝚊𝚡(𝑡𝑚𝑎𝑥 − 𝑝𝑗) 𝑗 ∈ 𝐽 (32)

The following constraints fix the duration of each job 𝑗 to be equal
o 𝑝𝑗 :

𝑣𝑙𝑗 .𝚜𝚎𝚝𝚂𝚒𝚣𝚎𝙼𝚒𝚗(𝑝𝑗) 𝑗 ∈ 𝐽 (33)

𝑣𝑙𝑗 .𝚜𝚎𝚝𝚂𝚒𝚣𝚎𝙼𝚊𝚡(𝑝𝑗) 𝑗 ∈ 𝐽 (34)

We use the constraints 𝚊𝚕𝚝𝚎𝚛𝚗𝚊𝚝𝚒𝚟𝚎 to ensure that exactly one mode
𝑣𝑙_𝑚𝑖𝑗𝑘 (𝑖 ∈ 𝑀𝑗 , 𝑘 ∈ 𝐾𝑖𝑗) per job 𝑗 (𝑗 ∈ 𝐽) is present in the solution:

𝚕𝚝𝚎𝚛𝚗𝚊𝚝𝚒𝚟𝚎(𝑖𝑣𝑙𝑗 , 𝑖𝑣𝑙_𝑚𝑖𝑗𝑘 ∶ ∀𝑖 ∈ 𝑀𝑗 , 𝑘 ∈ 𝐾𝑖𝑗) 𝑗 ∈ 𝐽 (35)

To guarantee that each machine processes at most one job per day
whether the job is a real one requiring a worker or a dummy one
epresenting an idle time on the machine), we impose
∑

𝑗∈𝐽

∑

𝑘∈𝐾𝑖𝑗

𝚙𝚞𝚕𝚜𝚎(𝑖𝑣𝑙_𝑚𝑖𝑗𝑘, 1) +
∑

(𝑗,𝑙)∈𝑄∶𝑖∈𝑀𝑗

𝚙𝚞𝚕𝚜𝚎(𝑖𝑣𝑙𝑑_𝑚𝑖𝑗𝑙 , 1) ≤ 1 𝑖 ∈ 𝑀

(36)

where 𝚙𝚞𝚕𝚜𝚎(𝑖𝑣𝑙_𝑚𝑖𝑗𝑘, 1) counts one unit of occupation for machine 𝑖
rom the starting time of 𝑖𝑣𝑙_𝑚𝑖𝑗𝑘 to its completion time, provided that
ode 𝑖𝑣𝑙_𝑚𝑖𝑗𝑘 is used. Similarly, to guarantee that every worker is only

ctive for the number of hours they are supposed to work, we add
∑

𝑗∈𝐽

∑

𝑖∈𝑀𝑗∶𝑘∈𝐾𝑖𝑗

𝚙𝚞𝚕𝚜𝚎(𝑖𝑣𝑙_𝑚𝑖𝑗𝑘, 𝑞𝑗) +
∑

ℎ∈𝐻𝑘

𝚙𝚞𝚕𝚜𝚎(𝑖𝑣𝑙ℎ, 𝑞ℎ)

≤ max
𝑡∈

{𝑢𝑘𝑡} 𝑘 ∈ 𝐾 (37)

here max𝑡∈ {𝑢𝑘𝑡} is the number of hours per day worker 𝑘 is available
hen they work at full capacity, and where 𝐻𝑘 contains the dummy

obs with fixed starting/ending dates and the resource consumption
ssociated with worker 𝑘 that is used to model a decrease in the worker
vailability (e.g., for holidays). Precedence relations (including those
oming from contiguity) are modeled as

𝚗𝚍𝙱𝚎𝚏𝚘𝚛𝚎𝚂𝚝𝚊𝚛𝚝(𝑖𝑣𝑙𝑗 , 𝑖𝑣𝑙𝑙) (𝑗, 𝑙) ∈ 𝑃 ∪𝑄 (38)

here 𝚎𝚗𝚍𝙱𝚎𝚏𝚘𝚛𝚎𝚂𝚝𝚊𝚛𝚝(𝑖𝑣𝑙𝑗 , 𝑖𝑣𝑙𝑙) indicates that 𝑖𝑣𝑙𝑗 must end before 𝑖𝑣𝑙𝑙
an start. The supplementary constraints related to contiguity relations
re enforced by

∑

𝑘∈𝐾𝑖𝑗

𝚙𝚛𝚎𝚜𝚎𝚗𝚌𝚎𝙾𝚏(𝑖𝑣𝑙_𝑚𝑖𝑗𝑘) =
∑

𝑘∈𝐾𝑖𝑙

𝚙𝚛𝚎𝚜𝚎𝚗𝚌𝚎𝙾𝚏(𝑖𝑣𝑙_𝑚𝑖𝑙𝑘) (𝑗, 𝑙) ∈ 𝑄𝑗 , 𝑖 ∈ 𝑀𝑗

(39)
∑

𝑘∈𝐾𝑖𝑗

𝚙𝚛𝚎𝚜𝚎𝚗𝚌𝚎𝙾𝚏(𝑖𝑣𝑙_𝑚𝑖𝑗𝑘) = 𝚙𝚛𝚎𝚜𝚎𝚗𝚌𝚎𝙾𝚏(𝑖𝑣𝑙𝑑_𝑚𝑖𝑗𝑙) (𝑗, 𝑙) ∈ 𝑄𝑗 , 𝑖 ∈ 𝑀𝑗

(40)

𝚝𝚊𝚛𝚝𝙰𝚝𝙴𝚗𝚍(𝑖𝑣𝑙𝑑𝑗𝑙 , 𝑖𝑣𝑙𝑗) (𝑗, 𝑙) ∈ 𝑄 (41)

𝚗𝚍𝙰𝚝𝚂𝚝𝚊𝚛𝚝(𝑖𝑣𝑙𝑑𝑗𝑙 , 𝑖𝑣𝑙𝑙) (𝑗, 𝑙) ∈ 𝑄 (42)

𝚕𝚝𝚎𝚛𝚗𝚊𝚝𝚒𝚟𝚎(𝑖𝑣𝑙𝑑𝑗𝑙 , 𝑖𝑣𝑙𝑑_𝑚𝑖𝑗𝑙 ∶ ∀𝑖 ∈ 𝑀𝑗) (𝑗, 𝑙) ∈ 𝑄 (43)

Constraints (39) and (40) use job modes to make sure that two
ontiguous jobs 𝑗 and 𝑙 and their associated dummy job 𝑖𝑣𝑙𝑑𝑗𝑙 are pro-
essed on the same machine. To do so, constraint 𝚙𝚛𝚎𝚜𝚎𝚗𝚌𝚎𝙾𝚏(𝑖𝑣𝑙_𝑚𝑖𝑗𝑘)
eturns true if 𝑖𝑣𝑙_𝑚𝑖𝑗𝑘 is present in the solution. Constraints (41) and
42) force the dummy job 𝑖𝑣𝑙𝑑𝑗𝑙 to start at the end of job 𝑗 and finish
t the start of job 𝑙. To do so, constraints 𝚂𝚝𝚊𝚛𝚝𝙰𝚝𝙴𝚗𝚍(𝑖𝑣𝑙𝑑𝑗𝑙 , 𝑖𝑣𝑙𝑗) and
𝚗𝚍𝙰𝚝𝚂𝚝𝚊𝚛𝚝(𝑖𝑣𝑙𝑑𝑗𝑙 , 𝑖𝑣𝑙𝑙) impose an exact starting and ending time for
𝑣𝑙𝑑𝑗𝑙. Finally, constraints (43) ensure that exactly one mode among
hose associated with contiguity relation (𝑗, 𝑙) is selected.
6

.3. Combinatorial Benders’ decomposition

Benders’ decomposition, which was introduced more than sixty
ears ago by Benders (1962), splits a large MILP problem (called
riginal problem afterwards) into two problems, called master problem
MP) and subproblem (SP). The main idea behind the decomposition is
o solve an MP of reasonable size (typically, a relaxation of the original
roblem where a set of variables/constraints is aggregated or removed)
o obtain a solution 𝜁 and check in the SP if 𝜁 is also feasible for the

original problem. If that is the case, then 𝜁 is also optimal for the
original problem, otherwise a cut is added to the MP, so that 𝜁 cannot
be generated once more, and the MP is solved again.

Benders’ decomposition has significantly evolved during the last
decades. In the seminal work of Benders (1962), the MP was an MILP
and the SP was an LP. A few years later, Geoffrion (1972) generalized
the decomposition to the case where the SP too was an MILP. Later
on, Hooker and Ottosson (2003) proposed the logic-based Benders’
decomposition, where the SP was modeled with CP. A major advance
in the area can be attributed to Codato and Fischetti (2006), who
introduced the concept of combinatorial Benders’ cuts by searching
for the smallest subset of variables in the MP solution that causes
infeasibility. Even though such cuts can be costly to find, they were
shown to be more effective in practice because they strongly reduce
the number of MP/SP iterations since they cut larger portions of the
solution space. Another advance was proposed by Côté et al. (2014)
who used a lifting procedure to increase even further the solution
space removed by the cuts. Recent successful applications can be found
in Dell’Amico et al. (2019), Fang et al. (2021), Karlsson and Rönnberg
(2022), and Seo et al. (2022), among others.

In our decomposition, the MP determines the starting day of every
job while taking into account the precedence constraints and an aggre-
gated form of resource constraints (derived from the machines and the
workers). The SP tries to assign every job to a suitable machine and
a suitable worker while also ensuring the contiguity relations among
jobs. In such a decomposition framework, only feasibility cuts are
added to the MP. Indeed, optimality cuts are never needed because the
objective value of a given MP solution is always equal to the objective
value of the corresponding solution for the original problem (if such
a corresponding solution was shown to exist by the SP). Preliminary
experiments showed that, most of the time, only a few MP/SP iterations
were needed to reach an optimal solution by using this strategy. An
alternative idea would be to take the decisions in reverse order and
assign workers and machines to jobs in the MP and then determine
the best schedule in the SP. Such a decomposition framework would
require optimality cuts as the objective value of a given MP solution
for the original problem would only be known after solving the SP.
Considering that many instances have a non-zero optimal value and
that it is difficult to get any non-trivial bound on the total weighted
tardiness in the MP without knowing the starting dates of the jobs, it is
expected that using such a strategy would result in significantly more
MP/SP iterations. We thus opted not to investigate this alternative idea.
In the following, we describe each component of the decomposition
method in more detail.

Master problem. In the MP, we only consider two resources: one is an
aggregation of the |𝑀| machines and the other one is an aggregation
of the |𝐾| workers. Therefore, the MP does not take into account
the eligibility constraints and only considers a relaxed version of the
contiguity ones. The MP uses a new set of binary variables 𝑦 defined as

𝑦𝑗𝑡 =
∑

𝑖∈𝑀𝑗

∑

𝑘∈𝐾𝑖𝑗

𝑥𝑖𝑗𝑘𝑡

where 𝑦𝑗𝑡 takes the value 1 if job 𝑗 starts at day 𝑡, and 0 otherwise
(𝑗 ∈ 𝐽 , 𝑡 ∈ ). We re-use the two sets of continuous variables 𝐶𝑗 and 𝑇𝑗

to represent the completion time and tardiness of job 𝑗, respectively.

Computers and Operations Research 163 (2024) 106484G. Caselli et al.

s

w
𝑦
s
c
c
n
b
q
t
m
n

S
o
j
t
t
a
𝐶

m

s

i
i
s
w
c
t

i
i
(
c
o
o
i

C
t
{

w
t
t
b
w

c
r
o
w
s
𝑂
w
o
I

i
t
t
a

m
s
a
c
l
o
t
j
T
t

v
A
B

f
o
p
f
s
B
s
𝐽
l
n

The MP is defined as follows:

min
∑

𝑗∈𝐽
𝑤𝑗𝑇𝑗 (44)

.t.
∑

𝑡∈
𝑦𝑗𝑡 = 1 𝑗 ∈ 𝐽 (45)

∑

𝑗′∈𝐽

∑

𝜏∈𝑆𝑗′ 𝑡

𝑦𝑗′𝜏 ≤ |𝑀| −
∑

(𝑗,𝑙)∈𝑄

𝑡−𝑝𝑗
∑

𝜏=𝑟𝑗

𝑦𝑗𝜏 +
∑

(𝑗,𝑙)∈𝑄

𝑡
∑

𝜏=𝑟𝑙

𝑦𝑙𝜏 𝑡 ∈  (46)

∑

𝑗∈𝐽

∑

𝜏∈𝑆𝑗𝑡

𝑞𝑗𝑦𝑗𝜏 ≤
∑

𝑘∈𝐾
𝑢𝑘𝑡 𝑡 ∈  (47)

𝐶𝑗 =
∑

𝑡∈
𝑦𝑗𝑡(𝑡 + 𝑝𝑗) 𝑗 ∈ 𝐽 (48)

𝐶𝑙 − 𝑝𝑙 ≥ 𝐶𝑗 (𝑗, 𝑙) ∈ 𝑃 ∪𝑄 (49)

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝑗 𝑗 ∈ 𝐽 (50)
∑

(𝑗,𝑡)∈𝜁
𝑦𝑗𝑡 ≤ |𝜁 | − 1 𝜁 ∈ 𝑍 (51)

𝑦𝑗𝑡 = 0 𝑗 ∈ 𝐽 , 𝑡 ∈  ⧵ {𝑟𝑗 ,… , 𝑡𝑚𝑎𝑥 − 𝑝𝑗} (52)

𝑦𝑗𝑡 ∈ {0, 1} 𝑗 ∈ 𝐽 , 𝑡 ∈  (53)

𝐶𝑗 , 𝑇𝑗 ≥ 0 𝑗 ∈ 𝐽 (54)

hich is an adaptation of model (1)–(12) using the two-index variables
𝑗𝑡. The only differences are for constraints (51), which forbid the
olutions that were previously shown to be infeasible by the SP, and for
onstraints (46), which merge constraints (3) and (8). More specifically,
onstraints (46) limit the number of jobs running in parallel to the total
umber |𝑀| of machines minus the number of machines that cannot
e used because of the contiguity relations. For every day 𝑡, the latter
uantity can be computed as the number of contiguity pairs for which
he first member has been completed by day 𝑡 (i.e., ∑(𝑗,𝑙)∈𝑄

∑𝑡−𝑝𝑗
𝜏=𝑟𝑗 𝑦𝑗𝜏)

inus the number of contiguity pairs for which the second member has
ot started by day 𝑡 (i.e., ∑(𝑗,𝑙)∈𝑄

∑𝑡
𝜏=𝑟𝑙

𝑦𝑙𝜏).

ubproblem. Given an MP solution {𝑦𝑗𝑡, 𝐶𝑗} indicating the starting time
f every job, the SP determines whether or not there is a feasible
ob/machine/worker allocation respecting both the eligibility and con-
iguity constraints. The SP uses a set of binary decision variables 𝜉𝑖𝑗𝑘
hat take the value 1 if job 𝑗 is processed on machine 𝑖 by worker 𝑘,
nd 0 otherwise (𝑗 ∈ 𝐽 , 𝑖 ∈ 𝑀𝑗 , 𝑘 ∈ 𝐾𝑖𝑗). Let 𝐽𝑄

𝑗𝑙 = {𝑗′ ∈ 𝐽 ⧵ {𝑗, 𝑙} ∶

𝑗̃ − 𝑝𝑗 < 𝐶𝑗′ , 𝐶𝑗′ − 𝑝𝑗′ < 𝐶𝑙}. The SP becomes

in 0 (55)

.t.
∑

𝑖∈𝑀𝑗

∑

𝑘∈𝐾𝑖𝑗

𝜉𝑖𝑗𝑘 = 1 𝑗 ∈ 𝐽 (56)

∑

𝑗∈𝐽
𝐶𝑗−𝑝𝑗∈𝑆𝑗𝑡

∑

𝑘∈𝐾𝑖𝑗

𝜉𝑖𝑗𝑘 ≤ 1 𝑖 ∈ 𝑀, 𝑡 ∈  (57)

∑

𝑗∈𝐽
𝐶𝑗−𝑝𝑗∈𝑆𝑗𝑡

∑

𝑖∈𝑀𝑗∶𝑘∈𝐾𝑖𝑗

𝑞𝑗𝜉𝑖𝑗𝑘 ≤ 𝑢𝑘𝑡 𝑘 ∈ 𝐾, 𝑡 ∈  (58)

∑

𝑘∈𝐾𝑖𝑗

𝜉𝑖𝑗𝑘 =
∑

𝑘∈𝐾𝑖𝑙

𝜉𝑖𝑙𝑘 (𝑗, 𝑙) ∈ 𝑄, 𝑖 ∈ 𝑀𝑗 (59)

∑

𝑗′∈𝐽𝑄
𝑗𝑙

∑

𝑘∈𝐾𝑖𝑗′

𝜉𝑖𝑗′𝑘 +
∑

𝑘∈𝐾𝑖𝑗

𝜉𝑖𝑗𝑘 ≤ 1 (𝑗, 𝑙) ∈ 𝑄, 𝑖 ∈ 𝑀𝑗 (60)

𝜉𝑖𝑗𝑘 ∈ {0, 1} 𝑗 ∈ 𝐽 , 𝑖 ∈ 𝑀𝑗 , 𝑘 ∈ 𝐾𝑖𝑗 (61)

Model (55)–(61) is an adaptation of model (1)–(12) where the start-
ng date of each job is fixed. We point out the necessary adaptations
n resource constraints (57) and (58), where, for each day 𝑡, the 𝜉𝑖𝑗𝑘
um is taken only over the jobs 𝑗 that are active at day 𝑡 (i.e., those
hose starting time 𝐶𝑗 − 𝑝𝑗 is in set 𝑆𝑗𝑡). As far as constraints (60) are

oncerned, they simply indicate that a job 𝑗′ cannot be processed on
7

he same machine as a pair of contiguous jobs (𝑗, 𝑙) ∈ 𝑄 with which it t
s in conflict. A job 𝑗′ is in conflict with a pair of contiguous jobs (𝑗, 𝑙)
f the completion time of job 𝑗′ is greater than the starting time of job 𝑗
i.e., 𝐶𝑗′ > 𝐶𝑗 − 𝑝𝑗) and if the starting time of job 𝑗′ is smaller than the
ompletion time of job 𝑙 (i.e., 𝐶𝑗′ − 𝑝𝑗′ < 𝐶𝑙). We also tried a version
f the SP that uses two sets of two-index binary variables instead of
ne set of three-index variables, but we did not observe significant
mprovements in terms of average computation time.

ut generation and overall framework. Given an MP solution {𝑦𝑗𝑡, 𝐶𝑗}
hat was proven to be infeasible by the SP, a valid cut to prevent
𝑦𝑗𝑡, 𝐶𝑗} to be generated again is
∑

(𝑗,𝑡)∈𝜁
𝑦𝑗𝑡 ≤ |𝐽 | − 1 (62)

here 𝜁 contains all the variables 𝑦𝑗𝑡 (𝑗 ∈ 𝐽 , 𝑡 ∈ ) for which 𝑦𝑗𝑡 is equal
o 1 in the solution. Such a constraint is known as a ‘‘no-good cut’’ in
he literature (Hooker, 2011) and does not forbid any integer solution
esides {𝑦𝑗𝑡, 𝐶𝑗}. In other words, it only forbids the integer solution in
hich every job 𝑗 starts exactly at day 𝐶𝑗 − 𝑝𝑗 .

Stronger cuts can be obtained by using the combinatorial Benders’
uts of Codato and Fischetti (2006). To do so, one needs to find a
educed subset of jobs 𝐽 ′ for which the SP remains infeasible. In
ther words, one now aims at forbidding all the integer solutions in
hich every job 𝑗 in 𝐽 ′ starts exactly at day 𝐶𝑗 − 𝑝𝑗 , regardless of the

tarting day of the jobs in 𝐽 ⧵ 𝐽 ′. This enhanced cut therefore forbids
(

∏

𝑗∈𝐽⧵𝐽 ′ (𝑡𝑚𝑎𝑥 − 𝑟𝑗)
)

solutions. As more MP solutions are removed
hen |𝐽 ′

| decreases, we are interested in finding the smallest subset
f jobs 𝐽 ′ causing infeasibility for the SP, also known as the Minimum
nfeasible Subset (MIS) in the literature. Since finding a MIS is usually
-hard, a common strategy is to determine it heuristically by remov-

ng the set of variables that is the least likely to cause infeasibility, solve
he SP again, and iterate until the SP becomes feasible. In our case,
his difficulty is confirmed by the -completeness of the SP. We thus
dopt the same strategy.

In detail, the variables that are less likely to cause infeasibility in
odel (55)–(61) are the 𝜉𝑖𝑗𝑘’s associated with the jobs that (i) are

hort, (ii) are involved in few precedence/contiguity constraints, (iii)
re compatible with most machines and workers, and (iv) have their
ompletion interval [𝐶𝑗 − 𝑝𝑗 ;𝐶𝑗] intersecting with few other jobs. Pre-
iminary experiments showed that criterion (i) was the most relevant in
ur instances. Therefore, we determine the minimum subset of jobs 𝐽 ′

hat cause infeasibility in the SP by initializing 𝐽 ′ to 𝐽 and removing the
ob with the smallest duration from 𝐽 ′ until the SP becomes feasible.
he last subset 𝐽 ′ for which the SP is infeasible is then used to generate
he combinatorial Benders’ cut:

∑

(𝑗,𝑡)∈𝜁 ′
𝑦𝑗𝑡 ≤ |𝜁 ′| − 1. (63)

This is the modified version of (51) where 𝜁 ′ contains all the
ariables 𝑦𝑗𝑡 (𝑗 ∈ 𝐽 ′, 𝑡 ∈ ) for which 𝑦𝑗𝑡 is equal to 1 in the MP solution.

flowchart summarizing the main idea behind the combinatorial
enders’ decomposition is shown in Fig. 2.

In our implementation, we embedded the SP solution in a callback
unction provided by the MILP solver we adopted. In this way, we
nly need to solve the MP once. We also tried the lifting procedure
roposed by Côté et al. (2014). The idea behind such a cut lifting is to
orbid integer solutions in which every job 𝑗 ∈ 𝐽 starts within a job-
pecific range. The resulting cut is a generalization of the combinatorial
enders’ cut that forbids integer solutions in which every job 𝑗 ∈ 𝐽 ′

tarts in the (job-specific) range [𝐶𝑗 − 𝑝𝑗 , 𝐶𝑗 − 𝑝𝑗] and every job 𝑗 ∈
⧵ 𝐽 ′ starts in the (job-specific) range [𝑟𝑗 , 𝑡𝑚𝑎𝑥 − 𝑝𝑗]. We adapted the

ifting procedure described in Côté et al. (2014) to our problem but did
ot observe significant improvements in terms of average computation

ime.

Computers and Operations Research 163 (2024) 106484G. Caselli et al.
Fig. 2. Flowchart of the combinatorial Benders’ decomposition approach.
O
T

o
c
r
w
(
a
(
a
t
t
m
t

5. Computational experiments

In this section, we study the empirical performance of each of the
proposed algorithms on three sets of instances. All algorithms were
coded in C++. The MILP models were solved with Gurobi 9.5.1
while the CP model was solved with IBM ILOG CPLEX CP Optimizer
22.1.0 (as Gurobi does not offer a CP solver). The tests were executed
on a single thread of a virtual machine Intel(R) Xeon(R) Gold with
2.30 GHz and 20 GB of RAM memory, running under Windows 10 Pro
N. We fed each approach with a warm start obtained by running the
CP model until a feasible solution was found.

We first investigate the impact of key instance features such as the
presence of precedence/contiguity constraints, the worker/machine/
job ratios, and the probability for worker/ machine/job to be com-
patible. We then describe a case study originating from Dana Inc.
and outline the potential gain that could be reached using optimiza-
tion models instead of handmade solutions. We conclude by studying
the scaling potential of our algorithms using large size instances de-
signed to mimic the case study. All instances can be downloaded
from the online repository https://github.com/regor-unimore/Parallel-
Machine-Scheduling-with-Contiguity.

5.1. Experiment on random instances

To test the impact of various instance features, we generated a
set of random instances where some parameters are randomly created
while others are taken from the case study. The features that were
investigated are:

1. number of jobs, machines, and workers: we tested 9 combi-
nations (|𝐽 |, |𝑀|, |𝐾|) ∈ {(50, 2, 2), (50, 5, 3), (50, 5, 5), (100, 4, 4),
(100, 10, 5), (100, 10, 10), (200, 8, 8), (200, 20, 10), (200, 20, 20)};

2. number of precedence and contiguity relations: we tested two
configurations, one without any precedence/contiguity
constraints at all, and another one with a number of prece-
dence/contiguity constraints randomly distributed in the range
[0, 0.05|𝐽 |+ 1] for the precedence constraints and [0, 0.35|𝐽 |+ 1]
for the contiguity constraints. Once the numbers of constraints
were determined, we randomly selected pairs of successive jobs
(𝑗, 𝑗 + 1) and added them to either 𝑃 or 𝑄. The resulting chain
structure for the precedence/contiguity relations imitates the
project structure of the case study. Instances without precedence
and contiguity relations were tested in order to serve as a
‘‘control group’’ and determine whether an approach is better
than another because it is more effective at handling precedence
and contiguity constraints or because it is more effective overall;

3. job/machine, job/worker, and machine/worker eligibility ratios:
we tested five ratios 𝑟 ∈ {1, 0.9, 0.8, 0.7, 0.6} and randomly se-
lected 𝑟 × |𝑀| compatible machines and 𝑟 × |𝐾| compatible
8

W

workers for every job. We also randomly selected 𝑟 × |𝐾| com-
patible workers per machine. A post-processing step changed the
eligibilities of the jobs involved in the same chain of contiguities
so that every job in the chain has the same job/machine and
job/worker eligibilities as the first job of the chain.

ne instance was generated for each of the 9×2×5 = 90 combinations.
he other features are:

1. the time horizon was fixed at 𝑡𝑚𝑎𝑥 = 400;
2. every worker is available 8 h per day during the week and is not

available during the weekend;
3. the release date 𝑟𝑗 of a job 𝑗 was randomly selected in the

range [0, 230]. A post-processing step changed the release dates
of the jobs involved in the same chain of precedence/contiguity
relations so that every job in the chain has the same release date,
which is set to the earliest release date 𝑟𝑚𝑖𝑛 among all the jobs
in the chain;

4. the daily resource consumption 𝑞𝑗 of a job 𝑗 is either equal
to 1, with probability 0.2, or 8 with probability 0.8. In other
words, a job needs a worker either punctually (we call such a job
‘‘passive’’) or for its whole duration (we call such a job ‘‘active’’);

5. the processing time 𝑝𝑗 of every job 𝑗 is a value randomly selected
in the range [1, 10] for active jobs and [10, 50] for passive jobs;

6. the due date of every job 𝑑𝑗 was set to 𝑟𝑗 + 𝜉𝑝𝑗 , where 𝜉 is
an integer value randomly selected in the range [1, 3]. A post-
processing step changed the due dates of the jobs involved in the
same chain of precedence/contiguity relations so that every job
in the chain has the same due date. This was set to 𝑟𝑚𝑖𝑛 + 𝜉

∑

𝑝𝑗 ,
where 𝜉 is an integer value randomly selected in the range [1, 2].
Note that due dates above the time horizon were set to 𝑡𝑚𝑎𝑥;

7. the weight of every job 𝑤𝑗 is equal to 4 with probability 0.4, to
3 with probability 0.3, to 2 with probability 0.2, and to 1 with
probability 0.1.

We report in Tables 3–6 a summary of the results obtained by
ur algorithms on the random instances. In each table, the first set of
olumns indicates the instance features, while the following columns
eport, for each algorithm, the number of optimal solutions found
ithin the time limit (‘‘# opt’’) , the average CPU time in seconds

‘‘T(s)’’) including the instances that were not solved to optimality
nd the instances that were stopped because of the memory limit
for such instances, 3600 s of running time were considered), and the
verage CPU time in seconds computed only on the instances solved
o optimality (‘‘T𝑜𝑝𝑡(s)’’). In the tables and thereafter, ‘‘MILP’’ refers
o the MILP model (1)–(12), ‘‘MILP+’’ refers to the enhanced MILP
odel (13)–(29), ‘‘CP’’ refers to model (30)–(43), and ‘‘Decomp’’ refers

o the combinatorial Benders’ decomposition algorithm in Section 4.3.

e also report in columns ‘‘OBA’’ (‘‘Only Best Algorithm’’) the results

https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity

Computers and Operations Research 163 (2024) 106484G. Caselli et al.

v
M
8

Table 3
Summary of results: impact of (|𝐽 |, |𝑀|, |𝐾|) combinations.

Parameters Results

|𝐽 | |𝑀| |𝐾| # MILP MILP+ CP Decomp OBA

opt T(s) T𝑜𝑝𝑡(s) # opt 𝑇 (𝑠) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s)

50 2 2 10 8 966 307 9 762 446 5 2233 867 6 1456 27 9 546 207
50 5 3 10 10 129 129 10 124 124 10 2 2 7 1089 12 10 2 2
50 5 5 10 10 102 102 10 57 57 9 360 0 10 3 3 10 1 1

100 4 4 10 4 2372 528 5(1) 2342 1083 1 3259 188 4(3) 2314 385 8 1173 566
100 10 5 10 10 774 774 9 570 234 10 2 2 9 385 28 10 2 2
100 10 10 10 8 889 211 10 145 145 10 1 1 10 4 4 10 1 1
200 8 8 10 2 3289 2044 2 3159 1395 1 3249 94 5(2) 2078 557 5 2078 557
200 20 10 10 3 2718 659 7 1239 227 10 8 8 10 25 25 10 7 7
200 20 20 10 2 2936 279 9 824 516 10 8 8 10 9 9 10 6 6

Tot 90 57 1575 402 71(1) 1025 336 66 1014 73 71(5) 818 74 82 424 114
Table 4
Summary of results: comparison between MILP and MILP+.

Parameters Results

|𝐽 | |𝑀| |𝐾| # MILP MILP+

opt T(s) T𝑜𝑝𝑡(s) LP # var. # cons. # nzs. # opt T(s) T𝑜𝑝𝑡(s) LP # var. # cons. # nzs.

50 2 2 10 8 966 307 692.20 39,106 5 444 2,157,317 9 762 446 692.20 44,528 25,594 1,380,991
50 5 3 10 10 129 129 0.00 115,790 14,985 7,844,411 10 124 1234 0.00 89,742 35,285 4,019,729
50 5 5 10 10 102 102 0.00 192,341 13,780 11,707,342 10 57 57 0.00 112,252 34,080 3,960,135

100 4 4 10 4 2372 528 78.90 265,873 16,984 15,787,486 5 2342 1083 77.50 178,565 57,484 5,862,264
100 10 5 10 10 774 774 0.00 780,006 60,450 64,969,996 9 570 234 0.00 342,722 101,550 20,064,260
100 10 10 10 8 889 211 0.00 1,346,082 22,840 43,757,243 10 145 145 0.00 423,762 63,940 10,382,416
200 8 8 10 2 3289 2044 6.98 1,750,779 9 675 37,842,773 2 3159 1395 6.98 673,733 91,475 11,047,170
200 20 10 10 3 2718 659 0.00 4,648,955 12,600 97,902,775 7 1239 227 0.00 1,193,206 96,800 21,548,621
200 20 20 10 2 2936 278 0.00 6,265,306 16,600 125,042,161 9 825 516 0.00 1,455,916 100,800 26,859,121

Tot 90 57 1575 402 86.45 1,711,582 19,262 45,223,501 71 1025 336 86.31 501,603 67,445 11,680,523
a
u
m
a
c
c
f
(
m
t
s
f
o
1
o

g

obtained by the best approach among MILP, MILP+, CP, and Decomp
for every instance. In other words, OBA simulates the performance of
a hyper-algorithm able to predict with 100% accuracy the algorithm
that is the fastest to solve a given instance; it is thus of interest as
a comparison term with respect to the performance of the previous
algorithms. To identify the methods that contribute the most to the per-
formance of OBA, we also include in the ‘‘# opt’’ columns (within round
brackets) the number of instances that are solved to optimality by a
given approach while being unsolved by the other three algorithms. If
no number is included within brackets, then each of the instances in
the group was solved to proven optimality by two or more algorithms.

We report in Table 3 the summary of results on the nine
(|𝐽 |, |𝑀|, |𝐾|) combinations. Overall, we observe that algorithms
MILP+ and Decomp are both able to find an optimal solution for 71
out of 90 instances, compared with 66 for CP and 57 for MILP. The
results obtained by the hypothetic OBA hyper-algorithm show that 82
instances could be solved to optimality (if we knew a priori which
is the best algorithm for each instance). This indicates that the best
algorithm is not always the same for all the instances: for example, five
instances are solved by Decomp but not solved by MILP, MILP+, and
CP; similarly, one instance is solved by MILP+, but not solved by MILP,
CP, and Decomp. As far as instance combinations are concerned, MILP+
solves the most instances for combinations (50,2,2) and (100,4,4),
Decomp solves the most instances for combination (200,8,8), and
CP solves the most instances, together with MILP, for combination
(100,10,5). We also point out that CP and Decomp results are very
heterogeneous in the sense that the algorithms either solve an instance
to optimality very fast or not at all, as witnessed by the low T𝑜𝑝𝑡(s)
alues for the two algorithms compared with the values of MILP and
ILP+. The most difficult instances seem to be the ones with 200 jobs,
machines, and 8 workers.
9

Our next set of experiments, which is reported in Table 4, aims
t comparing the performance of MILP and MILP+. In the table, col-
mn ‘‘LP’’ indicates the average continuous relaxation value of the
odel and columns ‘‘# var.’’, ‘‘# cons.’’, and ‘‘# nzs.’’ indicate the

verage number of variables, constraints, and non-zero elements in the
oefficient matrix of the model, respectively. To provide meaningful
omparisons, the averages were computed by only using the instances
or which the LP relaxation value could be obtained by both models
i.e., the instances for which neither of the two algorithms ran out of
emory). We observe that, overall, MILP+ is faster on average (336 s

o solve an instance on average compared with 402 s for MILP) and
olves more instances (71 instances solved in total compared with 57
or MILP). These results can mostly be explained by the reduced size
f the model (501,603 variables on average for MILP+ compared with
,711,582 for MILP) at the expense of a negligible decrease in the quality
f the continuous linear relaxation.

We report in Table 5 the impact of the job/machine/worker eli-
ibility ratios (‘‘𝑟’’) and the impact of precedence/contiguity relations

(‘‘P/Q’’) on the performance of our methods. Following the aforemen-
tioned description, an instance in which the eligibility ratio ‘‘𝑟’’ is 0.9
has (i) each of its jobs compatible with 90% of the machines, (ii) each
of its jobs compatible with 90% of the workers, and (iii) each of its
machines compatible with 90% of the workers. Overall, it appears that
instances with lower eligibility ratios are harder to solve, and so are
instances with precedence/contiguity constraints. A detailed analysis
shows that Decomp obtains the best results for instances with eligibility
ratio above 0.9, CP shines on instances with precedence/contiguity
constraints and eligibility ratio below 0.7, and MILP+ is working well
in the remaining cases.

We report in Table 6 the impact of other instance features (in col-
umn ‘‘Par’’) on the performance of our methods such as the number of

jobs (|𝐽 |) and the ratios job/machine, job/worker, and machine/worker

Computers and Operations Research 163 (2024) 106484G. Caselli et al.

t
t

s

(

t
1
w
e
w
i
b

Table 5
Summary of results: impact of eligibility percentage and precedence/contiguity relations.

Parameters Results

r P/Q # MILP MILP+ CP Decomp OBA

opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s)

1 No 9 6 1339 208 9 150 150 7 803 4 9 5 5 9 5 5
Yes 9 3 2431 93 6 1408 312 6 1205 8 8(1) 577 200 8 575 197

0.9 No 9 6 1264 96 7 815 20 7 891 117 9(2) 9 9 9 8 8
Yes 9 4 2326 733 7 1196 509 6 1204 6 9(2) 306 306 9 292 292

0.8 No 9 6 1414 321 9(1) 480 480 8 689 325 8 407 7 9 219 219
Yes 9 6 1534 501 7 1084 365 6 1224 35 6 1210 15 8 429 32

0.7 No 9 9 492 492 8 560 180 7 864 82 7 824 31 9 89 89
Yes 9 5 2038 789 6 1828 942 6 1203 5 5 1608 14 7 991 245

0.6 No 9 8 563 183 8 567 187 7 851 66 6 1218 27 8 430 33
Yes 9 4 2347 781 4 2159 358 6 1203 4 4 2019 43 6 1203 4

Tot 90 57 1575 402 71(1) 1025 336 66 1014 73 71(5) 818 74 82 424 114
Table 6
Summary of results: impact of size and worker/machine/job ratios.

Parameters Results

Par. Value # MILP MILP+ CP Decomp OBA

opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s)

|𝐽 |
50 30 28 399 170 29 314 201 24 865 182 23 849 12 29 183 65

100 30 22 1345 525 24(1) 1019 374 21 1087 10 23(3) 901 80 28 392 163
200 30 7 2981 946 18 1741 501 21 1088 12 25(2) 704 125 25 697 116

|𝐽 |
|𝑀|

25 30 14 2209 618 16(1) 2087 764 7 2914 659 15(5) 1950 299 22 1266 417
10 60 43 1258 332 55 493 211 59 63 4 56 253 13 60 3 3

|𝐽 |
|𝐾|

25 30 14 2209 618 16(1) 2087 764 7 2914 659 15(5) 1950 299 22 1265 417
20 30 23 1207 479 26 644 190 30 4 4 26 450 23 30 4 4
10 30 20 1309 163 29 342 230 29 123 3 30 5 5 30 3 3

|𝑀|

|𝐾|

2 30 23 1207 479 26 644 190 30 4 4 26 500 23 30 4 4
1 60 34 1759 351 45(1) 1215 420 36 1518 131 45(5) 978 103 52 634 178
w
i

w
t
d
s
o

5

D

(|𝐽 |
|𝑀|

, |𝐽 |
|𝐾|

, and |𝑀|

|𝐾|

, respectively). As expected, instances with 200 jobs

end to be harder to solve than instances with 50 jobs, especially for
he two MILP models.

We also notice that instances are easier to solve when the ratios
|𝐽 |
|𝑀|

and |𝐽 |
|𝐾|

decrease. This can be explained by the fact that the optimal
chedule for instances with high |𝐽 |

|𝑀|

and |𝐽 |
|𝐾|

ratios tend to be very busy
compared with the optimal schedule of instances with lower ratios. This
can be observed in Fig. 3, which reports the best machine schedule
(Figs. 3(a)–3(b)) and the best worker schedule (Figs. 3(c)–3(d)) for two
instances, one with |𝐽 |

|𝑀|

= |𝐽 |
|𝐾|

= 10 (on the left) solved in 0.23 s by CP
214.45 s for MILP+), and the other with |𝐽 |

|𝑀|

= |𝐽 |
|𝐾|

= 25 unsolved after

3600 s by CP and MILP+. In the two top figures, a rectangle represents
the machine occupation for a job. In the two bottom figures, a rectangle
represents the worker occupation for at least a job (since a worker may
perform either one active job or up to eight passive jobs per day). As
far as the ratio |𝑀|

|𝐾|

is concerned, we observe that instances with twice
as many machines as workers are easier to solve than instances with
the same number of machines and workers. This can be explained by
our instance generation procedure, since each of the 30 instances in
which the ratio |𝑀|

|𝐾|

is equal to 2 has a counterpart (i.e., an instance with
he same numbers of jobs and machines) in which the ratio is equal to

(i.e., with twice as many workers). In other words, supplementary
orkers increase the instance difficulty (all other parameters being
qual). If we focus on the individual performance of each algorithm,
e notice that (i) MILP+ is the most efficient approach in practice for

nstances with 50 and 100 jobs while instances with 200 jobs are solved
est with Decomp; (ii) CP is particularly effective on instances where
10
the ratio |𝐽 |
|𝑀|

is equal to 10, while MILP+ obtains the best performance
on instances where that ratio is equal to 25; (iii) Decomp obtains the
best results on instances where the ratio |𝐽 |

|𝐾|

is equal to 10, CP is the best
hen that ratio is equal to 20, and MILP+ is the best when that ratio

s equal to 25; and (iv) CP performs best on instances where the ratio
|𝑀|

|𝐾|

is equal to 2, while Decomp obtains the best results for instances
here this ratio is equal to 1. Once more, an analysis of T𝑜𝑝𝑡(s) shows

hat, when CP and Decomp solve an instance to optimality, they tend to
o so relatively fast, whereas MILP and MILP+ require a few hundred
econds on average. Overall, we observe that each algorithm is effective
n a subset of instances.

.2. Case study

We now test our approaches on the case study instance provided by
ana Inc. A project is defined as a set of one or more tests (i.e., jobs)

to be executed on the same product. Each project has a release date,
a desired due date, and a priority (i.e., a weight). Therefore, all jobs
belonging to a given project have the same release date, the same due
date, and the same weight, and are linked by either a precedence or a
contiguity relation.

To transform the original data into a valid instance, we took into
account all the jobs taking place in calendar year 2019. We selected the
jobs whose release date was between day 01 (January 01) and day 240
(early December – note that Saturdays and Sundays are not counted)
and whose due date was before day 400 (mid-July 2020), obtaining
an instance with 49 projects, 86 jobs (with an average duration of

10 days), 6 precedence relations, 27 contiguity relations, and a time

Computers and Operations Research 163 (2024) 106484G. Caselli et al.
Fig. 3. Graphical representation of the optimal schedule for 2 instances with different |𝐽 |
|𝑀|

and |𝐽 |
|𝐾|

ratios.
horizon of 400 days. In the real-world application, there were also some
tasks that were released in year 2018 and scheduled for early 2019.
Based on the discussions with the company and the limited data we
could access, we estimated that an additional 20% of jobs were in that
situation. As we had no accurate information regarding the release date
or due date of such tasks in the available dataset, we decided to take
them into account by forbidding the jobs to be scheduled during the
first 2 months and a half of the year.

In the resulting instance, machines are considered available all the
time after 2.5-months. Workers are active at most eight hours per
working day and are all available eight hours per day except during the
weekends, the bank holidays, and the four annual weeks of holidays
in which the company is closed. Tasks can be interrupted during the
weekend (i.e., a three-day job may start on a Friday morning and finish
on the following Tuesday evening) but not during the annual holidays
(i.e., every job that was started needs to be finished before the first
day of holidays). As explained in the previous section, a job is either
active (i.e., it necessitates the constant supervision of a worker) and
requires eight worker hours per day or it is passive (i.e., it only involves
a punctual supervision) and requires one worker hour per day. Eligi-
bility relations were given by the company and are based on machine
features and worker skills. On average, a job is compatible with 14%
of machines and 38% of workers, while a machine is compatible with
29% of workers.

MILP+ was able to find an optimal solution in 572 s. Fig. 4 shows
the manual schedule used by the company (on the left) and the optimal
schedule found by MILP+ (on the right). We obtained an overall de-
crease of 73% in the total weighted tardiness, with 27 late jobs against
44 jobs in delay in the manual solution. This outstanding result can be
explained by two reasons. First, manual solutions are often sub-optimal,
even when they are provided by experienced workers (see, e.g., Seifi
et al., 2021; Baykasoğlu and Özbel, 2021). Second, there are some real-
world aspects that could not be captured by our model, such as machine
breakdown/maintenance, worker-specific unavailability (e.g., due to
illness or extra holidays), stochasticity of the job duration due to
unexpected delay of product delivery, among others. In summary, it
is very unlikely that the best schedule for Dana Inc. can be determined
solely with our optimization tools, but the solutions found can serve as
a basis to support the company experts in producing the final schedules.
11
5.3. Experiment on realistic instances

To test the scaling potential of our algorithms, we generated a set of
realistic instances that include the real-world features of the case study.
In particular,

1. the number of projects is set to 40, 80, 120, 160, or 200. For
each project, the number of jobs is equal to 1 with probability
0.7, 2 with probability 0.2 (linked by a precedence constraint
with probability 0.4 or a contiguity constraint with probability
0.6), or is a random number between 3 and 15 with probability
0.1 (always linked by contiguity constraints);

2. every job is considered active (requiring eight worker-hours per
day) except the second job of the projects that contains two tasks
linked by a precedence constraint;

3. the job/machine, job/worker, and machine/worker eligibility
ratios are set to the realistic values (14%, 38%, and 29%, re-
spectively). We enforced consistency in the eligibility matrices
by imposing that every worker that is compatible with job 𝑖 must
also be compatible with at least one machine that is compatible
with 𝑖;

4. 20% supplementary late projects are included to model all jobs
from the previous year. All tasks in these projects have their
release date and due date set to the first time period.

We report in Table 7 a summary of the results obtained by our
algorithms on the realistic instances. Table 7 has the same structure
as the other tables except for the first column which now indicates the
number of projects contained in the instance.

As expected, larger instances (with 120/160/200 projects) are
harder to solve, even though we observe that a few instances with
200 projects (4 times as large as the case study) can be solved to
optimality. MILP and MILP+ appear to be the weakest approach es
on this dataset as they are only able to solve 15 and 21 instances
in total, respectively. CP performs slightly better than MILP+ as it
is able to solve 22 instances in less than one minute on average
(compared with 17 min on average for MILP+, if we exclude unsolved
instances). Interestingly, we observe that CP is often able to find good-
quality (or even optimal) solutions, even for the largest instances,

but it struggles in finding good-quality lower bounds. Decomp is the

Computers and Operations Research 163 (2024) 106484G. Caselli et al.
Fig. 4. Graphical representation of solutions for the Dana case study (summer and winter holidays are identified by two white rectangles).
Table 7
Summary of results: impact of size on realistic instances.

Parameters Results

Size # MILP MILP+ CP Decomp OBA

opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s)

40 10 10 526 526 10 332 332 10 61 61 10 16 16 10 10 10
80 10 5 2944 2288 9 1681 1467 3 2521 2 10 108 108 10 42 42

120 10 0 3600 – 2 3309 2143 4 2163 6 10(4) 799 799 10 284 284
160 10 0 3600 – 0 3600 – 4(2) 2172 31 8(6) 1887 1459 10 784 784
200 10 0 3600 – 0 3600 – 1(1) 3248 82 3(3) 3297 2591 4 2946 1964

Tot 50 15 2854 1113 21 2504 991 22(3) 2033 38 41(13) 1222 699 44 813 433
most effective algorithm in terms of the number of instances solved
to proven optimality (41 out of 50, among which 13 are unsolved by
the other three methods, compared with 22 for CP, among which 3
are unsolved by the other three methods). However, an analysis of
T𝑜𝑝𝑡(s) shows that Decomp may take more than a thousand seconds to
solve an instance whereas CP solves an instance to optimality in less
than one hundred seconds. We also emphasize that if one could pre-
select the best algorithm for each instance, then the total number of
instances solved to optimality would have increased by 3 compared
with Decomp, while simultaneously reducing the average computation
time of the solved instances by 266 s.

We also tested a version of MILP and MILP+ in which Cplex
22.1.0.0 was used instead of Gurobi 9.5.1 as solver. The results,
reported in Table 8, show that both models solved more instances to
optimality with Gurobi than they did with Cplex. While one should
be cautious before claiming an empirical advantage of one solver over
another (see, e.g., Mittelmann, 2020), such a comparison indicates that
the poor performance of the two MILP models on this dataset is not
caused by the choice of the solver.

Our next set of experiments, which is reported in Table 9, aims
at comparing the performance of MILP and MILP+ on the realistic
instances. As MILP ran out of memory when solving the instances with
120 projects (which means that the LP relaxation value could not be
computed or was not returned), we only compare the two models on
instances with 40 and 80 projects. Once more, we observe that, overall,
MILP+ is faster on average (1467 s to solve instances with 80 projects
on average compared with 2288 s for MILP, if we exclude unsolved
instances) and solves more instances (19 instances with 80 projects or
12
less solved compared with 15 for MILP). Again, these results can mostly
be explained by the reduced size of the model (683,197 variables on
average for MILP+ on instances with 80 projects compared with 869,438
for MILP). This time, MILP and MILP+ had the same continuous linear
relaxation value for all instances.

Our two final sets of experiments, which are reported in Tables 10
and 11, aim at evaluating whether our algorithms remain effective
when solving related RCPMSP with contiguity constraints. We first
tested our three best approaches MILP+, CP, and Decomp on the
version of our problem where one wants to minimize the total weighted
flow time, which is the same as minimizing the total weighted tardiness
when the due date of every task is equal to its release date. Note that
the total weighted flow time (a generalization of the total flow time,
which is a common measure in system performance) is often used in the
PMSP literature (see, e.g., Shabtay and Kaspi, 2004 and Becchetti et al.,
2006). As shown in Table 10, changing the objective function from
weighted tardiness minimization to weighted flow time minimization
barely impacts the performance of Decomp and MILP+, whereas it has
a negative effect on CP. This could be explained by the fact that the
optimal weighted flow time is always strictly positive, meaning that a
good quality lower bound (which can be difficult to obtain with CP) is
necessary to provide a certificate of optimality.

We then tested the same three approaches on the version of our
problem where one wants to minimize the maximum tardiness. As
shown in Table 11, changing the objective function from weighted
tardiness minimization to maximum tardiness minimization has a slight
positive impact on the performance of Decomp and MILP+ and an
outstanding positive effect on CP. This could be explained by the

Computers and Operations Research 163 (2024) 106484G. Caselli et al.
Table 8
Summary of results: solvers comparison.

Parameters Gurobi Cplex

Size # MILP MILP+ MILP MILP+

opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s)

40 10 10 526 526 10 332 332 2 2905 123 3 2970 1501
80 10 5 2944 2288 9 1681 1467 0 3600 – 0 3600 –

120 10 0 3600 – 2 3309 2143 0 3600 – 0 3600 –
160 10 0 3600 – 0 3600 – 0 3600 – 0 3600 –
200 10 0 3600 – 0 3600 – 0 3600 – 0 3600 –

Tot 50 15 2854 1113 21 2504 991 2 3461 123 3 3474 1501
Table 9
Summary of results: comparison between MILP and MILP+.

Parameters Results

Size # MILP MILP+

opt T(s) T𝑜𝑝𝑡(s) LP # var. # cons. # nzs. # opt T(s) T𝑜𝑝𝑡(s) LP # var. # cons. # nzs.

40 10 10 526 526 993.28 230,910 559,444 53,061,913 10 332 332 993.28 250,044 600,028 32,912,832
80 10 5 2944 2288 874.00 869,438 1,336,717 173,201,182 9 1681 1467 874.00 683,197 1,398,401 81,498,170
Table 10
Summary of results: impact of size on realistic instances with weighted flow time minimization.

Parameters Results

Size # MILP+ CP Decomp OBA

opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s)

40 10 10 200 200 10 327 327 10 28 28 10 9 9
80 10 9 1029 744 2 2880 2 10 85 85 10 39 39

120 10 2 3063 1181 4 2162 6 10(4) 578 578 10 310 310
160 10 0 3600 – 2 2887 37 8(6) 1705 1231 8 1232 640
200 10 0 3600 – 1(1) 3248 81 4(4) 2691 1327 5 2339 1078

Tot 50 21 2283 526 19(1) 2301 182 42(14) 1018 526 43 786 328
Table 11
Summary of results: impact of size on realistic instances with maximum tardiness minimization.

Parameters Results

Size # MILP+ CP Decomp OBA

opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s) # opt T(s) T𝑜𝑝𝑡(s)

40 10 10 338 338 10 0 0 10 16 16 10 0 0
80 10 8 1646 1157 10 3 3 10 111 111 10 3 3

120 10 1 3346 1060 10 11 11 10 651 651 10 11 11
160 10 0 3600 – 10(1) 28 28 9 2047 1875 10 28 28
200 10 0 3600 – 10(6) 49 49 4 3283 2808 10 49 49

Tot 50 19 2506 721 50(7) 18 18 43 1222 835 50 18 18
fact that the optimal maximum tardiness is always a small number
(sometimes even zero), meaning that being able to find a good quality
upper bound (which is where CP shines) is more important to obtain a
certificate of optimality.

6. Conclusions

We studied a new parallel machine scheduling problem motivated
by the real-world case study of an hydraulic motion components en-
gineering test laboratory. The problem contains release dates, due
dates, weights, workforce resource with daily availability, three sets
of eligibility constraints, precedence constraints, and contiguity con-
straints. The introduction of contiguity constraints makes our problem
original in the machine scheduling literature. We proposed two orig-
inal MILP models, a CP formulation, and a combinatorial Benders’
decomposition. We also introduced method-specific strategies to model
the contiguity constraints for each of the proposed approaches. We
tested the effectiveness of the four algorithms with an extensive set of
computational experiments, which included random, realistic, and real
instances. Our best algorithm, the decomposition approach, was able
to solve 71 out of 90 random instances and 41 out of 50 realistic
13
instances to optimality in one hour of computing time. However, we
empirically showed that this algorithm does not clearly dominate the
others because (i) both the CP formulation and the MILP formulations
were able to solve instances that the decomposition approach could
not solve and (ii) the CP formulation was able to solve some large
realistic instances much faster than the decomposition approach. We
also showed that our approaches could easily be extended to take other
objective functions into account. We also identified some features that
make an instance more difficult to solve (e.g., the presence of prece-
dence/contiguity constraints, and high job/machine and job/worker
ratios). We were also able to solve a real instance to optimality with
a significant improvement on the total weighted tardiness with respect
to the manual solution produced by the company. However, there are
a few aspects that we could not take into account in our problem
modelization such as machine unavailability caused by a breakdown or
by a maintenance intervention, worker unavailability due to illness or
supplementary holidays, and the job release date and duration stochas-
ticity caused by unexpected events such as a delay in the product
delivery or a machine breakdown happening while the job is being
processed.

Computers and Operations Research 163 (2024) 106484G. Caselli et al.
Future research directions include (i) the development of a hyper-
algorithm able to predict and select the most effective method to
solve a given instance with supervised learning techniques (i.e., an
algorithm able to replicate the results of OBA) and (ii) the study of
the dynamic version of the problem to include a rolling horizon aspect
where the problem is solved at regular time intervals and where, in
each run, a set of job/machine and job/worker assignments is fixed
(because it was determined in the previous run), a set of job/machine
and job/worker assignments is planned (because it was determined
in the previous run but can still be modified if necessary), and a
set of job/machine and job/worker assignments is free (because the
projects were released after the last run took place or were delayed
and need to be rescheduled); the objective function would then be
hybridized to also include a minimization component for disruption
(number of planned assignments that are modified). While Dana Inc. is
interested in the one-year-ahead solutions obtained by our approaches
for scheduling and prevision purposes, the company also needs to have
the tools to regularly update those schedules and predictions later on
when new data are available.

CRediT authorship contribution statement

Giulia Caselli: Conceptualization, Methodology, Software, Valida-
tion, Investigation, Data curation, Writing – original draft, Visualiza-
tion. Maxence Delorme: Conceptualization, Methodology, Writing –
review & editing, Visualization, Supervision. Manuel Iori: Conceptu-
alization, Resources, Writing – review & editing, Supervision. Carlo
Alberto Magni: Writing – review & editing, Supervision.

Data availability

Data can be downloaded from the online repository https://github.
com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity.

Acknowledgments

We would like to thank the three anonymous reviewers for their
valuable comments, which have helped improve the presentation of this
paper. We thank Andrea Lucchi from Dana Inc. for his support during
this project.

References

Afzalirad, M., Rezaeian, J., 2016. Resource-constrained unrelated parallel machine
scheduling problem with sequence dependent setup times, precedence constraints
and machine eligibility restrictions. Comput. Ind. Eng. 98, 40–52.

Baker, K.R., Trietsch, D., 2019. Principles of Sequencing and Scheduling. John Wiley
& Sons, New York.

Baykasoğlu, A., Özbel, B.K., 2021. Modeling and solving a real-world cutting stock
problem in the marble industry via mathematical programming and stochastic
diffusion search approaches. Comput. Oper. Res. 128, 105173.

Becchetti, L., Leonardi, S., Marchetti-Spaccamela, A., Pruhs, K., 2006. Online weighted
flow time and deadline scheduling. J. Discrete Algorithms 4 (3), 339–352.

Becker, C., Scholl, A., 2006. A survey on problems and methods in generalized assembly
line balancing. European J. Oper. Res. 168 (3), 694–715.

Benders, J.F., 1962. Partitioning procedures for solving mixed-variables programming
problems. Numer. Math. 4 (1), 238–252.

Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A.H.G., 1983. Scheduling subject to resource
constraints: classification and complexity. Discrete Appl. Math. 5 (1), 11–24.

Bockmayr, A., Hooker, J.N., 2005. Constraint programming. Handbooks Oper. Res.
Management Sci. 12, 559–600.

Bruno, J., Downey, P., 1978. Complexity of task sequencing with deadlines, set-up
times and changeover costs. SIAM J. Comput. 7 (4), 393–404.

Caselli, G., Delorme, M., Iori, M., Magni, C.A., 2022. Mixed integer linear programming
for a real-world parallel machine scheduling problem with workforce and prece-
dence constraints. In: Amorosi, L., Dell’Olmo, P., Lari, I. (Eds.), Optimization in
Artificial Intelligence and Data Sciences. Springer International Publishing, Cham,
pp. 61–71.

Chen, Z.-L., 2004. Simultaneous job scheduling and resource allocation on parallel
14

machines. Ann. Oper. Res. 129 (1), 135–153.
Cheng, T.C.E., Sin, C.C.S., 1990. A state-of-the-art review of parallel-machine scheduling
research. European J. Oper. Res. 47 (3), 271–292.

Chudak, F.A., Shmoys, D.B., 1999. Approximation algorithms for precedence-
constrained scheduling problems on parallel machines that run at different speeds.
J. Algorithms 30 (2), 323–343.

Codato, G., Fischetti, M., 2006. Combinatorial Benders’ cuts for mixed-integer linear
programming. Oper. Res. 54 (4), 756–766.

Côté, J.-F., Dell’Amico, M., Iori, M., 2014. Combinatorial Benders’ cuts for the strip
packing problem. Oper. Res. 62 (3), 643–661.

Daniels, R.L., Hoopes, B.J., Mazzola, J.B., 1997. An analysis of heuristics for
the parallel-machine flexible-resource scheduling problem. Ann. Oper. Res. 70,
439–472.

Dell’Amico, M., Delorme, M., Iori, M., Martello, S., 2019. Mathematical models and
decomposition methods for the multiple knapsack problem. European J. Oper. Res.
274 (3), 886–899.

Delorme, M., Iori, M., Martello, S., 2017. Logic based Benders’ decomposition for
orthogonal stock cutting problems. Comput. Oper. Res. 78, 290–298.

Delorme, M., Santini, A., 2022. Energy-efficient automated vertical farms. Omega 109,
102611.

Edis, E.B., Oguz, C., Ozkarahan, I., 2013. Parallel machine scheduling with additional
resources: Notation, classification, models and solution methods. European J. Oper.
Res. 230 (3), 449–463.

Edis, E.B., Ozkarahan, I., 2011. A combined integer/constraint programming approach
to a resource-constrained parallel machine scheduling problem with machine
eligibility restrictions. Eng. Optim. 43 (2), 135–157.

Edis, E.B., Ozkarahan, I., 2012. Solution approaches for a real-life resource-constrained
parallel machine scheduling problem. Int. J. Adv. Manuf. Technol. 58 (9),
1141–1153.

Fang, K., Wang, S., Pinedo, M.L., Chen, L., Chu, F., 2021. A combinatorial Ben-
ders decomposition algorithm for parallel machine scheduling with working-time
restrictions. European J. Oper. Res. 291 (1), 128–146.

Fleszar, K., Hindi, K.S., 2018. Algorithms for the unrelated parallel machine scheduling
problem with a resource constraint. European J. Oper. Res. 271 (3), 839–848.

Fuchigami, H.Y., Rangel, S., 2018. A survey of case studies in production scheduling:
Analysis and perspectives. J. Comput. Sci. 25, 425–436.

Gedik, R., Rainwater, C., Nachtmann, H., Pohl, E.A., 2016. Analysis of a parallel ma-
chine scheduling problem with sequence dependent setup times and job availability
intervals. European J. Oper. Res. 251 (2), 640–650.

Geoffrion, A.M., 1972. Generalized Benders decomposition. J. Optim. Theory Appl. 10
(4), 237–260.

Gökgür, B., Hnich, B., Özpeynirci, S., 2018. Parallel machine scheduling with tool
loading: a constraint programming approach. Int. J. Prod. Res. 56 (16), 5541–5557.

Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., 1979. Optimization and
approximation in deterministic sequencing and scheduling: a survey. In: Annals of
Discrete Mathematics, Vol. 5. Elsevier, pp. 287–326.

Hall, N.G., Potts, C.N., Sriskandarajah, C., 2000. Parallel machine scheduling with a
common server. Discrete Appl. Math. 102 (3), 223–243.

Hartmann, S., Briskorn, D., 2022. An updated survey of variants and extensions of the
resource-constrained project scheduling problem. European J. Oper. Res. 297 (1),
1–14.

Hooker, J.N., 2006. An integrated method for planning and scheduling to minimize
tardiness. Constraints 11 (2), 139–157.

Hooker, J.N., 2011. Logic-Based Methods for Optimization: Combining Optimization
and Constraint Satisfaction. John Wiley & Sons, New York.

Hooker, J.N., Ottosson, G., 2003. Logic-based Benders decomposition. Math. Program.
96 (1), 33–60.

Hu, X., Bao, J.-S., Jin, Y., 2010. Minimising makespan on parallel machines with
precedence constraints and machine eligibility restrictions. Int. J. Prod. Res. 48
(6), 1639–1651.

Jain, V., Grossmann, I.E., 2001. Algorithms for hybrid MILP/CP models for a class of
optimization problems. INFORMS J. Comput. 13 (4), 258–276.

Janiak, A., Janiak, W.A., Krysiak, T., Kwiatkowski, T., 2015. A survey on scheduling
problems with due windows. European J. Oper. Res. 242 (2), 347–357.

Karlsson, E., Rönnberg, E., 2022. Logic-based Benders decomposition with a partial
assignment acceleration technique for avionics scheduling. Comput. Oper. Res. 146,
105916.

Khatami, M., Salehipour, A., 2021a. A binary search algorithm for the general coupled
task scheduling problem. 4OR 19 (4), 593–611.

Khatami, M., Salehipour, A., 2021b. Coupled task scheduling with time-dependent
processing times. J. Sched. 24 (2), 223–236.

Khatami, M., Salehipour, A., Cheng, T.C.E., 2020. Coupled task scheduling with exact
delays: Literature review and models. European J. Oper. Res. 282 (1), 19–39.

Koné, O., Artigues, C., Lopez, P., Mongeau, M., 2011. Event-based MILP models for
resource-constrained project scheduling problems. Comput. Oper. Res. 38 (1), 3–13.

Koulamas, C., 1994. The total tardiness problem: review and extensions. Oper. Res. 42
(6), 1025–1041.

Kramer, R., Dell’Amico, M., Iori, M., 2017. A batching-move iterated local search
algorithm for the bin packing problem with generalized precedence constraints.
Int. J. Prod. Res. 55 (21), 6288–6304.

https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
https://github.com/regor-unimore/Parallel-Machine-Scheduling-with-Contiguity
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb1
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb1
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb1
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb1
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb1
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb2
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb2
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb2
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb3
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb3
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb3
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb3
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb3
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb4
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb4
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb4
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb5
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb5
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb5
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb6
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb6
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb6
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb7
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb7
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb7
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb8
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb8
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb8
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb9
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb9
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb9
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb10
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb10
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb10
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb10
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb10
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb10
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb10
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb10
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb10
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb11
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb11
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb11
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb12
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb12
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb12
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb13
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb13
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb13
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb13
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb13
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb14
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb14
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb14
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb15
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb15
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb15
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb16
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb16
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb16
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb16
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb16
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb17
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb17
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb17
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb17
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb17
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb18
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb18
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb18
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb19
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb19
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb19
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb20
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb20
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb20
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb20
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb20
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb21
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb21
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb21
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb21
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb21
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb22
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb22
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb22
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb22
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb22
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb23
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb23
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb23
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb23
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb23
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb24
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb24
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb24
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb25
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb25
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb25
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb26
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb26
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb26
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb26
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb26
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb27
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb27
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb27
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb28
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb28
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb28
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb29
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb29
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb29
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb29
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb29
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb30
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb30
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb30
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb31
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb31
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb31
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb31
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb31
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb32
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb32
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb32
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb33
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb33
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb33
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb34
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb34
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb34
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb35
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb35
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb35
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb35
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb35
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb36
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb36
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb36
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb37
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb37
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb37
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb38
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb38
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb38
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb38
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb38
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb39
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb39
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb39
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb40
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb40
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb40
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb41
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb41
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb41
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb42
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb42
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb42
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb43
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb43
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb43
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb44
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb44
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb44
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb44
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb44

Computers and Operations Research 163 (2024) 106484G. Caselli et al.
Kramer, A., Dell’Amico, M., Iori, M., 2019. Enhanced arc-flow formulations to minimize
weighted completion time on identical parallel machines. European J. Oper. Res.
275 (1), 67–79.

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B., 1993. Sequencing and
scheduling: Algorithms and complexity. In: Graves, S., Rinnooy Kan, A., Zipkin, P.
(Eds.), Logistics of Production and Inventory. Elsevier, Amsterdam, pp. 445–522.

Lee, C.Y., 2004. Machine scheduling with availability constraints. In: Leung, J.Y.T.
(Ed.), Handbook of Scheduling: Algorithms, Models, and Performance Analysis. CRC
Press, Boca Raton, pp. 22–1–22–14.

Lenstra, J.K., Rinnooy Kan, A.H.G., 1978. Complexity of scheduling under precedence
constraints. Oper. Res. 26 (1), 22–35.

Leung, J.Y.-T., Li, C.-L., 2016. Scheduling with processing set restrictions: A literature
update. Int. J. Prod. Econ. 175, 1–11.

Li, Y., Côté, J.-F., Coelho, L.C., Wu, P., 2022. Novel efficient formulation and
matheuristic for large-sized unrelated parallel machine scheduling with release
dates. Int. J. Prod. Res. 60 (20), 6104–6123.

Lovato, D., Guillaume, R., Thierry, C., Battaia, O., 2023. Managing disruptions in
aircraft assembly lines with staircase criteria. Int. J. Prod. Res. 61 (2), 632–648.

Mischek, F., Musliu, N., 2021. A local search framework for industrial test laboratory
scheduling. Ann. Oper. Res. 302 (2), 533–562.

Mittelmann, H.D., 2020. Benchmarking optimization software-a (hi) story. In: SN
Operations Research Forum, Vol. 1. Springer, p. 2.

Mokotoff, E., 2001. Parallel machine scheduling problems: A survey. Asia-Pac. J. Oper.
Res. 18 (2), 193–242.

Pinedo, M.L., 2016. Scheduling - Theory, Algorithms, and Systems. Springer
International Publishing.

Potts, C.N., Kovalyov, M.Y., 2000. Scheduling with batching: A review. European J.
Oper. Res. 120 (2), 228–249.
15
Pritsker, A.A.B., Waiters, L.J., Wolfe, P.M., 1969. Multiproject scheduling with limited
resources: A zero-one programming approach. Manag. Sci. 16 (1), 93–108.

Reddy, N.S., Ramamurthy, D.V., Padma Lalitha, M., Prahlada Rao, K., 2022. Integrated
simultaneous scheduling of machines, automated guided vehicles and tools in multi
machine flexible manufacturing system using symbiotic organisms search algorithm.
J. Ind. Prod. Eng. 39 (4), 317–339.

Seifi, C., Schulze, M., Zimmermann, J., 2021. A new mathematical formulation for a
potash-mine shift scheduling problem with a simultaneous assignment of machines
and workers. European J. Oper. Res. 292 (1), 27–42.

Seo, K., Joung, S., Lee, C., Park, S., 2022. A closest Benders cut selection scheme for
accelerating the Benders decomposition algorithm. INFORMS J. Comput. 34 (5),
2804–2827.

Shabtay, D., Kaspi, M., 2004. Minimizing the total weighted flow time in a sin-
gle machine with controllable processing times. Comput. Oper. Res. 31 (13),
2279–2289.

Su, H., Pinedo, M.L., Wan, G., 2017. Parallel machine scheduling with eligibility
constraints: A composite dispatching rule to minimize total weighted tardiness.
Nav. Res. Logist. 64 (3), 249–267.

Ulusoy, G., Sivrikaya-Şerifoǧlu, F., Bilge, Ü., 1997. A genetic algorithm approach to
the simultaneous scheduling of machines and automated guided vehicles. Comput.
Oper. Res. 24 (4), 335–351.

Ventura, J.A., Kim, D., 2000. Parallel machine scheduling about an unrestricted due
date and additional resource constraints. IIE Trans. 32 (2), 147–153.

Wȩglarz, J., Józefowska, J., Mika, M., Waligóra, G., 2011. Project scheduling with finite
or infinite number of activity processing modes–a survey. Eur. J. Oper. Res. 208
(3), 177–205.

http://refhub.elsevier.com/S0305-0548(23)00348-9/sb45
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb45
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb45
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb45
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb45
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb46
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb46
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb46
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb46
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb46
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb47
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb47
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb47
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb47
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb47
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb48
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb48
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb48
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb49
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb49
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb49
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb50
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb50
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb50
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb50
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb50
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb51
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb51
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb51
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb52
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb52
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb52
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb53
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb53
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb53
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb54
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb54
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb54
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb55
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb55
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb55
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb56
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb56
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb56
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb57
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb57
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb57
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb58
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb58
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb58
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb58
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb58
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb58
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb58
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb59
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb59
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb59
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb59
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb59
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb60
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb60
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb60
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb60
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb60
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb61
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb61
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb61
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb61
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb61
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb62
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb62
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb62
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb62
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb62
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb63
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb63
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb63
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb63
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb63
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb64
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb64
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb64
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb65
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb65
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb65
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb65
http://refhub.elsevier.com/S0305-0548(23)00348-9/sb65

	Exact algorithms for a parallel machine scheduling problem with workforce and contiguity constraints
	Introduction
	Literature review
	Problem statement and descriptive model
	 Advanced algorithms
	Enhanced MILP model
	Constraint Programming model
	Combinatorial Benders' decomposition

	Computational experiments
	Experiment on random instances
	Case study
	Experiment on realistic instances

	Conclusions
	CRediT authorship contribution statement
	Data availability
	Acknowledgments
	References

