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A B S T R A C T

We analyze the non-equilibrium fluctuations of the partial symmetric simple exclusion process,
SEP(𝛼), which allows at most 𝛼 ∈ N particles per site, and we put it in contact with stochastic
reservoirs whose strength is regulated by a parameter 𝜃 ∈ R. Setting 𝛼 = 1, we find the results
of Landim et al. (2008), Franco et al. (2019) and Gonçalves et al. (2020) and extend the known
results to cover all range of 𝜃.

1. Introduction

Interacting particle systems are stochastic systems on which individual units (the so-called particles) perform Markovian
evolutions influenced by the presence of other particles [30]. The objective is to study the emergence of collective behavior out
of simple interaction rules for the individual units of the system. Among the most studied interacting particle systems [25] is the
so-called exclusion process, on which the interaction between particles is reduced to a simple exclusion rule, under which particles
evolving on a graph can never share the same position. The exclusion model has been used as a landmark for a myriad of collective
behavior, among which mass transport, interface growth and motion by mean curvature. The success of the exclusion process as an
interacting particle system comes from one side from its striking combinatorial and algebraic properties, which makes the analysis of
the collective behavior of particles a mathematically tractable problem, and from the other side from the fact that it is rich enough
to allow modeling a great variety of collective behaviors. A generalization of the exclusion process that shares many of its algebraic
properties is the so-called partial exclusion process: in this model, the exclusion rule is relaxed to allow at most 𝛼 particles per site,
where 𝛼 ∈ N is a fixed parameter.

The partial exclusion process that we investigate here, the SEP(𝛼), was first introduced in Section B of [29]. We restrict ourselves
to the choice of a simple symmetric dynamics on a one-dimensional lattice, i.e. nearest-neighbor jumps with 𝑝(1) = 𝑝(−1) = 1∕2. For
𝑁 ∈ N, we consider the finite lattice 𝛬𝑁 = {1,… , 𝑁 − 1} which we call bulk. For a site 𝑥 ∈ 𝛬𝑁 , we fix the rate at which a particle
jumps from 𝑥 to 𝑥+1 (resp. from 𝑥+1 to 𝑥) to be equal to 𝜂(𝑥)(𝛼− 𝜂(𝑥+1)) (resp. 𝜂(𝑥+1)(𝛼− 𝜂(𝑥))), where 𝜂(𝑥) denotes the quantity
of particles at site 𝑥 on the configuration 𝜂. If 𝛼 = 1, the model coincides with the so-called symmetric simple exclusion process
(SSEP). This specific choice of the rates was introduced in [29], see equation (2.30) in that article. The SEP(𝛼) has been further
studied in other settings, such as in [6,12] where the system is put in contact with stochastic reservoirs, in [11] under a random
environment and also in [7,8], always from a duality point of view. We note that for the choice of rates given above this model is
what is called a gradient model, since the instantaneous current of the system at the bond {𝑥, 𝑥 + 1}, i.e. the difference between the
jump rate from 𝑥 to 𝑥 + 1 and the jump rate from 𝑥 + 1 to 𝑥 can be written as the gradient of a local function. More precisely, that
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current is equal to 𝛼(𝜂(𝑥) − 𝜂(𝑥 + 1)). We also observe that the number of particles is conserved by the dynamics of the SEP(𝛼) and
that the symmetry of the jump rates of the individual particles makes the system reversible with respect to Binomial measures of
product form.

Non-equilibrium phenomena have become increasingly relevant in recent years, and the study of how collective behavior is
modified by breaking reversibility is an active research subject. A natural way to modify the SEP(𝛼) in order to make it non-reversible,
is to attach to the lattice density reservoirs with at least two different densities. This creates currents through the system, which drive
the system out of equilibrium. In this article, this will be the setting we will be working on, i.e. we will attach a stochastic reservoir
to each boundary point of 𝛬𝑁 . These reservoirs will break the conservation of the total number of particles, since they can inject and
remove particles, even-though the individual units of the system will still be conserved locally. With the aim of exploring various
possible answers to the question whether the limiting collective behavior of particles retains the non-reversible behavior, we will
choose the particles injection and removal rates to scale with the size 𝑁 of the system, through a parameter 𝜃 ∈ R, and to be such
that the system is no longer in equilibrium. When 𝜃 < 0, the reservoirs are fast and when 𝜃 ≥ 0, the reservoirs are slow.

The main question here is whether this non-reversible behavior is observed at the level of the scaling limits of the model. The
hydrodynamic limit of the SEP(𝛼) turns out to be a non-reversible PDE, which answers this question at the level of the law of large
numbers. The next question is whether the non-reversible behavior has a stochastic component, which motivates the analysis of the
fluctuations of the density around its hydrodynamic limit. The question can thus be restated as whether a non-reversible behavior
is observed in the limiting SPDE. The Macroscopic Fluctuation Theory (MFT), as formulated in [4,5] can be used to predict the
behavior of large scale limits of driven-diffusive systems. This description depends on two macroscopic quantities, the diffusivity
and the mobility of the system. One assumes that these quantities are local functions of the thermodynamic variables. In the case of
the SEP(𝛼), the density of particles 𝜌 ∈ [0, 𝛼] is the only thermodynamic variable. The diffusivity is constant and equal to 𝛼, while
the mobility is quadratic and equal to 𝜌(𝛼−𝜌). Our main result confirms the predictions of MFT for the Central Limit Theorem (CLT)
fluctuations of the density of particles.

In this article, we will be interested on the analysis of the fluctuations of the density of particles around its hydrodynamic limit.
This corresponds to the derivation of the CLT associated to the hydrodynamic limit of the system. The limiting equation is no longer
a PDE, but a linear SPDE on which the time evolution is given by the hydrodynamic equation, plus a stochastic conservative noise
with a covariance structure given in terms of solutions of the hydrodynamic equation. More precisely, in this paper we will analyze
the non-equilibrium time dependent fluctuations for SEP(𝛼) for all 𝜃 ∈ R and 𝛼 ∈ N. We remark that the equilibrium case can also
be easily proved by the same type of arguments as in the case 𝛼 = 1, obtained in [14]. For that reason, we omit the proof of this
case here and we refer the reader to that article for a proof.

Now we recall the state-of-the-art of some of the scaling limits for this model. For the case of the exclusion process with open
boundary and 𝛼 = 1, the hydrodynamic limit was derived in [1] for slow reservoirs and in [3] for fast reservoirs. In [13], the
derivation of the hydrodynamic limit was extended to 𝛼 ∈ N in both the slow and fast regimes, with a proof that relies on the
entropy method introduced in [19]. An extension of these hydrodynamic limits to general domains based on duality can be found
in [28]. In the case of asymmetric rates and with a slow/fast boundary, the hydrodynamic limit was analysed in [31,32]. The
hydrodynamic equation of the SEP(𝛼) is the heat equation given by 𝜕𝑡𝜌𝑡(𝑢) = 𝛼𝛥𝜌𝑡(𝑢), that needs to be complemented with suitable
boundary conditions. Depending on the choice of the parameter 𝜃, the boundary conditions are of Dirichlet type (for 𝜃 < 1), Robin
type (for 𝜃 = 1) or Neumann type (for 𝜃 > 1). The non-equilibrium fluctuations for the case 𝛼 = 1 were analyzed in several works,
namely in: [23] when 𝜃 = 0, where the non-equilibrium stationary fluctuations were derived as a consequence of its non-equilibrium
fluctuations; [15] when 𝜃 = 1 and [18] when 𝜃 ∈ [0,∞). The equilibrium fluctuations, also for the case 𝛼 = 1, were analyzed in [14]
for 𝜃 ≥ 0. Nevertheless, the case 𝜃 < 0 was an open problem up to now, apart in the equilibrium setting, which was derived in [2].

The main difficulty on the rigorous mathematical derivation of the non-equilibrium fluctuations relies on the fact that the systems
ypically exhibit long-range space–time correlations. For that reason, one has to face the problem of obtaining good estimates of
he two-point centered correlation function, that we denote by 𝜑𝑁𝑡 . This is one of the main topics discussed in this article and we
onsider that it is here that relies the major contribution of our work. For the case 𝛼 = 1, by writing down the Chapman–Kolmogorov
quations directly for 𝜑𝑁𝑡 , one gets

𝜕𝑡𝜑
𝑁
𝑡 (𝑥, 𝑦) = 𝑁2𝛥𝑖𝑁𝜑

𝑁
𝑡 (𝑥, 𝑦) + 𝑔𝑁𝑡 (𝑥, 𝑦)1((𝑥, 𝑦) ∈ D+

𝑁 ), (1.1)

where 𝛥𝑖𝑁 is the infinitesimal generator of a certain bi-dimensional random walk, D+
𝑁 is a certain finite set that we will define later

and 𝑔𝑁𝑡 is a non-positive function that only has support on D+
𝑁 . From last identity, one can use Duhamel’s formula to obtain an

xpression for such function. From that, we reduce the problem to estimating three simple quantities: the initial correlations 𝜑𝑁0 ,
the term 𝑔𝑁𝑡 and the occupation time on D+

𝑁 of the bi-dimensional random walk with infinitesimal generator 𝛥𝑖𝑁 . Unfortunately,
or 𝛼 ≥ 2, if one tries to write down the Chapman–Kolmogorov equations directly for 𝜑𝑁𝑡 defined as in the case 𝛼 = 1, an additional

interaction term appears at the diagonal {𝑥 = 𝑦}, which breaks down the previous approach. To overcome such issue, we construct
an extension of 𝜑𝑁𝑡 to the diagonal {𝑥 = 𝑦}, to which a similar approach as the one previously described can be applied to obtain
the decay in 𝑁 of 𝜑𝑁𝑡 . By analyzing this extension function, we are able to obtain a generalization of the results for 𝛼 = 1 that
were derived in [15,18,23]. The novelty of our approach to obtain the decay in 𝑁 of 𝜑𝑁𝑡 is the construction and use of such a well
hosen extension function that can be compared with 𝜑𝑁𝑡 and also the use of some discrete versions of the maximum principle (see
ppendix A) to, after applying Duhamel’s formula, compare occupation times for different values of 𝜃. After some trial and error, we
iscovered that the right choice of the extension function is related to the duality function of the SEP(𝛼), see [6] and Appendix C.1.
evertheless, we observe that there are other ways on which one can arrive to the right extension function for the correlation
2
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function 𝜑𝑁𝑡 . In order to follow a fully analytical method, for example, one can introduce a boundary layer at the diagonal to
discover the best approximation of the heat equation with sources at the diagonal.

To determine the non-equilibrium fluctuations of the system we follow the same strategy outlined in [15,18,23] (with similar
ideas to the ones described in Chapter 11 of [22]), and, for that reason, some details in the proofs are omitted here. The idea of the
argument is the classical probabilistic approach to functional convergence of stochastic processes, namely, to prove tightness of the
sequence of density fluctuation fields and then characterize all limit points.

Now we comment on the main tools and difficulties of our approach. We first observe that depending on the range of 𝜃, the density
luctuation fields have to be defined on proper spaces of test functions, which typically are quite regular and satisfy the boundary
onditions of the hydrodynamic equation but with an appropriate choice of parameters. Second, in order to prove tightness, we use
oth Aldous and Kolmogorov–Centsov criteria (as in [18]), where this last one is mainly applied to the boundary integral terms
f the Dynkin’s martingales. Recall that on the proof of tightness at the level of the hydrodynamic limit, i.e. of the sequence of
mpirical measures associated with the density profile, the quadratic variation of the Dynkin’s martingale {𝑀𝑁

𝑡 (𝜙)}𝑁∈N converges
o zero. Now, in the case of fluctuations, the corresponding Dynkin’s martingale converges, as 𝑁 goes to infinity, in the 𝐽1-Skorohod
pace D𝑁 ([0, 𝑇 ];R) of càdlàg functions from [0, 𝑇 ] to R, to a mean-zero Gaussian process which is a martingale with continuous
rajectories and with a deterministic, non-degenerated quadratic variation. We also note that from our results we can obtain the
on-equilibrium fluctuations starting the process from a product measure with slowly varying parameter or even a constant one. In
articular, if we fix a profile 𝜌 ∶ [0, 1] → [0, 1] and consider 𝜇𝑁 as the product measure whose marginals are given by the Binomial(𝛼,
( 𝑥𝑁 )) distribution, the result also holds, leading to an Ornstein–Uhlenbeck process in the limit.

In our work, we also consider the case 𝜃 < 0 for 𝛼 ∈ N in the non-equilibrium scenario, extending therefore the results of [2].
This case is more demanding than the others since the boundary terms are of order 𝑂(𝑁−𝜃) and therefore, they blow up when taking
𝑁 → +∞. To overcome this difficulty, we take a space of test functions that have all derivatives equal to zero at the boundary.
Since this space of test functions is too little we supplement the characterization of limit points by showing that the limit field when
integrated in time satisfies the Dirichlet conditions as in the case 𝜃 ∈ [0, 1). This is reminiscent of item 2 (ii) of Theorem 2.13 of [2],
where it was proved that when the system is in its equilibrium state, this extra condition gives in fact the uniqueness of the limit.
Here we extended that result to the non-equilibrium setting.

Here is a summary of our contributions in this article. First we provide a natural extension of the two-point correlation function
to the diagonal in such a way that it satisfies a consistent set of equations that allows estimating the non-stationary two-point
correlations of the SEP(𝛼) for any value of 𝛼 ∈ N and 𝜃 ∈ R. As a consequence, we characterize the non-equilibrium fluctuations
of SEP(𝛼) for any value of 𝛼 ≥ 2 and 𝜃 ∈ R. Moreover, our approach also allows characterizing the non-equilibrium fluctuations of
SEP(1), for 𝜃 < 0.

In a recent article [20], a methodology based on the analysis of the evolution of the relative entropy with respect to carefully
crafted reference measures has been developed to derive non-equilibrium fluctuations of particle systems. In principle, this
methodology applies to the SEP(𝛼), but at the cost of more restrictive hypothesis on the initial conditions than the ones used in this
article. In particular, knowledge of one and two-point correlations is not enough to kick-start the methodology of [20].

To conclude we comment on the fluctuations starting from non-equilibrium stationary state (NESS). Observe that the Ornstein–
Uhlenbeck equation has a unique invariant measure, which is given by a Gaussian spatial process on the interval [0, 1]. Observe
as well that the SEP(𝛼) as defined here is irreducible, and in particular has a unique invariant measure. A relevant question is the
derivation of a fluctuation result for the empirical density of particles of the SEP(𝛼) starting from its NESS. This question has been
solved for the SEP(1) in [18,23], and more recently in [17] for reaction–diffusion models. Unfortunately, our estimates are not
sharp enough to allow for the limit exchange which is needed to derive such a result. Recall that, for 𝛼 = 1, the matrix product
ansatz (MPA) developed by [9] provides detailed information about the NESS of SEP(1) and recently [10] found a characterization
of such measure. For SEP(1), the MPA enables one to obtain explicitly the k-point correlation function of the system for any value
of 𝜃 ∈ R, see, for example, Section 2.2 of [18] and the closed-form steady state formula (4.26) of [16] when 𝜃 = 0, which can
be generalized for any 𝜃 ∈ R. Knowing the decay in 𝑁 of such objects is one of the main ingredients to analyze both stationary
fluctuations and hydrostatic limits. We observe that, when 𝛼 ≠ 1, the steady state of the model we consider has no matrix ansatz
formulation available. We believe that this lies in the fact that the associated integrable open XXX spin chains does not represent a
Markov process for higher spins 𝛼 > 1. There are, however, solvable models for which it is possible to compute exactly correlation
functions without the use of integrability [26]. Even though it is known that the two-point stationary correlations of SEP(𝛼) are
negative (see Theorem 3.4 of [12]), nevertheless, its decay with 𝑁 is still an open problem. In this paper, we will not treat the case
of the fluctuations from the NESS since our method depends on having such bounds on correlations. From our results, we cannot
just simply take 𝑡 → ∞ to obtain the stationary fluctuations of SEP(𝛼) because some of the estimates we use here depend on time
and would blow up as 𝑡 goes to infinity. This is left as future work. Nonetheless, for the case 𝜃 = 0 and any 𝛼 ∈ N, since we can
find explicit expressions for the two-point correlations for certain choices of the parameters at the boundary rates (see for example
in [6] equation (6.8)), one can follow the same strategy of the proof developed here and easily obtain the non-equilibrium stationary
fluctuations of the system when 𝜃 = 0, we leave this to the reader.

Now we provide an outline of this article. In Section 2 we introduce the SEP(𝛼); we recall some known facts regarding its
equilibrium measure (see Section 2.1) and its hydrodynamic behavior (see Section 2.3); and we introduce the setting for the
analysis of the non-equilibrium fluctuations (see Section 2.4) and state our main results, namely, Proposition 4.2 and Theorem 2.3.
In Section 3 we provide the proof of Theorem 2.3, which relies on showing tightness and characterizing the limit point; which we
show to be unique as a consequence of Lévy’s Representation Theorem. In Sections 4 and 5 we obtain a collection of auxiliary results
3
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proofs of various versions of the maximum principle. In Appendix B we provide some details on the Chapman–Kolmogorov equation
for 𝜑𝑁𝑡 , when 𝛼 ≥ 2, with the aim of facilitating the reading of the article. In Appendix C we show two different arguments for the
onstruction of the extension function that we use to bound 𝜑𝑁𝑡 : the first one via stochastic duality and the second one by analytic
ethods. Finally, Appendix E is devoted to the proof of a replacement lemma.

. The model and statement of results

.1. The model: the SEP(𝛼)

Fix 𝛼 ∈ N and for each 𝑁 ∈ N let 𝛬𝑁 ∶= {1,… , 𝑁 − 1} be the one-dimensional, discrete interval and let 𝛬𝑁 ∶= 𝛬𝑁 ∪ {0, 𝑁}. We
will call 𝛬𝑁 the bulk. We say that 𝑥, 𝑦 ∈ 𝛬𝑁 are nearest neighbors if |𝑦 − 𝑥| = 1, and we denote it by 𝑥 ∼ 𝑦. We consider a Markov
chain with state space 𝛺𝑁 ∶= {0,… , 𝛼}𝛬𝑁 . We call the elements of 𝛺𝑁 configurations and we denote them by 𝜂 = (𝜂(𝑥); 𝑥 ∈ 𝛬𝑁 ). We
interpret 𝜂(𝑥) as the number of particles at site 𝑥 ∈ 𝛬𝑁 and we call the functions (𝜂(𝑥); 𝑥 ∈ 𝛬𝑁 ) the occupation variables. For each
𝑥 ∈ 𝛬𝑁 , let us denote by 𝛿𝑥 the configuration in 𝛺𝑁 with exactly one particle, located at 𝑥, that is,

𝛿𝑥(𝑦) ∶=

{

1 ; 𝑦 = 𝑥,

0 ; 𝑦 ≠ 𝑥.

For each 𝑓 ∶ 𝛺𝑁 → R, let Lbulk𝑓 = Lbulk,𝑁𝑓 ∶ 𝛺𝑁 → R be given by

Lbulk𝑓 (𝜂) ∶=
𝑁−2
∑

𝑥=1
𝜂(𝑥)(𝛼 − 𝜂(𝑥 + 1))

{

𝑓 (𝜂 + 𝛿𝑥+1 − 𝛿𝑥) − 𝑓 (𝜂)
}

+
𝑁−2
∑

𝑥=1
𝜂(𝑥 + 1)(𝛼 − 𝜂(𝑥))

{

𝑓 (𝜂 + 𝛿𝑥 − 𝛿𝑥+1) − 𝑓 (𝜂)
}

for every 𝜂 ∈ 𝛺𝑁 . In this expression, we adopt the convention that 0 ⋅ 𝑓 (𝜂 + 𝛿𝑦 − 𝛿𝑥) = 0 whenever 𝑓 (𝜂 + 𝛿𝑦 − 𝛿𝑥) is not well defined.
The linear operator Lbulk defined in this way is a Markov generator, which describes the bulk dynamics.

For every 𝑗 ∈ {𝓁, 𝑟}, let 0 < 𝜆𝑗 ≤ 1 and 𝜌𝑗 ∈ (0, 𝛼) be fixed, and let 𝜃 ∈ R be fixed. Define 𝑥𝓁 = 1 and 𝑥𝑟 = 𝑁 −1. For 𝑓 ∶ 𝛺𝑁 → R,
let L𝑗𝑓 = L𝑗,𝑁𝑓 ∶ 𝛺𝑁 → R be given by

L𝑗𝑓 (𝜂) ∶= 𝜆𝑗𝜌𝑗 (𝛼 − 𝜂(𝑥𝑗 ))
{

𝑓 (𝜂 + 𝛿𝑥𝑗 ) − 𝑓 (𝜂)
}

+ 𝜆𝑗 (𝛼 − 𝜌𝑗
)

𝜂(𝑥𝑗 )
{

𝑓 (𝜂 − 𝛿𝑥𝑗 ) − 𝑓 (𝜂)
}

for every 𝜂 ∈ 𝛺𝑁 . The SEP(𝛼) with slow/fast reservoirs at 0 and 𝑁 is the Markov chain (𝜂𝑡; 𝑡 ≥ 0) in 𝛺𝑁 generated by the operator

L𝑁 ∶= Lbulk +
1
𝑁𝜃

(

L𝓁 +L𝑟
)

.

bserve that the operator L𝑁 depends on the parameters 𝛼, 𝜆𝓁 , 𝜆𝑟, 𝜌𝓁 , 𝜌𝑟, 𝜃. Sometimes it will be useful to state this dependence
explicitly on the notation. Whenever we need to do this, we will use the generic index 𝑖 to denote the vector of parameters
(𝛼, 𝜆𝓁 , 𝜆𝑟, 𝜌𝓁 , 𝜌𝑟, 𝜃).

The dynamics of the SEP(𝛼) with parameters (𝜆𝓁 , 𝜆𝑟, 𝜌𝓁 , 𝜌𝑟, 𝜃) is described in Fig. 2.1.

Fig. 2.1. Dynamics of SEP(𝛼).

The choice of such parametrization allows to interpret the reservoirs’ dynamics in a similar way to the bulk dynamics. More
recisely, let us define

𝜖 = 𝜆𝓁𝜌𝓁 , 𝛿 = 𝜆𝑟𝜌𝑟, 𝛾 = 𝜆𝓁(𝛼 − 𝜌𝓁), 𝛽 = 𝜆𝑟(𝛼 − 𝜌𝑟). (2.1)
4
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Interpreting 𝜆𝑗𝜌𝑗 for 𝑗 = 𝓁, 𝑟 as the corresponding particle densities at the two reservoirs, then the jump rates of the reservoirs’
dynamics corresponds to the jump rates of the bulk dynamics on which the occupation variables of sites outside the interval 𝛬𝑁
are replaced by their corresponding densities.

Hereafter we fix 𝑇 > 0 and we consider a finite time horizon [0, 𝑇 ]. For each 𝑁 ≥ 1, we denote by D𝑁 ([0, 𝑇 ], 𝛺𝑁 ) the space of
càdlàg trajectories endowed with the 𝐽1-Skorohod topology. We fix a sequence of probability measures (𝜇𝑁 )𝑁≥1 on 𝛺𝑁 . In order to
ee a non-trivial evolution of macroscopic quantities we need to speed up the process in the diffusive time scale 𝑡𝑁2, and in that
ase 𝜂𝑡𝑁2 has generator 𝑁2L𝑁 . Let P𝜇𝑁 be the probability measure on D𝑁 ([0, 𝑇 ], 𝛺𝑁 ) induced by the Markov process (𝜂𝑡𝑁2 ; 𝑡 ≥ 0)
nd by the initial measure 𝜇𝑁 . We denote the expectation with respect to P𝜇𝑁 by E𝜇𝑁 .

.2. Stationary measures

Since the SEP(𝛼) is an irreducible continuous time Markov chain with a finite state space, then it admits a unique stationary
easure. In fact this stationary measure can be identified for a certain choice of the parameters of the model.

roposition 2.1. If 𝜌𝓁 = 𝜌𝑟 =∶ 𝜌, then the stationary (equilibrium) measure is given by an homogeneous product measure with Binomial
marginal distributions with parameters 𝛼 ∈ N and 𝜌

𝛼 ∈ (0, 1):

𝜈(𝜂) =
∏

𝑥∈𝛬𝑁

(

𝛼
𝜂(𝑥)

)

( 𝜌
𝛼

)𝜂(𝑥)(
1 −

𝜌
𝛼

)𝛼−𝜂(𝑥)
. (2.2)

See [6] for a proof when 𝜃 = 0, for 𝜃 ≠ 0 the proof is identical.
We note that for 𝜌𝓁 ≠ 𝜌𝑟 we do not have any information about this measure.

2.3. Hydrodynamic limit

Here we recall the hydrodynamic limit for the SEP(𝛼) which was obtained in [13]. For 𝜂 ∈ 𝛺𝑁 , we define the empirical measure
𝜋𝑁 (𝜂, 𝑑𝑢) by

𝜋𝑁 (𝜂, 𝑑𝑢) ∶= 1
𝑁

∑

𝑥∈𝛬𝑁

𝜂(𝑥)𝛿 𝑥
𝑁
(𝑑𝑢) ,

where 𝛿𝑏(𝑑𝑢) is a Dirac measure at 𝑏 ∈ [0, 1]. For every 𝐺 ∶ [0, 1] → R continuous, we denote the integral of 𝐺 with respect to 𝜋𝑁
by ⟨𝜋𝑁, 𝐺⟩ and we observe that

⟨𝜋𝑁, 𝐺⟩ = 1
𝑁

∑

𝑥∈𝛬𝑁

𝜂(𝑥)𝐺
(

𝑥
𝑁

)

.

We denote by M the space of non-negative Radon measures on [0, 1] with total mass bounded by 𝛼 and equipped with the weak
topology. Also, we denote by D𝑁 ([0, 𝑇 ],M) the space of càdlàg trajectories in M endowed with the Skorohod topology. We define
𝜋𝑁𝑡 (𝜂, 𝑑𝑢) ∶= 𝜋𝑁 (𝜂𝑡𝑁2 , 𝑑𝑢).

Definition 2.1. Let 𝛾 ∶ [0, 1] → [0, 𝛼] be a measurable function. We say that a sequence of probability measures (𝜈𝑁 )𝑁≥1 on 𝛺𝑁 is
associated to the profile 𝛾 if for every continuous function 𝐺 ∶ [0, 1] → R and for every 𝛿 > 0, it holds

lim
𝑁→∞

𝜈𝑁
(

𝜂 ∈ 𝛺𝑁 ∶ |

|

|

⟨𝜋𝑁, 𝐺⟩ − ∫

1

0
𝐺(𝑢)𝛾(𝑢)𝑑𝑢||

|

> 𝛿
)

= 0. (2.3)

From now on we make the following assumption on the sequence of probability measures:

(𝜇𝑁 )𝑁≥1 is associated to a measurable function 𝛾 ∶ [0, 1] → [0, 𝛼]. (H1)

In order to properly state the hydrodynamic limit, i.e. Theorem 2.2, we need to recall the notion of weak solutions stated in [13].
To this end, we need to consider a proper space of test functions. We denote by 𝐶1,∞([0, 𝑇 ]×[0, 1]) the space of continuous functions
defined on [0, 𝑇 ] × [0, 1] that are continuously differentiable on the first variable and infinitely differentiable on the second variable.
We also denote by 𝐶1,∞

𝑐 ([0, 𝑇 ] × [0, 1]) the space of functions 𝐺 ∈ 𝐶1,∞([0, 𝑇 ] × [0, 1]) such that for each time 𝑡, the support of 𝐺𝑡
is contained in (0, 1). We denote by 𝐶∞([0, 1]) the space of infinitely differentiable functions defined in [0, 1] and we denote by
𝐶𝑚𝑐 ([0, 1]) (resp. 𝐶∞

𝑐 ([0, 1])) the space of 𝑚-continuously differentiable (resp. infinitely differentiable) real-valued functions defined
on [0, 1] with support contained in (0, 1). We denote by ⟨⋅, ⋅⟩ the inner product in 𝐿2([0, 1]) and we denote by ‖⋅‖𝐿2 the corresponding
𝐿2-norm. Now we define the Sobolev space H1 on [0, 1]. For that purpose, we define the semi inner-product ⟨⋅, ⋅⟩1 on the set 𝐶∞([0, 1])
by ⟨𝐺,𝐻⟩1 ∶= ⟨𝜕𝑢𝐺, 𝜕𝑢𝐻⟩ for 𝐺,𝐻 ∈ 𝐶∞([0, 1]) and we denote the corresponding semi-norm by ‖ ⋅ ‖1.

Definition 2.2. The Sobolev space H1 on [0, 1] is the Hilbert space defined as the completion of 𝐶∞([0, 1]) with respect to the norm
‖ ⋅ ‖2

H1 ∶= ‖ ⋅ ‖2
𝐿2 + ‖ ⋅ ‖21 and its elements coincide a.e. with continuous functions. The space 𝐿2(0, 𝑇 ;H1) is the set of measurable

functions 𝑓 ∶ [0, 𝑇 ] → H1 such that ∫ 𝑇 ‖𝑓 ‖

2 𝑑𝑡 <∞.
5
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s

D

We remark that in H1 we can define the trace operator, and so it makes sense to talk about boundary values of functions in this
pace when interpreted in the trace sense.

efinition 2.3. Let 𝛾0 ∶ [0, 1] → [0, 𝛼] be a measurable function. We say that 𝜌 ∶ [0, 𝑇 ] × [0, 1] → [0, 𝛼] is a weak solution of the
heat equation

⎧

⎪

⎨

⎪

⎩

𝜕𝑡𝜌𝑡(𝑢) = 𝛼𝛥 𝜌𝑡(𝑢), (𝑡, 𝑢) ∈ (0, 𝑇 ] × (0, 1)

𝜌0(𝑢) = 𝛾0(𝑢), 𝑢 ∈ [0, 1].
(2.4)

with initial condition 𝛾0(⋅) and:

1. Dirichlet boundary conditions given by

𝜌𝑡(0) = 𝜌𝓁 and 𝜌𝑡(1) = 𝜌𝑟, 𝑡 ∈ (0, 𝑇 ], (2.5)

if 𝜌 ∈ 𝐿2(0, 𝑇 ;H1), 𝜌𝑡(0) = 𝜌𝓁 and 𝜌𝑡(1) = 𝜌𝑟 for a.e. 𝑡 ∈ (0, 𝑇 ], and for all 𝑡 ∈ [0, 𝑇 ] and all 𝐺 ∈ 𝐶1,∞
𝑐 ([0, 𝑇 ] × [0, 1]) it holds

⟨𝜌𝑡, 𝐺𝑡⟩ − ⟨𝛾0, 𝐺0⟩ − ∫

𝑡

0
⟨𝜌𝑠,

(

𝛼𝛥 + 𝜕𝑠
)

𝐺𝑠⟩𝑑𝑠 = 0.

2. Robin boundary conditions given by

𝜕𝑢𝜌𝑡(0) = 𝜆𝓁
(

𝜌𝑡(0) − 𝜌𝓁
)

, 𝜕𝑢𝜌𝑡(1) = 𝜆𝑟
(

𝜌𝑟 − 𝜌𝑡(1)
)

, 𝑡 ∈ (0, 𝑇 ], (2.6)

if 𝜌 ∈ 𝐿2(0, 𝑇 ;H1) and for all 𝑡 ∈ [0, 𝑇 ] and all 𝐺 ∈ 𝐶1,∞([0, 𝑇 ] × [0, 1]) it holds

⟨𝜌𝑡, 𝐺𝑡⟩ − ⟨𝛾0, 𝐺0⟩ − ∫

𝑡

0
⟨𝜌𝑠,

(

𝛼𝛥 + 𝜕𝑠
)

𝐺𝑠⟩𝑑𝑠 + 𝛼 ∫

𝑡

0

[

𝜌𝑠(1)𝜕𝑢𝐺𝑠(1) − 𝜌𝑠(0)𝜕𝑢𝐺𝑠(0)
]

𝑑𝑠

− 𝛼 ∫

𝑡

0

[

𝐺𝑠(0)𝜆𝓁
(

𝜌𝑠(0) − 𝜌𝓁
)

+ 𝐺𝑠(1)𝜆𝑟
(

𝜌𝑟 − 𝜌𝑠(1)
)]

𝑑𝑠 = 0.

3. Neumann boundary conditions given by

𝜕𝑢𝜌𝑡(0) = 𝜕𝑢𝜌𝑡(1) = 0, (2.7)

if 𝜌 ∈ 𝐿2(0, 𝑇 ;H1) and for all 𝑡 ∈ [0, 𝑇 ] and any 𝐺 ∈ 𝐶1,∞([0, 𝑇 ] × [0, 1]) it holds

⟨𝜌𝑡, 𝐺𝑡⟩ − ⟨𝛾0, 𝐺0⟩ − ∫

𝑡

0
⟨𝜌𝑠,

(

𝛼𝛥 + 𝜕𝑠
)

𝐺𝑠⟩𝑑𝑠 + 𝛼 ∫

𝑡

0

[

𝜌𝑠(1)𝜕𝑢𝐺𝑠(1) − 𝜌𝑠(0)𝜕𝑢𝐺𝑠(0)
]

𝑑𝑠 = 0.

We observe that there exists one and only one weak solution of the heat equation with any of the previous boundary conditions,
see [1]. We are now ready to state the hydrodynamic limit of [13].

Theorem 2.2. Let 𝛾 ∶ [0, 1] → [0, 𝛼] be a measurable function and (𝜇𝑁 )𝑁≥1 a sequence of probability measures associated to 𝛾(⋅),
i.e. satisfying (H1). For any 𝑡 ∈ [0, 𝑇 ], any continuous function 𝐺 ∶ [0, 1] → R and any 𝛿 > 0, it holds

lim
𝑁→∞

P𝜇𝑁
(

𝜂⋅ ∶
|

|

|

1
𝑁

∑

𝑥∈𝛬𝑁

𝐺
(

𝑥
𝑁

)

𝜂𝑡𝑁2 (𝑥) − ⟨𝐺, 𝜌𝑡⟩
|

|

|

> 𝛿
)

= 0,

where 𝜌𝑡(⋅) is the unique weak solution of the heat equation with initial condition 𝛾 and for:
(a) 𝜃 < 1, Dirichlet boundary conditions (2.5);
(b) 𝜃 = 1, Robin boundary conditions (2.6);
(c) 𝜃 > 1, Neumann boundary conditions (2.7).

Our focus on this article is to describe the fluctuations of the system around the hydrodynamical profile. And this is what we
discuss in the next subsection.

2.4. Non-equilibrium fluctuations

2.4.1. The space of test functions
As we did before stating Theorem 2.2, in order to show the non-equilibrium fluctuations of the SEP(𝛼), we need to introduce a

proper space of test functions. Observe that realizations of white noises are not well defined as measures, but only as distributions.
Therefore, we need to introduce Schwarz-like spaces of test functions. Recall that a subscript or superscript 𝑖 represents dependence
on the parameters 𝑖 = (𝛼, 𝜆𝓁 , 𝜆𝑟, 𝜌𝓁 , 𝜌𝑟, 𝜃) of the model.

Definition 2.4. We define S𝑖 as the set of functions 𝜙 in 𝐶∞([0, 1]) that satisfy, for all 𝑘 ∈ N ∪ {0},

1. if 𝜃 < 0: 𝜕𝑘𝜙(0) = 𝜕𝑘𝜙(1) = 0;
6
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2. if 0 ≤ 𝜃 < 1: 𝜕2𝑘𝑢 𝜙(0) = 𝜕2𝑘𝑢 𝜙(1) = 0;
3. if 𝜃 = 1: 𝜕2𝑘+1𝑢 𝜙(0) = 𝜆𝓁𝜕2𝑘𝑢 𝜙(0), 𝜕

2𝑘+1
𝑢 𝜙(1) = −𝜆𝑟𝜕2𝑘𝑢 𝜙(1);

4. if 𝜃 > 1: 𝜕2𝑘+1𝑢 𝜙(0) = 𝜕2𝑘+1𝑢 𝜙(1) = 0.

As in [15,18], the previous choice is to make S𝑖 invariant under taking second derivatives, which in turn implies that the
Markov semigroup associated to the operator 𝛼𝛥 with the corresponding boundary conditions, which we denote by 𝑆 𝑖𝑡 , is such that,
if 𝜙 ∈ S𝑖, then 𝑆 𝑖𝑡𝜙 ∈ S𝑖. This property will be useful later on. Indeed, as in the proof of Proposition 3.1 of [15], for the case 𝜃 = 1,
and for the other values of 𝜃 as in Remark 2.5. of [18], given 𝜙 ∈ S𝑖, 𝑆 𝑖𝑡𝜙 is solution to

{

𝜕𝑡𝑆𝑖𝑡𝜙(𝑢) = 𝛼𝛥𝑆𝑖𝑡𝜙(𝑢), (𝑡, 𝑢) ∈ [0, 𝑇 ] × (0, 1)
𝑆𝑖0𝜙(𝑢) = 𝜙(𝑢), 𝑢 ∈ [0, 1].

with boundary conditions:

1. if 𝜃 > 1

𝜕𝑢𝑆
𝑖
𝑡𝜙(0) = 𝜕𝑢𝑆

𝑖
𝑡𝜙(1) = 0; (2.8)

2. if 𝜃 = 1

𝜕𝑢𝑆
𝑖
𝑡𝜙(0) = 𝜆𝓁𝑆𝑖𝑡𝜙(0) and 𝜕𝑢𝑆

𝑖
𝑡𝜙(1) = −𝜆𝑟𝑆𝑖𝑡𝜙(1); (2.9)

3. if 𝜃 < 1

𝑆 𝑖𝑡𝜙(0) = 𝑆 𝑖𝑡𝜙(1) = 0. (2.10)

Let us compute 𝑆 𝑖𝑡 by the separation of variables method. The aim is to look for solutions of the form

𝑆 𝑖𝑡𝜙(𝑢) = 𝑔(𝑡)𝑓 (𝑢), (2.11)

with 𝑔 a function of 𝑡 and 𝑓 a function of 𝑥 to be computed. This leaves us with 𝑔(𝑡) = 𝐶𝑒𝜇𝛼𝑡, where 𝐶, 𝜇 ∈ R to be computed, and
the Sturm–Liouville problem 𝑓 ′′(𝑢) − 𝑐𝑓 (𝑢) = 0, for 𝑢 ∈ (0, 1) with boundary conditions

1. if 𝜃 > 1, 𝑓 ′(0) = 𝑓 ′(1) = 0;
2. if 𝜃 = 1, 𝑓 ′(0) = 𝜆𝓁𝑓 (0) and 𝑓 ′(1) = −𝜆𝑟𝑓 (1);
3. if 𝜃 < 1, 𝑓 (0) = 𝑓 (1) = 0.

The previous problems have a solution of the form 𝑓 (𝑢) = 𝐴 sin(𝜔1𝑢) + 𝐵 cos(𝜔2𝑢), where 𝐴,𝐵, 𝜔1, 𝜔2 have to be computed. A
simple but long computation shows that

1. if 𝜃 > 1, 𝑓 (𝑢) = 𝐵(𝑘) cos(𝜋𝑘𝑢), for some 𝑘 ∈ Z, where 𝐵(𝑘) has to be computed. Thus,

𝑆𝑖𝑡𝜙(𝑢) =
∑

𝑘∈Z
𝑒−𝜋

2𝑘2𝛼𝑡
⟨𝜙, 2 cos(𝜋𝑘⋅)⟩ cos(𝜋𝑘𝑢). (2.12)

2. if 𝜃 = 1, 𝑓 (𝑢) = 𝐵(𝑘)
[

𝜆𝓁

𝛽𝑘
sin(𝛽𝑘𝑢) + cos(𝛽𝑘𝑢)

]

, for some 𝑘 ∈ Z, where 𝐵(𝑘) has to be computed and 𝛽𝑘 are the solutions of
(𝜆𝓁+𝜆𝑟)𝑥
𝑥2+𝜆𝓁𝜆𝑟 = tan(𝑥). Thus,

𝑆 𝑖𝑡𝜙(𝑢) =
∑

𝑘∈Z
𝑒−𝛽

2
𝑘𝛼𝑡𝐵(𝑘)

[

𝜆𝓁

𝛽𝑘
sin(𝛽𝑘𝑢) + cos(𝛽𝑘𝑢)

]

, (2.13)

with 𝐵(𝑘) such that ∑𝑘∈Z 𝐵(𝑘)
[

𝜆𝓁

𝛽𝑘
sin(𝛽𝑘𝑢) + cos(𝛽𝑘𝑢)

]

= 𝜙(𝑢).

3. if 𝜃 < 1, 𝑓 (𝑢) = 𝐴(𝑘) sin(𝜋𝑘𝑢), for some 𝑘 ∈ Z, where 𝐴(𝑘) has to be computed. Thus,

𝑆 𝑖𝑡𝜙(𝑢) =
∑

𝑘∈Z
𝑒−𝜋

2𝑘2𝛼𝑡
⟨𝜙, 2 sin(𝜋𝑘⋅)⟩ sin(𝜋𝑘𝑢). (2.14)

For every 𝜃 ∈ R, we showed that 𝑆𝑖𝑡𝜙 can be written in terms of the eigenvalues and eigenfunctions of the Laplace operator with
different boundary conditions. From here we easily conclude that, for every 𝜙 ∈ S𝑖, 𝑆𝑖𝑡𝜙 ∈ S𝑖.

We equip S𝑖 with the topology induced by the family of seminorms
{

||| ⋅ |||𝑗
}

𝑗∈N∪{0} where for 𝜙 ∈ S𝑖

|||𝜙|||𝑗 ∶= sup
𝑢∈[0,1]

|𝜙(𝑗)(𝑢)|. (2.15)

The space S𝑖 endowed with this topology turns out to be a nuclear Fréchet space, i.e. a complete Hausdorff space whose topology
is induced by a countable family of semi-norms and such that all summable sequences in S𝑖 are absolutely summable. We will
denote by S′

𝑖 the topological dual of S𝑖, i.e. the set of linear bounded functionals over S𝑖 and we equip it with the weak topology.
Let D ([0, 𝑇 ],S′) denote the set of càdlàg time trajectories of linear functionals acting on S .
7
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2.4.2. The discrete profile and the density fluctuation field
Observe that Theorem 2.2 can be understood as a law of large numbers for the random trajectories (⟨𝜋𝑁𝑡 , 𝐺⟩; 𝑡 ≥ 0). Therefore,

t is natural to study the corresponding central limit theorem. In order to do that, one needs to specify how to center and how to
escale the random variables ⟨𝜋𝑁𝑡 , 𝐺⟩. Whenever possible, the most natural way to do this is to consider the quantity

√

𝑁
(

⟨𝜋𝑁𝑡 , 𝐺⟩ − E𝜇𝑁 [⟨𝜋𝑁𝑡 , 𝐺⟩]
)

.

Thanks to the duality properties of the SEP(𝛼), the expectation E𝜇𝑁 [⟨𝜋𝑁𝑡 , 𝐺⟩] can be computed in a fairly explicit way. Let us define
he expected density of particles 𝜌𝑁𝑡 (𝑥) for all 𝑡 ≥ 0 and 𝑥 ∈ 𝛬𝑁 as

𝜌𝑁𝑡 (𝑥) ∶= E𝜇𝑁 [𝜂𝑡𝑁2 (𝑥)] for 𝑥 ∈ 𝛬𝑁 and 𝜌𝑁𝑡 (0) ∶= 𝜌𝓁 , 𝜌𝑁𝑡 (𝑁) ∶= 𝜌𝑟 .

This last definition serves as a boundary condition for the expected density of particles. Using that the monomials
(

𝜂𝑥
𝛼 ; 𝑥 ∈ 𝛬𝑁

)

are self-duality functions for the SEP(𝛼), one can show that (𝜌𝑁𝑡 (𝑥); 𝑡 ≥ 0, 𝑥 ∈ 𝛬𝑁 ) is the unique solution of the discrete heat equation

⎧

⎪

⎨

⎪

⎩

𝜕𝑡𝜌𝑁𝑡 (𝑥) = 𝑁2𝛥𝑖𝑁𝜌
𝑁
𝑡 (𝑥), 𝑥 ∈ 𝛬𝑁 , 𝑡 ≥ 0,

𝜌𝑁𝑡 (0) = 𝜌𝓁 , 𝑡 ≥ 0,

𝜌𝑁𝑡 (𝑁) = 𝜌𝑟, 𝑡 ≥ 0,

(2.16)

ith initial condition 𝜌𝑁0 (𝑥) ∶= E𝜇𝑁 [𝜂𝑁0 (𝑥)]. Here the operator 𝛥𝑖𝑁 is a discrete Laplacian with modified rates at the boundary
epending on 𝑖. More precisely, let us define the jump rate

𝑐𝑖 ∶ {(𝑥, 𝑦) ∈ 𝛬𝑁 × 𝛬𝑁 ; 𝑥 ∼ 𝑦} → [0,∞)

as

𝑐𝑖𝑥,𝑦 ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛼 ; 𝑥, 𝑦 ∈ 𝛬𝑁
𝛼𝜆𝓁

𝑁𝜃 ; 𝑥 = 1, 𝑦 = 0

𝛼𝜆𝑟

𝑁𝜃 ; 𝑥 = 𝑁 − 1, 𝑦 = 𝑁.

(2.17)

hen the operator 𝛥𝑖𝑁 acts on functions 𝑓 ∶ 𝛬𝑁 → R as

𝛥𝑖𝑁𝑓 (𝑥) = 𝑐𝑖𝑥,𝑥−1
(

𝑓 (𝑥 − 1) − 𝑓 (𝑥)
)

+ 𝑐𝑖𝑥,𝑥+1
(

𝑓 (𝑥 + 1) − 𝑓 (𝑥)
)

, (2.18)

or every 𝑥 ∈ 𝛬𝑁 (see Fig. 2.2).

Fig. 2.2. Illustration through arrows of the jump rate 𝑐𝑖 defined above.

The stationary solution of (2.16), that we denote by 𝜌𝑁𝑠𝑠 (⋅), is given, for every 𝑥 ∈ 𝛬𝑁 by

𝜌𝑁𝑠𝑠 (𝑥) ∶= 𝑎𝑖𝑁𝑥 + 𝑏
𝑖
𝑁 , (2.19)

here

𝑎𝑖𝑁 = 𝜆𝑟

𝑁𝜃 + 𝜆𝑟(𝑁 − 1)
(𝜌𝑟 − 𝑏𝑖𝑁 ) and 𝑏𝑖𝑁 =

𝜆𝑟𝜌𝑟(𝑁𝜃 − 𝜆𝓁) + 𝜆𝓁𝜌𝓁(𝑁𝜃 + (𝑁 − 1)𝜆𝑟)
𝜆𝓁𝜆𝑟(𝑁 − 1) + 𝜆𝓁𝑁𝜃 + 𝜆𝑟(𝑁𝜃 − 𝜆𝓁)

. (2.20)

Definition 2.5. We define the density fluctuation field (𝑌 𝑁𝑡 ; 𝑡 ≥ 0) associated to the SEP(𝛼), (𝜂𝑡𝑁2 ; 𝑡 ≥ 0), with initial measure
(𝜇𝑁 )𝑁∈N as the time trajectory of linear functionals acting on functions 𝜙 ∈ S𝑖 as

𝑌 𝑁𝑡 (𝜙) = 1
√

𝑁

∑

𝑥∈𝛬𝑁

𝜙
( 𝑥
𝑁

)

𝜂̄𝑡𝑁2 (𝑥), (2.21)

where, for each 𝑥 ∈ 𝛬𝑁 , we centered 𝜂𝑡𝑁2 (𝑥) by taking 𝜂̄𝑡𝑁2 (𝑥) ∶= 𝜂𝑡𝑁2 (𝑥) − 𝜌𝑁𝑡 (𝑥).

For each 𝑁 ∈ N, let Q𝑁 be the probability measure in D𝑁 ([0, 𝑇 ],S′
𝑖), induced by the density fluctuation field (𝑌 𝑁𝑡 )𝑡≥0. Our goal

s to prove, under suitable assumptions, that (Q𝑁 )𝑁∈N weakly converges to Q, a probability measure on D𝑁 ([0, 𝑇 ],S′
𝑖), that can be

niquely characterized. A limit theorem of this form is known in the literature as the derivation of the non-equilibrium fluctuations
f the SEP(𝛼). To achieve our goal, it will be enough to: show that the sequence of measures (Q𝑁 )𝑁∈N is tight, guaranteeing the
eak convergence up to a subsequence and then characterize (uniquely) the limit point. Roughly speaking, this is the content of
8

heorem 2.3.
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Fig. 2.3. Illustration of the sets 𝜕𝑉𝑁 (in red), D+
𝑁 (in blue) and D𝑁 (in gray). (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

2.4.3. Main results
To properly state our results, we need to introduce some definitions and notations. A crucial estimate for the non-equilibrium

fluctuations is a sharp estimate on the decay of both space and space–time correlation function of the SEP(𝛼). Define the
two-dimensional set 𝑉𝑁 ∶= {(𝑥, 𝑦) ∈ (𝛬𝑁 )2 | 𝑥 ≤ 𝑦} and its boundary by

𝜕𝑉𝑁 ∶= {(𝑥, 𝑦) ∶ 𝑥 ∈ {0, 𝑁} , 𝑦 ∈ 𝛬𝑁 and 𝑥 ≤ 𝑦} ∪ {(𝑥, 𝑦) ∶ 𝑦 ∈ {0, 𝑁} , 𝑥 ∈ 𝛬𝑁 and 𝑥 ≤ 𝑦}.

We denote its closure by 𝑉 𝑁 ∶= 𝑉𝑁 ∪ 𝜕𝑉𝑁 , and we denote its upper diagonal and its diagonal, respectively, by

D+
𝑁 ∶= {(𝑥, 𝑦) ∈ 𝑉𝑁 | 𝑦 = 𝑥 + 1} and D𝑁 ∶= {(𝑥, 𝑦) ∈ 𝑉𝑁 | 𝑦 = 𝑥}. (2.22)

Definition 2.6. Let (𝜑𝑁𝑡 ; 𝑡 ≥ 0) be the time-dependent, two-point correlation function, defined on (𝑥, 𝑦) ∈ 𝑉 𝑁 with 𝑥 ≠ 𝑦 by

𝜑𝑁𝑡 (𝑥, 𝑦) ∶=

⎧

⎪

⎨

⎪

⎩

E𝜇𝑁 [𝜂̄𝑡𝑁2 (𝑥)𝜂̄𝑡𝑁2 (𝑦)], if (𝑥, 𝑦) ∉ 𝜕𝑉𝑁 ,

0, if (𝑥, 𝑦) ∈ 𝜕𝑉𝑁 ,
(2.23)

and extended symmetrically to (𝛬𝑁 )2⧵D𝑁 .

Now we make some extra assumptions on the initial measures, besides (H1). We assume that there exists a measurable profile
𝛾 ∶ [0, 1] → [0, 𝛼] such that

1
𝑁

𝑁
∑

𝑥=1

|

|

|

𝜌𝑁0 (𝑥) − 𝛾
(

𝑥
𝑁

)

|

|

|

𝑁→∞
←←←←←←←←←←←←←←←←←←←←←←←←→ 0. (H2)

We also assume that there exists a sequence of profiles 𝑔𝑁 (⋅) of class 𝐶6 that satisfy, for each 𝑁 ≥ 1

𝜕𝑗𝑢𝑔𝑁 (𝑢) = 𝜕𝑢
𝑗 (𝑁𝑎𝑖𝑁𝑢 + 𝑏

𝑖
𝑁 ), (H3)

for 𝑢 ∈ {0, 1} and 𝑗 = 0, 1, 2, 3, where 𝑎𝑖𝑁 and 𝑏𝑖𝑁 were defined in (2.20) and such that, for every 𝑁 ≥ 1,

max
𝑥∈𝛬𝑁

|

|

|

𝜌𝑁0 (𝑥) − 𝑔𝑁
(

𝑥
𝑁

)

|

|

|

≲ 1
𝑁
. (H4)

We remark that the assumption on the regularity of 𝑔𝑁 is needed in order to prove Lemma 4.1, see Appendix D. We also assume
that

max
(𝑥,𝑦)∈𝑉𝑁
𝑥≠𝑦

|𝜑𝑁0 (𝑥, 𝑦)| ≲ 1
𝑁
, max

𝑥∈𝛬𝑁 ⧵{1,𝑁−1}
|

|

|

E𝜇𝑁
[

𝛼𝜂0(𝑥)(𝜂0(𝑥) − 1) − (𝛼 − 1)𝜌𝑁0 (𝑥)2
]

|

|

|

≲ 1
𝑁
, (H5)

and that for 𝑥 = 1 and 𝑥 = 𝑁 − 1,

max
𝑦∈𝛬𝑁
𝑥≠𝑦

|𝜑𝑁0 (𝑥, 𝑦)| ≲ 1
𝑁

min{1, 𝑁𝜃−1}, max
𝑥=1,𝑁−1

|

|

|

E𝜇𝑁
[

𝛼𝜂0(𝑥)(𝜂0(𝑥) − 1) − (𝛼 − 1)𝜌𝑁0 (𝑥)2
]

|

|

|

≲ 1
𝑁

min{1, 𝑁𝜃−1}. (H6)

Notation: Above and in what follows, we denote by ≲ an inequality that is correct up to a multiplicative constant independent of
𝑁 .

Now we present the main result of this article.
9
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Theorem 2.3 (Non-Equilibrium Fluctuations). Let 𝛼 ≥ 1 and 𝜃 ∈ R. Let 𝛾 ∶ [0, 1] → [0, 𝛼] be a measurable function, (𝜇𝑁 )𝑁∈N a sequence
of probability measures satisfying (H1)–(H6) and assume that the initial field 𝑌 𝑁0 converges to 𝑌0. Then, the sequence of probability measures
(Q𝑁 )𝑁∈N converges to a probability measure Q which is concentrated on the path 𝑌 that satisfies

𝑌𝑡(𝑓 ) = 𝑌0(𝑆 𝑖𝑡𝑓 ) + ∫

𝑡

0
𝑑𝑊 𝑖

𝑠 (𝑆
𝑖
𝑡−𝑠𝑓 ), (2.24)

for any 𝑓 ∈ S𝑖 and any 𝑡 ∈ [0, 𝑇 ]. Above 𝑆 𝑖𝑡 ∶ S𝑖 → S𝑖 is the semigroup associated to the hydrodynamic equation (2.4) with the
respective boundary conditions, and {𝑊 𝑖

𝑡 ; 𝑡 ≥ 0} is an S′
𝑖-valued, mean-zero Gaussian martingale of quadratic variation

⟨𝑊 𝑖(𝑓 )⟩𝑡 ∶= ∫

𝑡

0
‖∇𝑓‖2

𝐿2(𝜌𝑠)
𝑑𝑠,

where, for every 𝑠 ∈ [0, 𝑇 ] and 𝑔, ℎ ∈ 𝐿2(𝜌𝑠),

⟨ℎ, 𝑔⟩𝐿2(𝜌𝑠) ∶= ∫

1

0
2𝜒𝛼(𝜌𝑠(𝑢))ℎ(𝑢)𝑔(𝑢)𝑑𝑢

+ 1(𝜃 = 1)
{[

𝜆𝓁(1 − 2𝜌𝓁)𝜌𝑠(0) + 𝜆𝓁𝜌𝓁𝛼
]

ℎ(0)𝑔(0) +
[

𝜆𝑟(1 − 2𝜌𝑟)𝜌𝑠(1) + 𝜆𝑟𝜌𝑟𝛼
]

ℎ(1)𝑔(1)
}

and 𝜌⋅ is the unique weak solution of the corresponding hydrodynamic equation (2.4). Above,

𝜒𝛼(𝜌) = 𝜌(𝛼 − 𝜌) (2.25)

represents the mobility of our model. Moreover, 𝑌0 and {𝑊 𝑖
𝑡 ; 𝑡 ≥ 0} are independent and, for each fixed initial random state 𝑌0,

1. if 𝜃 ≥ 0, the measure Q is concentrated on the unique solution 𝑌𝑡 of the O.U. martingale problem 𝑂𝑈 (S𝑖, 𝛼𝛥, ‖ ⋅ ‖𝐿2(𝜌𝑠)) - see
Definition 2.7 - on the time interval [0, 𝑇 ] with the initial (random) condition equal to 𝑌0. Thus, 𝑌𝑡 is a generalized O.U. process,
which is the unique (in law) formal solution of the stochastic partial differential equation:

𝜕𝑡𝑌𝑡 = 𝛼𝛥𝑌𝑡𝑑𝑡 +
√

2𝜒𝛼(𝜌𝑡)∇𝑑𝑊𝑡, (2.26)

where 𝑑𝑊𝑡 is a space–time white noise with unit variance and 𝛼𝛥 is the same operator as in (2.4) with the corresponding boundary
conditions depending on the value of 𝜃. As a consequence, the covariance of the limit field 𝑌𝑡 is given, for 𝑓, 𝑔 ∈ S𝑖, by

E[𝑌𝑡(𝑓 )𝑌𝑠(𝑔)] = 𝜎(𝑆 𝑖𝑡𝑓, 𝑆
𝑖
𝑠𝑔) + ∫

𝑠

0
⟨𝜕𝑢𝑆

𝑖
𝑡−𝑟𝑓, 𝜕𝑢𝑆

𝑖
𝑠−𝑟𝑔⟩𝐿2(𝜌𝑟)𝑑𝑟,

with 𝜕𝑢ℎ(0) (respectively, 𝜕𝑢ℎ(1)) identified with 𝜕𝑢ℎ(0+) = lim𝑥↓0 𝜕𝑢ℎ(𝑥) (respectively, 𝜕𝑢ℎ(1−) = lim𝑥↑1 𝜕𝑢ℎ(𝑥)), for ℎ ∈ S𝑖.
2. if 𝜃 < 0, the measure Q is concentrated on the unique solution 𝑌𝑡 of the Ornstein–Uhlenbeck martingale problem 𝑂𝑈 (S𝑖, 𝛼𝛥, ‖⋅‖𝐿2(𝜌𝑠))

- see Definition 2.7 - on the time interval [0, 𝑇 ] with initial (random) condition equal 𝑌0, and whose uniqueness (in law) of solution
is guaranteed when remarking that 𝑌𝑡 satisfies the following two extra conditions:

(a) regularity condition: E[(𝑌𝑡(𝐻))2] ≲ ‖𝐻‖𝐿2 , for any 𝐻 ∈ S𝑖;
(b) boundary condition: For each 𝑗 ∈ {0, 1}, let 𝜄𝑗𝜖 be defined as, for 𝑗 = 0, 𝜄0𝜖 (𝑢) ∶= 𝜖−11(0,𝜖](𝑢) and, for 𝑗 = 1, 𝜄1𝜖 (𝑢) ∶=

𝜖−11[1−𝜖,1)(𝑢) 𝑢 ∈ [0, 1]. For any 𝑡 ∈ [0, 𝑇 ] and 𝑗 ∈ {0, 1}, it holds that

lim
𝜖→0

E

[

(

∫

𝑡

0
𝑌𝑠(𝜄𝑗𝜖)𝑑𝑠

)2]

= 0.

We observe that the two extra conditions (a) and (b) above, are due to the fact that for 𝜃 < 0 the set of test functions is smaller
compared to the case 𝜃 ∈ [0, 1). By asking the limit to satisfy those two extra conditions we show that the limits in the ranges 𝜃 < 0
and 𝜃 ∈ [0, 1) coincide, and therefore uniqueness holds.

Definition 2.7 (Ornstein–Uhlenbeck — Definition 2.4 of [2]). Fix some time horizon 𝑇 > 0. Let 𝐶 be a topological vector space,
𝐴 ∶ 𝐶 → 𝐶 an operator letting 𝐶 invariant and 𝑐 ∶ 𝐶 → [0,∞) a continuous functional satisfying 𝑐(𝜆𝐻) = |𝜆|𝑐(𝐻), for all 𝜆 ∈ R
and 𝐻 ∈ 𝐶. Let 𝐶 ′ be the topological dual of 𝐶 equipped with the weak-∗ topology. Denote by C([0, 𝑇 ], 𝐶 ′) the set of continuous
trajectories in [0, 𝑇 ] of functionals in 𝐶 ′. We say that the process {𝑌𝑡; 𝑡 ∈ [0, 𝑇 ]} with trajectories in C([0, 𝑇 ], 𝐶 ′) is a solution of the
O.U. martingale problem 𝑂𝑈 (𝐶,𝐴, 𝑐) on the time interval [0, 𝑇 ] with initial (random) condition 𝑦0 ∈ 𝐶 ′ if:

1. for any 𝐻 ∈ 𝐶 the two real-valued processes 𝑀⋅(𝐻) and 𝑁⋅(𝐻) defined by

𝑀𝑡(𝐻) = 𝑌𝑡(𝐻) − 𝑌0(𝐻) − ∫

𝑡

0
𝑌𝑠(𝐴𝐻)𝑑𝑠,

𝑁𝑡(𝐻) = (𝑀𝑡(𝐻))2 − 𝑡𝑐2(𝐻),

are martingales with respect to the natural filtration of the process, that is, {F𝑡 ; 𝑡 ∈ [0, 𝑇 ]} = {𝜎(𝑌𝑠(𝐻) | 𝑠 ≤ 𝑡,𝐻 ∈ 𝐶) ; 𝑡 ∈
[0, 𝑇 ]}.

2. 𝑌0 = 𝑦0 in law.
10

As a consequence of the previous result we obtain the non-equilibrium fluctuations starting from a local Gibbs state.
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Corollary 2.3.1. Fix a measurable profile 𝛾0 ∶ [0, 1] → [0, 𝛼] satisfying (H3) and (H4); and start the process SEP(𝛼) from the Binomial
roduct measure with marginals given by

𝜈𝑁𝛾0 {𝜂 | 𝜂(𝑥) = 𝑘} =
(

𝛼
𝑘

)

[

𝛾0
( 𝑥
𝑁

)

𝛼

]𝑘 [

1 −
𝛾0
( 𝑥
𝑁

)

𝛼

]𝛼−𝑘

,

for 𝑘 ∈ {0,… , 𝛼}. Let 𝑓, 𝑔 ∈ S𝑖. Then Theorem 2.3 holds with

𝜎(𝑆 𝑖𝑡𝑓, 𝑆
𝑖
𝑠𝑔) = ∫

1

0
𝜒𝛼(𝛾0(𝑢))𝑆 𝑖𝑡𝑓 (𝑢)𝑆

𝑖
𝑠𝑔(𝑢)𝑑𝑢.

Observe that the remaining assumptions of Theorem 2.3 are satisfied by the starting measure 𝜈𝑁𝛾0 , so that above, we only need
to impose (H3) and (H4) from the initial profile. Also, since we assume in Corollary 2.3.1 that 𝛾0 satisfies those hypothesis, this
implicitly implies that 𝛾0 ∈ 𝐶6 and that it also satisfies (H2) with 𝛾 = 𝛾0. In order to prove Theorem 2.3, we will need some auxiliary
results. Their proof is postponed to the sections that follow Section 3.

3. Proof of Theorem 2.3

The proof of both theorems follows by showing first the tightness of the sequence of probability measures (Q𝑁 )𝑁∈N with respect
to the Skorohod topology of D𝑁 ([0, 𝑇 ],S′

𝑖); and to show that all limit points Q are probability measures concentrated on paths 𝑌
satisfying (2.24). We start now with the former.

3.1. Tightness

Recall that the spaces S𝑖 are nuclear Fréchet spaces when endowed with the seminorms defined in (2.15). Therefore, in order
to prove tightness, we can use Mitoma’s criterium (that we recall below) and restrict ourselves to showing tightness of the sequence
of real-valued processes {𝑌 𝑁𝑡 (𝜙)}𝑁∈N, for every 𝜙 ∈ S𝑖.

Theorem 3.1 (Mitoma’s Criterium — Theorem 4.1 of [27]). A sequence of processes {𝑋𝑁
𝑡 ; 𝑡 ∈ [0, 𝑇 ]}𝑁∈N in D([0, 𝑇 ],S′

𝑖) is tight with
respect to the Skorohod topology if, and only if, for every 𝐻 ∈ S𝑖, the sequence of real-valued processes {𝑋𝑁

𝑡 (𝐻); 𝑡 ∈ [0, 𝑇 ]}𝑁∈N is tight
with respect to the Skorohod topology of D([0, 𝑇 ],R).

Recall that, from Lemma 5.1 of Appendix 1 of [22],

𝑀𝑁
𝑡 (𝜙) ∶= 𝑌 𝑁𝑡 (𝜙) − 𝑌 𝑁0 (𝜙) − ∫

𝑡

0
(𝑁2L𝑁 + 𝜕𝑠)𝑌 𝑁𝑠 (𝜙)𝑑𝑠, (3.1)

is a martingale for every 𝜙 ∈ S𝑖. Therefore, in order to show that {𝑌 𝑁𝑡 (𝜙𝑡)}𝑁∈N is tight, it is enough to show that

{𝑌 𝑁0 (𝜙)}𝑁∈N , {[𝑀𝑁
𝑡 (𝜙)]𝑡≥0}𝑁∈N and

{

∫

𝑡

0
(𝑁2L𝑁 + 𝜕𝑠)𝑌 𝑁𝑠 (𝜙)𝑑𝑠

}

𝑁∈N

are tight. We start by showing that {𝑌 𝑁0 (𝜙)}𝑁∈N is tight.

3.1.1. Initial time
By Helly–Bray theorem, it is enough to show that

lim
𝐴→∞

lim sup
𝑁→+∞

P𝜇𝑁 [|𝑌 𝑁0 (𝜙)| > 𝐴] = 0.

By Markov’s inequality, for every 𝐴 > 0 and for every 𝑁 ∈ N,

P𝜇𝑁 [|𝑌 𝑁0 (𝜙)| > 𝐴] ≤ 1
𝐴2

E𝜇𝑁 [|𝑌 𝑁0 (𝜙)|2]

= 1
𝐴2

1
𝑁

(

∑

𝑥∈𝛬𝑁

[𝜙( 𝑥𝑁 )]2E𝜇𝑁 [𝜂̄0(𝑥)2] +
∑

𝑥,𝑦∈𝛬𝑁
𝑦≠𝑥

𝜙
(

𝑥
𝑁

)

𝜙
(

𝑦
𝑁

)

𝜑𝑁0 (𝑥, 𝑦)
)

.

sing (H5) and the fact that the occupation variables are bounded by 𝛼, we can bound the last display from above by a constant
ndependent of 𝐴 and 𝑁 times

1
𝐴2𝑁

(

𝛼2𝑁 +𝑁
)

≲ 1
𝐴2
.

11

Therefore by taking 𝐴 → ∞ the result follows.
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3.1.2. The sequence of martingales
For the martingales {𝑀𝑁

𝑡 (𝜙) ; 𝑡 ∈ [0, 𝑇 ]}𝑁∈N, tightness is just a consequence of the fact that {𝑀𝑁
𝑡 (𝜙) ; 𝑡 ∈ [0, 𝑇 ]}𝑁∈N converges

in law with respect to the Skorohod topology of D([0, 𝑇 ],R) (see the next lemma) and therefore it has to be tight.

Lemma 3.2. For 𝜙 ∈ S𝑖, the sequence of martingales {𝑀𝑁
𝑡 (𝜙) ; 𝑡 ∈ [0, 𝑇 ]}𝑁∈N converges in law with respect to the topology of

D([0, 𝑇 ];R), as 𝑁 → +∞, towards a mean-zero Gaussian martingale {𝑊 𝑖
𝑡 (𝜙); 𝑡 ≥ 0} with quadratic variation given by

∫

𝑡

0
‖∇𝜙‖2

𝐿2(𝜌𝑠)
𝑑𝑠 ∶= ∫

𝑡

0 ∫

1

0
2𝜒𝛼(𝜌𝑠(𝑢))∇𝜙(𝑢)2𝑑𝑢𝑑𝑠

+ 1(𝜃 = 1)∫

𝑡

0

{

(

𝜆𝓁(𝛼 − 2𝜌𝓁)𝜌𝑠(0) + 𝛼𝜆𝓁𝜌𝓁
)

∇𝜙(0)2 +
(

𝜆𝑟(𝛼 − 2𝜌𝑟)𝜌𝑠(1) + 𝛼𝜆𝑟𝜌𝑟
)

∇𝜙(1)2
}

𝑑𝑠.

Proof. Let us fix 𝜙 ∈ S𝑖. To prove that {𝑀𝑁
𝑡 (𝜙) ; 𝑡 ∈ [0, 𝑇 ]}𝑁∈N converges in law with respect to the topology of D([0, 𝑇 ];R), as

𝑁 → +∞, it is enough to verify conditions (1)–(3) of Theorem 3.2 of [2].
Let us verify condition (1), that is, that

for any 𝑁 > 1, the quadratic variation of 𝑀𝑁
𝑡 (𝜙) has continuous trajectories almost surely. (3.2)

The quadratic variation of 𝑀𝑁
𝑡 (𝜙) is given by

⟨𝑀𝑁 (𝜙)⟩𝑡 ∶= ∫

𝑡

0
𝛤𝑁𝑠 (𝜙)𝑑𝑠,

where 𝛤𝑁𝑠 (𝜙) ∶= 𝑁2L𝑁𝑌 𝑁𝑠 (𝜙)2 − 2𝑁2𝑌 𝑁𝑠 (𝜙)L𝑁𝑌 𝑁𝑠 (𝜙). A long, but simple computation shows that this quadratic variation is given
by

⟨𝑀𝑁 (𝜙)⟩𝑡 =
𝑁
𝑁𝜃 ∫

𝑡

0

(

𝜙
( 1
𝑁

)2
(

𝜆𝓁(𝛼 − 2𝜌𝓁)𝜂𝑠𝑁2 (1) + 𝛼𝜆𝓁𝜌𝓁
)

+ 𝜙
(𝑁 − 1

𝑁

)2
(

𝜆𝑟(𝛼 − 2𝜌𝑟)𝜂𝑠𝑁2 (𝑁 − 1) + 𝛼𝜆𝑟𝜌𝑟
)

)

𝑑𝑠

+ ∫

𝑡

0

1
𝑁

𝑁−2
∑

𝑥=1
∇𝑁𝜙

( 𝑥
𝑁

)2(
𝜂𝑠𝑁2 (𝑥)

(

𝛼 − 𝜂𝑠𝑁2 (𝑥 + 1)
)

+ 𝜂𝑠𝑁2 (𝑥 + 1)
(

𝛼 − 𝜂𝑠𝑁2 (𝑥)
)

)

𝑑𝑠,

(3.3)

where

∇𝑁𝜙
(

𝑥
𝑁

)

∶= 𝑁
(

𝜙
(𝑥 + 1

𝑁

)

− 𝜙
( 𝑥
𝑁

))

(3.4)

s the discrete gradient of 𝜙. Therefore (3.2) follows from the fact that the number of particles is bounded by 𝛼 and from the
bservation that the integral in time of a bounded function is a continuous function of time.

Let us verify condition (2) in Theorem 3.2 of [2], that is, that

lim
𝑁→+∞

E𝜇𝑁
[

sup
0≤𝑠≤𝑇

|𝑀𝑁
𝑠 (𝜙) −𝑀𝑁

𝑠− (𝜙)|
]

= 0.

Observe that the integral term in (3.1) is continuous, by exactly the same reason as in (3.2). Therefore, in order to prove the
last limit, it is enough to show that

lim
𝑁→+∞

E𝜇𝑁
[

sup
0≤𝑠≤𝑇

|𝑌 𝑁𝑠 (𝜙) − 𝑌 𝑁𝑠− (𝜙)|
]

= 0.

Since a jump only changes a configuration in (at most) two sites, we can bound the last expectation from above by 2
√

𝑁
‖𝜙‖∞, from

where the result follows.
We are left to verify condition (3) in Theorem 3.2 of [2], that is, that

for any 𝑡 ∈ [0, 𝑇 ], ⟨𝑀𝑁 (𝜙)⟩𝑡 converges, as 𝑁 → +∞, and in probability to ∫

𝑡

0
‖∇𝜙‖2

𝐿2(𝜌𝑠)
𝑑𝑠.

Recall (3.3). We now argue that ∫ 𝑡0 𝛤
𝑁
𝑠 (𝜙)𝑑𝑠 is an additive functional of the empirical measure plus some error that vanishes in

the limit. To this end, we split the terms defining 𝛤𝑁𝑠 (𝜙) into bulk terms (the third line of (3.3)) and boundary terms (the first two
lines of (3.3)). We present the argument for the leftmost term appearing in the bulk term, namely,

∫

𝑡

0

1
𝑁

𝑁−2
∑

𝑥=1
∇𝑁𝜙

( 𝑥
𝑁

)2
𝜂𝑠𝑁2 (𝑥)

(

𝛼 − 𝜂𝑠𝑁2 (𝑥 + 1)
)

𝑑𝑠, (3.5)

but for the remaining one, it is completely analogous. The argument also extends to the boundary terms. We leave all this to the
reader. Let 0 < 𝜖 < 1∕2 and

𝛬𝜖,𝓁 ∶= {1,… , 𝜖(𝑁 − 1)} and 𝛬𝜖,𝑟 ∶= {𝑁 − 1 − 𝜖(𝑁 − 1),… , 𝑁 − 1} (3.6)
12
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and we consider the sum divided into 𝑥 ∉ 𝛬𝜖,𝑟𝑁 ∪ 𝛬𝜖,𝓁𝑁 and its complementary. Note that the terms in the complementary sets are
uniformly (in 𝑁) bounded by 𝜖. Now, using twice the replacement lemma (see Lemma 4.3 of [13], which we recall in Lemma E.1)
with proper choices of the function 𝜑 appearing in the statement of Lemma E.1, we can rewrite the terms in (3.5) for 𝑥 ∉ 𝛬𝜖,𝑟𝑁 ∪𝛬𝜖,𝓁𝑁
as

∫

𝑡

0

1
𝑁

∑

𝑥∉𝛬𝜖,𝑟𝑁 ∪𝛬𝜖,𝓁𝑁

∇𝑁𝜙
( 𝑥
𝑁

)2
⃖⃖𝜂⌊𝜖𝑁⌋

𝑠𝑁2 (𝑥)
(

𝛼 − ⃖⃗𝜂⌊𝜖𝑁⌋

𝑠𝑁2 (𝑥 + 1)
)

𝑑𝑠. (3.7)

bove, for 𝐿 ∈ N,

⃖⃗𝜂𝐿(𝑧) ∶= 1
𝐿

𝑧+𝐿
∑

𝑦=𝑧+1
𝜂(𝑦) and ⃖⃖𝜂𝐿(𝑧) ∶= 1

𝐿

𝑧−1
∑

𝑦=𝑧−𝐿
𝜂(𝑦). (3.8)

ow it is enough to note that ⃖⃗𝜂𝜖𝑁 (𝑥) = ⟨𝜋𝑁 , 𝜄𝑥∕𝑁𝜖 ⟩ and similarly for the left average. Above 𝜄𝑥∕𝑁𝜖 (𝑢) ∶= 1
𝜖 1(𝑥∕𝑁,𝑥∕𝑁+𝜖](𝑢). From the

fact that 𝜙 ∈ S𝑖 and the hydrodynamic limit namely Theorem 2.2, it follows the convergence in distribution, as 𝑁 → +∞ and then
𝜖 → 0, to ∫ 𝑡0 ‖∇𝜙‖2

𝐿2(𝜌𝑠)
𝑑𝑠. Since the limit is deterministic, the convergence in probability also holds. □

3.1.3. The integral term
Observe that, for every 𝜙 ∈ S𝑖,

∫

𝑡

0
(𝑁2L𝑁 + 𝜕𝑠)𝑌 𝑁𝑠 (𝜙)𝑑𝑠 = ∫

𝑡

0
𝑌 𝑁𝑠 (𝛼𝛥𝑁𝜙)𝑑𝑠 (3.9)

− ∫

𝑡

0

𝛼𝑁3∕2

𝑁𝜃

[

𝜆𝓁𝜙
( 1
𝑁

)

𝜂̄𝑠𝑁2 (1) + 𝜆𝑟𝜙
(𝑁 − 1

𝑁

)

𝜂̄𝑠𝑁2 (𝑁 − 1)
]

𝑑𝑠 (3.10)

− ∫

𝑡

0
𝛼
√

𝑁
[

∇𝑁𝜙
(𝑁 − 1

𝑁

)

𝜂̄𝑠𝑁2 (𝑁 − 1) − ∇𝑁𝜙 (0) 𝜂̄𝑠𝑁2 (1)
]

𝑑𝑠, (3.11)

here, for every 𝑥 ∈ 𝛬𝑁 ,1

𝛥𝑁𝜙
( 𝑥
𝑁

)

∶= 𝑁2
[

𝜙
(𝑥 + 1

𝑁

)

+ 𝜙
(𝑥 − 1

𝑁

)

− 2𝜙
( 𝑥
𝑁

)]

s the discrete Laplacian of 𝜙 evaluated at 𝑥
𝑁 . We will treat each of the integral terms (3.9), (3.10), and (3.11), separately. We will

rely on the Kolmogorov–Centsov’s criterion:

roposition 3.3 (Kolmogorov–Centsov Criterion — Problem 2.4.11 of [21]). A sequence {𝑋𝑁
𝑡 ; 𝑡 ∈ [0, 𝑇 ]}𝑁∈N of continuous, real-valued,

stochastic processes is tight with respect to the uniform topology of C([0, 𝑇 ];R) if the sequence of real-valued random variables {𝑋𝑁
0 }𝑁∈N

is tight and there are constants 𝐾, 𝛾1, 𝛾2 > 0 such that, for any 𝑡, 𝑠 ∈ [0, 𝑇 ] and any 𝑁 ∈ N, it holds that

E[|𝑋𝑁
𝑡 −𝑋𝑁

𝑠 |

𝛾1 ] ≤ 𝐾|𝑡 − 𝑠|1+𝛾2 .

We start proving the tightness of (3.9): by the Cauchy–Schwarz inequality and Fubini’s theorem, we have for every 𝑡1, 𝑡2 ∈ [0, 𝑇 ]
such that 𝑡1 < 𝑡2, that

E𝜇𝑁

[(

∫

𝑡2

𝑡1
𝑌 𝑁𝑠 (𝛼𝛥𝑁𝜙)𝑑𝑠

)2]

≤ (𝑡2 − 𝑡1)∫

𝑡2

𝑡1
E𝜇𝑁

[

𝑌 𝑁𝑠 (𝛼𝛥𝑁𝜙)2
]

𝑑𝑠

≲
𝑡2 − 𝑡1
𝑁 ∫

𝑡2

𝑡1

∑

𝑥,𝑦∈𝛬𝑁

E𝜇𝑁
[

𝜂̄𝑠𝑁2 (𝑥)𝜂̄𝑠𝑁2 (𝑦)
]

𝛥𝑁𝜙
( 𝑥
𝑁

)

𝛥𝑁𝜙
( 𝑦
𝑁

)

𝑑𝑠.

Using the fact that the occupation variables are bounded by 𝛼 and from Proposition 4.2, last display is bounded from above by

𝐶(𝑡2 − 𝑡1)2
[

𝛼2 sup
𝑥∈𝛬𝑁

𝛥𝑁𝜙
( 𝑥
𝑁

)2
+ sup

𝑥,𝑦∈𝛬𝑁
𝑦≠𝑥

|

|

|

𝛥𝑁𝜙
( 𝑥
𝑁

)

𝛥𝑁𝜙
( 𝑦
𝑁

)

|

|

|

]

, (3.12)

or some constant 𝐶 independent of 𝑁 . Now, since 𝜙 ∈ S𝑖 ⊆ 𝐶∞([0, 1]), (3.12) is bounded from above by another constant times

(‖𝜙‖2∞ + ‖𝜙′′
‖

2
∞)(𝑡2 − 𝑡1)2,

hich, by Proposition 3.3, shows the tightness of (3.9).
Let us now prove the tightness of the remaining terms, i.e. (3.10) and (3.11). We present the proof for the terms related to the

eft boundary of (3.10) and (3.11); for the right boundary it is completely analogous. We start with the case 𝜃 = 1. In this case we
ote that the terms related to the left boundary in (3.10) and (3.11) are equal to

∫

𝑡

0
𝛼
√

𝑁
[

𝜆𝓁𝜙
( 1
𝑁

)

− ∇𝑁𝜙 (0)
]

𝜂̄𝑠𝑁2 (1)𝑑𝑠.

1 By abuse of notation, we understand 𝑌 𝑁 (𝛼𝛥 𝜙) as the field 𝑌 𝑁 1 𝛬 .
13
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Doing a Taylor expansion on 𝜙 at 𝑥 = 0 and noting that 𝜙 ∈ S𝑖, since the occupation variables are bounded, we conclude that if
𝑁
𝑡 is defined as the integral term above, then

E[|𝑋𝑁
𝑡 −𝑋𝑁

𝑠 |

2] ≲ |𝑡 − 𝑠|2, (3.13)

nd tightness follows.
Now we analyze the case 𝜃 > 1. In this case it is enough to prove that 𝑋𝑁

𝑡 defined as the next integral term

∫

𝑡

0

𝑁3∕2

𝑁𝜃 𝛼𝜆𝓁𝜙
( 1
𝑁

)

𝜂̄𝑠𝑁2 (1)𝑑𝑠,

atisfies (3.13) with 𝛾1 = 2 and 𝛾2 = 𝛿𝜃 where 𝛿𝜃 is defined in Lemma 4.3. This result also implies that all the integral terms in (3.10)
and (3.11) are tight. But from Lemma 4.3, we have that

E
[

|

|

|∫

𝑡

𝑠

𝑁3∕2

𝑁𝜃 𝛼𝜆𝓁𝜙
( 1
𝑁

)

𝜂̄𝑠𝑁2 (1)𝑑𝑠||
|

2
]

≲ |𝑡 − 𝑠|1+𝛿𝜃 ,

and we finish the proof for 𝜃 > 1.
Now we go to the case 0 ≤ 𝜃 < 1. Note that since 𝜙 ∈ S𝑖, then 𝜙(0) = 0. Thus

∫

𝑡

0

𝑁3∕2

𝑁𝜃 𝛼𝜆𝓁𝜙
( 1
𝑁

)

𝜂̄𝑠𝑁2 (1)𝑑𝑠 = ∫

𝑡

0

√

𝑁
𝑁𝜃 𝛼𝜆

𝓁∇𝑁𝜙 (0) 𝜂̄𝑠𝑁2 (1)𝑑𝑠.

herefore, tightness in this case will follow if we show that

∫

𝑡

0
𝛼
√

𝑁∇𝑁𝜙 (0) 𝜂̄𝑠𝑁2 (1)𝑑𝑠 = ∫

𝑡

0
𝛼
√

𝑁𝜙′ (0) 𝜂̄𝑠𝑁2 (1)𝑑𝑠 + 𝑂

(

1
√

𝑁

)

,

satisfies (3.13) with 𝛾1 = 2 and 𝛾2 = 𝛿𝜃 where 𝛿𝜃 is again defined as in Lemma 4.3. This is a simple consequence of Lemma 4.3.
Finally, we treat the case 𝜃 < 0. Note that now we need to prove tightness of

∫

𝑡

0

[

𝑁3∕2

𝑁𝜃 𝛼𝜆𝓁𝜙
( 1
𝑁

)

𝜂̄𝑠𝑁2 (1) − 𝛼
√

𝑁∇𝑁𝜙 (0) 𝜂̄𝑠𝑁2 (1)
]

𝑑𝑠.

From Lemma 4.3 the rightmost term in last display is tight. For the leftmost, we do a Taylor expansion of 𝜙 of order ⌊−𝜃⌋+2 around
𝑥 = 0, and we use that 𝜙 ∈ S𝑖, so that the leftmost term in last display writes as

∫

𝑡

0

𝑁3∕2

𝑁𝜃+⌊−𝜃⌋+2
𝛼𝜆𝓁𝜙(𝑡𝑁 )𝜂̄𝑠𝑁2 (1)𝑑𝑠,

where 𝑡𝑁 is a point between 0 and 1∕𝑁 . Since 3∕2 − 𝜃 − ⌊−𝜃⌋ − 2 < 1∕2, then Lemma 4.3 shows that the Kolmogorov–Centsov’s
criteria is satisfied with 𝛾1 = 2 and 𝛾2 = min{𝛿𝜃 , 1} > 0 and tightness follows. This ends the proof of tightness.

3.2. Characterization of the limit points

Having proven tightness, we already know that there exists a subsequence (Q𝑁𝑘 )𝑘∈N of (Q𝑁 )𝑁∈N which is convergent. Let us
denote by Q its limit. We want now to characterize Q. To do that, we will start by showing that Q gives probability one to all the
paths of funcionals {𝑌𝑡 | 𝑡 ≥ 0} with a decomposition of the form (2.24) - see Section 3.2.1. The strategy is to rewrite Dynkin’s
martingale 𝑀𝑁

𝑡 , see (3.1), applied to a particular test function 𝜙 defined in (3.14) and to prove that the integral term of 𝑀𝑁
𝑡 goes

to zero as 𝑁 → +∞ in the 𝐿2(P𝜇𝑁 )-norm. This is what is done in the next subsection.

3.2.1. Proof of the decomposition given in (2.24)
Let 𝑆 𝑖𝑡 be the semigroup associated to (2.4). We start by observing that, if 𝜆𝓁 = 𝜆𝑟 = 1, then 𝑆 𝑖𝑡 = 𝑇 𝜃𝛼𝑡, where 𝑇 𝜃𝛼𝑡 is the

corresponding semigroup when taking in (2.4) 𝜆𝓁 = 𝜆𝑟 = 1 and that coincides with the semigroup taken in Definition 4 of [18]. In
this case, due to the previous relation between semigroups, we can simply repeat the proof presented in case 𝛼 = 1 in [15] taking
(for every fixed 𝑡 ∈ [0, 𝑇 ] and restricting the process to the time interval [0, 𝑡]) as test function

𝜙(𝑢, 𝑠) ∶= 𝑆𝑖𝑡−𝑠𝑓 (𝑢), (3.14)

where 𝑓 ∈ S𝑖, to obtain the decomposition of the limit point in the form

𝑌𝑡(𝑓 ) = 𝑌0(𝑆 𝑖𝑡𝑓 ) + ∫

𝑡

0
𝑑𝑊 𝑖

𝑠 (𝑆
𝑖
𝑡−𝑠𝑓 ),

where {𝑊 𝑖
𝑡 ; 𝑡 ≥ 0} is the mean-zero Gaussian martingale characterized in Lemma 3.2. For the previous choice of 𝜆𝓁 = 𝜆𝑟 = 1, this

test function coincides with 𝑇 𝜃𝛼(𝑡−𝑠)𝑓 (𝑢).
For completeness, we present here the proof in the general case, which also follows the strategy of [15]. Taking 𝜙𝑠(⋅) = 𝜙(⋅, 𝑠)

defined in (3.14), we have that

𝑀𝑁 (𝜙⋅) = 𝑌 𝑁 (𝜙𝑠) − 𝑌 𝑁 (𝜙0) −
𝑠
[𝑁2L𝑁𝑌

𝑁 (𝜙𝑢) + 𝑌 𝑁 (𝜕𝑢𝜙𝑢)]𝑑𝑢
14
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it is also a martingale. For every 𝑠 ∈ [0, 𝑇 ], if 𝑓 ∈ S𝑖, then 𝜙𝑠 ∈ S𝑖. Remarking that the proof of Lemma 3.2 still holds if the test
unction is time-dependent (and 𝐶1 in time), we obtain that {𝑀𝑁

𝑠 (𝜙𝑠) ; 𝑠 ∈ [0, 𝑡]}𝑁∈N converges in law with respect to the topology
f D([0, 𝑇 ];R), as 𝑁 → +∞, towards the mean-zero Gaussian martingale

{

∫

𝑠

0
𝑑𝑊 𝑖

𝑢 (𝜙𝑢); 𝑠 ∈ [0, 𝑡]
}

with quadratic variation given by

∫

𝑠

0
‖∇𝜙𝑢‖2𝐿2(𝜌𝑢)

𝑑𝑢

∶= ∫

𝑠

0 ∫

1

0
2𝜒𝛼(𝜌)(𝑥)

(

∇𝜙𝑢(𝑥)
)2 𝑑𝑥𝑑𝑢

+ 1(𝜃 = 1)∫

𝑠

0

{

𝜆𝓁[(𝛼 − 2𝜌𝓁)𝜌𝑢(0) + 𝜌𝓁𝛼]
(

∇𝜙𝑢(0)
)2 + 𝜆𝑟[(𝛼 − 2𝜌𝑟)𝜌𝑢(1) + 𝜌𝑟𝛼]

(

∇𝜙𝑢(1)
)2
}

𝑑𝑢.

Since, for every 𝑁 ∈ N,

𝑀𝑁
𝑠 (𝜙⋅) = 𝑌 𝑁𝑠 (𝑓 ) − 𝑌 𝑁0 (𝑆𝑖𝑠𝑓 ) − ∫

𝑠

0
[𝑁2L𝑁𝑌

𝑁
𝑢 (𝜙𝑢) + 𝑌 𝑁𝑢 (𝜕𝑢𝜙𝑢)]𝑑𝑢, (3.15)

f we show that the time integral in the last display goes to zero as 𝑁 → +∞, then, using tightness and the previous reasoning about
𝑀𝑁

𝑠 (𝜙⋅) ; 𝑠 ∈ [0, 𝑡]}𝑁∈N, taking the limit as 𝑁 → +∞, we have, up to a subsequence, that (3.15) converges in law with respect to
he topology of D([0, 𝑇 ];R), to

∫

𝑠

0
𝑑𝑊𝑢(𝑆 𝑖𝑡−𝑢𝑓 )𝑑𝑢

s we wanted. By the same computations done to obtain (3.9), (3.10) and (3.11), we have

𝑁2L𝑁𝑌
𝑁
𝑠 (𝜙𝑠) + 𝑌 𝑁𝑠 (𝜕𝑠𝜙𝑠) = 𝛼𝑌 𝑁𝑠 (𝛥𝑁𝑆𝑖𝑡−𝑠𝑓 − 𝛥𝑆 𝑖𝑡−𝑠𝑓 ) + 𝑌

𝑁
𝑠 (𝛼𝛥𝑆 𝑖𝑡−𝑠𝑓 + 𝜕𝑠𝑆𝑖𝑡−𝑠𝑓 )

− 𝛼𝑁3∕2

𝑁𝜃

[

𝜆𝓁𝑆𝑖𝑡−𝑠𝑓
( 1
𝑁

)

𝜂̄𝑠𝑁2 (1) + 𝜆𝑟𝑆𝑖𝑡−𝑠𝑓
(𝑁 − 1

𝑁

)

𝜂̄𝑠𝑁2 (𝑁 − 1)
]

(3.16)

− 𝛼
√

𝑁
[

∇𝑁𝑆𝑖𝑡−𝑠𝑓
(𝑁 − 1

𝑁

)

𝜂̄𝑠𝑁2 (𝑁 − 1) − ∇𝑁𝑆𝑖𝑡−𝑠𝑓 (0) 𝜂̄𝑠𝑁2 (1)
]

, (3.17)

here 𝛥 represents the continuous Laplacian operator. Since 𝑆𝑖𝑡−𝑠𝑓 is smooth (by the properties of the semigroup 𝑆𝑖𝑡−𝑠), then
𝑁𝑆𝑖𝑡−𝑠𝑓 − 𝛥𝑆𝑖𝑡−𝑠𝑓 is of order 𝑂(𝑁−2) and 𝛼𝛥𝑆 𝑖𝑡−𝑠𝑓 + 𝜕𝑡𝑆 𝑖𝑡−𝑠𝑓 is identically zero because 𝑆 𝑖𝑡−𝑠𝑓 is solution to the heat equation
ith diffusion coefficient equal to 𝛼 with the corresponding boundary conditions depending on 𝜃 - recall (2.8) for 𝜃 > 1, (2.9) for
= 1, and (2.10) for 𝜃 < 1. It remains now to analyze the terms in (3.16) and (3.17). Here we treat the terms regarding the left

oundary, since for the right boundary it is completely analogous.

1. If 𝜃 = 1, we have that

− 𝛼𝑁3∕2

𝑁𝜃 𝜆𝓁𝑆 𝑖𝑡−𝑠𝑓
( 1
𝑁

)

𝜂̄𝑠𝑁2 (1) + 𝛼
√

𝑁∇𝑁𝑆𝑖𝑡−𝑠𝑓 (0) 𝜂̄𝑠𝑁2 (1)

= 𝛼
√

𝑁
[

∇𝑁𝑆𝑖𝑡−𝑠𝑓 (0) − 𝜆𝓁𝑆 𝑖𝑡−𝑠𝑓
( 1
𝑁

)]

𝜂̄𝑠𝑁2 (1),

= 𝛼
√

𝑁
[

(

∇𝑁𝑆𝑖𝑡−𝑠𝑓 (0) − 𝜕𝑢𝑆𝑖𝑡−𝑠𝑓 (0)
)

− 𝜆𝓁
(

𝑆𝑖𝑡−𝑠𝑓
( 1
𝑁

)

− 𝑆 𝑖𝑡−𝑠𝑓 (0)
)]

𝜂̄𝑠𝑁2 (1) (3.18)

+ 𝛼
√

𝑁
[

𝜕𝑢𝑆
𝑖
𝑡−𝑠𝑓 (0) − 𝜆𝓁𝑆 𝑖𝑡−𝑠𝑓 (0)

]

𝜂̄𝑠𝑁2 (1). (3.19)

Since 𝑆𝑖𝑡−𝑠𝑓 is smooth, both terms in (3.18) are of order 𝑂(𝑁−1∕2) and (3.19) is identically zero because 𝑆𝑖𝑡−𝑠𝑓 satisfies the
boundary conditions given in (2.9). This immediately implies that, if 𝜃 = 1, then ∫ 𝑡0 [𝑁

2L𝑁𝑌 𝑁𝑠 (𝜙𝑠)+𝑌 𝑁𝑠 (𝜕𝑠𝜙𝑠)]𝑑𝑠 goes to zero
as 𝑁 → +∞.

2. If 𝜃 > 1, since 𝑓 ∈ S𝑖 and so 𝑆 𝑖𝑡𝑓 ∈ S𝑖, we have that

− 𝑁3∕2

𝑁𝜃 𝛼𝜆𝓁𝑆 𝑖𝑡−𝑠𝑓
( 1
𝑁

)

𝜂̄𝑠𝑁2 (1) + 𝛼
√

𝑁∇𝑁𝑆𝑖𝑡−𝑠𝑓 (0) 𝜂̄𝑠𝑁2 (1)

= − 𝛼𝜆𝓁

𝑁𝜃−1∕2
∇𝑁𝑆 𝑖𝑡−𝑠𝑓 (0) 𝜂̄𝑠𝑁2 (1) + 𝛼

√

𝑁
(

∇𝑁𝑆 𝑖𝑡−𝑠𝑓 (0) − 𝜕𝑢𝑆 𝑖𝑡−𝑠𝑓 (0)
)

𝜂̄𝑠𝑁2 (1) (3.20)

−𝑁3∕2−𝜃𝛼𝜆𝓁𝑆 𝑖𝑡−𝑠𝑓 (0) 𝜂̄𝑠𝑁2 (1). (3.21)

Since 𝑆 𝑖𝑡−𝑠𝑓 is smooth and the occupation variables are bounded, then the first term of (3.20) is of order 𝑂(𝑁1∕2−𝜃) and the
second is of order 𝑂(𝑁−1∕2). Finally, integrating (3.21) between 0 and 𝑡, and taking its 𝐿2(P𝜇𝑁 )-norm, by Lemma 4.3 we
conclude that the integral between 0 and 𝑡 of this term goes to zero as 𝑁 → +∞, and we are done.

3. If 0 ≤ 𝜃 < 1, by the invariance of the semigroup 𝑆𝑖𝑡 in S𝑖, we have that

− 𝑁3∕2

𝑁𝜃 𝛼𝜆𝓁𝑆 𝑖𝑡−𝑠𝑓
( 1
𝑁

)

𝜂̄𝑠𝑁2 (1) + 𝛼
√

𝑁∇𝑁𝑆𝑖𝑡−𝑠𝑓 (0) 𝜂̄𝑠𝑁2 (1)

= −

√

𝑁
𝛼𝜆𝓁∇ 𝑆𝑖 𝑓 (0) 𝜂̄ 2 (1) + 𝛼

√

𝑁∇ 𝑆 𝑖 𝑓 (0) 𝜂̄ 2 (1). (3.22)
15

𝑁𝜃 𝑁 𝑡−𝑠 𝑠𝑁 𝑁 𝑡−𝑠 𝑠𝑁
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Integrating both terms in (3.22) between 0 and 𝑡, and taking the 𝐿2(P𝜇𝑁 )-norm of each term, by Lemma 4.3, the integral
between 0 and 𝑡 of these terms go to zero as 𝑁 → +∞. We can then conclude that, if 0 ≤ 𝜃 < 1, then ∫ 𝑡0 [𝑁

2L𝑁𝑌 𝑁𝑠 (𝜙𝑠) +
𝑌 𝑁𝑠 (𝜕𝑠𝜙𝑠)]𝑑𝑠 goes to zero as 𝑁 → +∞.

4. Finally, if 𝜃 < 0, since 𝑓 ∈ S𝑖 implies that 𝑆 𝑖𝑡−𝑠𝑓 ∈ S𝑖, then, writing the Taylor expansion of order ⌈−𝜃⌉+1 of 𝑆 𝑖𝑡−𝑠𝑓 around 0
and substituting in (3.16) and (3.17), we immediately conclude that ∫ 𝑡0 [𝑁

2L𝑁𝑌 𝑁𝑠 (𝜙𝑠)+𝑌 𝑁𝑠 (𝜕𝑠𝜙𝑠)]𝑑𝑠 goes to zero as 𝑁 → +∞.

his completes the proof of the decomposition part of Theorem 2.3.

.2.2. Uniqueness of the limit point
To show uniqueness, one should recall that, as a consequence of Lévy’s representation theorem, we know that 𝑊 𝑖

𝑡 is independent
f 𝑌0 - see Theorem 5.12 and its proof in [24]. From this fact uniqueness follows by noting that 𝑌0 is (F0)-measurable and the
ollowing argument:

• For 𝜃 ≥ 0, uniqueness follows from Proposition 2.5 of [2] once we show that (𝑆𝑖𝑡 )𝑡≥0, the semigroup associated to (2.4), satisfies

𝑆 𝑖𝑡+𝜖𝐻 − 𝑆 𝑖𝑡𝐻 = 𝜖𝛼𝛥𝑆 𝑖𝑡𝐻 + 𝑜(𝜖, 𝑡), (3.23)

for every 𝜖 > 0, 𝑡 ≥ 0 and 𝐻 ∈ S𝑖, where 𝑜(𝜖, 𝑡) goes to 0, as 𝜖 goes to 0, in S𝑖 uniformly on compact time intervals. But this
is an immediate consequence of the explicit formulas given by (2.14), (2.12) and (2.13), if 𝜃 > 1, 𝜃 = 1 or 𝜃 < 1, respectively.

• Finally, for 𝜃 < 0, the uniqueness of solution of the O. U. martingale problem follows by repeating the arguments of
Theorem 2.13. of [2] and Proposition 2.5. of [2]. Finally, to show that the two extra conditions, i.e. regularity and boundary
conditions, hold, we only have to observe that the first follows from the boundedness of the occupation variables jointly with
Proposition 4.2 and the second follows from Lemma 4.5.

his ends the proof of Theorem 2.3.

. Auxiliary estimates

This section is devoted to some estimates needed in order to proof our main results. Let us denote by ∇̃+
𝑁 the operator defined,

or every 𝑓 ∶ 𝛬𝑁 → R and 𝑥 ∈ 𝛬𝑁−1, by

∇̃+
𝑁𝑓 (𝑥) ∶= 𝑁[𝑓 (𝑥 + 1) − 𝑓 (𝑥)]. (4.1)

emma 4.1. Assume that 𝛾 ∈ 𝐶6([0, 1]) satisfies (H2), that there exists a sequence (𝑔𝑁 )𝑁∈N of functions of class 𝐶6([0, 1]) that satisfies
H3) and (H4) and that (𝜇𝑁 )𝑁∈N is a sequence of probability measures satisfying (H1). Then, there exists 𝐶 > 0 such that

max
𝑥∈𝛬𝑁−1

|∇̃+
𝑁𝜌

𝑁
𝑡 (𝑥)| ≤ 𝐶,

or every 𝑡 ∈ [0, 𝑇 ].

The proof of the previous lemma can be found in Appendix D.
One of the key ingredients to prove fluctuations is to obtain sharp estimates for the decay in 𝑁 of the time-dependent two-point

orrelation function, i.e. on 𝜑𝑁𝑡 defined in (2.23), which we recall that is not defined for 𝑥 = 𝑦.

roposition 4.2. Under the assumption (H5), we have that

sup
𝑡∈[0,𝑇 ]

max
(𝑥,𝑦)∈𝑉𝑁
𝑥≠𝑦

|𝜑𝑁𝑡 (𝑥, 𝑦)| ≲ 1
𝑁
, (4.2)

and, under the assumption (H6), for 𝑥 = 1 and for 𝑥 = 𝑁 − 1,

sup
𝑡∈[0,𝑇 ]

max
𝑦∈𝛬𝑁
𝑦≠𝑥

|𝜑𝑁𝑡 (𝑥, 𝑦)| ≲ 𝑅𝜃𝑁 ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝑁 , if 𝜃 > 1,
𝑁𝜃

𝑁2 , if 0 ≤ 𝜃 ≤ 1,
𝑁𝜃

𝑁 , if − 1 < 𝜃 < 0,
1
𝑁2 , if 𝜃 ≤ −1.

(4.3)

The proof of the previous proposition can be found in Section 4.1.

Lemma 4.3. Recall that, for 𝑦 ∈ 𝛬𝑁 , we denote by 𝜂̄(𝑦) the centered variable. Then, for every 𝜃 ∈ R, for 𝑥 ∈ {1, 𝑁 −1} and 𝑡, 𝑠 ∈ [0, 𝑇 ],
it holds

E𝜇𝑁

[

(

∫

𝑡
𝑑𝜃𝑁 𝜂̄𝑠𝑁2 (𝑥)𝑑𝑟

)2]

≲ |𝑡 − 𝑠|1+𝛿𝜃 + |𝑡 − 𝑠|2(𝑑𝜃𝑁 )2𝑅𝜃𝑁 (4.4)
16

𝑠
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E𝜇𝑁

[

(

∫

𝑡

𝑠
𝜂̄𝑠𝑁2 (𝑥)𝑑𝑟

)2]

≲ 𝑁𝜃

𝑁2
|𝑡 − 𝑠| + |𝑡 − 𝑠|2𝑅𝜃𝑁 , (4.5)

here 𝑑𝜃𝑁 =
√

𝑁1(𝜃 ≤ 1)+𝑁3∕2−𝜃1(𝜃 > 1), 𝛿𝜃 =
|1−𝜃|
2 1(𝜃 < 3)+1(𝜃 ≥ 3) and 𝑅𝜃𝑁 was introduced in the last proposition. So, in particular,

for 𝑥 ∈ {1, 𝑁 − 1}, for every 𝑡 ∈ [0, 𝑇 ] and 𝜃 ∈ R⧵{1},

lim
𝑁→+∞

E𝜇𝑁

[

(

∫

𝑡

0
𝑑𝜃𝑁 𝜂̄𝑠𝑁2 (𝑥)𝑑𝑟

)2]

= 0. (4.6)

The proof of the previous lemma is given in Section 4.3.
For 𝜃 < 0, for all 𝛼 ∈ N, we will also need the following estimates.

Proposition 4.4. Let 𝜃 < 1. Recall (3.6). If (H5) holds, then, for every 𝜖 > 0 and every 𝑡 ∈ (0, 𝑇 ], we have that

max
(𝑥,𝑦)∈𝛬𝜖,𝓁𝑁 ×𝛬𝑁

𝑦≠𝑥

|𝜑𝑁𝑡 (𝑥, 𝑦)| ≲

(

1 + 1
√

𝑡

)

𝜖
𝑁

+ 𝑜
( 1
𝑁

)

, (4.7)

nd the same results holds for (𝑥, 𝑦) ∈ 𝛬𝑁 × 𝛬𝜖,𝑟𝑁 .

The proof of the previous result can be found in Section 4.2.

emma 4.5. Let 𝜃 < 1. Then, the following limit holds, for every 𝑡 ∈ [0, 𝑇 ] and 𝑗 ∈ {0, 1}.

lim
𝜖→0

lim sup
𝑁→+∞

E𝜇𝑁

[

(

∫

𝑡

0
𝑌 𝑁𝑠 (𝜄𝑗𝜖)𝑑𝑠

)2]

= 0, (4.8)

where 𝜄𝑗𝜖 was defined in item 2. (b) of Theorem 2.3

The proof of the previous result is given in Section 4.4.

4.1. Proof of Proposition 4.2

Recall Fig. 2.3. In this proof we will use some random walks that, for simplicity of the presentation, we define now:

1. {X𝑖
𝑡; 𝑡 ≥ 0} is the random walk evolving on the set of points 𝑉 𝛼

𝑁 where

𝑉 𝛼
𝑁 ∶= 𝑉𝑁⧵D𝑁 for 𝛼 = 1 and 𝑉 𝛼

𝑁 ∶= 𝑉𝑁 for 𝛼 ≥ 2, (4.9)

that moves to nearest-neighbors at rate 𝛼, except at the line D+
𝑁 that moves left/up at rate 𝛼 and right/down at rate 𝛼 − 1

and that is reflected at the line D+
𝑁 if 𝛼 = 1, and at the line D𝑁 if 𝛼 ≥ 2. Moreover, it is absorbed at 𝜕𝑉𝑁 : with rate 𝛼𝜆𝓁∕𝑁𝜃

at the set of points {(0, 𝑦) ∶ 𝑦 ∈ 𝛬𝑁} and with rate 𝛼𝜆𝑟∕𝑁𝜃 at the set of points {(𝑥,𝑁) ∶ 𝑥 ∈ 𝛬𝑁}. This random walk has
generator 𝛥𝑖𝑁 which is the operator that acts on functions 𝑓 ∶ 𝑉 𝑁 → R such that 𝑓 (𝑥, 𝑦) = 0 for every (𝑥, 𝑦) ∈ 𝜕𝑉𝑁 as

𝛥𝑖𝑁𝑓 (𝑢) =
∑

𝑣∈𝑉 𝑁
𝑣∼𝑢

𝑐𝑖𝑢,𝑣
[

𝑓 (𝑣) − 𝑓 (𝑢)
]

, (4.10)

for every 𝑢 ∈ 𝑉𝑁 , with 𝑐𝑖(𝑥,𝑦),(𝑥′ ,𝑦′) defined, for 𝛼 = 1 by

𝑐𝑖 ∶
{

((𝑥, 𝑦), (𝑥′, 𝑦′)) ∈ 𝑉𝑁 × 𝑉 𝑁 ; |𝑥 − 𝑥′| + |𝑦 − 𝑦′| = 1
}

→ [0,∞)

as
{

𝑐𝑖(𝑥,𝑦),(𝑥′ ,𝑦) ∶= 𝑐𝑖𝑥,𝑥′1(𝑥
′ ≠ 𝑦) if |𝑥 − 𝑥′| = 1,

𝑐𝑖(𝑥,𝑦),(𝑥,𝑦′) ∶= 𝑐𝑖𝑦,𝑦′1(𝑥 ≠ 𝑦′) if |𝑦 − 𝑦′| = 1,

and, for 𝛼 ≥ 2,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑐𝑖(𝑥,𝑦),(𝑥′ ,𝑦) ∶= 𝑐𝑖𝑥,𝑥′ − 1(𝑥′ = 𝑦) if |𝑥 − 𝑥′| = 1 and 𝑥 ≠ 𝑦,

𝑐𝑖(𝑥,𝑦),(𝑥,𝑦′) ∶= 𝑐𝑖𝑦,𝑦′ − 1(𝑥 = 𝑦′) if |𝑦 − 𝑦′| = 1 and 𝑥 ≠ 𝑦,

𝑐𝑖(𝑥,𝑦),(𝑥′ ,𝑦) ∶= 2𝑐𝑖𝑥−1,𝑥1(𝑥
′ = 𝑥 − 1) if 𝑥 = 𝑦,

𝑐𝑖(𝑥,𝑦),(𝑥,𝑦′) ∶= 2𝑐𝑖𝑥,𝑥+11(𝑦
′ = 𝑥 + 1) if 𝑥 = 𝑦,

(4.11)

𝑖

17

with 𝑐𝑥,𝑦 as defined in Eq. (2.17).
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2. {X̃
𝑖

𝑡; 𝑡 ≥ 0} is the random walk evolving on the set of points 𝑉 𝛼
𝑁 that moves to nearest-neighbors at rate 𝛼, except at the line

D+
𝑁 that moves left/up at rate 𝛼 and right/down at rate 𝛼 − 1 and that is reflected at the line D+

𝑁 if 𝛼 = 1, and D𝑁 if 𝛼 ≥ 2,

and is also reflected at the boundary 𝜕𝑉𝑁 . We denote by C𝑖𝑁 the Markov generator of {X̃
𝑖

𝑡; 𝑡 ≥ 0} which is the operator that
acts on functions 𝑓 ∶ 𝑉 𝑁 → R as, for every 𝑢 ∈ 𝑉𝑁 ,

C𝑖𝑁𝑓 (𝑢) =
∑

𝑣∈𝑉𝑁
𝑣∼𝑢

𝑐𝑖𝑢,𝑣
[

𝑓 (𝑣) − 𝑓 (𝑢)
]

, (4.12)

where 𝑐𝑖𝑢,𝑣 are the same as defined in (4.11) (see Fig. 4.1).

Fig. 4.1. Illustration of the jump rates of the random walk {X̃
𝑖

𝑡; 𝑡 ≥ 0}.

For the standard simple symmetric exclusion process, i.e. the case 𝛼 = 1, Proposition 4.2 has been proved in a myriad of articles
(see [15,18,23] and references therein). Let us review and adapt this proof. It is not difficult to check that for each 𝑥, 𝑦 ∈ 𝛬𝑁 , the
action of the generator L𝑁 on 𝜂(𝑥)𝜂(𝑦) is given by a linear combination of the functions (𝜂(𝑧)𝜂(𝑧′); 𝑧, 𝑧′ ∈ 𝛬𝑁 ) - see Eq. (B.1) of
Appendix B. This means that the correlation function (𝜑𝑁𝑡 ; 𝑡 ≥ 0) satisfies an autonomous, non-homogeneous evolution equation,
which involves (𝜌𝑁𝑡 ; 𝑡 ≥ 0) as parameters.

For 𝛼 = 1, the correlation function 𝜑𝑁𝑡 is solution to

𝜕𝑡𝜑
𝑁
𝑡 (𝑥, 𝑦) = 𝑁2𝛥𝑖𝑁𝜑

𝑁
𝑡 (𝑥, 𝑦) + 𝑔𝑁𝑡 (𝑥, 𝑦)1((𝑥, 𝑦) ∈ D+

𝑁 ), (4.13)

where 𝛥𝑖𝑁 is the operator defined in (4.10). Here

𝑔𝑁 (𝑥, 𝑥 + 1) = 𝑔𝑁 (𝑥 + 1, 𝑥) = −
(

∇̃+ 𝜌𝑁 (𝑥)
)2 ,
18

𝑡 𝑡 𝑁 𝑡
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for every 𝑥 ∈ 𝛬𝑁−1 and 𝑔𝑁𝑡 (𝑥, 𝑦) ∶= 0 otherwise. Observe that 𝛥𝑖𝑁 corresponds to the generator of the random walk {X𝑖
𝑡; 𝑡 ≥ 0} that

oves to nearest-neighbor sites on 𝑉𝑁 with annihilation at the boundary and the jumps to the diagonal D𝑁 are suppressed. As a
onsequence, (4.13) does not involve the values of 𝜑𝑁𝑡 at D𝑁 . By Duhamel’s formula, for every (𝑥, 𝑦) ∈ 𝑉𝑁⧵D𝑁 , we can represent
𝑁
𝑡 by

𝜑𝑁𝑡 (𝑥, 𝑦) = E(𝑥,𝑦)

[

𝜑𝑁0 (X𝑖
𝑡𝑁2 ) + ∫

𝑡

0
𝑔𝑁𝑡−𝑠(X

𝑖
𝑠𝑁2 )1(X

𝑖
𝑠𝑁2 ∈ D+

𝑁 ) 𝑑𝑠
]

, (4.14)

here E(𝑥,𝑦) denotes the expectation of the law of the walk {X𝑖
𝑡; 𝑡 ≥ 0} starting from the point (𝑥, 𝑦). Now, to obtain the order of

ecay in 𝑁 of 𝜑𝑁𝑡 we note that by (4.14),

max
(𝑥,𝑦)∈𝑉𝑁
𝑥≠𝑦

|𝜑𝑁𝑡 (𝑥, 𝑦)| ≤ max
(𝑧,𝑤)∈𝑉𝑁
𝑧≠𝑤

|𝜑𝑁0 (𝑧,𝑤)| + sup
𝑡≥0

max
𝑧∈𝛬𝑁−1

|𝑔𝑁𝑡 (𝑧, 𝑧 + 1)| max
(𝑥,𝑦)∈𝑉𝑁
𝑥≠𝑦

E(𝑥,𝑦)

[

∫

∞

0
1(X𝑖

𝑠𝑁2 ∈ D+
𝑁 )𝑑𝑠

]

. (4.15)

bserve that

𝑇 𝑖𝑁 (𝑥, 𝑦) ∶= E(𝑥,𝑦)

[

∫

∞

0
1(X𝑖

𝑡𝑁2 ∈ D+
𝑁 )𝑑𝑡

]

(4.16)

orresponds to the expected occupation time of the diagonals D+
𝑁 by the random walk (X𝑖

𝑡𝑁2 ; 𝑡 ≥ 0). By (4.15), in order to estimate
𝜑𝑁𝑡 (𝑥, 𝑦)|, we only need to estimate the simpler quantities |𝜑𝑁0 (𝑧,𝑤)| for every (𝑧,𝑤) ∈ 𝑉𝑁 with 𝑧 ≠ 𝑤, |𝑔𝑁𝑡 (𝑧, 𝑧 + 1)| for every
∈ 𝛬𝑁−1 and 𝑇 𝑖𝑁 (𝑥, 𝑦) for every (𝑥, 𝑦) ∈ 𝑉𝑁⧵D𝑁 . For details on this, see equations (2.19), (2.20), Lemma 6.2. and Sections 6.1. and
.2 of [18].

For 𝛼 ≥ 2, we would like to follow a similar strategy to the one outlined above. However, in this case, the Chapman–Kolmogorov
quation for 𝜑𝑁𝑡 is more complicated. In the case 𝛼 = 1, the relation 𝜂(𝑥) = 𝜂(𝑥)2 has as a consequence that no diagonal terms appear
n the equation satisfied by 𝜑𝑁𝑡 . For 𝛼 ≥ 2, this relation is no longer satisfied, and therefore the Chapman–Kolmogorov equation
as an additional term — see Appendix C. At first glance, it would be natural to extend 𝜑𝑁𝑡 to the diagonal D𝑁 by taking 𝜑𝑁𝑡 (𝑥, 𝑥)
qual to

E𝜇𝑁 [(𝜂𝑡𝑁2 (𝑥) − 𝜌𝑁𝑡 (𝑥))2]. (4.17)

However, it turns out that a more convenient definition is to extend 𝜑𝑁𝑡 as

𝜑𝑁𝑡 (𝑥, 𝑥) ∶= E𝜇𝑁
[ 𝛼
𝛼 − 1

𝜂𝑡𝑁2 (𝑥)(𝜂𝑡𝑁2 (𝑥) − 1) − 𝜌𝑁𝑡 (𝑥)2
]

, (4.18)

and remark here the importance of 𝛼 being greater or equal to 2 for this quantity to be well defined. Some motivations and reasons
for this choice of defining the function 𝜑𝑁𝑡 (𝑥, 𝑥) are given in Appendix C. Extending 𝜑𝑁𝑡 in this way, we can verify that 𝜑𝑁𝑡 satisfies
the equation

𝜕𝑡𝜑
𝑁
𝑡 (𝑥, 𝑦) = 𝑁2𝛥𝑖𝑁𝜑

𝑁
𝑡 (𝑥, 𝑦) + 𝑔𝑁𝑡 (𝑥, 𝑥 + 1)1((𝑥, 𝑦) ∈ D+

𝑁 ), (4.19)

where 𝛥𝑖𝑁 is the operator defined in (4.10). To simplify, we will use the same notation as in the case 𝛼 = 1 to the occupation time
(4.16) for this case, i.e. the case 𝛼 ≥ 2.

Observe that (4.19) generalizes (4.13) in a very convenient way, because the right-hand side is structurally the same; the only
difference being the definition of the operator 𝛥𝑖𝑁 which in nothing changes the strategy we followed to bound 𝜑𝑁𝑡 in case 𝛼 = 1.
In particular, we have the analogous of (4.15) for 𝛼 ≥ 2 with the slight difference that now we need to take into account in the
right-hand side of (4.15) the points (𝑧,𝑤) ∈ 𝑉𝑁 with 𝑧 = 𝑤.

From here on, we separate the proof of the bounds in (4.2) and (4.3) in two parts: for Part 1 we treat the case 𝜃 < 2; and for
Part 2 we treat the other case, i.e. 𝜃 ≥ 2.

Part 1: the case 𝜃 < 2
We already saw that

max
(𝑥,𝑦)∈𝑉𝑁
𝑥≠𝑦

|𝜑𝑁𝑡 (𝑥, 𝑦)| ≤ max
(𝑧,𝑤)∈𝑉𝑁

|𝜑𝑁0 (𝑧,𝑤)| + sup
𝑡≥0

max
𝑧∈𝛬𝑁−1

|𝑔𝑁𝑡 (𝑧, 𝑧 + 1)| max
(𝑥,𝑦)∈𝑉𝑁
𝑥≠𝑦

𝑇 𝑖𝑁 (𝑥, 𝑦), (4.20)

Using Lemma 5.1, the assumptions (H5) and (H6), and Lemma 4.1, we conclude that

sup
𝑡≥0

max
(𝑥,𝑦)∈𝑉𝑁

|𝜑𝑁𝑡 (𝑥, 𝑦)| ≲

⎧

⎪

⎨

⎪

⎩

1
𝑁 + 𝑁𝜃

𝑁 , if 𝜃 ≤ 0,
1
𝑁 + 𝑁𝜃

𝑁3 , if 𝜃 > 0,

and so, for 𝜃 < 2,

sup
𝑡≥0

max
(𝑥,𝑦)∈𝑉𝑁

|𝜑𝑁𝑡 (𝑥, 𝑦)| ≲ 1
𝑁
. (4.21)

oreover, for 𝑥 = 1, 𝑁 − 1,

sup max |𝜑𝑁𝑡 (𝑥, 𝑦)| ≲ 𝑅𝜃𝑁 , if 𝜃 ≤ 2 .
19
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For the case 𝜃 ≥ 2 repeating the previous arguments we get the bound 𝑁𝜃

𝑁3 and this is not enough for our results. For this reason
we need to consider another random walk.

Part 2: the case 𝜃 ≥ 2
Here we follow a different strategy to improve the bound for 𝑇 𝑖𝑁 found previously, following the ideas presented in [18] for the

ase 𝛼 = 1, and extending the argument for 𝛼 ∈ N. We rewrite (4.19) as

𝜕𝑡𝜑
𝑁
𝑡 (𝑥, 𝑦) = 𝑁2C𝑖𝑁𝜑

𝑁
𝑡 (𝑥, 𝑦) +V𝑖

𝑁 (𝑥, 𝑦)𝜑𝑁𝑡 (𝑥, 𝑦) + 𝑔𝑁𝑡 (𝑥, 𝑥 + 1)1(𝑦 = 𝑥 + 1),

where C𝑖𝑁 is, as defined in (4.12), the generator of the random walk {X̃
𝑖

𝑡; 𝑡 ≥ 0} and,

V𝑖
𝑁 (𝑥, 𝑦) = −𝛼𝑁

2

𝑁𝜃 [𝜆𝓁1(𝑥 = 1) + 𝜆𝑟1(𝑦 = 𝑁 − 1)].

By Feynman–Kac’s formula, we have that

𝜑𝑁𝑡 (𝑥, 𝑦) = Ẽ(𝑥,𝑦)

[

𝜑𝑁0 (X̃
𝑖

𝑡𝑁2 )𝑒∫
𝑡
0 V

𝑖
𝑁 (X̃

𝑖
𝑠𝑁2 )𝑑𝑠 + ∫

𝑡

0
𝑔𝑁𝑡−𝑠(X̃

𝑖

𝑠𝑁2 )1(X̃
𝑖

𝑠𝑁2 ∈ D±)𝑒∫
𝑠
0 V𝑖

𝑁 (X̃
𝑖
𝑟𝑁2 )𝑑𝑟𝑑𝑠

]

,

where Ẽ(𝑥,𝑦) denotes the expectation given that X̃
𝑖

𝑠𝑁2 starts from the point (𝑥, 𝑦). Now, since V𝑖
𝑁 is negative, then

max
(𝑥,𝑦)∈𝑉𝑁
𝑥≠𝑦

|

|

|

Ẽ(𝑥,𝑦)

[

𝜑𝑁0 (X̃
𝑖

𝑡𝑁2 )𝑒∫
𝑡
0 V

𝑖
𝑁 (X̃

𝑖
𝑠𝑁2 )𝑑𝑠

]

|

|

|

≲ max
(𝑧,𝑤)∈𝑉𝑁

|𝜑𝑁0 (𝑧,𝑤)|. (4.22)

For the other term, by changing the integrals using Fubini’s theorem and using the fact that 𝑔𝑁𝑡 and V𝑖
𝑁 are both negative, we have

that

|

|

|

Ẽ(𝑥,𝑦)

[

∫

𝑡

0
𝑔𝑁𝑡−𝑠(X̃

𝑖

𝑠𝑁2 )𝑒∫
𝑠
0 V𝑖

𝑁 (X̃
𝑖
𝑟𝑁2 )𝑑𝑟𝑑𝑠

]

|

|

|

≤ ∫

𝑡

0
Ẽ(𝑥,𝑦)

[

−𝑔𝑁𝑡−𝑠(X̃
𝑖

𝑠𝑁2 )
]

𝑑𝑠.

By similar arguments as in the case 𝜃 < 2, we obtain that

|

|

|

Ẽ(𝑥,𝑦)

[

∫

𝑡

0
𝑔𝑁𝑡−𝑠(X̃

𝑖

𝑠𝑁2 )𝑒∫
𝑠
0 V𝑖

𝑁 (X̃
𝑖
𝑟𝑁2 )𝑑𝑟𝑑𝑠

]

|

|

|

≤ sup
𝑡≥0

max
𝑧∈𝛬𝑁−1

|𝑔𝑁𝑡 (𝑧, 𝑧 + 1)|𝑇𝑁𝑡 (𝑥, 𝑦), (4.23)

where

𝑇𝑁𝑡 (𝑥, 𝑦) ∶= ∫

𝑡

0
Ẽ(𝑥,𝑦)

[

1(X̃
𝑖

𝑠𝑁2 ∈ D+
𝑁 )

]

𝑑𝑠 . (4.24)

Observe that we did not bound the last integral (from 0 to 𝑡) by the integral over the interval from 0 to infinity and the reason
s that the bound we will obtain for that time integral depends on 𝑡 and blows up when 𝑡 → +∞. From Lemma 5.2 together with
4.22) and (4.23), we obtain

sup
𝑡∈[0,𝑇 ]

max
(𝑥,𝑦)∈𝑉𝑁

|𝜑𝑁𝑡 (𝑥, 𝑦)| ≲ 𝑇 + 1
𝑁

,

nd, the same bound holds from (𝑥, 𝑦) ∈ 𝜕𝑉𝑁 . This concludes the proof.

.2. Proof of Proposition 4.4

Recall that here we will only consider 𝜃 < 1. Since the result of Proposition 4.4 for 𝛼 = 1 and 𝜃 < 0 was not considered before,
e will present a proof that works for every 𝛼 ∈ N and every 𝜃 < 1. Let 𝜖 > 0 and recall from the statement of Proposition 4.4 that
e denote the set {1,… , 𝜖(𝑁 − 1)} by 𝛬𝜖,𝓁𝑁 . We want to show that, for every 𝜖 > 0 and every 𝑡 ∈ (0, 𝑇 ],

max
(𝑥,𝑦)∈𝛬𝜖,𝓁𝑁 ×𝛬𝑁

𝑦≠𝑥

|𝜑𝑁𝑡 (𝑥, 𝑦)| ≲

(

1 + 1
√

𝑡

)

𝜖
𝑁

+ 𝑜
( 1
𝑁

)

.

Since 𝜑𝑁𝑡 is the solution to (4.13) then it admits the representation (4.14). As a consequence, for every 𝑡 ∈ [0, 𝑇 ], we have that

max
(𝑥,𝑦)∈𝛬𝜖,𝓁𝑁 ×𝛬𝑁

𝑦≠𝑥

|𝜑𝑁𝑡 (𝑥, 𝑦)| ≤ max
(𝑥,𝑦)∈𝛬𝜖,𝓁𝑁 ×𝛬𝑁

𝑦>𝑥

[

|E(𝑥,𝑦)[𝜑𝑁0 (X𝑖
𝑡𝑁2 )]| +

|

|

|

E(𝑥,𝑦)

[

∫

𝑡

0
𝑔𝑁𝑡−𝑠(X

𝑖
𝑠𝑁2 )1(X

𝑖
𝑠𝑁2 ∈ D±

𝑁 ) 𝑑𝑠
]

|

|

|

]

≤ max
(𝑧,𝑤)∈𝑉 𝛼𝑁

|𝜑𝑁0 (𝑧,𝑤)| max
(𝑥,𝑦)∈𝛬𝜖,𝓁𝑁 ×𝛬𝑁

𝑦>𝑥

P(𝑥,𝑦)

[

X𝑖
𝑡𝑁2 ∉ 𝜕𝑉𝑁

]

+ sup
𝑟≥0

max
𝑧∈𝛬𝑁−1

|𝑔𝑁𝑟 (𝑧, 𝑧 + 1)| max
(𝑥,𝑦)∈𝛬𝜖,𝓁𝑁 ×𝛬𝑁

𝑥≠𝑦

𝑇 𝑖𝑁 (𝑥, 𝑦),
20
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where 𝑉 𝛼
𝑁 was defined in (4.9), {X𝑖

𝑡 ; 𝑡 ≥ 0} is the bi-dimensional random walk on 𝑉𝑁 with Markov generator 𝛥𝑖𝑁 and

(𝑥,𝑦)

[

X𝑖
𝑡𝑁2 ∉ 𝜕𝑉𝑁

]

represents the probability that, starting from (𝑥, 𝑦), at time 𝑡𝑁2, the random walk {X𝑖
𝑡 ; 𝑡 ≥ 0} is still not

bsorbed at the boundary. Recalling the proof of the estimate of 𝑇 𝑖𝑁 (𝑥, 𝑦) (see Lemma 5.1), one can easily see that

max
(𝑥,𝑦)∈𝛬𝜖,𝓁𝑁 ×𝛬𝑁

𝑦≠𝑥

𝑇 𝑖𝑁 (𝑥, 𝑦) ≲ 𝜖
𝑁

+ 𝑁𝜃

𝑁3
1(0 < 𝜃 < 1) + 𝑁𝜃

𝑁
1(𝜃 < 0).

Moreover, by Lemma 4.1 and assumption (H5), we have that

max
(𝑥,𝑦)∈𝛬𝜖,𝓁𝑁 ×𝛬𝑁

𝑥≠𝑦

|𝜑𝑁𝑡 (𝑥, 𝑦)| ≲ 1
𝑁

max
(𝑥,𝑦)∈𝛬𝜖,𝓁𝑁 ×𝛬𝑁

𝑦>𝑥

P(𝑥,𝑦)

[

X𝑖
𝑡𝑁2 ∉ 𝜕𝑉𝑁

]

+ 𝜖
𝑁

+ 𝑁𝜃

𝑁3
1(0 < 𝜃 < 1) + 𝑁𝜃

𝑁
1(𝜃 < 0). (4.25)

e are only left with estimating P(𝑥,𝑦)

[

X𝑖
𝑡𝑁2 ∉ 𝜕𝑉𝑁

]

, when (𝑥, 𝑦) ∈ 𝛬𝜖,𝓁𝑁 × 𝛬𝑁 and 𝑦 > 𝑥. This is the content of the next result.

roposition 4.6. Let 𝛼 ∈ N and 𝛬𝜖,𝓁𝑁 as defined in Proposition 4.4. For every 𝑡 ∈ (0, 𝑇 ], there exists 𝜖0 > 0 such that, for every 0 < 𝜖 < 𝜖0,

max
(𝑥,𝑦)∈𝛬𝜖,𝓁𝑁 ×𝛬𝑁

𝑦>𝑥

P(𝑥,𝑦)

[

X𝑖
𝑡𝑁2 ∉ 𝜕𝑉𝑁

]

≲ 𝜖
√

𝑡
, (4.26)

here P(𝑥,𝑦)

[

X𝑖
𝑡𝑁2 ∉ 𝜕𝑉𝑁

]

represents the probability that, starting from (𝑥, 𝑦), at time 𝑡𝑁2, the random walk {X𝑖
𝑡 ; 𝑡 ≥ 0} is still not

bsorbed at the boundary.

Using the bound in (4.26) and what we already proved in (4.25), we conclude that

max
(𝑥,𝑦)∈𝛬𝜖,𝓁𝑁 ×𝛬𝑁

𝑦≠𝑥

|𝜑𝑁𝑡 (𝑥, 𝑦)| ≲

(

1 + 1
√

𝑡

)

𝜖
𝑁

+ 𝑜
( 1
𝑁

)

, (4.27)

s we wanted.

roof of Proposition 4.6. We divide the proof in two cases: 𝛼 = 1 and 𝛼 ≥ 2.
Part 1: the case 𝛼 = 1
For 𝛼 = 1 the exclusion rule creates a natural order in the system. Indeed, starting the dynamics from a configuration 𝜂 and

enumerating the particles from left to right, such order lasts for every 𝑡 ≥ 0. This implies that, the leftmost particle of 𝜂 will remain
the leftmost particle of the system until it is absorbed. This is the main idea behind the next argument.

Given (𝑥, 𝑦) ∈ 𝛬𝜖,𝓁𝑁 × 𝛬𝑁 with 𝑥 < 𝑦, then P(𝑥,𝑦)

[

X𝑖
𝑡𝑁2 ∉ 𝜕𝑉𝑁

]

represents the probability that, at time 𝑡𝑁2, none of the two
articles in the bulk were absorbed, knowing that one started close to the boundary, at the site 𝑥 ∈ 𝛬𝜖,𝓁𝑁 . Roughly speaking, since
< 𝑦, if we track the movements, up to time 𝑡𝑁2, of the particle that started at 𝑥, i.e. the leftmost particle in the bulk, then, if it

s absorbed with high probability, i.e. of the order 1 − 𝜖
√

𝑡
, then the event {X𝑖

𝑡𝑁2 ∉ 𝜕𝑉𝑁} has to have a probability at least of order
𝜖
√

𝑡
. The advantage of tracking just the leftmost particle on the bulk relies on the fact that we can compare it with a simple random

walk, whose absorption probabilities are known.
Let us formalize this argument. Recall the definition of 𝑉 𝛼

𝑁 from (4.9). We also define 𝑉
𝛼
𝑁 = 𝑉 𝛼

𝑁 ∪ 𝜕𝑉 𝛼
𝑁 the closure of 𝑉 𝛼

𝑁 . The
proof will follow by a sequence of definitions of other processes that can be related with {X𝑖

𝑡𝑁2 ; 𝑡 ≥ 0}. We will divide our strategy
in three steps.

Step 1: Projecting {X𝑖
𝑡 ; 𝑡 ≥ 0} on the line

Recall that X𝑖
⋅ ∶ 𝑉

𝛼
𝑁 → D([0, 𝑇 ];𝑉

𝛼
𝑁 ) is a process evolving on the triangle 𝑉

𝛼
𝑁 . We can now project this process in 𝛬𝑁 , in the

ollowing way: let 𝛺𝑁 ∶= {𝜂 ∈ {0, 1}𝛬𝑁 | 𝜂(0) = 0, 𝜂(𝑁) = 0, and ∑

𝑥∈𝛬𝑁 𝜂(𝑥) = 2} the set of initial configurations of the process on
he line and define 𝜉2⋅ ∶ 𝛺𝑁 → D([0, 𝑇 ]; {0, 1}𝛬𝑁 ) to be such that, for every (𝑥, 𝑦) ∈ 𝑉 𝛼

𝑁 setting 𝜂 = 𝜂(𝑥,𝑦) ∈ 𝛺𝑁 with 𝜂(𝑥) = 1 and
𝜂(𝑦) = 1 (and therefore 𝜂(𝑧) = 0 for every 𝑧 ∉ {𝑥, 𝑦}),

𝜉2𝑡 (𝜂(𝑥,𝑦))(𝑧) =

⎧

⎪

⎨

⎪

⎩

0, if 𝑧 ≠ 𝛱1X𝑖
𝑡(𝑥, 𝑦) and 𝑧 ≠ 𝛱2X𝑖

𝑡(𝑥, 𝑦),

1, if 𝑧 = 𝛱1X𝑖
𝑡(𝑥, 𝑦) or 𝑧 = 𝛱2X𝑖

𝑡(𝑥, 𝑦),
(4.28)

where again 𝛱1 and 𝛱2 are the projection functions on the first and second coordinates, respectively. Since there exists a bijection
between 𝑉 𝛼

𝑁 and 𝛺𝑁 , the previous definition completely defines the process 𝜉2⋅ .
Step 2: Construction of a lazy random walk that follows the movements of the leftmost particle
To 𝜉2⋅ , which can be interpreted as a SEP(1) with only two particles and an absorbing boundary, we will associate another

rocess on the line that will be defined as follows: let 𝛺̃ ∶= {𝜂 ∈ {0, 1}𝛬𝑁 | 𝜂(0) = 𝜂(𝑁) = 0, and ∑𝑁 𝜂(𝑥) = 1} the set of initial
21

𝑁 𝑥=2
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configurations on the line with only one particle that starts on the bulk and define 𝜉1⋅ ∶ 𝛺̃𝑁 → D([0, 𝑇 ]; {0, 1}𝛬𝑁 ) as, for every
(𝑥, 𝑦) ∈ 𝑉 𝛼

𝑁 setting 𝜂 = 𝜂(𝑥) ∈ 𝛺̃𝑁 to be such that 𝜂(𝑥) = 1 (and therefore 𝜂(𝑧) = 0 for every 𝑧 ≠ 𝑥), then

𝜉1𝑡 (𝜂(𝑥))(𝑧) =

⎧

⎪

⎨

⎪

⎩

0, if 𝑧 ≠ 𝛱1X𝑖
𝑡(𝑥, 𝑦),

1, if 𝑧 = 𝛱1X𝑖
𝑡(𝑥, 𝑦),

(4.29)

where 𝛱1 is the projection function on the first coordinate. Thus, 𝜉1⋅ is the process that follows the left and right movements of X𝑖
⋅

in 𝑉 𝛼
𝑁 , i.e. it follows the particle in the system that starts at 𝑥.
To define 𝜉1⋅ we are using the fact that, as we remarked above, the two particles on the line cannot exchange the order of their

ositions. We observe that, because of the exclusion rule, if, eventually, the clock of the leftmost particle rings and the jump is
uppressed, 𝜉1⋅ remains still until the clock of the leftmost particle rings again for an allowed movement. It is clear that 𝜉1⋅ ≤ 𝜉2⋅ , in
he sense that, for every 𝑧 ∈ 𝛬𝑁 and every 𝑡 ∈ [0, 𝑇 ], 𝜉1𝑡 (𝑧) ≤ 𝜉2𝑡 (𝑧).

Then, given (𝑥, 𝑦) ∈ 𝛬𝜖,𝓁𝑁 × 𝛬𝑁 with 𝑥 < 𝑦, we see that

P(𝑥,𝑦)

[

X𝑖
𝑡𝑁2 ∉ 𝜕𝑉𝑁

]

≤ P(𝑥,𝑦)
[

the leftmost particle of X𝑖
⋅ was not absorbed until time 𝑡𝑁2]

= P𝜂(𝑥,𝑦)

[

(𝜉2
𝑡𝑁2 (⋅))(0) = 0 , (𝜉2

𝑡𝑁2 (⋅))(𝑁) = 0
]

≤ P𝜂(𝑥)

[

(𝜉1
𝑡𝑁2 (⋅))(0) = 0

]

.

Step 3: Comparison with a random walk that ignores the exclusion rule of the initial process
Let 𝜉1⋅ be the process that follows 𝜉1⋅ up to the first time that a jump is suppressed. Here, the process 𝜉1⋅ realizes the jump and

tarts following not the leftmost particle but the rightmost particle until a new jump for 𝜉1⋅ was suppressed. Again, 𝜉1⋅ realizes the
jump returning to follow the leftmost particle, and so on. This new process 𝜉1⋅ also satisfies 𝜉1⋅ ≤ 𝜉2⋅ and can be seen as the non-lazy
version of 𝜉1⋅ and that describes a continuous time simple symmetric random walk.

Observe that

P𝜂(𝑥)

[

(𝜉1
𝑡𝑁2 (⋅))(0) = 0

]

≤ P𝜂(𝑥)

[

(𝜉1
𝑡𝑁2 (⋅))(0) = 0

]

.

This is again a consequence of the fact that the two particles on the initial process cannot exchange order and so, if the rightmost
particle is absorbed at 𝑥 = 0 then for sure the leftmost was already absorbed. Then, since 0 and 𝑁 are absorbing states, if 𝜉1

𝑡𝑁2 (⋅)
and 𝜉1

𝑡𝑁2 (⋅) start with the same configuration, at each time 𝑡, the point where 𝜉1
𝑡𝑁2 (⋅) has a non-zero value is always less or equal to

he point where 𝜉1
𝑡𝑁2 (⋅) has a non-zero value. Therefore {(𝜉1

𝑡𝑁2 (⋅))(0) = 0} ⊂ {(𝜉1
𝑡𝑁2 (⋅))(0) = 0}. This implies that

P(𝑥,𝑦)

[

X𝑖
𝑡𝑁2 ∉ 𝜕𝑉𝑁

]

≤ P𝜂(𝑥)

[

(𝜉1
𝑡𝑁2 (⋅))(0) = 0

]

≤ P𝜂(𝑥)

[

(𝜉1
𝑡𝑁2 (⋅))(0) = 0

]

≤ P𝜂(𝑥)

[

𝜏1 > 𝑡𝑁
2] ,

here 𝜏1 = inf{𝑡 ≥ 0 | (𝜉1
𝑡𝑁2 (⋅))(0) = 1} represents the first time that 𝜉1⋅ hits 0. So, since 𝑥 ∈ 𝛬𝜖𝑁 and 𝜉1

𝑡𝑁2 (⋅) describes a continuous
ime simple symmetric random walk, we have that, for fixed 𝑡, there exists 𝜖0 > 0 such that, for every 0 < 𝜖 ≤ 𝜖0, P𝜂(𝑥)

[

𝜏1 > 𝑡𝑁2]

s of order 𝑂( 𝜖
√

𝑡
).

Part 2: the case 𝛼 ≥ 2
Clearly in this case the natural ordering is lost, therefore we implement some changes in the previous argument. Recall that we

re working with an absorbing SEP(𝛼) starting with only two particles, then for every pair {𝑥, 𝑥 + 1}, for 𝑥 ∈ 𝛬𝑁−1, the jump rates
𝑐𝑥,𝑥+1 and 𝑐𝑥+1,𝑥 can only take the values 𝛼 − 1, 𝛼 or 2𝛼 and, as 𝛼 increases, the jump rates increase. Since we are working with a
ymmetric dynamics, this means that the time at which a jump will occur will be as shorter as larger is the jump rate, namely the
alue of 𝛼. In particular, if 𝛼1 ≥ 𝛼2 > 1 then the hitting time of the boundary 𝜕𝑉𝑁 for the SEP(𝛼2) is greater or equal to the hitting

time for SEP(𝛼1).
Following this idea, let Z⋅ ∶ 𝑉𝑁 → D([0, 𝑇 ];𝑉 𝑁 ) be the representation of SEP(𝛼) with only two particles on the system. Fix

𝑥, 𝑦) ∈ 𝑉𝑁 which will represent the starting point of Z⋅, and, to simplify notation, let us denote Z⋅(𝑥, 𝑦) only by Z⋅. We remark
that Z⋅ ∈ D([0, 𝑇 ];𝑉 𝑁 ), which is a process that takes values on 𝑉 𝑁 , can be interpreted as Z⋅ = 𝜉(𝛤 (⋅)), where 𝜉 is the skeleton of
Z⋅ and 𝛤 (⋅) represents the Poisson point process associated with the marked Poisson point process 𝑁(⋅) of SEP(𝛼) given the initial
configuration (𝑥, 𝑦). I.e., for every 𝑠 ∈ [0, 𝑇 ], 𝛤 (𝑠𝑁2) is the number of jumps of the process up to time 𝑠𝑁2, which corresponds to
ounting how many marks, up to time 𝑠𝑁2, the marked Poisson point process 𝑁(⋅) had. Observe that, for every 𝑡 ∈ [0, 𝑇 ],

𝛤𝑚(𝑡) ∶= ∫

𝑡

0
𝑑𝑁𝑚 ≤ 𝛤 (𝑡) ≤ 𝛤𝑀 (𝑡) ∶= ∫

𝑡

0
𝑑𝑁𝑀 ,

where 𝑁𝑚 is a Poisson process with parameter 𝛼−1 and 𝑁𝑀 is a Poisson process with parameter 2𝛼. The choice of these parameters
is due to the fact that, for every 𝑥 ∈ 𝛬𝑁−1, the jump rates 𝑐𝑖𝑥,𝑥+1 and 𝑐𝑖𝑥+1,𝑥 only take three possible values: 𝛼 − 1, 𝛼 or 2𝛼. So we

choose the parameter of 𝑁𝑚 as the min{𝛼 − 1, 𝛼, 2𝛼} and of 𝑁𝑀 as the max{𝛼 − 1, 𝛼, 2𝛼}. Then, denoting

𝜏𝛼 = inf{𝑡 ≥ 0 | Z𝑡 ∈ 𝜕𝑉𝑁},
𝛼

22

𝜏𝑚 = inf{𝑡 ≥ 0 | 𝜉(𝛤𝑚(𝑡)) ∈ 𝜕𝑉𝑁},



Stochastic Processes and their Applications 178 (2024) 104463C. Franceschini et al.

b

o

w

w

T
(

w

e

𝜏𝑀 = inf{𝑡 ≥ 0 | 𝜉(𝛤𝑀 (𝑡)) ∈ 𝜕𝑉 𝛼
𝑁},

we get that

P(𝑥,𝑦)
[

𝜏𝑀 > 𝑡𝑁2] ≤ P(𝑥,𝑦)
[

𝜏𝛼 > 𝑡𝑁
2] ≤ P(𝑥,𝑦)

[

𝜏𝑚 > 𝑡𝑁
2] , (4.30)

ecause the larger the value of the parameter of the Poisson clocks the faster the process evolves.
Since, the processes 𝜉(𝛤𝑚(⋅)) and 𝜉(𝛤𝑀 (⋅)) have Poisson clocks with a parameter which is uniform on the triangle 𝑉𝑁 , they now

can be interpret as a continuous time simple symmetric random walk. Tracking the movements of the particle that started at site 𝑥
and everytime the particles meet and are on top of each other we start moving the particle that jumps from the top of the other, we
can deduce that, for fixed 𝑡, there exists 𝜖0 > 0 such that, for every 0 < 𝜖 ≤ 𝜖0, P(𝑥,𝑦)

[

𝜏𝑚 > 𝑡𝑁2] and P(𝑥,𝑦)
[

𝜏𝑀 > 𝑡𝑁2] are both of
rder 𝜖

√

𝑡
. Remark that, since we are taking a bounded interval of time [0, 𝑡𝑁2], the number of meetings between the two particles,

when they get on top of each other, is finite, so the number of times that, eventually, we change what is the particle that we will
follow next is finite, guaranteeing that the process is well defined. From (4.30), we conclude that P(𝑥,𝑦)

[

𝜏𝛼 > 𝑡𝑁2] is also of order
𝜖
√

𝑡
. □

4.3. Proof of Lemma 4.3

Developing the square in the expectation, using the symmetry of the integrating function on the square and applying Fubini’s
theorem, we get

E𝜇𝑁

[

(

∫

𝑡

𝑠
𝜂̄𝑠𝑁2 (𝑥)𝑑𝑠

)2]

= 2∫

𝑡

𝑠 ∫

𝑟

𝑠
𝜑𝑁𝑣,𝑟(𝑥, 𝑥)𝑑𝑣𝑑𝑟, (4.31)

here, for 𝑥, 𝑦 ∈ 𝛬𝑁 ,

𝜑𝑁𝜈,𝑟(𝑥, 𝑦) = E𝜇𝑁 [𝜂̄𝜈𝑁2 (𝑥)𝜂̄𝑟𝑁2 (𝑦)] . (4.32)

Let us fix 𝑣 ∈ [𝑠, 𝑡] and 𝑥 ∈ 𝛬𝑁 . For every 𝑟 ≥ 𝑣 and 𝑦 ∈ 𝛬𝑁 , a simple computation shows that 𝛹𝑁𝑟 (𝑦) ∶= 𝜑𝑁𝑣,𝑟(𝑥, 𝑦) is solution to

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑟𝛹𝑁𝑟 (𝑦) = 𝑁2𝛥𝑖𝑁𝛹
𝑁
𝑟 (𝑦), if 𝑦 ∈ 𝛬𝑁 ,

𝛹𝑁𝑣 (𝑦) = 𝜑𝑁𝑣,𝑣(𝑥, 𝑦), if 𝑦 ∈ 𝛬𝑁 ,

𝛹𝑁𝑟 (0) = 𝛹𝑁𝑟 (𝑁) = 0,

(4.33)

here, for every 𝑓 ∶ 𝛬𝑁 → R such that 𝑓 (0) = 𝑓 (𝑁) = 0

𝑁2𝛥𝑖𝑁𝑓 (𝑦) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛼𝑁2[𝑓 (𝑦 + 1) + 𝑓 (𝑦 − 1) − 2𝑓 (𝑦)], if 𝑦 ∉ {1, 𝑁 − 1},
𝛼𝜆𝓁

𝑁𝜃 𝑁2[𝑓 (0) − 𝑓 (1)] + 𝛼𝑁2[𝑓 (2) − 𝑓 (1)], if 𝑦 = 1,
𝛼𝜆𝑟

𝑁𝜃 𝑁2[𝑓 (𝑁) − 𝑓 (𝑁 − 1)] + 𝛼𝑁2[𝑓 (𝑁 − 2) − 𝑓 (𝑁 − 1)], if 𝑦 = 𝑁 − 1.

(4.34)

hen the solution of the previous equation can be written in terms of the fundamental solution 𝑃𝑁,𝜃𝑟 (𝑥, 𝑦) of the initial value problem
4.33) as:

𝛹𝑁𝑟 (𝑦) =
𝑁−1
∑

𝑧=1
𝑃𝑁,𝜃𝑟−𝑣 (𝑦, 𝑧)E𝜇𝑁 [𝜂̄𝑣𝑁2 (𝑦)𝜂̄𝑣𝑁2 (𝑧)] . (4.35)

Plugging last identity in (4.31) and using (4.3) and the fact that the occupation variables are bounded, we obtain

E𝜇𝑁

[

(

∫

𝑡

𝑠
𝜂̄𝑟𝑁2 (𝑥)𝑑𝑟

)2]

≲∫

𝑡

𝑠 ∫

𝑟

𝑠

{

𝑃𝑁,𝜃𝑟−𝑣 (𝑥, 𝑥) +
𝑁−1
∑

𝑧=1
𝑧≠𝑥

𝑃𝑁,𝜃𝑟−𝑣 (𝑥, 𝑧)𝑅
𝜃
𝑁

}

𝑑𝑣𝑑𝑟

≲ ∫

𝑡

𝑠 ∫

𝑟

𝑠

{

𝑃𝑁,𝜃𝑟−𝑣 (𝑥, 𝑥) + 𝑅
𝜃
𝑁

}

𝑑𝑣𝑑𝑟, (4.36)

here above we used the fact that ∑

𝑧∈𝛬𝑁
𝑧≠𝑥

𝑃𝑁,𝜃𝑟 (𝑥, 𝑧) is (uniformly in time) bounded by one. To finish the proof we just need to

stimate ∫ 𝑡𝑠 ∫
𝑟
𝑠 𝑃

𝑁,𝜃
𝑟−𝑣 (𝑥, 𝑥)𝑑𝑣𝑑𝑟 for 𝑥 ∈ {1, 𝑁 − 1}.

Let us define 𝑃𝑁,𝜃𝑟−𝑣 (𝑥, 𝑦) the fundamental solution of (4.33) when 𝜆𝓁 = 𝜆𝑟 = 1. Remark that

𝑁,𝜃 𝑁,𝜃 ̃𝑁,𝜃
23

𝑓𝑟−𝑣 (𝑥, 𝑦) ∶= 𝑃𝑟−𝑣 (𝑥, 𝑦) − 𝑃𝑟−𝑣 (𝑥, 𝑦) (4.37)
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𝑗
f

is the fundamental solution to
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑟𝑔
𝑁,𝜃
𝑟,𝑣 (𝑥, 𝑦) = 𝑁2𝛥𝑖𝑁𝑔

𝑁,𝜃
𝑟,𝑣 (𝑥, 𝑦) +𝑁2𝐾𝑁,𝜃𝑃𝑁,𝜃𝑟−𝑣 (𝑥, 𝑦), if 𝑦 ∈ 𝛬𝑁 ,

𝑔𝑁,𝜃𝑟,𝑣 (𝑥, 𝑦) = 0, if 𝑦 ∈ 𝛬𝑁 ,

𝑔𝑁,𝜃𝑟,𝑣 (𝑥, 0) = 𝑔𝑁,𝜃𝑟,𝑣 (𝑥,𝑁) = 0,

(4.38)

here

𝐾𝑁,𝜃𝑃𝑁,𝜃𝑟−𝑣 (𝑥, 𝑦) ∶= −
𝛼(1 − 𝜆𝓁)
𝑁𝜃 𝑃𝑁,𝜃𝑟−𝑣 (1, 𝑦)1(𝑥 = 1) −

𝛼(1 − 𝜆𝑟)
𝑁𝜃 𝑃𝑁,𝜃𝑟−𝑣 (𝑥,𝑁 − 1)1(𝑦 = 𝑁 − 1).

hus, 𝑃𝑁,𝜃𝑟−𝑣 (𝑥, 𝑦) is a probability and since 𝜆𝓁 , 𝜆𝑟 ≤ 1, then 𝐾𝑁,𝜃𝑃𝑁,𝜃𝑟−𝑣 (𝑥, 𝑦) ≤ 0, and so, by the Maximum Principle, Theorem A.3, we
btain

𝑓𝑁,𝜃𝑟−𝑣 (𝑥, 𝑦) ≤ 0 ⟺ 𝑃𝑁,𝜃𝑟−𝑣 (𝑥, 𝑦) ≤ 𝑃𝑁,𝜃𝑟−𝑣 (𝑥, 𝑦). (4.39)

sing Proposition 4.7 presented in the next section we have that, for every 𝑡 ∈ [0, 𝑇 ] and 𝑥 ∈ 𝛬𝑁

𝑃𝑁,𝜃𝑡 (𝑥, 𝑥) ≤ 𝑃𝑁,0𝑡 (𝑥, 𝑥) +
(

𝑁𝜃

𝜆𝓁
− 1

)

𝑃𝑁,0𝑡 (1, 𝑥) +
(

𝑁𝜃

𝜆𝑟
− 1

)

𝑃𝑁,0𝑡 (𝑁 − 1, 𝑥), if 𝜃 ≥ 0

nd

𝑃𝑁,𝜃𝑡 (𝑥, 𝑥) ≤ 𝑃𝑁,0𝑡 (𝑥, 𝑥), if 𝜃 < 0 .

Moreover, a simple computation similar to Lemma 4.3 of [1], relying in a comparison to the case 𝜃 = 0 and 𝜆𝑙 = 𝜆𝑟 = 1, shows
that for 𝑥 ∈ {1, 𝑁 − 1}

∫

𝑡

𝑠 ∫

𝑟

𝑠
𝑃𝑁,0𝑟−𝑣 (𝑥, 1)𝑑𝑣𝑑𝑟 ≲

|𝑡 − 𝑠|
𝑁2

nd by symmetry the same is true for ∫ 𝑡𝑠 ∫
𝑟
𝑠 𝑃

𝑁,0
𝑟−𝑣 (𝑥,𝑁 − 1)𝑑𝑣𝑑𝑟. From this we get that

E𝜇𝑁

[

(

∫

𝑡

𝑠
𝜂̄𝑟𝑁2 (𝑥)𝑑𝑟

)2]

≲ 𝑁𝜃

𝑁2
|𝑡 − 𝑠| + (𝑡 − 𝑠)2𝑅𝜃𝑁 .

From the definitions of 𝑅𝜃𝑁 in (4.3) the proof of (4.5) ends. To conclude (4.6) we only have to observe that, by the definition of
𝜃
𝑁 , (4.5) implies that

E𝜇𝑁

[

(

∫

𝑡

𝑠
𝑑𝜃𝑁 𝜂̄𝑟𝑁2 (𝑥)𝑑𝑟

)2]

≲ |𝑡 − 𝑠|

⎧

⎪

⎨

⎪

⎩

𝑁𝜃−1 if 𝜃 < 1

𝑁1−𝜃 if 𝜃 > 1
+ (𝑡 − 𝑠)2(𝑑𝜃𝑁 )2𝑅𝜃𝑁 . (4.40)

Since (𝑑𝜃𝑁 )2𝑅𝜃𝑁 = 𝑁2(1−𝜃)1(1 < 𝜃) + 𝑁𝜃

𝑁 1(0 ≤ 𝜃 ≤ 1) +𝑁𝜃1(−1 < 𝜃 < 0) + 1
𝑁 1(𝜃 ≤ −1), (4.6) follows.

On the other hand, (4.4) follows once we prove that

∫

𝑡

𝑠 ∫

𝑟

𝑠
(𝑑𝜃𝑁 )2𝑁𝜃𝑃𝑁,0𝑟−𝑣 (𝑥, 1)𝑑𝑣𝑑𝑟 ≲ |𝑡 − 𝑠|1+𝛿𝜃 ,

where 𝛿𝜃 is the same as in the statement of the lemma. To obtain this, namely the analogous of equation (5.4) of [18], we can
simply repeat the argument used in Section 5.2 of [18]. To this aim we remark that 𝑃𝑁,0𝑟−𝑣 (𝑥, 1) = 𝑃 1,𝑁,0

𝛼(𝑟−𝑣)(𝑥, 1), where 𝑃 1,𝑁,0
𝑠 (𝑥, 𝑦) is

he unique solution of the initial value problem (5.4) of [18] taking 𝜃 = 0, i.e. fixed 𝑥 ∈ 𝛬𝑁 , we have

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑡𝑃
1,𝑁,0
𝑡 (𝑥, 𝑦) = 𝑁2𝛥1,𝑖𝑁 𝑃

1,𝑁,0
𝑡 (𝑥, 𝑦), 𝑦 ∈ 𝛬𝑁 , 𝑡 > 0,

𝑃 1,𝑁,0
𝑡 (𝑥, 0) = 𝑃 1,𝑁,0

𝑡 (𝑥,𝑁) = 0, 𝑡 > 0,

𝑃 1,𝑁,0
0 (𝑥, 𝑦) = 𝛿0(𝑥 − 𝑦), 𝑦 ∈ 𝛬𝑁 ,

here 𝛥1,𝑖𝑁 coincide with the operator 𝛥𝑖𝑁 when taking 𝛼 = 1 = 𝜆𝓁 = 𝜆𝑟 and 𝛿0(𝑥) = 1 if 𝑥 = 0, otherwise it is equal to zero. The
quality follows simply because they solve the same initial value problem, whose solution is unique.

.4. Proof of Lemma 4.5

Recall that for 𝑢 ∈ [0, 1] we defined 𝜄0𝜖 (𝑢) ∶= 𝜖−11(0,𝜖](𝑢) and 𝜄1𝜖 (𝑢) ∶= 𝜖−11[1−𝜖,1)(𝑢). Here we will only give the details for the case
= 0 since, for 𝑗 = 1, the proof is analogous. By expanding the square, using Fubini’s Theorem and the definition of the density

ield 𝑌 𝑁𝑠 , we obtain

E𝜇𝑁

[

(

∫

𝑡

0
𝑌 𝑁𝑠 (𝜄0𝜖 )𝑑𝑠

)2]

= 2
𝜖2𝑁

∑

𝜖,𝓁
∫

𝑡

0 ∫

𝑠

0
𝜑𝑁𝑣,𝑠(𝑥, 𝑦)𝑑𝑣𝑑𝑠,
24

𝑥,𝑦∈𝛬𝑁
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where 𝜑𝑁𝑣,𝑠(𝑥, 𝑦) was defined in (4.32). Using the identity (4.35), last display is equal to

2
𝜖2𝑁

∑

𝑥∈𝛬𝜖,𝓁𝑁
∫

𝑡

0 ∫

𝑠

0
𝜑𝑁𝑣,𝑠(𝑥, 𝑥)𝑑𝑣𝑑𝑠 +

2
𝜖2𝑁

∑

𝑥,𝑦∈𝛬𝜖,𝓁𝑁
𝑦≠𝑥

∫

𝑡

0 ∫

𝑠

0
𝜑𝑁𝑣,𝑠(𝑥, 𝑦)𝑑𝑣𝑑𝑠

= 2
𝜖2𝑁

∑

𝑥∈𝛬𝜖,𝓁𝑁
∫

𝑡

0 ∫

𝑠

0
𝑃𝑁,𝜃𝑠−𝑣 (𝑥, 𝑥)E𝜇𝑁 [(𝜂̄𝑣𝑁2 (𝑥))2]𝑑𝑣𝑑𝑠 + 2

𝜖2𝑁

∑

𝑥∈𝛬𝜖,𝓁𝑁
∫

𝑡

0 ∫

𝑠

0

∑

𝑧∈𝛬𝑁
𝑧≠𝑥

𝑃𝑁,𝜃𝑠−𝑣 (𝑥, 𝑧)𝜑
𝑁
𝑣 (𝑧, 𝑥)𝑑𝑣𝑑𝑠 (4.41)

+ 2
𝜖2𝑁

∑

𝑥,𝑦∈𝛬𝜖,𝓁𝑁
𝑦≠𝑥

∫

𝑡

0 ∫

𝑠

0
𝑃𝑁,𝜃𝑠−𝑣 (𝑥, 𝑦)E𝜇𝑁 [(𝜂̄𝑣𝑁2 (𝑦))2]𝑑𝑣𝑑𝑠 + 2

𝜖2𝑁

∑

𝑥,𝑦∈𝛬𝜖,𝓁𝑁
𝑦≠𝑥

∫

𝑡

0 ∫

𝑠

0

∑

𝑧∈𝛬𝑁
𝑧≠𝑦

𝑃𝑁,𝜃𝑠−𝑣 (𝑥, 𝑧)𝜑
𝑁
𝑣 (𝑧, 𝑦)𝑑𝑣𝑑𝑠. (4.42)

We remark that, for every 𝑥 ∈ 𝛬𝑁 , ∑ 𝑧∈𝛬𝑁
𝑧≠𝑥

𝑃𝑁,𝜃𝑠−𝑣 (𝑥, 𝑧) ≤ 1. Using (4.2), we can bound the rightmost term in (4.41) by

2
𝑁𝜖2

|

|

|

|

|

|

|

|

∑

𝑥∈𝛬𝜖,𝓁𝑁
∫

𝑡

0 ∫

𝑠

0

∑

𝑧∈𝛬𝑁
𝑧≠𝑥

𝑃𝑁,𝜃𝑠−𝑣 (𝑥, 𝑧)𝜑
𝑁
𝑣 (𝑧, 𝑥)𝑑𝑣𝑑𝑠

|

|

|

|

|

|

|

|

≤ 2𝑡2
𝜖

sup
𝑣∈[0,𝑇 ]

max
(𝑥,𝑧)∈𝑉𝑁
𝑧≠𝑥

|𝜑𝑁𝑣 (𝑥, 𝑧)| ≲ 𝑡2

𝜖𝑁
,

which goes to zero when taking 𝑁 to infinity. Moreover, using (4.7), we can bound the rightmost term of (4.42) by

2
𝑁𝜖2

|

|

|

|

|

|

|

|

|

|

∑

𝑥,𝑦∈𝛬𝜖,𝓁𝑁
𝑦≠𝑥

∫

𝑡

0 ∫

𝑠

0

∑

𝑧∈𝛬𝑁
𝑧≠𝑦

𝑃𝑁,𝜃𝑠−𝑣 (𝑥, 𝑧)𝜑
𝑁
𝑣 (𝑧, 𝑦)𝑑𝑣𝑑𝑠

|

|

|

|

|

|

|

|

|

|

≲ 𝑁 ∫

𝑡

0 ∫

𝑠

0
max

(𝑧,𝑦)∈𝛬𝑁×𝛬𝜖,𝓁𝑁
𝑧≠𝑦

|𝜑𝑁𝑣 (𝑧, 𝑦)|𝑑𝑣𝑑𝑠

≲ 𝜖 ∫

𝑡

0 ∫

𝑠

0

(

1 + 1
√

𝑣

)

𝑑𝑣𝑑𝑠 + 𝑜
( 1
𝑁

)

(4.43)

≲ 𝐶𝑡𝜖 + 𝑜
( 1
𝑁

)

,

where 𝐶𝑡 is a constant that depends on 𝑡. Since, in the last bound, the first term is uniformly bounded in 𝑁 , this term will only go
to zero when taking 𝜖 to zero.

For the remaining terms, since the occupation variables are bounded for every 𝑥 ∈ 𝛬𝑁 , we can bound the first term in (4.41)
nd (4.42) by

2
𝑁𝜖2

|

|

|

|

|

|

|

∫

𝑡

0 ∫

𝑠

0

∑

𝑥∈𝛬𝜖,𝓁𝑁

𝑃𝑁,𝜃𝑠−𝑣 (𝑥, 𝑥)E𝜇𝑁 [(𝜂̄𝑣𝑁2 (𝑥))2]𝑑𝑣𝑑𝑠
|

|

|

|

|

|

|

≲ 1
𝑁𝜖2

∑

𝑥∈𝛬𝜖,𝓁𝑁
∫

𝑡

0 ∫

𝑠

0
𝑃𝑁,𝜃𝑠−𝑣 (𝑥, 𝑥)𝑑𝑣𝑑𝑠 (4.44)

nd

2
𝑁𝜖2

|

|

|

|

|

|

|

|

|

|

∫

𝑡

0 ∫

𝑠

0

∑

𝑥,𝑦∈𝛬𝜖,𝓁𝑁
𝑦≠𝑥

𝑃𝑁,𝜃𝑠−𝑣 (𝑥, 𝑦)E𝜇𝑁 [(𝜂̄𝑣𝑁2 (𝑦))2]𝑑𝑣𝑑𝑠

|

|

|

|

|

|

|

|

|

|

≲ 1
𝑁𝜖2

∑

𝑥,𝑦∈𝛬𝜖,𝓁𝑁
𝑦≠𝑥

∫

𝑡

0 ∫

𝑠

0
𝑃𝑁,𝜃𝑠−𝑣 (𝑥, 𝑦)𝑑𝑣𝑑𝑠, (4.45)

espectively. The idea now is to estimate 𝑃𝑁,𝜃𝑡 (𝑥, 𝑦) using 𝑃𝑁,0𝑡 (𝑥, 𝑦), where 𝑃𝑁,0𝑡 (𝑥, 𝑦) represents P[X𝑖
𝑡𝑁2 = 𝑦|X𝑖

0 = 𝑥], where X𝑖
𝑡𝑁2

s the random walk defined in point 1. in the beginning of Section 4.1 in the case we choose 𝜃 = 0 and 𝜆𝓁 = 𝜆𝑟 = 1. To do this, we
ill use the maximum principles of Appendix A. Inspired by the bound for 𝑃𝑁,𝜃𝑡 (𝑥, 𝑦) proved for 𝜃 ≥ 0 in Lemma 4.2 of [18], we
ill show the following estimates.

roposition 4.7. Let {X𝑖
𝑡𝑁2 ; 𝑡 ≥ 0} be the random walk on 𝛬𝑁 with infinitesimal generator 𝑁2𝛥𝑖𝑁 which was defined in (4.34) and

et 𝑃𝑁,𝜃𝑡 (𝑥, 𝑦) be the transition probability for this random walk, i.e. for every (𝑥, 𝑦) ∈ 𝑉 𝑁 ,

𝑃𝑁,𝜃𝑡 (𝑥, 𝑦) = P𝑥[X𝑖
𝑡𝑁2 = 𝑦] = P[X𝑖

𝑡𝑁2 = 𝑦|X𝑖
0 = 𝑥],

hich coincides with the fundamental solution of (4.33). Denote by 𝑃𝑁,0𝑡 the transition probability of the random walk {X𝑖
𝑡𝑁2 | 𝑡 ≥ 0}

hen we take 𝜃 = 0 and 𝜆𝓁 = 𝜆𝑟 = 1. Then, for every 𝑡 ∈ [0, 𝑇 ] and (𝑥, 𝑦) ∈ 𝑉𝑁 , for 𝜃 ≥ 0,

𝑃𝑁,𝜃𝑡 (𝑥, 𝑦) ≤ 𝑃𝑁,0𝑡 (𝑥, 𝑦) +
(

𝑁𝜃

𝜆𝓁
− 1

)

𝑃𝑁,0𝑡 (1, 𝑦) +
(

𝑁𝜃

𝜆𝑟
− 1

)

𝑃𝑁,0𝑡 (𝑁 − 1, 𝑦),

nd, for 𝜃 < 0,

𝑃𝑁,𝜃𝑡 (𝑥, 𝑦) ≤ 𝑃𝑁,0𝑡 (𝑥, 𝑦).

Remark that Proposition 4.7 is valid for every 𝛼 ∈ N, extending what was known for the case 𝛼 = 1 and 𝜃 ≥ 0 to the case 𝛼 ≥ 2
with 𝜃 ≥ 0 as well as the case 𝜃 < 0 for all 𝛼 ∈ N.
25
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Proof of Proposition 4.7. Let 𝜃 ∈ R and fix 𝑡0 ∈ [0, 𝑇 ] and 𝑦0 ∈ 𝛬𝑁 . Define the function ℎ𝑁,𝜃𝑡0 ,𝑦0
∶ 𝛬𝑁 → R to be such that, for

𝑥 ∈ 𝛬𝑁 ,

ℎ𝑁,𝜃𝑡0 ,𝑦0
(𝑥) = 𝑃𝑁,𝜃𝑡0

(𝑥, 𝑦0) − 𝑃
𝑁,0
𝑡0

(𝑥, 𝑦0),

nd at the boundary we define it as

⎧

⎪

⎨

⎪

⎩

ℎ𝑁,𝜃𝑡0 ,𝑦0
(0) =

(

𝑁𝜃

𝜆𝓁
− 1

)

𝑃𝑁,0𝑡0
(1, 𝑦0) and ℎ𝑁,𝜃𝑡0 ,𝑦0

(𝑁) =
(

𝑁𝜃

𝜆𝑟 − 1
)

𝑃𝑁,0𝑡0
(𝑁 − 1, 𝑦0) if 𝜃 ≥ 0

ℎ𝑁,𝜃𝑡0 ,𝑦0
(0) = ℎ𝑁,𝜃𝑡0 ,𝑦0

(𝑁) = 0 if 𝜃 < 0.

sing the fact that, for every 𝑡 ∈ [0, 𝑇 ] and (𝑥, 𝑦) ∈ 𝑉𝑁 , 𝑃𝑁,𝜃𝑡 (𝑥, 𝑦) and 𝑃𝑁,0𝑡 (𝑥, 𝑦) are fundamental solutions of (4.33) for 𝜃 ∈ R and
or 𝜃 = 0 and 𝜆𝓁 = 𝜆𝑟 = 1, respectively, we get

0 = 𝜕𝑡ℎ
𝑁,𝜃
𝑡0 ,𝑦0

(𝑥) = 𝑁2𝛥𝑖𝑁ℎ
𝑁,𝜃
𝑡0 ,𝑦0

(𝑥)

+ 𝛼𝑁2

𝑁𝜃

[

(𝑁𝜃 − 𝜆𝓁)𝑃𝑁,0𝑡 (1, 𝑦0)1(𝑥 = 1) + (𝑁𝜃 − 𝜆𝑟)𝑃𝑁,0𝑡 (𝑁 − 1, 𝑦0)1(𝑥 = 𝑁 − 1)
]

1(𝜃 < 0).

ince, for 𝜃 < 0, 𝑁2(𝑁𝜃−𝜆𝑗 )
𝑁𝜃 ≤ 0 where 𝑗 ∈ {𝓁, 𝑟}, then, by the maximum principle, Theorem A.2, if 𝜃 ≥ 0 and Theorem A.1 if 𝜃 < 0,

for every 𝑥 ∈ 𝑉 𝑁 , we have that, for every 𝜃 ∈ R,

ℎ𝑁,𝜃𝑡0 ,𝑦0
(𝑥) ≤ max{ℎ𝑁,𝜃𝑡0 ,𝑦0

(0), ℎ𝑁,𝜃𝑡0 ,𝑦0
(𝑁)}.

This then implies that, for every 𝑡 ∈ [0, 𝑇 ] and (𝑥, 𝑦) ∈ 𝑉𝑁 ,

𝑃𝑁,𝜃𝑡 (𝑥, 𝑦) ≤ 𝑃𝑁,0𝑡 (𝑥, 𝑦) +
(

𝑁𝜃

𝜆𝓁
− 1

)

𝑃𝑁,0𝑡 (1, 𝑦) +
(

𝑁𝜃

𝜆𝑟
− 1

)

𝑃𝑁,0𝑡 (𝑁 − 1, 𝑦), for 𝜃 ≥ 0

nd

𝑃𝑁,𝜃𝑡 (𝑥, 𝑦) ≤ 𝑃𝑁,0𝑡 (𝑥, 𝑦), for 𝜃 < 0 ,

s we wanted to show. □

We conclude this section with the following auxiliary results.

emma 4.8. Let 𝜃 < 1 then the following holds:

i. For every 𝜖 > 0 and 𝑡 ∈ [0, 𝑇 ]

lim sup
𝑁→+∞

∑

𝑥∈𝛬𝜖,𝓁𝑁
∫

𝑡

0 ∫

𝑠

0
𝑃𝑁,0𝑠−𝑣 (𝑥, 𝑥)𝑑𝑣𝑑𝑠 ≲ 𝑡𝜖 . (4.46)

ii. For every 𝜖 > 0 and 𝑡 ∈ [0, 𝑇 ]

lim sup
𝑁→+∞

∑

𝑥∈𝛬𝜖,𝓁𝑁
∫

𝑡

0 ∫

𝑠

0
[𝑃𝑁,0𝑠−𝑣 (𝑥, 1) + 𝑃

𝑁,0
𝑠−𝑣 (𝑥,𝑁 − 1)]𝑑𝑣𝑑𝑠 ≲ 𝑡𝜖. (4.47)

iii. For every 𝑝 ≥ 1 and 𝑡 ∈ [0, 𝑇 ]

lim
𝜖→0

lim sup
𝑁→+∞

1
𝜖𝑝𝑁

∑

𝑥∈𝛬𝜖,𝓁𝑁
∫

𝑡

0 ∫

𝑠

0
𝑃𝑁,𝜃𝑠−𝑣 (𝑥, 𝑥)𝑑𝑣𝑑𝑠 = 0. (4.48)

iv. For any 𝑡 ∈ [0, 𝑇 ]

lim
𝜖→0

lim sup
𝑁→+∞

1
𝜖2𝑁

∑

𝑥,𝑦∈𝛬𝜖,𝓁𝑁
𝑦≠𝑥

∫

𝑡

0 ∫

𝑠

0
𝑃𝑁,0𝑠−𝑣 (𝑥, 𝑦)𝑑𝑣𝑑𝑠 = 0. (4.49)

v. For any 𝑡 ∈ [0, 𝑇 ]

lim
𝜖→0

lim sup
𝑁→+∞

𝑁𝜃

𝜖
∑

𝑥∈𝛬𝜖,𝓁𝑁
∫

𝑡

0 ∫

𝑠

0
𝑃𝑁,0𝑠−𝑣 (𝑥, 1) + 𝑃

𝑁,0
𝑠−𝑣 (𝑥,𝑁 − 1)𝑑𝑣𝑑𝑠 = 0. (4.50)

We also note that the same results hold by replacing 𝛬𝜖,𝓁𝑁 by 𝛬𝜖,𝑟𝑁 .

Combining Proposition 4.7 and Lemma 4.8, for any 𝑡 ∈ [0, 𝑇 ] we have that

lim
𝜖→0

lim sup
𝑁→+∞

1
𝑁𝜖2

∑

𝑥,𝑦∈𝛬𝜖,𝓁𝑁

∫

𝑡

0 ∫

𝑠

0
𝑃𝑁,𝜃𝑠−𝑣 (𝑥, 𝑦)𝑑𝑣𝑑𝑠 ≲ lim

𝜖→0
lim sup
𝑁→+∞

1
𝑁𝜖2

∑

𝑥,𝑦∈𝛬𝜖,𝓁𝑁

∫

𝑡

0 ∫

𝑠

0
𝑃𝑁,0𝑠−𝑣 (𝑥, 𝑦)𝑑𝑣𝑑𝑠
26
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v

w

w

N
𝑥

U

+𝑁
𝜃

𝜖
∑

𝑦∈𝛬𝜖,𝓁𝑁
∫

𝑡

0 ∫

𝑠

0
[𝑃𝑁,0𝑠−𝑣 (1, 𝑦) + 𝑃

𝑁,0
𝑠−𝑣 (𝑁 − 1, 𝑦)]𝑑𝑣𝑑𝑠1(0 ≤ 𝜃 < 1) = 0

and the same holds for 𝛬𝜖,𝑟𝑁 . With this we complete the proof of Lemma 4.5. Indeed, the previous observation together with Eq. (4.48)
imply that the terms on the right-hand side of (4.45) and (4.44), respectively, also go to zero when taking the limit as 𝑁 → +∞
and then as 𝜖 → 0, from which the proof is complete.

Proof of Lemma 4.8. To show all the estimates above recall that for every 𝑡 ∈ [0, 𝑇 ] and 𝑥, 𝑦 ∈ 𝛬𝑁 we can explicitly write 𝑃𝑁,0𝑡 (𝑥, 𝑦)
ia the eigenvalues and eigenfunctions of the operator 𝑁2𝛥𝑖𝑁 , see also Lemma 4.3. of [18]. Indeed,

𝑃𝑁,0𝑡 (𝑥, 𝑦) =
∑

𝑙∈𝛬𝑁

𝑒−𝛼𝜆
𝑁
𝑙 𝑡𝑣𝑁𝑙 (𝑥)𝑣𝑁𝑙 (𝑦), (4.51)

here for every 𝑥, 𝑦 ∈ 𝛬𝑁 , 𝑣𝑁𝑙 (𝑥) =
√

2
𝑁 sin

(

𝜋𝑙𝑥
𝑁

)

and 𝜆𝑁𝑙 = 4𝑁2 sin2
(

𝜋𝑙
2𝑁

)

are respectively the eigenfunctions and eigenvalues of
𝑁2𝛥1,𝑖𝑁 .

We start with item i. For 𝑥 = 𝑦 after two times integration of (4.51) we get
∑

𝑥∈𝛬𝜖,𝓁𝑁
∫

𝑡

0 ∫

𝑠

0
𝑃𝑁,0𝑠−𝑣 (𝑥, 𝑥)𝑑𝑣𝑑𝑠 =

∑

𝑙∈𝛬𝑁

𝑡2𝜓(𝛼𝜆𝑁𝑙 𝑡)
∑

𝑥∈𝛬𝜖,𝓁𝑁

2
𝑁

sin2
(𝜋𝑙𝑥
𝑁

)

,

here 𝜓(𝑢) ∶= 𝑒−𝑢−1+𝑢
𝑢2

. We observe that, for every 𝑢 ≥ 0, |𝜓(𝑢)| ≤ min{1, 1𝑢 }, then

∑

𝑙∈𝛬𝑁

𝑡2𝜓(𝛼𝜆𝑁𝑙 𝑡)
∑

𝑥∈𝛬𝜖,𝓁𝑁

2
𝑁

sin2
(𝜋𝑙𝑥
𝑁

)

≲
∑

𝑙∈𝛬𝑁

2𝑡𝜖
𝜋2𝛼𝑙2

𝜋2𝑙2

4𝑁2

sin2
(

𝜋𝑙
2𝑁

) .

Noticing that 𝑥2

𝑠𝑖𝑛2(𝑥) is bounded for 0 ≤ 𝑥 ≤ 2 we finally have that

lim sup
𝑁→+∞

∑

𝑥∈𝛬𝜖,𝓁𝑁
∫

𝑡

0 ∫

𝑠

0
𝑃𝑁,0𝑠−𝑣 (𝑥, 𝑥)𝑑𝑣𝑑𝑠 ≲ lim sup

𝑁→+∞

∑

𝑙∈𝛬𝑁

2𝑡𝜖
𝜋2𝛼𝑙2

≲ 𝑡𝜖 .

ow we prove item ii. Again we start with the expression (4.51) for 𝑦 = 1 and 𝑦 = 𝑁 − 1. We observe that, for every 𝑡 ∈ [0, 𝑇 ] and
∈ 𝛬𝑁 , since sin

(

𝜋𝑙(𝑁−1)
𝑁

)

= −cos (𝜋𝑙) sin
(

𝜋𝑙
𝑁

)

, then

𝑃𝑁,0𝑡 (𝑥, 1) + 𝑃𝑁,0𝑡 (𝑥,𝑁 − 1) =
∑

𝑙∈𝛬𝑁

2[1 − cos (𝜋𝑙)]
𝑁

𝑒−𝛼𝜆
𝑁
𝑙 𝑡 sin

(𝜋𝑙𝑥
𝑁

)

sin
(𝜋𝑙
𝑁

)

.

Thus, integrating twice in time both sides above, we get
∑

𝑥∈𝛬𝜖,𝓁𝑁
∫

𝑡

0 ∫

𝑠

0
𝑃𝑁,0𝑠−𝑣 (𝑥, 1) + 𝑃

𝑁,0
𝑠−𝑣 (𝑥,𝑁 − 1)𝑑𝑣𝑑𝑠 =

∑

𝑙∈𝛬𝑁

𝑡2𝜓(𝛼𝜆𝑁𝑙 𝑡)2[1 − cos (𝜋𝑙)] sin
(𝜋𝑙
𝑁

)

∑

𝑥∈𝛬𝜖,𝓁𝑁

1
𝑁

sin
(𝜋𝑙𝑥
𝑁

)

.

As before, using the expression of 𝜆𝑁𝑙 we can bound the left-hand side of the last display by

∑

𝑙∈𝛬𝑁

4𝑡𝜖
𝛼𝜋2𝑙2

𝜋2𝑙
4𝑁2

sin2
(

𝜋𝑙
2𝑁

) .

sing again that 𝑥2

𝑠𝑖𝑛2(𝑥) is bounded for 0 ≤ 𝑥 ≤ 2 we conclude that

lim sup
𝑁→+∞

∑

𝑥∈𝛬𝜖,𝓁𝑁
∫

𝑡

0 ∫

𝑠

0
[𝑃𝑁,0𝑠−𝑣 (𝑥, 1) + 𝑃

𝑁,0
𝑠−𝑣 (𝑥,𝑁 − 1)]𝑑𝑣𝑑𝑠 ≲ lim

𝑁→+∞

∑

𝑙∈𝛬𝑁

4𝑡𝜖
𝛼𝜋2𝑙2

≲ 𝑡𝜖 .

Now we prove item iii. It simply follows from Eqs. (4.46), (4.47) and Proposition 4.7. For every 𝑝 ≥ 1 we can conclude that

lim
𝜖→0

lim
𝑁→+∞

1
𝜖𝑝𝑁

∑

𝑥∈𝛬𝜖,𝓁𝑁
∫

𝑡

0 ∫

𝑠

0
𝑃𝑁,𝜃𝑠−𝑣 (𝑥, 𝑥)𝑑𝑣𝑑𝑠 ≲

⎧

⎪

⎨

⎪

⎩

lim
𝜖→0

lim
𝑁→+∞

𝑡[1 +𝑁𝜃]
𝜖𝑝−1𝑁

if 0 ≤ 𝜃 < 1

lim
𝜖→0

lim
𝑁→+∞

𝑡
𝜖𝑝−1𝑁

if 𝜃 < 0
= 0 . (4.52)

Now we prove item iv. A simple computation shows that

1
𝑁𝜖2

𝜖(𝑁−1)
∑

𝑥,𝑦=1
∫

𝑡

0 ∫

𝑠

0
𝑃𝑁,0𝑠−𝑣 (𝑥, 𝑦)𝑑𝑣𝑑𝑠 =

𝑁−1
∑

𝑙=1
𝛼2𝑡2𝜓(𝛼𝜆𝑁𝑙 𝑡)

𝜖(𝑁−1)
∑

𝑥,𝑦=1

2
𝑁2𝜖2

sin
(𝜋𝑙𝑥
𝑁

)

sin
(

𝜋𝑙𝑦
𝑁

)

.
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a

a
s

a

F

Trying to recover a Riemann sum from the right-hand side of the last identity, we can write
𝜖(𝑁−1)
∑

𝑥,𝑦=1
𝑦≠𝑥

2
𝑁2

sin
(𝜋𝑙𝑥
𝑁

)

sin
(

𝜋𝑙𝑦
𝑁

)

=∫

𝜖

0 ∫

𝜖

0
sin (𝜋𝑙𝑧) sin (𝜋𝑙𝑤) 𝑑𝑧𝑑𝑤 (4.53)

+
𝜖(𝑁−1)
∑

𝑥,𝑦=1
𝑦≠𝑥

2
𝑁2

sin
(𝜋𝑙𝑥
𝑁

)

sin
(

𝜋𝑙𝑦
𝑁

)

− ∫

𝜖

0 ∫

𝜖

0
sin (𝜋𝑙𝑧) sin (𝜋𝑙𝑤) 𝑑𝑧𝑑𝑤, (4.54)

nd we remark that

1
𝜖2 ∫

𝜖

0 ∫

𝜖

0
sin (𝜋𝑙𝑧) sin (𝜋𝑙𝑤) 𝑑𝑧𝑑𝑤 = 1

𝜖2

(

∫

𝜖

0
sin (𝜋𝑙𝑧) 𝑑𝑧

)2
=
(

1 − cos (𝜋𝑙𝜖)
𝜋𝑙𝜖

)2
.

Therefore,

1
𝜖2

𝑁−1
∑

𝑙=1
𝑡2𝜓(𝜆𝑁𝑙 𝑡)∫

𝜖

0 ∫

𝜖

0
sin (𝜋𝑙𝑧) sin (𝜋𝑙𝑤) 𝑑𝑧𝑑𝑤

=
min{𝑁−1,(𝜖𝜋)−1}

∑

𝑙=1
𝑡2𝜓(𝜆𝑁𝑙 𝑡)

(

1 − cos (𝜋𝑙𝜖)
𝜋𝑙𝜖

)2
+

𝑁−1
∑

𝑙=min{𝑁−1,(𝜖𝜋)−1}
𝑙∈N

𝑡2𝜓(𝜆𝑁𝑙 𝑡)
(

1 − cos (𝜋𝑙𝜖)
𝜋𝑙𝜖

)2
. (4.55)

For the leftmost term of (4.55): by a third order Taylor expansion of cos (𝜋𝑙𝜖) around zero, the fact that 𝑥𝑝 ≤
√

𝑥, for every 𝑝 ≥ 1
nd 𝑥 ∈ [0, 1], also that 𝑙 ≤ (𝜖𝜋)−1, i.e. 𝜋𝑙𝜖 ≤ 1 and that 𝜓(𝑢) ≤ 1∕𝑢, then, for each 𝑙 in the above conditions, there exists 𝜉𝑙 ∈ (0, 𝜋𝑙𝜖),
uch that

min{𝑁−1,(𝜖𝜋)−1}
∑

𝑙=1
𝑡2𝜓(𝜆𝑁𝑙 𝑡)

(

1 − cos (𝜋𝑙𝜖)
𝜋𝑙𝜖

)2
=

min{𝑁−1,(𝜖𝜋)−1}
∑

𝑙=1
𝑡2𝜓(𝜆𝑁𝑙 𝑡)

(

𝜋𝑙𝜖
2

− cos(𝜉𝑙)
(𝜋𝑙𝜖)2

3!

)2

≲
min{𝑁−1,(𝜖𝜋)−1}

∑

𝑙=1

𝑡
𝜆𝑁𝑙

√

𝜋𝑙𝜖

≲
√

𝜖
𝑁−1
∑

𝑙=1

𝑡
(𝜋𝑙)3∕2

𝜋2𝑙2

4𝑁2 sin2
(

𝜋𝑙
2𝑁

) ≲ 𝑡
√

𝜖.

For the rightmost term of (4.55), for 𝜖 > 0 and close to zero, for 𝑁 ∈ N sufficiently large, we have that min{𝑁−1, (𝜖𝜋)−1} = (𝜖𝜋)−1

nd therefore
𝑁−1
∑

𝑙=(𝜖𝜋)−1
𝑙∈N

𝑡2𝜓(𝜆𝑁𝑙 𝑡)
(

1 − 1𝑐𝑜𝑠 (𝜋𝑙𝜖)
𝜋𝑙𝜖

)2
≲

𝑁−1
∑

𝑙=(𝜖𝜋)−1
𝑙∈N

𝑡
𝜆𝑁𝑙

( 1
𝜋𝑙𝜖

)2
=

𝑁−1
∑

𝑙=(𝜖𝜋)−1
𝑙∈N

𝑡
𝜋4𝑙4𝜖2

𝜋2𝑙2

4𝑁2 sin2
(

𝜋𝑙
2𝑁

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤5

≲
𝑁−1
∑

𝑙=(𝜖𝜋)−1
𝑙∈N

𝑡
𝜋4𝑙4𝜖2

≲ (𝜖𝜋)3−𝛿
𝑁−1
∑

𝑙=(𝜖𝜋)−1
𝑙∈N

𝑡
𝜋4𝑙1+𝛿𝜖2

≲ 𝑡𝜖1−𝛿 ,

where 0 < 𝛿 < 1. Putting these estimates together in (4.55), we finally obtain that

2
𝜖2

𝑁−1
∑

𝑙=1
𝑡2𝜓(𝜆𝑁𝑙 𝑡)∫

𝜖

0 ∫

𝜖

0
sin (𝜋𝑙𝑧) sin (𝜋𝑙𝑤) 𝑑𝑧𝑑𝑤 ≲ 𝑡max{

√

𝜖, 𝜖1−𝛿} ⟶ 0 as 𝑁 → +∞ and then 𝜖 → 0.

inally,

1
𝜖2

𝑁−1
∑

𝑙=1
𝑡2𝜓(𝜆𝑁𝑙 𝑡)

⎡

⎢

⎢

⎢

⎣

𝜖(𝑁−1)
∑

𝑥,𝑦=1
𝑦≠𝑥

1
𝑁2

sin
(𝜋𝑙𝑥
𝑁

)

sin
(

𝜋𝑙𝑦
𝑁

)

− ∫

𝜖

0 ∫

𝜖

0
sin (𝜋𝑙𝑧) sin (𝜋𝑙𝑤) 𝑑𝑧𝑑𝑤

⎤

⎥

⎥

⎥

⎦

≤ 1
𝜖2

𝑁−1
∑

𝑙=1

𝑡
(𝜋𝑙)2

𝜋2𝑙2

4𝑁2𝑠𝑖𝑛2
(

𝜋𝑙
2𝑁

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤5

|

|

|

|

|

|

|

|

𝜖(𝑁−1)
∑

𝑥,𝑦=1
𝑦≠𝑥

1
𝑁2

sin
(𝜋𝑙𝑥
𝑁

)

sin
(

𝜋𝑙𝑦
𝑁

)

− ∫

𝜖

0 ∫

𝜖

0
sin (𝜋𝑙𝑧) sin (𝜋𝑙𝑤) 𝑑𝑧𝑑𝑤

|

|

|

|

|

|

|

|

≤ 5𝑡
𝜋2

𝑁−1
∑

𝑙=1

1
𝑙2

|

|

|

|

|

|

|

|

𝜖(𝑁−1)
∑

𝑥,𝑦=1
𝑦≠𝑥

1
𝜖2𝑁2

sin
(𝜋𝑙𝑥
𝑁

)

sin
(

𝜋𝑙𝑦
𝑁

)

− 1
𝜖2 ∫

𝜖

0 ∫

𝜖

0
sin (𝜋𝑙𝑧) sin (𝜋𝑙𝑤) 𝑑𝑧𝑑𝑤

|

|

|

|

|

|

|

|

.
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To finish the argument, it is enough to show that

lim
𝜖↓0

lim sup
𝑁→+∞

𝑁−1
∑

𝑙=1

1
𝑙2

|

|

|

|

|

|

|

|

𝜖(𝑁−1)
∑

𝑥,𝑦=1
𝑦≠𝑥

1
𝜖2𝑁2

sin
(𝜋𝑙𝑥
𝑁

)

sin
(

𝜋𝑙𝑦
𝑁

)

− 1
𝜖2 ∫

𝜖

0 ∫

𝜖

0
sin (𝜋𝑙𝑧) sin (𝜋𝑙𝑤) 𝑑𝑧𝑑𝑤

|

|

|

|

|

|

|

|

= 0. (4.56)

A simple computation shows that since

1
𝜖2 ∫

𝜖

0 ∫

𝜖

0
sin (𝜋𝑙𝑧) sin (𝜋𝑙𝑤) 𝑑𝑧𝑑𝑤 = 1

𝜖2

𝜖(𝑁−1)
∑

𝑥,𝑦=0
∫

𝑥+1
𝑁

𝑥
𝑁

∫

𝑦+1
𝑁

𝑦
𝑁

sin (𝜋𝑙𝑧) sin (𝜋𝑙𝑤) 𝑑𝑧𝑑𝑤,

nd sin(𝑥) is a Lipschitz continuous function, then, for every 𝑙 ∈ 𝛬𝑁 ,

𝑁−1
∑

𝑙=1

1
𝑙2

|

|

|

|

|

|

|

|

𝜖(𝑁−1)
∑

𝑥,𝑦=1
𝑦≠𝑥

1
𝜖2𝑁2

sin
(𝜋𝑙𝑥
𝑁

)

sin
(

𝜋𝑙𝑦
𝑁

)

− 1
𝜖2 ∫

𝜖

0 ∫

𝜖

0
sin (𝜋𝑙𝑧) sin (𝜋𝑙𝑤) 𝑑𝑧𝑑𝑤

|

|

|

|

|

|

|

|

=
𝑁−1
∑

𝑙=1

1
𝑙2

|

|

|

|

|

|

1
𝜖2

𝜖(𝑁−1)
∑

𝑥,𝑦=0
∫

𝑥+1
𝑁

𝑥
𝑁

∫

𝑦+1
𝑁

𝑦
𝑁

[

sin
(𝜋𝑙𝑥
𝑁

)

sin
(

𝜋𝑙𝑦
𝑁

)

− sin (𝜋𝑙𝑧) sin (𝜋𝑙𝑤)
]

𝑑𝑧𝑑𝑤 −
𝜖(𝑁−1)
∑

𝑥=1

1
𝜖2𝑁2

sin2
(𝜋𝑙𝑥
𝑁

)

|

|

|

|

|

|

≤
𝑁−1
∑

𝑙=1

2
𝑙2𝜖

𝜖(𝑁−1)
∑

𝑥=0
∫

𝑥+1
𝑁

𝑥
𝑁

|

|

|

|

sin
(𝜋𝑙𝑥
𝑁

)

− sin (𝜋𝑙𝑧)
|

|

|

|

𝑑𝑧 + 𝜋2

6𝜖𝑁

≲
𝑁−1
∑

𝑙=1

2𝜋
𝑙𝜖

𝜖(𝑁−1)
∑

𝑥=0
∫

𝑥+1
𝑁

𝑥
𝑁

(

𝑧 − 𝑥
𝑁

)

𝑑𝑧 + 𝜋2

6𝜖𝑁
≲

log(𝑁)
𝑁

+ 1
𝜖𝑁

⟶ 0 as 𝑁 → +∞,

which proves (4.56).
Item v. For the final estimate we observe that the result immediately follows from (4.47) when 𝜃 < 0. For 0 ≤ 𝜃 < 1 the idea is

o improve the estimates done in (4.47). Indeed we can write

𝑁𝜃

𝜖
∑

𝑥∈𝛬𝜖,𝓁𝑁
∫

𝑡

0 ∫

𝑠

0
𝑃𝑁,0𝑠−𝑣 (𝑥, 1) + 𝑃

𝑁,0
𝑠−𝑣 (𝑥,𝑁 − 1)𝑑𝑣𝑑𝑠 ≲ 1

𝑁1−𝜃

∑

𝑙∈𝛬𝑁

𝑡
𝜋𝛼𝑙

≲ 𝑡
𝑁 (1−𝜃)∕2

∑

𝑙∈𝛬𝑁

1
𝜋𝛼𝑙1+(1−𝜃)∕2

where in the first bound we used the same reasoning of item ii. and that sin(2𝑥) = 2 sin(𝑥) cos(𝑥) while for the last one we used that
𝑙 < 𝑁 . The result follows again by considering the limit as 𝑁 → ∞, since 1 + (1 − 𝜃)∕2 is bigger than one the series converges. □

5. Results on occupation times

In this section we collect some of the results that were necessary regarding occupation times of all the random walks we used
in the article. The proof of our results uses an artifact that consists in comparing our random walk with another one for which
explicit results are known. To that end, in the first subsection below we make a comparison with an absorbed random walk and in
the following subsection we make a comparison with a reflected random walk.

5.1. Comparison with an absorbed random walk

Lemma 5.1. Recall the function 𝑇 𝑖𝑁 defined in (4.16). Then, for every (𝑥, 𝑦) ∈ 𝑉𝑁

𝑇 𝑖𝑁 (𝑥, 𝑦) ≲

⎧

⎪

⎨

⎪

⎩

1
𝑁 1((𝑥, 𝑦) ∉ 𝑈𝑁 ) + 1

𝑁2 1((𝑥, 𝑦) ∈ 𝑈𝑁 ) + 𝑁𝜃

𝑁 , if 𝜃 ≤ 0,
1
𝑁 1((𝑥, 𝑦) ∉ 𝑈𝑁 ) + 1

𝑁2 1((𝑥, 𝑦) ∈ 𝑈𝑁 ) + 𝑁𝜃

𝑁3 , if 𝜃 > 0,

where 𝑈𝑁 = {(𝑥, 𝑦) ∈ 𝑉𝑁 | 𝑥 = 1 or 𝑦 = 𝑁 − 1}.

Proof of Lemma 5.1. To prove the result we will use the random walk (X𝑖
𝑡𝑁2 ; 𝑡 ≥ 0) generated by the operator (4.10) with the

choice 𝜆𝓁 = 𝜆𝑟 = 1 and 𝜃 = 0. Denote by Ta
𝑁 the expected occupation time of the diagonals D+

𝑁 by that random walk. A simple
computation shows that Ta

𝑁 (𝑥, 𝑦) is the solution of

⎧

⎪

⎨

⎪

⎩

𝑁2𝛥0,𝑖𝑁Ta
𝑁 (𝑥, 𝑦) = −𝛿𝑦=𝑥+1, if (𝑥, 𝑦) ∈ 𝑉𝑁

Ta
𝑁 (𝑥, 𝑦) = 0, if (𝑥, 𝑦) ∈ 𝜕𝑉𝑁 .

where 𝛥0,𝑖𝑁 is the operator defined in (4.10) with the choice 𝜆𝓁 = 𝜆𝑟 = 1 and 𝜃 = 0. Solving explicitly the previous system of linear
equations, we obtain

Ta (𝑥, 𝑦) =
(𝑁 − 𝑦)𝑥

− 1
1(𝑦 = 𝑥), (5.1)
29
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and therefore

max
(𝑥,𝑦)∈𝑉𝑁

Ta
𝑁 (𝑥, 𝑦) ≲ 1

𝑁
, max

𝑥∈𝛬𝑁
Ta
𝑁 (𝑥,𝑁 − 1) ≲ 1

𝑁2
and max

𝑦∈𝛬𝑁
Ta
𝑁 (1, 𝑦) ≲ 1

𝑁2
. (5.2)

Now, let us consider the function

𝑊 𝑖
𝑁 (𝑥, 𝑦) ∶= 𝑇 𝑖𝑁 (𝑥, 𝑦) −Ta

𝑁 (𝑥, 𝑦) + 𝐶 𝑖𝑁 (𝑥, 𝑦),

where 𝐶 𝑖𝑁 is given on (𝑥, 𝑦) ∈ 𝑉 𝑁 by

𝐶 𝑖𝑁 (𝑥, 𝑦) =
( 𝑁𝜃

𝜆𝓁 + 𝜆𝑟
− 1

)

min
(𝑧,𝑤)∈𝑉 𝛼𝑁

sgn(𝜃)Ta
𝑁 (𝑧,𝑤)1((𝑥, 𝑦) ∈ 𝑉𝑁 ).

Recall the expression of Ta
𝑁 given in (5.1). A simple computation shows that

max
(𝑥,𝑦)∈𝑉𝑁

Ta
𝑁 (𝑥, 𝑦) =

⎧

⎪

⎨

⎪

⎩

2(𝑁−⌊𝑁∕2⌋)(⌊𝑁∕2⌋)−𝑁
2𝑁2(𝛼𝑁−1) , if 𝑁∕2 − ⌊𝑁∕2⌋ < ⌈𝑁∕2⌉ −𝑁∕2, (choosing in (5.1) 𝑥 = 𝑦 = ⌊𝑁∕2⌋),

2(𝑁−⌈𝑁∕2⌉)(⌈𝑁∕2⌉)−𝑁
2𝑁2(𝛼𝑁−1) , if 𝑁∕2 − ⌊𝑁∕2⌋ ≥ ⌈𝑁∕2⌉ −𝑁∕2, (choosing in (5.1) 𝑥 = 𝑦 = ⌈𝑁∕2⌉).

nd

min
(𝑥,𝑦)∈𝑉𝑁

Ta
𝑁 (𝑥, 𝑦) = 1

𝑁2(𝛼𝑁 − 1)
(choosing in (5.1) 𝑥 = 1, 𝑦 = 𝑁 − 1).

Recall that 𝑇 𝑖𝑁 is the solution of

⎧

⎪

⎨

⎪

⎩

𝑁2𝛥𝑖𝑁𝑇
𝑖
𝑁 (𝑥, 𝑦) = −𝛿𝑦=𝑥+1, if (𝑥, 𝑦) ∈ 𝑉𝑁 ,

𝑇 𝑖𝑁 (𝑥, 𝑦) = 0, if (𝑥, 𝑦) ∈ 𝜕𝑉𝑁 .

Then, a simple computation shows that 𝑊 𝑖
𝑁 is solution to

⎧

⎪

⎨

⎪

⎩

𝑁2𝛥𝑖𝑁𝑊
𝑖
𝑁 (𝑥, 𝑦) +

(

𝑁2𝛥𝑖𝑁 −𝑁2𝛥0,𝑖𝑁
)

Ta
𝑁 +𝑁2𝛥𝑖𝑁𝐶

𝑖
𝑁 (𝑥, 𝑦) = 0, if (𝑥, 𝑦) ∈ 𝑉𝑁 ,

𝑊 𝑖
𝑁 (𝑥, 𝑦) = 0, if (𝑥, 𝑦) ∈ 𝜕𝑉𝑁 ,

(5.3)

A simple computation shows that for every (𝑥, 𝑦) ∈ 𝑉𝑁
(

𝑁2𝛥𝑖𝑁−𝑁2𝛥0,𝑖𝑁
)

Ta
𝑁 (𝑥, 𝑦) +𝑁2𝛥𝑖𝑁𝐶

𝑖
𝑁 (𝑥, 𝑦)

= (1 + 1(𝑦 = 𝑥))𝑁2
(

𝛼
[

1 − 𝜆𝓁

𝑁𝜃

]

Ta
𝑁 (1, 𝑦)1(𝑥 = 1) + 𝛼

[

1 − 𝜆𝑟

𝑁𝜃

]

Ta
𝑁 (𝑥,𝑁 − 1)1(𝑦 = 𝑁 − 1)

)

+ (1 + 1(𝑦 = 𝑥))𝑁2
(𝜆𝓁𝛼
𝑁𝜃 𝐶

𝑖
𝑁 (1, 𝑦)1(𝑥 = 1) + 𝜆𝑟𝛼

𝑁𝜃 𝐶
𝑖
𝑁 (𝑥,𝑁 − 1)1(𝑦 = 𝑁 − 1)

)

.

Observe that the unique solution 𝑓 of

⎧

⎪

⎨

⎪

⎩

𝑁2𝛥𝑖𝑁𝑓 (𝑥, 𝑦) = 0, if (𝑥, 𝑦) ∈ 𝑉𝑁 ,

𝑓 (𝑥, 𝑦) = 0, if (𝑥, 𝑦) ∈ 𝜕𝑉𝑁 ,

s 𝑓 (𝑥, 𝑦) = 0 for all (𝑥, 𝑦) ∈ 𝑉 𝑁 . Moreover, from the definition of 𝐶 𝑖𝑁 , for every (𝑥, 𝑦) ∈ 𝑉𝑁 , it holds
(

𝑁2𝛥𝑖𝑁 −𝑁2𝛥0,𝑖𝑁
)

Ta
𝑁 (𝑥, 𝑦) +𝑁2𝛥𝑖𝑁𝐶

𝑖
𝑁 (𝑥, 𝑦) ≤ 0.

Therefore, 𝑊 𝑖
𝑁 is the solution of the initial value problem given by

{

𝑁2𝛥𝑖𝑁𝑊
𝑖
𝑁 (𝑥, 𝑦) ≥ 0, if (𝑥, 𝑦) ∈ 𝑉𝑁 ,

𝑊 𝑖
𝑁 (𝑥, 𝑦) = 0, if (𝑥, 𝑦) ∈ 𝜕𝑉𝑁 .

Applying a version of the maximum principle for discrete elliptic operators that are Markov generators, i.e. Theorem A.1 below, we
get for every (𝑥, 𝑦) ∈ 𝑉 𝑁 that 𝑊 𝑖

𝑁 (𝑥, 𝑦) ≤ 0, i.e.

𝑇 𝑖𝑁 (𝑥, 𝑦) ≤ Ta
𝑁 (𝑥, 𝑦) − 𝐶 𝑖𝑁 (𝑥, 𝑦)

≲

⎧

⎪

⎨

⎪

⎩

1
𝑁 1((𝑥, 𝑦) ∉ 𝑈𝑁 ) + 1

𝑁2 1((𝑥, 𝑦) ∈ 𝑈𝑁 ) + 𝑁𝜃

𝑁 , if 𝜃 ≤ 0,
1
𝑁 1((𝑥, 𝑦) ∉ 𝑈𝑁 ) + 1

𝑁2 1((𝑥, 𝑦) ∈ 𝑈𝑁 ) + 𝑁𝜃

𝑁3 , if 𝜃 > 0,

here 𝑈 = {(𝑥, 𝑦) ∈ 𝑉 | 𝑥 = 1 or 𝑦 = 𝑁 − 1}. This ends the proof. □
30

𝑁 𝑁



Stochastic Processes and their Applications 178 (2024) 104463C. Franceschini et al.

P

w
o

D

t

5.2. Comparison with a reflected random walk

Lemma 5.2. Recall (4.24). Then, for every 𝑡 ∈ [0, 𝑇 ],

max
(𝑥,𝑦)∈𝑉𝑁 ⧵D𝑁

𝑇𝑁𝑡 (𝑥, 𝑦) ≲ 𝑡 + 1
𝑁

.

roof of Lemma 5.2. Recall that {X̃𝑡𝑁2 ; 𝑡 ≥ 0} represents a two-dimensional random walk on 𝑉𝑁 that jumps to every nearest-
neighbor site at rate 𝛼, except at the diagonal D+

𝑁 where it jumps left/up at rate 𝛼 and right/down at rate 𝛼 − 1 and moreover, it
is reflected at 𝜕𝑉𝑁 . Let Ẽ(𝑥,𝑦) denote the expectation given that X̃𝑡𝑁2 starts from the point (𝑥, 𝑦). From Dynkin’s formula, for every
function 𝑓 ∶ 𝑉𝑁 → R and for every (𝑥, 𝑦) ∈ 𝑉𝑁⧵D𝑁 ,

0 = Ẽ(𝑥,𝑦)
[

𝑀𝑁
𝑡 (𝑓 )

]

= Ẽ(𝑥,𝑦)

[

𝑓 (X̃𝑡𝑁2 ) − 𝑓 (X̃0) − ∫

𝑡

0
𝑁2C𝑁𝑓 (X̃𝑠𝑁2 )𝑑𝑠

]

. (5.4)

where C𝑖𝑁 is, as defined in (4.12). From (5.4) we get

Ẽ(𝑥,𝑦)

[

∫

𝑡

0
𝑁2C𝑁𝑓 (X̃𝑠𝑁2 )𝑑𝑠

]

≤ max
𝑧,𝑤∈𝑉𝑁

{𝑓 (𝑧) − 𝑓 (𝑤)}.

For the choice 𝑓 (𝑥, 𝑦) = −(𝑥 − 1
2 )

2 − (𝑦 − (𝑁 − 1
2 ))

2, a long but elementary computation shows that for every (𝑥, 𝑦) ∈ 𝑉𝑁 :

𝑁2C𝑁𝑓 (𝑥, 𝑦) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−4𝛼𝑁2, if |𝑥 − 𝑦| ≥ 2 but (𝑥, 𝑦) ≠ (1, 𝑁 − 1),

−2𝛼𝑁2, if (𝑥, 𝑦) = (1, 𝑁 − 1),

𝑁2(2𝑁 − 4𝛼 − 2), if |𝑥 − 𝑦| = 1,

4𝛼𝑁2(𝑁 − 2), if 𝑦 = 𝑥 and 𝑦, 𝑥 ≠ 1, 𝑁 − 1,

2𝛼𝑁2(2𝑁 − 7), if 𝑦 = 𝑥 = 1 or 𝑦 = 𝑥 = 𝑁 − 1.

From last display, we conclude that

Ẽ(𝑥,𝑦)

[

∫

𝑡

0
𝑁2C𝑁𝑓 (X̃𝑠𝑁2 )𝑑𝑠

]

= 𝑁2(2𝑁 − 4𝛼 − 2)∫

𝑡

0
Ẽ(𝑥,𝑦)

[

1(X̃𝑠𝑁2 ∈ D+
𝑁 )

]

𝑑𝑠

+ 2𝛼𝑁2(2𝑁 − 1)∫

𝑡

0
Ẽ(𝑥,𝑦)

[

1(X̃𝑠𝑁2 ∈ D𝑁⧵{(1, 1), (𝑁 − 1, 𝑁 − 1)})
]

𝑑𝑠

+ 2𝛼𝑁2(2𝑁 − 7)∫

𝑡

0

(

Ẽ(𝑥,𝑦)

[

1(X̃𝑠𝑁2 = (1, 1))
]

+ Ẽ(𝑥,𝑦)

[

1(X̃𝑠𝑁2 = (𝑁 − 1, 𝑁 − 1))
])

𝑑𝑠

− 2𝛼𝑁2
∫

𝑡

0
Ẽ(𝑥,𝑦)

[

1(X̃𝑠𝑁2 = (1, 𝑁 − 1))
]

𝑑𝑠 − 4𝛼𝑁2
∫

𝑡

0
Ẽ(𝑥,𝑦)

[

1(X̃𝑠𝑁2 ∈ C)
]

𝑑𝑠,

here C = {(𝑥, 𝑦) ∈ 𝑉𝑁 | |𝑥 − 𝑦| ≥ 2 and (𝑥, 𝑦) ≠ (1, 𝑁 − 1)}. By noting that the time integral of the rightmost term in the first line
f last display is equal to 𝑇𝑁𝑡 (𝑥, 𝑦), we conclude that

𝑇𝑁𝑡 (𝑥, 𝑦) ≤ −
4𝛼𝑁2(𝑁 − 2)

𝑁2(2𝑁 − 4𝛼 − 2) ∫

𝑡

0
Ẽ(𝑥,𝑦)

[

1(X̃𝑠𝑁2 ∈ D𝑁⧵{(1, 1), (𝑁 − 1, 𝑁 − 1)})
]

𝑑𝑠

−
2𝛼𝑁2(2𝑁 − 7)
𝑁2(2𝑁 − 4𝛼 − 2) ∫

𝑡

0
Ẽ(𝑥,𝑦)

[

1(X̃𝑠𝑁2 ∈ {(1, 1), (𝑁 − 1, 𝑁 − 1)})
]

𝑑𝑠

+ 2𝛼𝑁2

𝑁2(2𝑁 − 4𝛼 − 2) ∫

𝑡

0

(

Ẽ(𝑥,𝑦)

[

1(X̃𝑠𝑁2 = (1, 𝑁 − 1))
]

+ 2Ẽ(𝑥,𝑦)

[

1(X̃𝑠𝑁2 ∈ C)
])

𝑑𝑠

+ 1
𝑁2(2𝑁 − 4𝛼 − 2)

max
𝑧,𝑤∈𝑉𝑁

{𝑓 (𝑧) − 𝑓 (𝑤)}.

For 𝑁 ≥ 2𝛼 + 1, since the first two terms of the last bound for 𝑇𝑁𝑡 (𝑥, 𝑦) are negative, we have that

max
(𝑥,𝑦)∈𝑉𝑁

𝑇𝑁𝑡 (𝑥, 𝑦) ≲ 𝑡
𝑁

+
max

(𝑥,𝑦),(𝑧,𝑤)∈𝑉𝑁

{

(

𝑧 − 1
2

)2
+
(

𝑤 −𝑁 + 1
2

)2
−
(

𝑥 − 1
2

)2
−
(

𝑦 −𝑁 + 1
2

)2}

𝑁2(2𝑁 − 4𝛼 − 2)

≲ 𝑡 + 1
𝑁

. □
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ppendix A. Maximum principles

heorem A.1. Let E be the Markov generator of the continuous time Markov chain {𝑋𝑡}𝑡≥0 and denote by D(E) its domain. Let 𝛺 be a
iscrete set with a non-empty 𝜕𝛺. If 𝑓 ∈ D(E) with domain 𝛺 is solution to

⎧

⎪

⎨

⎪

⎩

E𝑓 ≥ 0 in 𝛺,

𝑓 (𝑥) = 0 in 𝜕𝛺,

hen 𝑓 ≤ 0 in 𝛺.

roof. Let 𝑓 be the solution of

⎧

⎪

⎨

⎪

⎩

E𝑓 = ℎ in 𝛺,

𝑓 (𝑥) = 0 in 𝜕𝛺,

ith ℎ ≥ 0 in 𝛺. Then, given the stopping time 𝜏𝜕𝛺 = inf{𝑡 ≥ 0 | 𝑋𝑡 ∈ 𝜕𝛺}, 𝑓 can be represented, for every 𝑥 ∈ 𝛺 ∪ 𝜕𝛺 by

𝑓 (𝑥) = −E𝑥
[

∫

𝜏𝜕𝛺

0
ℎ(𝑋𝑡)𝑑𝑡

]

.

Since ℎ ≥ 0 in 𝛺 by assumption, the result is a simple consequence of the previous formula. □

Theorem A.2. Let 𝐴 be a finite set. Define F(𝐴) as the set of functions 𝑓 ∶ 𝐴 → R. Consider a connected graph (𝐴,𝐸) and define the
non-empty subset of 𝐴, that we denote by 𝜕𝐴, that is the set of vertices with degree one. Let E ∶ F(𝐴) → F(𝐴) be an operator of the form

E𝑓 (𝜂) =
∑

{𝜉,𝜂}∈𝐸
𝑐(𝜂, 𝜉)[𝑓 (𝜉) − 𝑓 (𝜂)],

where 𝑐(⋅, ⋅) is a positive function. If there exists 𝑓 ∈ F(𝐴) solution to E𝑓 = 0 in 𝐴⧵𝜕𝐴, then

max
𝑥∈𝐴

𝑓 (𝑥) ≤ max
𝑤∈𝜕𝐴

𝑓 (𝑤) and min
𝑥∈𝐴

𝑓 (𝑥) ≥ min
𝑤∈𝜕𝐴

𝑓 (𝑤).

Proof. We prove the maximum case, since, to obtain the minimum, we only have to take 𝑔 = −𝑓 and the result follows.
If 𝑓 is constant, there is nothing to prove. So, assume this is not the case and let us proceed by contradiction. Since 𝐴 is finite,

if 𝑓 was such that max𝑥∈𝐴⧵𝜕𝐴 𝑓 (𝑥) > max𝑤∈𝜕𝐴 𝑓 (𝑤), then there would exist 𝑦 ∈ 𝐴⧵𝜕𝐴 such that 𝑓 (𝑦) = max𝑥∈𝐴 𝑓 (𝑥) and 𝑓 (𝑦) > 𝑓 (𝑤)
for all 𝑤 ∈ 𝜕𝐴. Then

0 = E𝑓 (𝑦) =
∑

{𝜉,𝑦}∈𝐸
𝑐(𝑦, 𝜉)[𝑓 (𝜉) − 𝑓 (𝑦)], (A.1)

and, because 𝑐 > 0, (A.1) imply that

max
𝑥∈𝐴

𝑓 (𝑥) = 1
𝑎𝑦

∑

{𝜉,𝑦}∈𝐸
𝑐(𝑦, 𝜉)𝑓 (𝜉), (A.2)

where 𝑎𝑦 ∶=
∑

{𝜉,𝑦}∈𝐸 𝑐(𝑦, 𝜉). Since the left-hand-side of last display is a weighted average, in order to an average to attain the
maximum of a function, then all the points have to be equal to the maximum value. This means that, for all the vertices that are
connected to 𝑦 by an edges, the maximum of 𝑓 is also attained there. Repeating the argument now for this vertices, we obtain
that, for all the vertices that are connected to them by an edge, the maximum of 𝑓 is also attained there, and so on. Because 𝐺 is
connected, we know that for every two points of the graph there must exists a path that connect them. Therefore, by the previous
reasoning, we showed that the maximum of the function has to be attained in 𝜕𝐴, which is a contradiction. □

Theorem A.3. Let E be the Markov generator of the continuous time Markov chain {𝑋𝑡}𝑡≥0 and denote by D(E) its domain. Let 𝛺 be a
discrete set and 𝜕𝛺 a non-empty subset of 𝛺. Let 𝛺 = 𝛺⧵𝜕𝛺. If 𝑓 ∶ [0, 𝑇 ] ×𝛺 → R is a function that it is differentiable in time and that is
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E

a

solution to
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑡𝑓 ≤ E𝑓 in (0, 𝑇 ) ×𝛺,

𝑓 (𝑡, 𝑥) = 0 in [0, 𝑇 ] × 𝜕𝛺,

𝑓 (0, 𝑥) = 𝑓0(𝑥), in 𝛺,

hen 𝑓 (𝑦) ≤ max𝑥∈𝛺{0, 𝑓0(𝑥)}, for every 𝑦 ∈ [0, 𝑇 ] ×𝛺.

The proof of the previous theorem can be obtained by adapting the proof of A.1 for the time-dependent case. It is a simple
combination of Feynman–Kac’s representation of the solution to the problem

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑡𝑓 = E𝑓 + ℎ in (0, 𝑇 ) ×𝛺,

𝑓 (𝑡, 𝑥) = 0 in [0, 𝑇 ] × 𝜕𝛺,

𝑓 (0, 𝑥) = 𝑓0(𝑥), in 𝛺,

where the function ℎ is non-positive.

Appendix B. Details on the Chapman–Kolmogorov equation of 𝝋𝑵
𝒕 , when 𝜶 ≥ 𝟐

For completeness we perform here some standard computations regarding one and two-point correlations, used in the proof of
Proposition 4.2. For every (𝑥, 𝑦) ∈ 𝑉𝑁 , we have

𝜕𝑡𝜑
𝑁
𝑡 (𝑥, 𝑦) = E𝜇𝑁 [𝑁2L𝑁 (𝜂̄𝑡𝑁2 (𝑥)𝜂̄𝑡𝑁2 (𝑦))]

= E𝜇𝑁 [𝑁2L𝑁 (𝜂𝑡𝑁2 (𝑥)𝜂𝑡𝑁2 (𝑦))] − 𝜌𝑁𝑡 (𝑦)E𝜇𝑁 [𝑁2L𝑁𝜂𝑡𝑁2 (𝑥)] − 𝜌𝑁𝑡 (𝑥)E𝜇𝑁 [𝑁2L𝑁𝜂𝑡𝑁2 (𝑦)],

by the forward Kolmogorov equation and the linearity of L𝑁 . It is worthy to compute E𝜇𝑁 [L𝑁 (𝜂(𝑥)𝜂(𝑦))] and E𝜇𝑁 [L𝑁𝜂(𝑥)] (resp.
𝜇𝑁 [L𝑁𝜂(𝑦)]). We start with the latter. The action of the SEP(𝛼) generator L𝑁 on the one-point correlation function is

L𝑁𝜂(𝑥) = 𝛼[𝜂(𝑥 − 1) − 𝜂(𝑥)]1(𝑥 ≠ 1) + 𝛼[𝜂(𝑥 + 1) − 𝜂(𝑥)]1(𝑥 ≠ 𝑁 − 1)

+ 𝛼𝜆𝓁

𝑁𝜃

[

𝜌𝓁 − 𝜂(1)
]

1(𝑥 = 1) + 𝛼𝜆𝑟

𝑁𝜃

[

𝜌𝑟 − 𝜂(𝑁 − 1)
]

1(𝑥 = 𝑁 − 1) ,

for 𝑥 ∈ 𝛬𝑁 . Similarly for 𝑥, 𝑦 ∈ 𝛬𝑁 the action on the two-point correlation function can be conveniently written as

L𝑁 (𝜂(𝑥)𝜂(𝑦)) = 𝜂(𝑥)L𝑁𝜂(𝑦) + 𝜂(𝑦)L𝑁𝜂(𝑥) + 𝛤 (𝜂 (𝑥) , 𝜂 (𝑦)) , (B.1)

where

𝛤 (𝜂 (𝑥) , 𝜂 (𝑦)) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜆𝓁𝜌𝓁

𝑁𝜃 [𝛼 − 𝜂(1)] + 𝜆𝓁𝜂(1)
𝑁𝜃 [𝛼 − 𝜌𝓁] + 𝛼[𝜂(1) + 𝜂(2)] − 2𝜂(1)𝜂(2) for 𝑥 = 𝑦 = 1,

𝛼[𝜂(𝑥 − 1) + 2𝜂(𝑥) + 𝜂(𝑥 + 1)] − 2𝜂(𝑥)[𝜂(𝑥 − 1) + 𝜂(𝑥 + 1)] for 𝑦 = 𝑥 ≠ 1, 𝑁 − 1,

2𝜂(𝑥)𝜂(𝑦) − 𝛼[𝜂(𝑥)𝜂(𝑦)] for 𝑦 = 𝑥 + 1,
𝜆𝑟𝜌𝑟

𝑁𝜃 [𝛼 − 𝜂(𝑁 − 1)] + 𝜆𝑟𝜂(𝑁−1)
𝑁𝜃 [𝛼 − 𝜌𝑟]+

𝛼[𝜂(𝑁 − 1) + 𝜂(𝑁 − 2)] − 2𝜂(𝑁 − 1)𝜂(𝑁 − 2) for 𝑥 = 𝑦 = 𝑁 − 1,

0 otherwise.

Appendix C. Extention of 𝝋𝑵
𝒕 to the diagonal

The role of this section is to give two different approaches in order to extend the value of the correlation function to the diagonal
D𝑁 . We first start with an approach based on stochastic duality, while for the second one we use an analytic approach based on
degree two functions.

C.1. Stochastic duality

Based on properties of duality (see [6] for a survey on duality results for several boundary driven interacting systems), we show
how to extend 𝜑𝑁𝑡 to the diagonal D𝑁 . It is well known that the SEP(𝛼) with open boundary has SEP(𝛼) with absorbing boundary
s its dual process with duality function 𝐷 ∶ 𝛺𝑁 ×𝛺𝑑𝑢𝑎𝑙

𝑁 → R given by

𝐷(𝜂, 𝜂̂) =
[

𝜌𝓁
]𝜂̂(0)

𝑁−1
∏ 𝜂(𝑥)!(𝛼 − 𝜂̂(𝑥))!

1(𝜂(𝑥) ≥ 𝜂̂(𝑥))
[

𝜌𝑟
]𝜂̂(𝑁) , (C.1)
33
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for every (𝜂, 𝜂̂) ∈ 𝛺𝑁 × 𝛺𝑑𝑢𝑎𝑙

𝑁 , where 𝛺𝑑𝑢𝑎𝑙
𝑁 = (N ∪ {0}) × {0,… , 𝛼}𝛬𝑁 × (N ∪ {0}) is the state space of the absorbing dual process. If

e now take 𝜂̂ = 𝛿𝑥 + 𝛿𝑦 in (C.1), we have that

E𝜇𝑁 [𝐷(⋅, 𝛿𝑥 + 𝛿𝑦)] =

⎧

⎪

⎨

⎪

⎩

E𝜇𝑁
[

𝜂(𝑥)𝜂(𝑦)
𝛼2

]

, if 𝑦 ≠ 𝑥

E𝜇𝑁
[

𝜂(𝑥)(𝜂(𝑥)−1)
𝛼(𝛼−1)

]

, if 𝑦 = 𝑥.
(C.2)

A simple computation shows that in fact 𝜑𝑁𝑡 (𝑥, 𝑦) as defined in (2.23) for 𝑥 ≠ 𝑦 and in (4.18) for 𝑥 = 𝑦 satisfies

𝜑𝑁𝑡 (𝑥, 𝑦) = 𝛼2(E𝜇𝑁 [𝐷(𝜂𝑡𝑁2 , 𝛿𝑥 + 𝛿𝑦)] − E𝜇𝑁 [𝐷(𝜂𝑡𝑁2 , 𝛿𝑥)]E𝜇𝑁 [𝐷(⋅, 𝛿𝑦)]) . (C.3)

In other words, the function 𝜑𝑁𝑡 (𝑥, 𝑦) can be written in a natural way in terms of the duality function (C.1) without distinguishing
the case 𝑥 = 𝑦.

C.2. Degree two functions

Now we show an analytic argument to choose the extension of 𝜑𝑁𝑡 to D𝑁 as in (4.18). In this subsection, for simplicity of the
presentation, we neglect the boundary dynamics of the process and we explain the argument for the bulk dynamics. The general
case, follows from adapting the ideas we present here.

Let us call 𝜑̃𝑁𝑡 the extension of 𝜑𝑁𝑡 to D𝑁 as E𝜇𝑁 [(𝜂̄(𝑥))2], i.e. for every (𝑥, 𝑦) ∈ 𝑉𝑁

𝜑̃𝑁𝑡 (𝑥, 𝑦) =

⎧

⎪

⎨

⎪

⎩

𝜑𝑁𝑡 (𝑥, 𝑦), if 𝑦 ≠ 𝑥,

E𝜇𝑁 [(𝜂̄(𝑥))2], if 𝑥 = 𝑦.
(C.4)

For 𝛼 = 1 and since 𝜂(𝑥) ∈ {0, 1} then there is no need to extend the correlation function to the diagonal D𝑁 . Moreover, the
Chapman–Kolmogorov equation for 𝜑𝑁𝑡 is very simple as we saw in (4.13). Nevertheless, if 𝛼 ≥ 2, the Chapman–Kolmogorov equation
for 𝜑̃𝑁𝑡 is not as simple. In fact, 𝜑̃𝑁𝑡 is solution, for every (𝑥, 𝑦) ∈ 𝑉𝑁 to

𝜕𝑡𝜑̃
𝑁
𝑡 (𝑥, 𝑦) = 𝑁2H𝑁 𝜑̃

𝑁
𝑡 (𝑥, 𝑦) (C.5)

+𝑁2 {2𝜑̃𝑁𝑡 (𝑥, 𝑥 + 1) − 𝜒𝑁,𝑡𝛼 (𝑥, 𝑥 + 1)
}

1(𝑦 = 𝑥 + 1) (C.6)

−𝑁2 {4𝜑̃𝑁𝑡 (𝑥, 𝑥) − [𝜒𝑁,𝑡𝛼 (𝑥, 𝑥 + 1) + 𝜒𝑁,𝑡𝛼 (𝑥, 𝑥 − 1)]
}

1(𝑦 = 𝑥), (C.7)

where the operator H𝑖
𝑁 is the generator of a two dimensional random walk that jumps to each neighbor at rate 𝛼, apart when it is

on the diagonal D𝑁 that jumps at rate 𝛼 − 1 to each one of its neighbors, i.e. for every function 𝑓 ∶ 𝑉 𝑁 → R such that 𝑓 (𝑥, 𝑦) = 0
if (𝑥, 𝑦) ∈ 𝜕𝑉𝑁 , and for every (𝑥, 𝑦) ∈ 𝑉𝑁 ,

H𝑁𝑓 (𝑥, 𝑦) =

⎧

⎪

⎨

⎪

⎩

𝛼[𝑓 (𝑥 − 1, 𝑦) + 𝑓 (𝑥 + 1, 𝑦) + 𝑓 (𝑥, 𝑦 − 1) + 𝑓 (𝑥, 𝑦 + 1) − 4𝑓 (𝑥, 𝑦)], if |𝑥 − 𝑦| ≥ 1,

2(𝛼 − 1)[𝑓 (𝑥 − 1, 𝑥) + 𝑓 (𝑥, 𝑥 + 1) − 2𝑓 (𝑥, 𝑥)], if 𝑦 = 𝑥,

and, for every (𝑥, 𝑦) ∈ 𝑉𝑁 such that 𝑦 ≠ 𝑥,

𝜒𝑁,𝑡𝛼 (𝑥, 𝑦) = 𝜌𝑁𝑡 (𝑥)[𝛼 − 𝜌𝑁𝑡 (𝑦)] + 𝜌𝑁𝑡 (𝑦)[𝛼 − 𝜌𝑁𝑡 (𝑥)].

Since we have different signs for the extra terms that appear on the upper diagonal D+
𝑁 and main diagonal D𝑁 , i.e. (C.6) and

(C.7), and also they are not uniformly bounded in 𝑁 , we observe that the argument used for the case 𝛼 = 1 cannot be applied
directly here. This motivates us to redefine the function on the diagonal values in such a way that it becomes the solution of an
equation with a similar structure to (4.13). As we will see below, that function is exactly the function 𝜑𝑁𝑡 defined in (4.18).

We now observe that we can rewrite (C.5), (C.6) and (C.7) as:

𝜕𝑡𝜑̃
𝑁
𝑡 (𝑥, 𝑦) = 𝑁2H̃𝑁 𝜑̃

𝑁
𝑡 (𝑥, 𝑦)

−𝑁2 {2𝜑̃𝑁𝑡 (𝑥, 𝑥) + 2𝜑̃𝑁𝑡 (𝑥 + 1, 𝑥 + 1) + 𝜒𝑁,𝑡𝛼 (𝑥, 𝑥 + 1)
}

1(𝑦 = 𝑥 + 1) (C.8)
−𝑁2 {4𝜑̃𝑁𝑡 (𝑥, 𝑥) − [𝜒𝑁,𝑡𝛼 (𝑥, 𝑥 + 1) + 𝜒𝑁,𝑡𝛼 (𝑥, 𝑥 − 1)]

}

1(𝑦 = 𝑥),

where H̃𝑁 is the operator given, for every 𝑓 ∶ 𝑉 𝑁 → R and (𝑥, 𝑦) ∈ 𝑉𝑁 , by

H̃𝑁𝑓 (𝑥, 𝑦) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝛼[𝑓 (𝑥 − 1, 𝑦) + 𝑓 (𝑥 + 1, 𝑦) + 𝑓 (𝑥, 𝑦 − 1) + 𝑓 (𝑥, 𝑦 + 1) − 4𝑓 (𝑥, 𝑦)], if |𝑥 − 𝑦| ≥ 2,

𝛼[𝑓 (𝑥 − 1, 𝑥 + 1) + 𝑓 (𝑥, 𝑥 + 2) − 2𝑓 (𝑥, 𝑦)]

+(𝛼 − 1)[𝑓 (𝑥 + 1, 𝑥 + 1) + 𝑓 (𝑥, 𝑥) − 2𝑓 (𝑥, 𝑥 + 1)], if 𝑦 = 𝑥 + 1,

2(𝛼 − 1)[𝑓 (𝑥 − 1, 𝑥) + 𝑓 (𝑥, 𝑥 + 1) − 2𝑓 (𝑥, 𝑥)], if 𝑦 = 𝑥.
34
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With this new choice of operator acting on 𝜑̃𝑁𝑡 , we have corrected the sign problem but now the equation on the diagonal D+
𝑁 is

o longer closed for 𝜑̃𝑁𝑡 , i.e. the extra terms we get in (C.8) also depend on 𝜑̃𝑁𝑡 (𝑥, 𝑥) and 𝜑̃𝑁𝑡 (𝑥 + 1, 𝑥 + 1), which are terms of the
iagonal D𝑁 . Also, even though on the main diagonal we have a closed equation for 𝜑̃𝑁𝑡 , the extra terms that do not depend on
𝜑̃𝑁𝑡 are non-negative.

This motivates us to take as a candidate for 𝜑𝑁𝑡 a function of the following form:

𝜑𝑁𝑡 (𝑥, 𝑦) = 𝐶𝜑̃𝑁𝑡 (𝑥, 𝑦) + E𝜇𝑁 [𝑓𝑁𝑡 (𝑥)]1(𝑦 = 𝑥),

ith 𝑓𝑁𝑡 (𝑥) ∶= 𝐴𝜂(𝑥)2 + 𝐵𝜂(𝑥) + 𝐷 (where 𝐴, 𝐵, 𝐶 and 𝐷 will be chosen later on). This choice is due to the fact that, since L𝑁
preserves the degree of functions and we want to obtain a system of equations for degree two functions, then the function 𝑓𝑁𝑡 (𝑥)
hould be of degree two.

With this new definition we have

𝜕𝑡𝜑
𝑁
𝑡 (𝑥, 𝑦) = 𝑁2𝛥𝑖𝑁𝜑

𝑁
𝑡 (𝑥, 𝑦) + ℎ𝑡(𝑥, 𝑦),

where 𝑁2𝛥𝑖𝑁 is the operator defined in (4.10) considered without the part that involve boundary terms and

ℎ𝑡(𝑥, 𝑦) = −𝐶[∇̃+
𝑁𝜌

𝑁
𝑡 (𝑥)]21(𝑦 = 𝑥 + 1)

−𝑁2[(𝛼 − 1)𝐴 − 𝐶][E𝜇𝑁 [𝜂(𝑥)
2] + E𝜇𝑁 [𝜂(𝑥 + 1)2]]1(𝑦 = 𝑥 + 1)

−𝑁2{[(𝛼 − 1)𝐵 + 𝛼𝐶][𝜌𝑁𝑡 (𝑥) + 𝜌𝑁𝑡 (𝑥 + 1)] + 2(𝛼 − 1)𝐷}1(𝑦 = 𝑥 + 1)

+ 2𝑁2[(𝛼 − 1)𝐴 − 𝐶][𝜑𝑁𝑡 (𝑥, 𝑥 + 1) + 𝜑𝑁𝑡 (𝑥 − 1, 𝑥) + (𝜌𝑁𝑡 (𝑥 + 1) + 𝜌𝑁𝑡 (𝑥 − 1))𝜌𝑁𝑡 (𝑥)]1(𝑦 = 𝑥)

+ 𝛼𝑁2{[𝐵 + 𝐶 + 𝐴][𝜌𝑁𝑡 (𝑥 − 1) + 𝜌𝑁𝑡 (𝑥 + 1) + 2𝜌𝑁𝑡 (𝑥)] + 4𝐷}1(𝑦 = 𝑥).

We observe that, since we want ℎ𝑡 to not depend on 𝜑𝑁𝑡 , then it cannot depend on E𝜇𝑁 [𝜂(𝑥)
2] nor on E𝜇𝑁 [𝜂(𝑥 + 1)2], meaning that

he second and fourth lines of last display have to be equal to zero. Then (𝛼 − 1)𝐴− 𝐶 = 0, i.e. 𝐴 = 𝐶
𝛼−1 . We can then simplify ℎ𝑡 to

ℎ𝑡(𝑥, 𝑦) = −𝐶[∇̃+
𝑁𝜌

𝑁
𝑡 (𝑥)]21(𝑦 = 𝑥 + 1)

−𝑁2{[(𝛼 − 1)𝐵 + 𝛼𝐶][𝜌𝑁𝑡 (𝑥) + 𝜌𝑁𝑡 (𝑥 + 1)] + 2(𝛼 − 1)𝐷}1(𝑦 = 𝑥 + 1) (C.9)

+ 𝛼
𝛼−1𝑁

2{[(𝛼 − 1)𝐵 + 𝛼𝐶][𝜌𝑁𝑡 (𝑥 − 1) + 𝜌𝑁𝑡 (𝑥 + 1) + 2𝜌𝑁𝑡 (𝑥)] + 4𝐷}1(𝑦 = 𝑥). (C.10)

ow, by the fact that we want ℎ𝑡 to be uniformly (in 𝑁) bounded, from (C.10) we need 𝐷 ≤ 0 and (𝛼−1)𝐵+𝛼𝐶 ≤ 0, but from (C.9)
we also need 𝐷 ≥ 0 and (𝛼−1)𝐵+𝛼𝐶 ≥ 0. To make these two requirements compatible, we finally obtain that 𝐷 = (𝛼−1)𝐵+𝛼𝐶 = 0,
i.e. 𝐷 = 0 and 𝐵 = − 𝛼𝐶

𝛼−1 . This implies that ℎ𝑡(𝑥, 𝑦) = −𝐶[∇̃+
𝑁𝜌

𝑁
𝑡 (𝑥)]21(𝑦 = 𝑥 + 1). We impose that 𝐶 ≥ 0. For simplicity, we will take

= 1, and this coincides with the definition of 𝜑𝑁𝑡 from (4.18).

ppendix D. Proof of Lemma 4.1

The proof of last lemma follows exactly the same steps as in the proof of Lemma 6.2 of [18], which was done for the case 𝜃 ≥ 0.
or completeness and convenience of the reader we decided to present it here with the necessary adaptations to accommodate the
ase 𝜃 < 0. In fact the proof we present below works for any 𝜃 < 1 and we note that the proof for 𝜃 > 1 follows exactly the same
teps as the proof of Lemma 6.2 of [18]. Assume now that 𝜃 < 1. The idea of the proof is to find a sequence of functions {𝜙𝑁}𝑁 ,
uch that 𝜙𝑁 (𝑡, 𝑥𝑁 ) is close to 𝜌𝑁𝑡 (𝑥) with an error of order 𝑂(𝑁−1). Therefore, we consider a sequence of functions of class 𝐶4 in
pace and for that we need to restrict to initial profiles 𝜌0 of class 𝐶6. To this end let {𝜙𝑁 (𝑡, 𝑢)}𝑁≥1 be the solution of

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜕𝑡𝜙𝑁 (𝑡, 𝑢) = 𝛼𝜕2𝑢𝜙𝑁 (𝑡, 𝑢) , for 𝑡 > 0 , 𝑢 ∈ (0, 1) ,

𝜕𝑢𝜙𝑁 (𝑡, 0+) = 𝜇𝓁𝑁 (𝜙𝑁 (𝑡, 0+) − 𝜌𝓁) , for 𝑡 > 0 ,

𝜕𝑢𝜙𝑁 (𝑡, 1−) = 𝜇𝑟𝑁 (𝜌𝑟 − 𝜙𝑁 (𝑡, 1−)) , for 𝑡 > 0 ,

𝜙𝑁 (𝑡, 0) = 𝜌𝓁 , 𝜙𝑁 (𝑡, 1) = 𝜌𝑟 , for 𝑡 > 0 ,

𝜙𝑁 (0, 𝑢) = 𝑔𝑁 (𝑢) , 𝑢 ∈ [0, 1] ,

(D.1)

where, for 𝑗 ∈ {𝓁, 𝑟}, we define 𝜇𝑗𝑁 = 𝑁𝜆𝑗

𝑁𝜃−𝜆𝑗 , and 𝑔𝑁 is a function of class 𝐶6 and that satisfies (H3) and (H4). Repeating the proof
of Section 6.4 of [18], we see that 𝜙𝑁 ∈ 𝐶1,4, which is a consequence of the fact that the initial condition of the equation above is
of class 𝐶6 and 𝜙𝑁 satisfies (D.1).

For 𝑥 ∈ 𝛬𝑁 , let 𝛾𝑁𝑡 (𝑥) ∶= 𝜌𝑁𝑡 (𝑥) − 𝜙𝑁 (𝑡, 𝑥𝑁 ) . A simple computation shows that 𝛾𝑁𝑡 is solution of
{

𝜕𝑡𝛾𝑁𝑡 (𝑥) = (𝑁2𝛥𝑖𝑁 𝛾
𝑁
𝑡 )(𝑥) + 𝐹𝑁𝑡 (𝑥) , 𝑥 ∈ 𝛬𝑁 , 𝑡 ≥ 0 ,

𝛾𝑁𝑡 (0) = 0 , 𝛾𝑁𝑡 (𝑁) = 0 , 𝑡 ≥ 0 ,
(D.2)

where 𝛥𝑖𝑁 was defined in (2.18) and 𝐹𝑁𝑡 (𝑥) = (𝑁2𝛥𝑖𝑁 − 𝛼𝜕2𝑢 )𝜙𝑁 (𝑡, 𝑥𝑁 ). Since 𝜙𝑁 (𝑡, ⋅) is sufficiently regular, we are done if we show
hat ||

|

𝛾𝑁𝑡 (𝑥)||
|

≲ 1
𝑁 . From Duhamel’s formula, we have

𝛾𝑁 (𝑥) = E𝑥
[

𝛾𝑁 (𝑋𝑖
2 ) +

𝑡
𝐹𝑁 (𝑋𝑖

2 ) 𝑑𝑠
]

,

35
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where {𝑋𝑖
𝑠, 𝑠 ≥ 0} is the random walk on 𝑉 𝑁 with generator 𝛥𝑖𝑁 , absorbed at the boundary {0, 𝑁} and E𝑥 denotes the expectation

ith respect to the probability induced by the generator 𝛥𝑖𝑁 and the initial position 𝑥. Therefore,

sup
𝑡≥0

max
𝑥∈𝛬𝑁

|𝛾𝑁𝑡 (𝑧)| ≤ max
𝑥∈𝛬𝑁

|𝛾𝑁0 (𝑥)| + sup
𝑡≥0

max
𝑥∈𝛬𝑁

|

|

|

E𝑥
[

∫

𝑡

0
𝐹𝑁𝑡−𝑠(𝑋

𝑖
𝑠𝑁2 ) 𝑑𝑠

]

|

|

|

. (D.3)

From (H4), we have that

max
𝑥∈𝛬𝑁

|𝛾𝑁0 (𝑥)| = max
𝑥∈𝛬𝑁

|𝜌𝑁0 (𝑥) − 𝑔𝑁 ( 𝑥𝑁 )| ≲ 1
𝑁
.

hen, it remains to analyze the rightmost term in last display. Note that

|

|

|

E𝑥
[

∫

𝑡

0
𝐹𝑁𝑡−𝑠(𝑋

𝑖
𝑠𝑁2 ) 𝑑𝑠

]

|

|

|

≤ ∫

𝑡

0

∑

𝑧∈𝛬𝑁

P𝑥
[

𝑋𝑖
𝑠𝑁2 = 𝑧

]

|𝐹𝑁𝑡−𝑠(𝑧)| 𝑑𝑠. (D.4)

Since 𝜙𝑁 ∈ 𝐶4, then 𝐹𝑁𝑡 (𝑥) ≲ 1∕𝑁2 for 𝑥 ∈ {2,… , 𝑁 − 2} and for any 𝑡 ≥ 0 and last display is bounded by

𝐶
𝑁

+
∑

𝑘∈{1,𝑁−1}
E𝑥

[

∫

∞

0
𝟏{𝑋𝑖

𝑠𝑁2=𝑘}
𝑑𝑠

]

⋅ |𝐹𝑁𝑡 (𝑘)|. (D.5)

Last expectation is the average time spent by the random walk at the site 𝑘 until its absorption. This is the solution of the elliptic
equation

−𝑁2𝛥𝑖𝑁𝑇
𝑁 (𝑥) = 𝛿𝑥=𝑘,∀𝑥 ∈ 𝛬𝑁

with null Dirichlet conditions 𝑇𝑁 (0) = 0 and 𝑇𝑁 (𝑁) = 0. A simple computation shows that

𝑇𝑁 (𝑥) = 𝑁𝜃

𝑁2

[

−𝐴𝑖𝑁𝑥 + 𝐵
𝑖
𝑁

]

here

𝐴𝑖𝑁 ∶= 𝜆𝑟

𝜆𝓁𝜆𝑟(𝑁 − 2) + 𝛼𝑁𝜃(𝜆𝓁 + 𝜆𝑟)
and 𝐵𝑖𝑁 ∶= 1

𝜆𝓁
(

1 −
(

𝛼 − 𝜆𝓁

𝑁𝜃

)

𝐴𝑖𝑁𝑁
𝜃
)

.

From this it follows that max𝑥∈𝛬𝑁 |𝑇𝑁 (𝑥)| ≲ 𝑁𝜃

𝑁2 . Now we analyze max𝑘∈{1,𝑁−1} |𝐹𝑁𝑡 (𝑘)|. We do the proof for the case 𝑘 = 1 and we
eave the case 𝑘 = 𝑁 − 1 to the interested reader. Note that

𝐹𝑁𝑡 (1) = (𝑁2𝛥𝑖𝑁 − 𝛼𝜕2𝑢 )𝜙𝑁 (𝑡, 1
𝑁 )

= 𝛼𝑁2(𝜙𝑁 (𝑡, 2
𝑁 ) − 𝜙𝑁 (𝑡, 1

𝑁 )) + 𝛼𝑁2−𝜃𝜆𝓁(𝜙𝑁 (𝑡, 0) − 𝜙𝑁 (𝑡, 1
𝑁 )) − 𝛼𝜕2𝑢𝜙𝑁 (𝑡, 1

𝑁 ).

Now we use the regularity of 𝜙𝑁 and make a Taylor expansion to get

𝐹𝑁𝑡 (1) = 𝛼𝑁𝜕𝑢𝜙𝑁 (𝑡, 0+) + 𝑂(1) + 𝛼𝑁2−𝜃𝜆𝓁
(

𝜙𝑁 (𝑡, 0) − 𝜙𝑁 (𝑡, 0+) − 1
𝑁
𝜕𝑢𝜙𝑁 (𝑡, 0+)

)

+ 𝑂(𝑁−𝜃).

f we now use the condition

𝛼𝑁(1 − 𝜆𝓁

𝑁𝜃 )𝜕𝑢𝜙𝑁 (𝑡, 0+) = 𝛼𝑁2−𝜃𝜆𝓁
(

𝜙𝑁 (𝑡, 0+) − 𝜙𝑁 (𝑡, 0)
)

,

which (by noting that 𝜙𝑁 (𝑡, 0) = 𝜌𝓁) coincides with 𝜕𝑢𝜙𝑁 (𝑡, 0+) = 𝜇𝓁𝑁 (𝜙𝑁 (𝑡, 0+) − 𝜌𝓁), then we obtain

sup
𝑡≥0

|𝐹𝑁𝑡 (1)| ≲ 1 +𝑁−𝜃 .

utting all the estimates together we find the bound for (D.3) given by

sup
𝑡≥0

max
𝑥∈𝛬𝑛

|𝛾𝑁𝑡 (𝑥)| ≲ 1
𝑁

+ 𝑁𝜃

𝑁2
+ 1
𝑁2

from where the proof ends, since 𝜃 < 1.

emark 1. We observe that, for each 𝑁 ∈ N, the stationary solution of (D.1), that we denote by 𝜌̄𝜇𝑗𝑁
, under the assumption that

𝜆𝓁 = 𝜆𝑟 ∶= 𝜆, is given by

𝜌̄𝜇𝑗𝑁
(𝑢) ∶=

𝜌𝑟 + 𝜌𝑙(1 + 𝜇𝑗𝑁 )

2 + 𝜇𝑗𝑁
+
𝜇𝑗𝑁 (𝜌𝑟 − 𝜌𝑙)𝑢

2 + 𝜇𝑗𝑁
. (D.6)

So, taking 𝑔𝑁 = 𝜌̄𝜇𝑗𝑁
+ 𝑓 ∈ 𝐶6 where 𝑓 is a 𝐶∞

𝑐 [0, 1] function, we have that 𝑔𝑁 satisfies (H3). Indeed, using (D.6) and the definition
of 𝜇𝑗𝑁 , we get that

𝜌̄𝜇𝑖 (𝑢) =
(𝑁𝜃 − 𝜆)(𝜌𝑟 + 𝜌𝑙) +𝑁𝜆𝜌𝑙

+
𝑁𝜆(𝜌𝑟 − 𝜌𝑙)𝑢

= 𝑁𝑎𝑁𝑢 + 𝑏𝑁 .
36
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Therefore, because 𝑓 has compact support, we have that

𝜕𝑘𝑢 𝑔𝑁 (𝑢) = 𝜕𝑘𝑢 𝜌̄𝜇𝑖𝑁 (𝑢),

or 𝑢 ∈ {0, 1} and 𝑘 = 0, 1, 2, 3. Moreover, if we restrict 𝜌𝑁0 to be such that 𝜌𝑁0 (𝑥) = 𝑔𝑁
(

𝑥
𝑁

)

, then (H4) is trivially satisfied and we
can find 𝛾 which satisfies (H2). Indeed,

𝜌̄𝜇𝑗𝑁
(𝑢) ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

𝑁→+∞
𝜌̄(𝑢) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌𝑙 + (𝜌𝑟 − 𝜌𝑙)𝑢, if 𝜃 < 1,
𝜌𝑟+(1+𝜆)𝜌𝑙

2+𝜆 + 𝜆(𝜌𝑟−𝜌𝑙 )𝑢
2+𝜆 , if 𝜃 = 1,

𝜌𝑟+𝜌𝑙
2 , if 𝜃 > 1.

where the limit is taken uniformly in 𝑢. Taking 𝛾 = 𝜌̄ + 𝑓 we have that
1
𝑁

∑

𝑥∈𝛬𝑁

|

|

|

𝜌𝑁0 (𝑥) − 𝛾
( 𝑥
𝑁

)

|

|

|

= 1
𝑁

∑

𝑥∈𝛬𝑁

|

|

|

𝜌̄𝜇𝑖𝑁

( 𝑥
𝑁

)

− 𝜌̄
( 𝑥
𝑁

)

|

|

|

≤ sup
𝑢∈[0,1]

|𝜌̄𝜇𝑖𝑁 (𝑢) − 𝜌̄(𝑢)| ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑁→+∞
0

and so (H2) is satisfied.

Appendix E. Replacement lemma

For a configuration 𝜂 ∈ 𝛺𝑁 and 𝑥 ∈ 𝛬𝑁 we define the translation by 𝑥 of 𝜂 as (𝜏𝑥𝜂)(𝑦) = 𝜂(𝑥 + 𝑦). Recall (3.8).

Lemma E.1 (Replacement Lemma). Recall from Proposition 4.4 the definition of 𝛬𝜖,𝓁𝑁 , 𝛬𝜖,𝑟𝑁 . Fix 𝑥 ∉ 𝛬𝜖,𝑟𝑁 and let 𝜑 ∶ 𝛺𝑁 → R be a function
whose support does not intersects the set of points in {𝑥 + 1,… , 𝑥 + 𝜖𝑁}. Then for any 𝜃 ∈ R and for any 𝑡 ∈ [0, 𝑇 ], it holds

lim
𝜖→0

lim
𝑁→+∞

E𝜇𝑁
[

|

|

|∫

𝑡

0
𝜑(𝜏𝑥𝜂)

(

𝜂𝑠𝑁2 (𝑥) − ⃖⃗𝜂⌊𝜖𝑁⌋

𝑠𝑁2 (𝑥)
)

𝑑𝑠||
|

]

= 0. (E.1)

If 𝑥 ∉ 𝛬𝜖,𝓁𝑁 and for 𝜑 ∶ 𝛺𝑁 → R a function whose support does not intersects the set of points in {𝑥 − 𝜖𝑁,… , 𝑥 − 1}, the same statement
olds replacing ⃖⃗𝜂⌊𝜖𝑁⌋

𝑠𝑁2 (𝑥) by ⃖⃖𝜂⌊𝜖𝑁⌋

𝑠𝑁2 (𝑥).

In the case 𝜑 ≡ 1, the last result was proved in Lemma 4.3 of [13] but for sake of completeness we give here a sketch of the
roof of the more general result stated above, by following the strategy of the proof of the Lemma 4.3 of [13].

roof. Our starting point is to change the measure 𝜇𝑁 to a reference measure, which in fact should be the invariant state of
he system that we do not know, but instead we consider another suitable measure that we define as follows. To this end, let
∶ [0, 1] → (0, 1) be a Lipschitz function, bounded away from zero and one, and let

𝜈𝑁𝜚(⋅)(𝜂) ∶=
𝑁−1
∏

𝑥=1

(

𝛼
𝜂(𝑥)

)

(

𝜚( 𝑥𝑁 )
)𝜂(𝑥) (

1 − 𝜚( 𝑥𝑁 )
)𝛼−𝜂(𝑥)

(E.2)

be the inhomogeneous Binomial product measure of parameter 𝜚(⋅).
From the entropy and Jensen’s inequalities, the fact that 𝑒|𝑥| ≤ 𝑒𝑥 + 𝑒−𝑥 and that for sequences of positive real numbers

𝑎𝑁 )𝑁 , (𝑏𝑁 )𝑁 it holds

lim sup
𝑁→∞

1
𝑁

log(𝑎𝑁 + 𝑏𝑁 ) = max
{

lim sup
𝑁→∞

1
𝑁

log(𝑎𝑁 ), lim sup
𝑁→∞

1
𝑁

log(𝑏𝑁 )
}

,

ogether with Feynman–Kac’s formula, the expectation in (E.1) is bounded from above by

𝐻(𝜇𝑁 |𝜈𝑁𝜚(⋅))

𝐵𝑁
+ 𝑡 sup

𝑓density

{

±⟨𝜑(𝜏𝑥𝜂)(𝜂(𝑥) − ⃖⃗𝜂⌊𝜖𝑁⌋(𝑥)), 𝑓⟩𝜈𝑁𝜚(⋅)
+ 𝑁

𝐵 ⟨L𝑁
√

𝑓,
√

𝑓 ⟩𝜈𝑁𝜚(⋅)

}

,

here 𝐵 > 0.
Now we note that a bound on the entropy can be obtained as 𝐻(𝜇𝑁 |𝜈𝑁𝜚(⋅)) ≲ 𝑁 , see for example beginning of Section 4 of [13].

oreover, we can use the estimate 𝑁2
⟨L𝑁

√

𝑓,
√

𝑓⟩𝜈𝑁𝜚(⋅)
given in Lemma 4.1 of [13] (where the parameters 𝜖, 𝛾, 𝛿, 𝛽 there have the

correspondence given in (2.1)). Putting this all together, we get that the expectation in the statement of the lemma is bounded from
above by a constant times

1
𝐵

+ 𝑡 sup
𝑓density

{

±⟨𝜑(𝜏𝑥𝜂)(𝜂(𝑥) − ⃖⃗𝜂⌊𝜖𝑁⌋(𝑥)), 𝑓⟩𝜈𝑁𝜚(⋅)
− 𝑁
𝐵
𝐷𝜈𝑁𝜚(⋅)

(
√

𝑓 )
}

+ 1
𝐵𝑁

,

where

𝐷𝜈𝑁 (
√

𝑓 ) ∶= 𝐷𝓁
𝑁 (

√

𝑓 ) +𝐷𝑏𝑢𝑙𝑘
𝑁 (

√

𝑓 ) +𝐷𝑟
𝑁 (

√

𝑓 )
37
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a

𝜆

S

U

with

𝐷𝓁
𝜈𝑁𝜚(⋅)

(
√

𝑓 ) ∶= ∫𝛺𝑁

[

𝜆𝓁𝜚𝓁𝜂(1)
𝑁𝜃

{

√

𝑓 (𝜂1,0) −
√

𝑓 (𝜂)
}2

+
𝜆𝓁[𝛼 − 𝜚𝓁][𝛼 − 𝜂(1)]

𝑁𝜃

{

√

𝑓 (𝜂0,1) −
√

𝑓 (𝜂)
}2

]

𝑑𝜈𝑁𝜚(⋅)

𝐷𝑏𝑢𝑙𝑘
𝜈𝑁𝜚(⋅)

(
√

𝑓 ) ∶=
𝑁−2
∑

𝑥=1
𝐷𝑥,𝑥+1
𝜈𝑁𝜚(⋅)

(
√

𝑓 ) +𝐷𝑥+1,𝑥
𝜈𝑁𝜚(⋅)

(
√

𝑓 )

=
𝑁−2
∑

𝑥=1
∫𝛺𝑁

𝜂(𝑥)[𝛼 − 𝜂(𝑥 + 1)]
{

√

𝑓 (𝜂𝑥,𝑥+1) −
√

𝑓 (𝜂)
}2
𝑑𝜈𝑁𝜚(⋅)

+
𝑁−2
∑

𝑥=1
∫𝛺𝑁

𝜂(𝑥 + 1)[𝛼 − 𝜂(𝑥)]
{

√

𝑓 (𝜂𝑥+1,𝑥) −
√

𝑓 (𝜂)
}2
𝑑𝜈𝑁𝜚(⋅)

nd the definition of 𝐷𝑟
𝜈𝑁𝜚(⋅)

(
√

𝑓 ) is analogous to the one of 𝐷𝓁
𝜈𝑁𝜚(⋅)

(
√

𝑓 ) by replacing 0 and 1 by 𝑁 and 𝑁 − 1, respectively, and also
𝓁 and 𝜚𝓁 by 𝜆𝑟 and 𝜚𝑟, respectively. We are now left with estimating

⟨𝜑(𝜏𝑥𝜂)(𝜂(𝑥) − ⃖⃗𝜂⌊𝜖𝑁⌋(𝑥)), 𝑓⟩𝜈𝑁𝜚(⋅)

for every 𝑓 density with respect to 𝜈𝑁𝜚(⋅). Note that

⟨𝜑(𝜏𝑥𝜂)(𝜂(𝑥) − ⃖⃗𝜂⌊𝜖𝑁⌋(𝑥)), 𝑓⟩𝜈𝑁𝜚(⋅)
= 1

⌊𝜖𝑁⌋

𝑥+⌊𝜖𝑁⌋

∑

𝑦=𝑥+1

𝑦−1
∑

𝑤=𝑥+1
⟨[𝜂(𝑤) − 𝜂(𝑤 + 1)]𝜑(𝜏𝑥𝜂), 𝑓⟩𝜈𝑁𝜚(⋅)

.

ince

⟨[𝜂(𝑤) − 𝜂(𝑤 + 1)]𝜑(𝜏𝑥𝜂), 𝑓⟩𝜈𝑁𝜚(⋅)

= 1
2 ∫𝛺𝑁

[𝜂(𝑤) − 𝜂(𝑤 + 1)]𝜑(𝜏𝑥𝜂)[𝑓 (𝜂) − 𝑓 (𝜂𝑤,𝑤+1)]𝑑𝜈𝑁𝜚(⋅) (E.3)

+ 1
2 ∫𝛺𝑁

[𝜂(𝑤) − 𝜂(𝑤 + 1)]𝜑(𝜏𝑥𝜂)[𝑓 (𝜂) + 𝑓 (𝜂𝑤,𝑤+1)]𝑑𝜈𝑁𝜚(⋅), (E.4)

making a change of variables 𝜂 ↦ 𝜉 = 𝜂𝑤,𝑤+1 in (E.4) (and noting that the support of 𝜑 does not overlap with the set of points where
this change is done) and splitting the state space 𝛺𝑁 as is done in Lemma 4.3 of [13], we get

(E.4) = 1
2 ∫𝛺𝑁

[𝜂(𝑤) − 𝜂(𝑤 + 1)]𝜑(𝜏𝑥𝜂)

⎛

⎜

⎜

⎜

⎝

1 −
𝜚
(

𝑤
𝑁

)

[1 − 𝜚
(

𝑤+1
𝑁

)

]

𝜚
(

𝑤+1
𝑁

)

[1 − 𝜚
(

𝑤
𝑁

)

]

⎞

⎟

⎟

⎟

⎠

𝑓 (𝜂)𝑑𝜈𝑁𝜚(⋅).

Since 𝜚(⋅) is Lipschitz and bounded away from zero and one; the occupation variables are bounded and 𝑓 is a density, the last display
is bounded from above by a constant times |

|

|

𝜚
(

𝑤+1
𝑁

)

− 𝜚
(

𝑤
𝑁

)

|

|

|

.
Since 𝜂(𝑤) − 𝜂(𝑤 + 1) = 1

𝛼 (𝜂(𝑤)[𝛼 − 𝜂(𝑤 + 1)] − 𝜂(𝑤 + 1)[𝛼 − 𝜂(𝑤)]) and 𝑥2 − 𝑦2 = (𝑥 − 𝑦)(𝑥 + 𝑦), we get that (E.3) is equal to

1
2𝛼 ∫𝛺𝑁

𝜂(𝑤)[𝛼 − 𝜂(𝑤 + 1)]𝜑(𝜏𝑥𝜂)[
√

𝑓 (𝜂) −
√

𝑓 (𝜂𝑤,𝑤+1)][
√

𝑓 (𝜂) +
√

𝑓 (𝜂𝑤,𝑤+1)]𝑑𝜈𝑁𝜚(⋅)

− 1
2𝛼 ∫𝛺𝑁

𝜂(𝑤 + 1)[𝛼 − 𝜂(𝑤)]𝜑(𝜏𝑥𝜂)[
√

𝑓 (𝜂𝑤+1,𝑤) −
√

𝑓 (𝜂)][
√

𝑓 (𝜂𝑤+1,𝑤) +
√

𝑓 (𝜂)]𝑎𝑤𝑑𝜈𝑁𝜚(⋅)

(E.5)

sing Young’s inequality and then that (𝑥 + 𝑦)2 ≤ 2(𝑥2 + 𝑦2), we can bound (E.5) by

1
4𝛼𝐴 ∫𝛺𝑁

𝜂(𝑤)[𝛼 − 𝜂(𝑤 + 1)][
√

𝑓 (𝜂) −
√

𝑓 (𝜂𝑤,𝑤+1)]2𝑑𝜈𝑁𝜚(⋅)

+ 𝐴
2𝛼 ∫𝛺𝑁

𝜂(𝑤)[𝛼 − 𝜂(𝑤 + 1)](𝜑(𝜏𝑥𝜂))2[𝑓 (𝜂) + 𝑓 (𝜂𝑤,𝑤+1)]𝑑𝜈𝑁𝜚(⋅)

+ 1
4𝛼𝐴 ∫𝛺𝑁

𝜂(𝑤 + 1)[𝛼 − 𝜂(𝑤)][
√

𝑓 (𝜂𝑤+1,𝑤) −
√

𝑓 (𝜂)]2𝑑𝜈𝑁𝜚(⋅)

+ 𝐴
2𝛼 ∫𝛺𝑁

𝜂(𝑤 + 1)[𝛼 − 𝜂(𝑤)](𝜑(𝜏𝑥𝜂))2[𝑓 (𝜂𝑤+1,𝑤) + 𝑓 (𝜂)](𝑎𝑤)2𝑑𝜈𝑁𝜚(⋅).

where 𝐴 > 0 will be chosen later.
Putting together the previous bounds, we get that (E.3) and (E.4) are bounded from above by

⟨𝜑(𝜏𝑥𝜂) [𝜂(𝑤) − 𝜂(𝑤 + 1)] , 𝑓⟩𝜈𝑁 ≲ 1
[

𝐷𝑤,𝑤+1
𝑁 (

√

𝑓 ) +𝐷𝑤+1,𝑤
𝑁 (

√

𝑓 )
]

+ 𝐴 + |

|𝜚
(𝑤 + 1) − 𝜚

( 𝑤 )

|

|. (E.6)
38

𝜚(⋅) 𝐴 𝜈𝜚(⋅) 𝜈𝜚(⋅) | 𝑁 𝑁 |



Stochastic Processes and their Applications 178 (2024) 104463C. Franceschini et al.

F

From this it follows that

± 1
⌊𝜖𝑁⌋

𝑥−1
∑

𝑦=𝑥−⌊𝜖𝑁⌋

𝑦−1
∑

𝑤=𝑥
⟨[𝜂(𝑤) − 𝜂(𝑤 + 1)] [𝛼 − 𝜂(𝑥 + 1)], 𝑓⟩𝜈𝑁𝜚(⋅)

− 𝑁
𝐵
𝐷𝜈𝑁𝜚(⋅)

(
√

𝑓 )

≲ 1
⌊𝜖𝑁⌋

𝑥−1
∑

𝑦=𝑥−⌊𝜖𝑁⌋

𝑦−1
∑

𝑤=𝑥

[

1
4𝐴

[

𝐷𝑤,𝑤+1
𝜈𝑁𝜚(⋅)

(
√

𝑓 ) +𝐷𝑤+1,𝑤
𝜈𝑁𝜚(⋅)

(
√

𝑓 )
]

− 𝑁
𝐵
𝐷𝜈𝑁𝜚(⋅)

(
√

𝑓 )

+ 𝐴𝜖𝑁 + 1
⌊𝜖𝑁⌋

𝑥−1
∑

𝑦=𝑥−⌊𝜖𝑁⌋

𝑦−1
∑

𝑤=𝑥

|

|

|

𝜚
(𝑤 + 1

𝑁

)

− 𝜚
( 𝑤
𝑁

)

|

|

|

≲ 1
4𝐴

− 𝑁
𝐵
𝐷𝜈𝑁𝜚(⋅)

(
√

𝑓 ) + 𝐴𝜖𝑁 + 1
⌊𝜖𝑁⌋

𝑥−1
∑

𝑦=𝑥−⌊𝜖𝑁⌋

𝑦−1
∑

𝑤=𝑥

|

|

|

𝜚
(𝑤 + 1

𝑁

)

− 𝜚
( 𝑤
𝑁

)

|

|

|

.

Choosing 𝐴 = 𝐵
4𝑁 and using the fact that 𝜚(⋅) is Lipschitz, then

lim sup
𝑁→∞

E𝜇𝑁
[

|

|

|∫

𝑡

0
𝜑(𝜏𝑥𝜂)

(

𝜂𝑠𝑁2 (𝑥) − ⃖⃗𝜂⌊𝜖𝑁⌋

𝑠𝑁2 (𝑥)
)

𝑑𝑠||
|

]

≲ 1
𝐵

+
[𝐵𝜖
4

+ 𝜖
]

.

inally, taking the limit 𝜖 → 0 and then 𝐵 → ∞, we are done. The proof of the other average to the left is completely analogous
and we leave it to the reader. □
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