
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Hierarchical Traffic Management of Multi-AGV
Systems With Deadlock Prevention Applied

to Industrial Environments
Federico Pratissoli , Graduate Student Member, IEEE, Riccardo Brugioni , Nicola Battilani,

and Lorenzo Sabattini , Senior Member, IEEE

Abstract— This paper concerns the coordination and the traffic
management of a group of Automated Guided Vehicles (AGVs)
moving in a real industrial scenario, such as an automated
factory or warehouse. The proposed methodology is based on
a three-layer control architecture, which is described as follows:
1) the Top Layer (or Topological Layer) allows to model the
traffic of vehicles among the different areas of the environment;
2) the Middle Layer allows the path planner to compute a
traffic sensitive path for each vehicle; 3) the Bottom Layer
(or Roadmap Layer) defines the final routes to be followed
by each vehicle and coordinates the AGVs over time. In the
paper we describe the coordination strategy we propose, which
is executed once the routes are computed and has the aim to
prevent congestions, collisions and deadlocks. The coordination
algorithm exploits a novel deadlock prevention approach based
on time-expanded graphs. Moreover, the presented control archi-
tecture aims at grounding theoretical methods to an industrial
application by facing the typical practical issues such as graphs
difficulties (load/unload locations, weak connections,. . . ), a prede-
fined roadmap (constrained by the plant layout), vehicles errors,
dynamical obstacles, etc. In this paper we propose a flexible and
robust methodology for multi-AGVs traffic-aware management.
Moreover, we propose a coordination algorithm, which does not
rely on ad hoc assumptions or rules, to prevent collisions and
deadlocks and to deal with delays or vehicle motion errors.

Note to Practitioners—This paper concerns the coordination
and the traffic management of a group of Automated Guided
Vehicles (AGVs) moving in a real industrial scenario, such as an
automated factory or warehouse. The proposed methodology is
based on a three-layer control architecture, which is described
as follows: 1) the Top Layer (or Topological Layer) allows
to model the traffic of vehicles among the different areas of
the environment; 2) the Middle Layer allows the path planner
to compute a traffic sensitive path for each vehicle; 3) the
Bottom Layer (or Roadmap Layer) defines the final routes to

Manuscript received 31 January 2023; accepted 2 May 2023. This work was
supported by the COLLABORATION Project through the Italian Ministry of
Foreign Affairs and International Cooperation. This article was recommended
for publication by Associate Editor L. Liu and Editor P. Rocco upon evaluation
of the reviewers’ comments. (Corresponding author: Federico Pratissoli.)

Federico Pratissoli and Lorenzo Sabattini are with the Department of
Sciences and Methods for Engineering (DISMI), University of Modena and
Reggio Emilia, 41121 Modena, Italy (e-mail: federico.pratissoli@unimore.it;
lorenzo.sabattini@unimore.it).

Riccardo Brugioni was is with RSEngineering S.r.l., 41053 Maranello, Italy
(e-mail: brugioniriccardo@gmail.com).

Nicola Battilani is with Industria Tecnologica Italiana S.r.l. (IT-I), 42122
Reggio Emilia, Italy (e-mail: nicola.battilani@it-i.it).

This article has supplementary material provided by the authors and
color versions of one or more figures available at https://doi.org/10.1109/
TASE.2023.3276233.

Digital Object Identifier 10.1109/TASE.2023.3276233

be followed by each vehicle and coordinates the AGVs over
time. In the paper we describe the coordination strategy we
propose, which is executed once the routes are computed and
has the aim to prevent congestions, collisions and deadlocks.
The coordination algorithm exploits a novel deadlock prevention
approach based on time-expanded graphs. Moreover, the pre-
sented control architecture aims at grounding theoretical methods
to an industrial application by facing the typical practical
issues such as graphs difficulties (load/unload locations, weak
connections, . . . ), a predefined roadmap (constrained by the plant
layout), vehicles errors, dynamical obstacles, etc. In this paper
we propose a flexible and robust methodology for multi-AGVs
traffic-aware management. Moreover, we propose a coordination
algorithm, which does not rely on ad hoc assumptions or rules,
to prevent collisions and deadlocks and to deal with delays or
vehicle motion errors.

Index Terms— Multi-robot system, automated factory, mobile
robotics, software, traffic management, deadlock.

I. INTRODUCTION

AUTOMATED warehouses and automated factories are
spreading as the solution to the increasing demand and

the Automated Guided Vehicle (AGV) systems are conse-
quently gaining popularity and relevance. AGVs increase
efficiency, flexibility, and reduce costs by helping to automate
a manufacturing facility or warehouse [1]. As such, several
strategies have been developed to deal with major issues in
automated warehouses, such as traffic management or safety
and performance guarantees [2]. Along these lines, motion
coordination of a high number of vehicles has become a widely
studied research topic in the field of multi-robot systems [3].

Different strategies have been deepened to increase global
performance indices such as efficiency, safety, scalability,
or robustness to failures [4]. Two approaches can be mainly
found in literature: centralized and decentralized approaches.
The former strategy is able to find the optimal solution for
the multi-robot system planning and control problem [5].
Thus, centralized approaches show generally better perfor-
mances when compared to decentralized ones [6]. However,
the problem complexity — and hence computational costs —
quickly becomes impractical while increasing the number of
robots over a few tens [7]. Moreover, centralized control meth-
ods are usually classified as coupled or decoupled. Coupled
methods [1] control the whole system exploiting classical
single-vehicle motion planning control methods. The task is
to find a path for each agent in the group, from a start to
a goal position, which avoids collisions between agents. Two

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

https://orcid.org/0000-0001-7655-5748
https://orcid.org/0009-0000-7275-3819
https://orcid.org/0000-0002-2734-5549


2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

robots are in a collision if they are located in the same position
at the same time. This Multi-Agent Path Finding problem
(MAPF) [8] can be solved for example exploiting the well-
known Conflict-Based Search (CBS) optimal algorithm [9],
a typical coupled approach. These approaches generally find
optimal solutions, at the cost of a high computational effort and
limited scalability. Decoupled methods [10], [11], [12] sim-
plify the vehicles coordination and control problem by dividing
it into two main phases: path planning and motion coor-
dination. Decoupled control algorithms are generally much
faster than coupled ones, however, they may find sub-optimal
solutions and they are prone to generating deadlocks.

In decentralized approaches [11], [13], [14], each robot
communicates with its neighboring ones to estimate the global
performance of the system and to make local control deci-
sions [15]. Decentralized methodologies are computationally
less demanding than centralized ones. The computation for the
multi-robot system coordination is shared among the agents,
making the system easily scalable to large scenarios [16].
However, these methodologies present some disadvantages:
they generally find a sub-optimal solution to the coordination
problem and, especially, they may fail in finding a solution
and a feasible path for every agent in the system due to
deadlocks [17], [18]. Moreover, the complexity may still be
high in terms of exchanged messages or message size.

For these reasons, although relevant studies have been
proposed to manage the coordination of automated vehicles
exploiting decentralized approaches, the traffic and coordina-
tion of AGVs in industrial scenarios is generally managed
by a centralized supervisor. In other words, there exists a
central computational unit that manages all the information
coming from the environment and the vehicles to optimally
coordinate the vehicles. Moreover, decoupled approaches are
preferable to coupled ones, since these generally require
a significant amount of computational effort, are generally
more vulnerable to failures and are hardly scalable to large
teams of robots [19]. The management of a fleet of AGVs
includes dealing with a multi-robot path planning problem:
in decoupled control strategies this is generally decomposed
into modules to reduce the complexity [20]. A hierarchical
architecture control strategy can be exploited to solve planning
and coordination problems for large-scale infrastructures [17].
Every robot is coordinated along its planned path to its goal
in order to avoid conflicts and dissolve deadlocks.

Typically, in modern automatic warehouses and factories
the movements and trajectories of the automatic vehicles are
defined by the roadmap, which consists of a set of predefined
virtual paths, as illustrated in [21]. The roadmap depends
on the plant structure and has a relevant role in the traffic
management of the AGVs affecting the performance of the
control system. Thus, typically, in industrial applications, once
a path has been computed, it is assigned to every AGV and
their coordination is managed over the plant following a set
of traffic rules manually defined during the installation of the
system [22]. This approach requires a lot of personnel working
during the AGV system deployment in the plant and when
variations are required in the system, since all the exceptions
have to be manually managed. The work illustrated in [23],

[24] describes the coordination diagrams, which are tools used
for representing the possible collisions among the vehicles,
useful to handle the coordination of the AGVs limiting the
use of manual traffic rules. Several methodologies have been
proposed for the definition of a roadmap, typically based on
random sampling techniques [25], [26] or using probabilistic
methods [27]. Another strategy is proposed by [28] which
is more focused on the roadmap definition for industrial
scenarios. These works aim to find a solution for the automatic
generation of the roadmap, building the framework for traffic
management of the AGVs upon such solution. Thus, the
roadmap is defined to help the coordination of vehicles in
the warehouse or factory. However, this approach excludes
the majority of the industrial scenarios where the roadmap
is provided a priori and represents then a constraint for the
traffic manager: e.g. the coordination strategy proposed in [28]
can not be applied in these industrial scenarios. Moreover, the
mentioned methods are designed for managing robots in static,
dedicated environments and cease to work if key assumptions
on the infrastructure or on the fleet are dropped, as typically
happens in industrial applications [29].

In this paper, we present a centralized and decoupled control
strategy to efficiently coordinate the movements of a fleet of
automated vehicles in a real industrial scenario. The proposed
approach allows us to build a control system scalable to large
fleets of vehicles and able to efficiently deal with the issues and
performance requirements typical of an industrial application.
This study is built upon the work presented in [30], where
preliminary results were introduced on a hierarchical approach
and methodology to design a flexible traffic manager able
to coordinate a fleet of real AGVs in an industrial scenario.
The control strategy exploits a multiple layer approach, which
allows to simplify path planning computation, model the
traffic and coordinate the vehicles on the planned routes.
The proposed control architecture is built upon a predefined
and fixed roadmap of the plant. In fact the structure and
organization of an automated warehouse or factory is usually
designed to optimize and simplify the coordination of multiple
AGVs in the plant. The presented work considers the common
case where the AGV system has to be deployed in an existing
and structured plant, where the roadmap of the plant is given
and cannot be modified. The proposed methodology aims
to introduce a flexible and an efficient system able to deal
with non-idealities and issues introduced typically by a real
and industrial implementation of the roadmap, such as the
presence of locations where AGVs are required to perform
loading/unloading operations (red nodes in Fig. 1 and Fig. 3),
lack of redundancy or bidirectional single vehicle corridors.
The proposed strategy, as stated in [30], aims to be robust
to the issues that usually affect industrial scenarios, such as
dynamic obstacles and communication errors [31]. While the
overall architecture was only presented in [30] in a prelim-
inary form, in this paper we propose the full coordination
strategy, including a detailed description of the coordination
method implemented on the lowest layer of the hierarchical
architecture, which aims to avoid the collisions among the
AGVs, which are moving on the precomputed routes. The
coordination algorithm, described in Section VI, exploits the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



PRATISSOLI et al.: HIERARCHICAL TRAFFIC MANAGEMENT OF MULTI-AGV SYSTEMS 3

Fig. 1. The figure shows the factory structure (red, green, and black drawings)
and the plant graph G of our use case, which is elicited by a real application.
In particular, red nodes indicate load or unload locations, while red nodes
indicate transit areas.

prediction of future locations of the AGVs to solve the future
conflicts. Furthermore, deadlock issues were not considered
in [30]: in this paper we present a deadlock prevention
algorithm, which exploits the time expanded graphs [32].

Deadlock situations arise when a group of tasks becomes
interlocked in such a way that they cannot be completed. The
authors in [33] theorize the general conditions sufficient to
generate a deadlock situation. The most relevant one for a
multi AGV system defines that a deadlock state is generated
by a circular chain of tasks, such that each task holds the
resources needed by the next task in the chain. Different
approaches were studied to prevent deadlock occurrence in
a multitasking system for various scenarios [33], [34]. In a
multi vehicle system scenario, the authors expressed the traffic
deadlock in terms of graphs and show how a circuit (directed
loop) in the generated graph is a necessary and sufficient
condition for a deadlock.

In this paper, we propose a methodology based on time
expanded graphs to deal with traffic deadlocks for every time
step in the trajectory followed by the AGVs. The proposed
methodology has been integrated into the control software of
real industrial plants, in collaboration with Proxaut s.r.l.: this
allowed us to validate the proposed methodology in a real use
case. In this work, we describe the experiments we conducted
in one automated factory and we compare the performance
of the developed software with the company’s one usually
implemented on its plants.

The rest of the paper is organized as follows. Section II
aims at providing the reader with the main background notions
that will be used in this paper. Section III gives an overview
and a brief description of the control architecture proposed in
this paper. Section IV describes in detail the proposed multi-
layer architecture, the role of the layers in the coordination
and planning and their interconnections. Section V focuses
on the proposed path planning strategies adopted to consider
the traffic status in the path computation. In Section VI
we describe the whole traffic manager algorithm, the AGVs
coordination methodology and the proposed deadlock preven-
tion policy. Finally, Section VII reports the simulations and
the experiments conducted on the real industrial plant and
Section VIII deals with the conclusion and future works.

II. ALGEBRAIC GRAPH THEORY

In this section, we recall some notions on graph theory that
will be used in the paper to model interconnections in our
multi-layered architecture. The reader is referred to [35] for
additional details.

Let G = (N , E) be a directed graph characterized by a set
N (G) of vertices or nodes and a set E(G) ⊆ N (G)×N (G) of
edges. Given an edge (i, j) ∈ E , then the node j is a neighbor
of i . Let K be a subgraph of G, then K is a graph where the
node set N (K) is a subset of N (G) and the edge set E(K)

is a subset of E(G). A path is a finite sequence of edges that
joins a sequence of nodes, which are all distinct. In a path of
length L , the nodes can be listed as {n1, n2, . . . , nL}, such that
the edges are (ni , ni+1), where i = 1, 2, . . . , L − 1.

Let G be a directed and connected graph, then at least one
path exists between each pair of nodes in N (G). Moreover, G
is a strongly connected graph if, for any pair of nodes u, v in
N (G), a directed path can be defined from u to v and from v

to u. Contrariwise, G is a weakly connected graph if, for any
pair of nodes u, v in N (G), a directed path exists from u to
v, but not necessarily from v to u.

Given a directed graph G, we assume each edge in E(G)

is associated with a positive weight. Thus, given two nodes
u, v ∈ N (G), the minimum cost path from u to v can be
computed by using standard graph search algorithms (e.g.,
Dijkstra, A*, DFS — see [36], [37] for details). In this paper,
we exploit the graph to represent the predefined feasible routes
to be followed by vehicles in the plant. In this sense, the
graph nodes N (G) represent the reachable locations in the
plant and the edges E(G) model the available roads between
two nodes. Accordingly, the edge weight can be arbitrarily
defined to quantify relevant information: in this paper, we will
use the weights to quantify the expected travel time. Standard
graph search algorithms are used to compute the path from
a start to a goal location in the plant minimizing the travel
time.

Moreover, let us introduce the time-expanded approach [38]
which constructs the time-expanded digraph in which every
node corresponds to a specific time event and edges between
nodes represent the connections between the two events. Every
node of the time-expanded graph consists of a static graph,
hence a time-expanded graph can be considered as a sequence
of static graphs (see Fig. 2). Let Gt (t) be a directed time-
expanded graph. We have that Gt (t) = {G(1),G(2), . . . ,G(i)},
where G(i) is a snapshot of Gt at time t = i and is
denoted by G(i) = (E(i),N (i)). In the proposed control
strategy, we exploit the time expanded graph to represent
the precedences and the result of the negotiation between
vehicles following the execution of the coordination algorithm.
Each node of the graph represents an automated vehicle in
a particular instant of time and the directed edges between
the nodes represent the result of the negotiation determined
by the coordination diagram (see Sec. VI-A). The utility of
the time expanded graph is to represent the precedences and
the negotiation over time. Hence, for example, in Figure 2,
at the instant of time t = 4 the AGV represented by node A
has to wait for the AGV C , and similarly, the AGV D has to
wait for the AGV B.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 2. An example of directed time expanded graph used in the proposed
coordination strategy. The graph considered in figure is composed by four
nodes: A, B, C, D. The graph is considered over time and the edge set E(G(i))
at time t = i can be different from the edge set E(G(i+1)) at time t = i+1.

III. SYSTEM OVERVIEW

The system proposed in this paper is composed of (i) a
multi-layer architecture to model the environment, and (ii) a
traffic-aware coordination and path planning strategy. The
main objective is to coordinate a large number of AGVs in
an industrial environment, preventing traffic congestion. The
control approach is centralized to meet the performances and
the efficiency required by an industrial application, hence the
trajectories are optimally computed for every vehicle with a
global knowledge over the industrial plant. Furthermore, the
control architecture is decoupled in the path planning and in
the coordination strategy to reduce the computational cost and
make the system easily scalable. The multi-layer architecture,
pictorially represented in Fig. 3, will be detailed in Section IV.

To model the traffic evolution quantitatively, we divide
the environment into three layers: (i) the Top Layer (or
Topological Layer), responsible for traffic management; (ii) the
Middle Layer, responsible for the path planning of the AGVs;
(iii) the Bottom Layer (or Roadmap Layer), containing all
possible vehicle routes and handling the fleet coordination.
The roadmap models all the possible trajectories the vehicles
can follow and all the locations the vehicles can occupy in the
plant. Hence, the roadmap model consists in a graph where
the nodes represent the locations sampled in the plant. The
accurate tracking of the AGV over the roadmap is guaranteed
by the high number of points (the graph nodes) that sample
the feasible trajectories. A trajectory is, indeed, modeled as a
sequence of connected nodes.

Hereafter, the term “path” refers to a generic sequence of
nodes computed by the planner over a graph, while “route”
refers to the specific sequence of nodes computed over the
roadmap, which is necessary to determine the trajectories to
be followed by the vehicles. Upon the computation of the route
and trajectory for each vehicle, it is possible to determine the
location of the vehicles over time, since they move with a
known velocity profile. As a result, it is possible to predict
the future location of the vehicles and take action to prevent
congestion and deadlocks.

Fig. 3. Overview of the proposed multi-layer architecture. The figure shows
a portion of the three graphs, one for each layer, of the studied use case,
from the bottom: the roadmap layer, the middle layer, the topological layer.
On the roadmap layer the red nodes indicate the load or unload locations
in the factory, while the white nodes indicate the transit locations. The blue
dotted lines show the different plant areas, divided by topology, each one
assigned to a sector S.

The path planning and coordination strategy, detailed in
Section V, exploits information from the three layers, to define
an optimal and feasible route for each AGV. In detail, the
Top Layer is based on a discretization of the environment in
topological areas (intersections, load/unload areas, congestion
risk areas, etc.) and provides quantitative information about
the current AGVs traffic in each of them. Each AGV’s path
planning consists of two main steps. A path is computed
over the Middle Layer, which models the actual connections
among the areas of the Topological Layer and knows the traffic
information of these areas. Subsequently, the computed path
is exploited to plan the actual feasible route of the AGVs
over the Bottom Layer, where the trajectories are built over
time and conflicts among the AGVs are avoided by means of
coordination.

Given a route, the trajectory following problem is the
problem of computing a kynodynamically feasible temporal
profile of the vehicle control inputs to move the robot along the
given route. This problem is beyond the scope of this paper and
will not be addressed. Thus, we assume each AGV is equipped
with an on-board control algorithm capable of ensuring safety
(i.e. [39], [40]) and accurate trajectory tracking (i.e. [41], [42]).

Once the route is computed from the path planner in the
Bottom Layer, the AGVs have to be coordinated on the
respective paths to prevent collisions and deadlocks. A col-
lision between two AGVs occurs when they occupy the same
location at the same time. The purpose of the coordination
is to modify the time the vehicle reaches the conflicting
locations. In this paper we propose a coordination strategy
based on a future prediction of the AGVs trajectories able to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



PRATISSOLI et al.: HIERARCHICAL TRAFFIC MANAGEMENT OF MULTI-AGV SYSTEMS 5

solve future conflicting situation and prevent congestions or
deadlocks. Deadlock situations arise when a group of vehicles
becomes interlocked in such a way that they cannot complete
their tasks. The coordination between AGVs is represented
exploiting precedence graphs, where the nodes are the AGVs
and the edges represent the precedences between them. This
information is extended over time through the time expanded
graph where every layer coincides with a precedence graph at
definite time step. Avoiding cyclic loop inside the graph we
prevent deadlocks [33].

We assume that the coordination strategy runs on a central
elaboration unit, communicating with the AGVs. In particular,
the central control process periodically sends a command to
the AGV, which contains the future steps of the route the
vehicle has to follow and the time the vehicle has to wait
in a node (location) that the traffic manager has set to manage
congestions and deadlocks. Moreover, we assume each on-
board low-level control of the vehicle can deal with com-
munication non-idealities, such as packet loss or transmission
delays. Hence, communication issues are assumed non-critical
for the low-level control. However, it may occur that the
AGV is not able to execute a given command because of
communication issues, robot hardware issues or safety issues.
Since all these issues bring to a stop/slowdown of the vehicle,
they can be equally treated by the central control traffic
manager as unexpected execution errors on the interested
vehicle. Therefore, the proposed control strategy needs to be
robust to the delays introduced on the AGV motion by these
errors (in the video attached we show some of the experiments
conducted).

IV. MULTI-LAYER ARCHITECTURE

We here detail the proposed multi-layer architecture by
describing all layers, their interconnections and how they are
used for coordination and traffic management.

A. Roadmap Layer (Bottom Layer)

The roadmap of the plant represents all the possible routes
the AGV can follow and the locations the AGV can cross in
the environment. The Bottom Layer provides a modeling of
the roadmap through a graph.

This layer is responsible for the planning of the route to be
followed by the AGV. The plant graph G is then introduced to
abstract the description of the roadmap: the set of nodes N (G)

represents the locations in the plant the vehicles can reach,
and the set of edges E(G) represents the feasible trajectories
connecting those locations. Thus, let pi , p j be two locations
in the plant, associated with nodes i, j ∈ N (G). Then, the edge
(i, j) exists in E(G) if there exists a kinematically feasible
route from pi to p j . Each edge in E(G) is weighted by the
distance between the two corresponding nodes and it also
contains the average time required by the vehicle to travel
this distance. Therefore, the planned route traveled by the
vehicle and modeled as a sequence of nodes in N (G) is able
to describe the vehicle’s motion over time. Therefore, the
planned route traveled by the vehicles, which is represented as
a sequence of nodes in N (G), serves as an effective means of

describing the vehicle’s motion over time. The traffic manager
planner computes the route over the graph G that not only
minimizes the time required by the vehicle to reach its goal,
but also minimizes the traffic congestion in certain areas of the
plant. This traffic sensitive path planning is performed thanks
to the topological layer.

In this paper we consider a common industrial scenario in
which the AGV system has to be deployed in an already exist-
ing plant. The roadmap, hence, is fixed and can not be changed
to optimize the traffic management of vehicles as in [28]. The
plant graph, built upon the roadmap, is consequently treated
as a constraint for the modeling, planning and the design of
the control architecture.

A representative example of a roadmap of a middle-size
plant is depicted in Fig. 1: we will hereafter refer to this
example as a use case for the proposed system.

B. Topological Layer (Top Layer)

The Top Layer is the most abstract layer, and considers the
topological representation of the factory or warehouse as a set
of sectors. Sectors correspond to plant areas, such as inter-
sections, corridors, load or unload areas, relevant for traffic
management. In particular, each sector S can be distinguished
from the others according to either topological, geometrical or
logistical characteristics or other particular constraints.

The set of interconnected sectors defines a directed graph
V , referred to as the Sectors Graph. Each node S ∈ N (V)

represents a sector and is defined as follows. Let N (GS) be
the subset of nodes in N (G) located inside the sector S, where
G is the plant graph and N (G) the respective set of nodes
(see Section IV-A). Thus, we have that GS is a subgraph of
G and E(GS) ⊆ E(G). We also assume that all nodes in N (G)

cannot lay on the boundary of two sectors in V , i.e., for each
u ∈ N (G), u ∈ N (Si )∧ u /∈ N (S j ) ⇐⇒ Si = S j . It is worth
noting that the subgraph GS is not necessarily connected.

Let every edge in E(V) be the connection between two
sectors. Let S1, S2 ∈ N (V) be two sectors, then an edge in the
plant graph G that connects a node in GS1 with a node in GS2

implies that an edge in E(V) exists to connect S1 with S2.
We remark that the main role of the Sectors Graph is to

model the traffic of vehicles in the plant and, through the
subsector graph (which will be defined in See section IV-C),
to define a traffic-sensitive path planner (i.e., to avoid
congestions.)

Each plant area defined by the respective sector can manage
a maximum number of AGVs without occurring in traffic
issues and congestions. This number is the capacity of the
sector. In the proposed approach the sector’s capacity is set
by the user considering the plant area dimension, its topology
and the presence of escape ways for vehicles in case of high
traffic situations. A sector is labeled as congested if it contains
more vehicles than its capacity.

The Sectors Graph of the considered use case is shown
in Fig. 4. Every node of the graph V keeps the information
about the respective sector capacity. The weight of the edge
that connects the sector i with the sector j is computed at

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 4. A full representation of the sector graph V used to model the traffic
in our use case, which is elicited by a real industrial application.

time t as:

wi , j (t) = T j (t)+ Di , j (1)

where T j is the traffic weight for the specific sector j defined
as follow:

T j (t) =

 K ·
N j (t)

C j − N j (t)
if C j > N j

K · C j otherwise
(2)

where N j (t) is the number of AGVs within the sector j at
time t , C j is the capacity of the sector j , Di , j is the Euclidean
distance computed between the centers of the two sectors
i and j , which is proportional to the travel time given the
constant velocity of the AGV, and K is a static gain. Therefore,
the path planner has the possibility to compute the optimal
path that not only minimizes the distance to the destination but
also takes into account the traffic situation and the potential
for congestion (see Sec. IV-C).

Partitioning the environment in sectors is a critical opera-
tion, that requires human intervention. In particular, human
operators are required to provide the boundaries between
different sectors and each sector capacity since both are appli-
cation dependent. Conversely, the set N (V) can be automati-
cally computed, e.g., using the Voronoi partitioning proposed
in [12]. The sector is individuated to isolate a particular area
in the plant, such as intersections, corridors or load/unload
locations or parking locations. Once the sectors have been
defined, it is then necessary to tune each sector capacity based
on the specific characteristics of the respective plant area.

C. Middle Layer

The Middle Layer has a similar definition to that of the
Topological Layer and it allows to have a traffic sensitive path
planner by exploiting the information stored in the Sectors
Graph V thorough the parameter in (2). Over this layer, the
controller integrates the traffic information collected on the
Top Layer with the aim to obtain the routes, defined on the
Roadmap Layer, to be followed by the AGVs. In particular,
as shown in Fig. 3, each sector in the sectors graph V
corresponds to one or more subsectors on the Middle Layer.

Thus, similarly to V on the Top Layer, we define the subsector
graph W , in which each node is a subsector (that will be
defined hereafter) and each edge is a connection between two
subsectors.

The subsector graph is exploited by the controller to define
a feasible route on the roadmap that minimizes the traffic
of vehicles modeled by the sector graph. Finally, the planner
generates from the path on the subsector graph W the optimal
route on the plant graph G.

As described in [30] a subsector consists in a subset of
the roadmap nodes belonging to a sector. In particular, Let
S ∈ N (V) be a sector, and GS the respective subgraph, then
N (GS) is the set of nodes on the plant graph that belongs to
the sector S, such that N (GS) ⊆ N (G). Thus, let US ∈ N (W)

be a subsector and GUS the respective subgraph: then, N (GUS )

is the set of nodes in the plant graph that belong to subsector
US , such that N (GUS ) ⊆ N (G). Finally, we have that US is a
subsector of S if N (GUS ) ⊆ N (GS).

The subsectors are determined from the sectors graph.
We consider two neighboring sectors Sh and Sk , and GSh and
GSk the respective subgraphs. Let the node n1 ∈ N (GSh ),
if a path exists that connects n1 to one node in N (GSk ), then
n1 is connected to sector Sk . Thus, a subsector US of Sh can
be defined as the set nodes in N (GSh ) that are connected to
the same neighboring sectors. Moreover, let US1 , US2 be two
subsectors over W . Let USi belonging to Si and GUSi

be the
subgraph of G associated with Si , i ∈ {1, 2}. Then, an edge
from US1 to US2 exists in E(W) if there exists a path over
G connecting two nodes (u, v) ∈ N (GUS1

) × N (GUS2
). The

edge from US1 to US2 is weighted according to (1), as for the
edge from S1 to S2. The weight on the edge that connects two
subsectors belonging to the same sector is zero. Depending
on the subgraph connectivity defined within the sector, in
the extreme cases, a subsector can coincide with a single
roadmap node or with the whole sectors it belongs to. Each
sector contains at least one subsector. Moreover, let GUS be a
subgraph of the plant graph G, defined by a subsector US ∈W ,
whose node set is given by N (GUS ), then GUS is at least weakly
connected by definition.

For further information about the subsector division and
why this is necessary the reader is referred to [30].

V. PATH PLANNING

In this section, we describe the proposed strategy based
on the hierarchical architecture for the multi-AGV path plan-
ning. The method builds upon the architecture presented in
Section IV and consists of exploiting all the information
provided by the layers to obtain a traffic sensible route plan-
ning and replanning strategy robust to errors and uncertainties
introduced by a real scenario.

A. Path Planning

We assume that each AGV is assigned to a mission, which
involves moving from a start location vs ∈ N (G) to a goal
location vg ∈ N (G).1

1Mission assignment is interesting yet beyond the scope of this paper. The
interested reader is referred, e.g., to [43] for previous studies on the topic.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



PRATISSOLI et al.: HIERARCHICAL TRAFFIC MANAGEMENT OF MULTI-AGV SYSTEMS 7

Let Ss, Sg ∈ N (V) and USs , USg ∈ N (W) be the subsectors
and sectors containing the start and goal, respectively. Thus,
a path is computed on W that connects subsectors USs and
USg . The traffic status, which characterizes every sector S ∈
N (V), is monitored and modeled on the Top Layer over the
sectors graph and, at each time t is shared with the respective
subsectors US in W . Thus, the traffic weight is the same for
all the subsectors belonging to the same sector, and is the one
computed on the Top Layer for the respective sector according
to (2). Finally, the edges in E(W), similarly to the edges
in E(V), are weighted according to (1). Therefore, the path
planner aims to optimize the balance between the distance,
and the time, needed for the AGV to reach its destination and
the level of traffic and the likelihood of congestion in certain
areas of the plant.

Finally, the path, represented as a sequence of subsectors,
is transformed by the planner into a corresponding route on
the roadmap, represented as a sequence of nodes. The roadmap
layer contains the information required to model the vehicles’
trajectories over time. The route, composed of a sequence of
sampled locations within the plant, describes the amount of
time necessary for the vehicle to traverse each section of the
road as defined by an edge on the plant graph. Therefore,
as the average velocity of the AGVs is assumed to be known
and constant, given a planned path, it is possible to predict the
vehicles’ locations over time, as well as the evolution of the
traffic within each sector and, ultimately, throughout the entire
plant. At every time step, the path for each AGV is replanned
and the traffic status is updated consequently. Thus, the optimal
solution found by the planner is the best compromise between
the traffic conditions and minimal path to the goal.

The planner in the Middle Layer computes the optimal
path πW = {U1, . . . , Un} on graph W , which aims for
each AGV to avoid congested areas minimizing the time
required to reach the goal. The path planning algorithm is
based on the Dijkstra’s algorithm [36] on W , with edge
weights defined as in (1). In other words, to exploit the traffic
modeling, the properties of each sector are inherited by all its
subsectors.

Finally, the path πW computed over W becomes a constraint
for the route πG computed over the roadmap and plant graph
G. Hence, the route πG is planned over a portion of the
plant graph G, which consists in a subgraph of G constituted
by only the nodes in N (πW ), where N (πW ) ⊆ N (G) is
the union of the sets of nodes belonging to every subsector
in πW . The route planning consists in searching a feasible
path from vs to vg on the defined portion of plant graph
exploiting the Dijkstra’s algorithm. It is worth noting that,
since the subgraph of G computed on N (Ui ) is guaranteed
to be at least weakly connected, a route can always be found.
Each AGV’s path is dynamically replanned in order to face
variations in the traffic status and occurrence of unpredictable
events (e.g., the AGV slows down or stops due to the presence
of human operators). Each time a path is recomputed, the
traffic status is updated to include the last information about
the current (and future) locations of the AGVs. The more
frequent is the path replanning, the more robust is the traffic
coordination, since a frequent path replanning allows a robust

Fig. 5. Visualization of coordination over time of 8 AGVs in the use case
plant. The figure provides a visualization of the coordination of 8 AGVs
evolved over time in the use case plant considered. On the plane XY the
figure shows the node coordinates (the location) in the plant, while, on the
Z axis the figure shows the time at which a node is crossed. Different colors
indicates different vehicles, i.e. red is for AGV with number 1, blue is for
AGV with number 6, etc. It is worth noting that the lines, as sequences of
colored nodes, never cross, since the simultaneous presence of two (or more)
AGVs on the same node at the same time never takes place. This means that
the coordination has been carried on properly and there are no collisions in
the AGV trajectories.

traffic coordination with respect to dynamic obstacles, traffic
congestion, or tracking/communication errors.

The proposed planning and replanning strategy is summa-
rized in Algorithm 1 and consists in the following steps:

i) The optimal path πW from the start subsector to the goal
subsector is computed/updated over W (Algorithm 1,
line 2). The path planner minimizes a combination of
the traveled distance, and hence the expected travel time,
and the currently known traffic cost.

ii) The path expressed as a sequence of subsectors πW

corresponds to a sequence of sectors πV , which are the
sectors that will be crossed by the AGV following the
planned path. Thus, the number of vehicles inside each
sector can be monitored and a model of the traffic status
over time can be easily generated. The sector graph V
weights are updated according to (1) following the traffic
status changes (Algorithm 1, lines 3 and 4).

iii) The traffic information held by the sector graph V is
inherited by the subsector graph W . Hence, the weights
of the set E(W ) are updated according to the new traffic
information (Algorithm 1, line 5).

Algorithm 1 Traffic Modeling and Path Planning

1 if state != goal then
2 πW ← dijkstra(W);
3 T ← update_traffic_status(πW );
4 V ← update_weights (V, T );
5 W ← update_weights (W,V);
6 end

VI. THE TRAFFIC MANAGER

The centralized and decoupled controller requires an effi-
cient coordination strategy in order to prevent collisions inside
the paths computed previously by the planner. Thus, a proper

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



8 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Algorithm 2 Traffic Management

1 Compute_initial_traffic_and_paths();
2 t ← current_time;
3 T ← time step update;
4 while true do
5 update_AGVs_positions();
6 if current_time ≥ t + T then
7 foreach AGV do
8 startnode← current_position;
9 if goalnode then

10 update_path(Algorithm 1);
11 πG ← πW ;
12 else
13 goalnode← assign_new_mission();
14 update_path(Algorithm 1);
15 πG ← πW ;
16 end
17 end
18 coordination_AGVs(Algorithm 3);
19 update_traffic();
20 t ← current time;
21 end
22 end

coordination algorithm together with the described path plan-
ning algorithm complete the traffic manager proposed in this
paper. Inter-agent collisions are then avoided by exploiting
the coordination strategy described in this section, which is
inspired by the coordination diagram approach described
by [23]. The proposed strategy aims to an efficient negotiation
between colliding vehicles to manage the traffic and prevent
deadlocks. The main traffic manager loop is resumed in
Algorithm 2, where the coordination process is executed in
line 18. A mission is assigned to an AGV only when idle.
Each mission involves achieving a loading location, loading
a cargo, moving to the unloading location and unloading the
cargo. If the AGV has no more missions to be assigned, it is
automatically sent to the battery charge location. At every
time step, the AGVs positions are updated since the AGV
location is frequently monitored in order to deal with delays
in the trajectory following. Every time period T the path of
each vehicle is computed again and the weights in the sector
and subsector graphs are updated according to the new traffic
status. The smaller is the time period T , the more frequent is
the path computation and the traffic update in the execution of
the traffic manager algorithm. The path planning is followed
by the coordination algorithm (Algorithm 2, line 18) to deal
with collisions and deadlocks. Every time the coordination
algorithm is executed the vehicles motion over time is changed
in order to face conflicts and, hence, the traffic status has to
be updated accordingly (Algorithm 2, line 19).

The higher is the value of T , the lower are both the
computational effort and the robustness to dynamical obstacles
or vehicle errors. Low values of T imply frequent optimal
paths computation and traffic status updates, which makes the

control more responsive to unpredictable events and traffic
congestions.

A. AGVs Coordination on the Roadmap Layer

The path planner computes the route that optimizes the bal-
ance between the vehicles traveled distance, and hence the
traveled time, and the level of traffic over the sectors and the
plant. The path planner provides the necessary information to
consider the evolution of the trajectory over time. Therefore,
once the paths are computed for each AGV, we need to
verify that no collision occurs during the vehicle’s trajectory
following. We say that there is a conflict (or a collision)
whenever two or more AGVs are required to occupy the
same node/edge at the same time. Conflicts are detected while
assuming the current paths are traversed with the robot’s
nominal velocity profile (e.g., minimum time) and accurate
tracking.

More in details, neglecting for the moment delays or
execution errors, and assuming a nominal trajectory profile,
we are able to precisely predict the location of each AGV
over a predefined time horizon H . Therefore, conflicts and
congestions can be predicted and prevented by sequencing the
robot access through the shared resource according to priorities
and negotiation. It is worth noting that the vehicles stops
or slowdowns are decided by the coordination strategy and,
hence, the trajectory model over time and the prediction of the
vehicles locations is updated accordingly. This computation
over time on the future locations traveled by the vehicles
implies longer execution time but ensures conflict prevention.

It should be noted that each AGV possesses the capa-
bility to accurately determine its own location within the
environment, and is known to frequently transmit updates
concerning its location, status, and any potential errors to the
central computational unit. To ensure accurate and efficient
operation, the location of each vehicle is constantly measured
and monitored, in order to promptly identify any execution
errors that may cause delays in the trajectory following and
requiring an update in the prediction of the AGVs’ locations
over H . The potential delay of the vehicle on the followed
trajectory is subsequently incorporated into the time model of
the vehicle and into the coordination strategy to account for
any execution errors, thus enabling a reliable prediction of the
robot’s location. This is crucial for managing future conflicts
between the AGVs and preventing deadlocks and congestion.

The selection of the parameter H plays a crucial role
to determine how large the prediction time window is, the
computational cost and the effectiveness of the coordination
algorithm. It follows that as the value of H increases, the
system exhibits greater robustness against deadlock and con-
gestion, as there is a larger temporal margin for preventing
potential conflicts. However, the higher is the value of H , the
higher will be the computational burden of the coordination
algorithm. The selection of the parameter H is contingent with
the structure of the factory, and, as such, the layout of the
plant. In particular, the time horizon has to be chosen suffi-
ciently large to allow the coordination strategy to anticipate
and manage the vehicles movements in the longest dead-end
present in the plant. Inadequate choice of H will result in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



PRATISSOLI et al.: HIERARCHICAL TRAFFIC MANAGEMENT OF MULTI-AGV SYSTEMS 9

Algorithm 3 AGVs Coordination

1 H ← time horizon window;
2 t ← current time;
3 collision_free ← false;
4 while not collision_free do
5 foreach t in H do
6 foreach AGV do
7 collision_free, conflicting_AGVs ←

get_conflicts(t,AGV);
8 if not collision_free then
9 AGV_winner, AGV_losers ←

negotiation(t, conflicting_AGVs);
10 AGV_winner, AGV_losers ← dead-

lock_policy(t,AGV_winner,AGV_losers);

11 solve_conflict(t,
AGV_winner,AGV_losers);

12 end
13 end
14 end
15 end

suboptimal performance and may lead to vehicles being stuck
in a dead-end. Furthermore, it should be noted that the value of
H cannot be selected arbitrarily large due to the computational
cost associated with the coordination algorithm and thus,
a trade-off must be found between the desired performance
of the algorithm and the computational resources that are
available.

The result of a correct traffic management and, hence, of a
correct coordination of AGVs over time can be visualized in
Fig. 5, where the locations (or nodes on G) at every time
step of each AGVs are plotted. The figure shows how the
routes of the AGVs, distinguished with different colors, do not
intersect each other when extended in a prediction over time.
This means the vehicles are able to reach the final destination
without occurring into conflicts and congestions.

The coordination strategy of the AGVs is resumed in
Algorithm 3 and can be divided in 4 main phases:

i) conflict identification: the localization in time and space
of a conflict between a group of AGVs, i.e. AGVs
occupying the same area at the same time. The time
horizon H defines how far in time a conflict can be
detected and possibly prevented. H is lower-bounded
by the topology of the plant, since it has to be chosen
wide enough to avoid two AGVs stuck in a bidirectional
single vehicle corridor. Every future time steps, hence,
has to be checked for possible collisions (Algorithm 3,
line 4).

ii) negotiation: once we know which are the AGVs in
conflict and at which time step the collision will happen,
we have to define a policy to assign the precedence on
the motion to the vehicles. The negotiation to define
which AGV has to wait to solve the conflict is based on
simple rules. These rules consider the mission priority,
if the AGV has to free an intersection, if the vehicle is

Algorithm 4 Negotiation

1 AGV_winner ← None;
2 AGV_losers ← None;
3 AGV_winner,AGV_losers =

motion_error(conflicting_AGVs);
4 if (AGV_winner is None) OR (AGV_losers is None)

then
5 AGV_winner,AGV_losers =

path_obstruction(conflicting_AGVs, T);
6 end
7 if (AGV_winner is None) OR (AGV_losers is None)

then
8 AGV_winner,AGV_losers =

time_to_conflict(conflicting_AGVs);
9 end

10 return AGV_winner,AGV_losers

stopped due to an internal error and the time required
to reach the collision spot. The proposed algorithm
incorporates a mechanism to assess with simple rules
the status of vehicles regarding their execution and
movement. If a vehicle is determined to be stopped
due to an execution error, it is deemed as the most
probable loser and would have to wait for other vehi-
cles to complete their motion (line 3, algorithm 4).
Additionally, the algorithm assesses the potential path
obstruction between vehicles in the portion of the route
considered within the time window T. The vehicle that
obstructs the path of another vehicle is considered as
the most probable winner and is selected to clear the
passage in order to prevent further obstructions (line 5,
algorithm 4). Finally a simple FIFO policy is chosen to
end the negotiation, which means that the first vehicle
that reaches the collision spot is the negotiation winner,
and other AGVs involved in the collision wait for their
motion (line 8, algorithm 4). Hence, at the end of the
negotiation there will be a winning AGV and (possibly
multiple) loser AGVs (Algorithm 3, line 9). Those rules
can be chosen to minimize or maximize a performance
index by solving an optimization problem online but,
for this specific case, we consider some very basic
simple rules, since the efficiency of the solution of
the negotiation algorithm is checked by the deadlock
prevention policy which guarantees the coordination of
the vehicles.

iii) deadlock prevention: the use of simple rules for the
negotiation policy could lead to the generation of dead-
locks. Hence, the proposed coordination strategy is
embedded with an effective deadlock prevention policy
(DPP), which has the aim to identify and prevent dead-
locks before they occur. The DPP we propose, described
in details in the following section, extends the concept
of precedence graph used in multitasking systems by
introducing a temporal variable that is necessary and
efficient for identifying and preventing deadlocks in
time.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

iv) solve conflict: the conflict is ready to be solved once
the conflicting time step is found and the loser(s) and
winning AGVs are defined. The list of commands to
be send to the loser(s) is modified to make the AGV(s)
waiting for a time length sufficiently large to solve the
collision. The process is repeated to check for other
collisions and solve them until no more collisions are
found in the time window H .

B. Deadlock Prevention Policy

The implementation of a deadlock prevention policy is an
essential strategy for maximizing the possibilities of finding an
optimal solution in the coordination of AGVs. The negotiation
process for resolving conflicts is commonly based on a set of
straightforward rules and can potentially result in deadlock
situations that cannot be resolved.

We can identify two types of deadlock scenarios: cyclic
deadlocks and acyclic deadlocks, that differ in the nature
of the resource locked between the processes involved [44].
Cyclic deadlocks represent a category of deadlock in which
the resources that are locked in place exhibit a circular
dependency. This is characterized by the existence of a chain
of processes, each of which possesses a resource that is being
sought by the subsequent process within the chain. Acyclic
deadlocks, on the other hand, are a type of deadlock in which
the resource dependency forms a tree or a directed acyclic
graph (DAG) structure. Hence there are no circular dependen-
cies and each process holds a resource that is not required
by any other process in the chain. It is worth noting that in
our scenario, acyclic deadlocks are generally generated by a
vehicle that is halted as a result of an error, which subsequently
locks the resource in question, which in this case is the moving
space. Therefore, the coordination strategy lacks the capability
to address this issue, and the traffic manager must take steps
to update the trajectories of the vehicles in order to limit the
congestions until the error is resolved. Finally, second level
deadlocks or nested deadlocks are acyclic phenomena typically
generated by a cyclic deadlock. In fact, the vehicle that locks
resources and generates a tree dependency structure is halted
in a cyclic chain of locked resources. Therefore, by preventing
the emergence of cyclic deadlocks, it is also possible to prevent
the occurrence of nested deadlocks. In the presented control
architecture we propose a deadlock prevention policy based on
time expanded graphs. The result of the negotiation process,
for every future conflict found in the time window H , sets
which are the AGVs that have to stop (the losers) and the
ones that have to move (the winners) in order to solve the
future collision. The set of precedences between the conflicting
AGVs in a particular time step t can be represented by a
graph. In the proposed approach we exploit the time expanded
graph in order to represent the set of precedences between
conflicting AGVs in the whole time window H . The analysis
of this graph of precedences becomes useful when dealing
with deadlocks, since these are caused by cyclical precedences
in the time window H [33]. Hence, having an acyclic time
expanded graph representing the precedences ensures that the
computed trajectories in H are deadlock free.

Fig. 6. A representation through the time expanded graphs of the precedences
defined to coordinate three AGVs. Every layer corresponds to the graph
representing the precedences, as result of the vehicles coordination, at a
particular time step. For example, at time t4 the coordination is managed by
making the AGV 1 waiting for the AGV 2 and the AGV 2 waiting for the
AGV 3.

The time step t at which the collision is predicted to happen
is denoted as tcon f lict . In order to solve the conflict, the AGV
that has lost the negotiation has to be stopped or slowed down
a time window before the collision time in order to allow
the winning AGV to cross. This time window is denoted as
tdelta , and the time step t at which the AGV is stopped is
denoted as twait , so that twait + tdelta = tcon f lict . Every time
the future trajectory to be followed by the AGV is changed to
solve a collision, the prediction of the AGV motion has to be
updated accordingly introducing the delay caused by the stop
or slowdown of the vehicle.

The negotiation process brings to a set of possible solutions
to solve the collisions in the time horizon H , and the deadlock
prevention process is responsible in finding the deadlock free
solutions. The time expanded graph is generated over the
set of precedences in the time window H obtained from the
negotiation process. Every graph node indicates the AGV ID
and every edge represents a precedence, with a winner AGV
and a loser AGV: for each incoming (outgoing) edge the AGV
is a winner (loser) for the respective precedence.

For every collision detected in the predicted trajectory, the
time expanded graph is built iteratively, every precedence edge
is added step by step from the tcon f lict until the twait , when the
conflict is solved. For example, Fig. 6 shows a coordination
between 3 AGVs: AGV 1 and AGV 2 have a conflict predicted
at time t = t4 and, to avoid the collision with sufficient space,
AGV 1 has to wait 3 time steps before at time t = t1. Similarly,
AGV 2 and AGV 3 have a conflict at time t = t5, where the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



PRATISSOLI et al.: HIERARCHICAL TRAFFIC MANAGEMENT OF MULTI-AGV SYSTEMS 11

Fig. 7. A representation through the time expanded graphs of the precedences
defined to coordinate three AGVs. Every layer corresponds to the graph
representing the precedences, as result of the vehicles coordination, at a
particular time step. The time expanded graph helped to preventing a cyclic set
of precedences and hence a deadlock at time t4. The coordination is managed
by making the AGV 1 waiting for the AGV 3 and not vice versa to prevent
a deadlock scenario between the three vehicles.

AGV 2 is stopped 2 seconds before at time t = t3. Hence,
at time t = t4 and t = t3 we have two conflict situations
which have been solved with AGV 1 stopped for AGV 2 and
AGV 2 stopped for AGV 3.

After every negotiation at every time step the time expanded
graph of precedences is updated and analyzed in order to
ensure that the new edges introduced do not bring to a
deadlock scenario. This is the case shown in Fig. 7, where
the conflict between AGV 1 and AGV 3 at time t = t8 could
generate a loop cycle in the graph and, hence, a deadlock. The
negotiation process gives the solution in which the AGV 3 is
either a loser or a winner. In the first scenario, a loop cycle
would occur at time t = t4 generating a deadlock between
the AGVs 1, 2 and 3. Exploiting the information stored in the
time expanded graph, we can exclude the first scenario from
the possible solutions and make the AGV 3 a winner adding
an edge from node 1 to node 3.

Every time a new conflict is found in the predicted tra-
jectories of the AGVs, the time expanded graph is updated
accordingly and every layer is checked to be acyclic to prevent
the occurrence of deadlocks. Hence, if a cycle is detected,
the found solution from the negotiation is not admissible and
another one is evaluated.

VII. IMPLEMENTATION

The proposed architecture was implemented, for validation
and evaluation, on an industrial use case, exploiting the
NetworkX library [45] in Python language. This library pro-
vides the tools to easily manage the graphs. The graphs are
strongly related to the layout of the infrastructure (warehouse

or factory) and are computed offline once the feasible routes in
the plant are defined. Thus, the planner in the traffic manager
does not see any change in the structure and connectivity of
these graphs. However, the path computation is sensible to
the changes in terms of attributes and weights linked with
nodes and edges, which follow the changes in the traffic status.
We remark that the route of each AGV is processed as a
sequence of connected nodes. Every node occupied by an
AGV means a location in the plant occupied by the vehicle. All
the directions the AGV can follow from its location (node) are
represented by the edges outgoing from the respective node.

The proposed control architecture makes the multi-AGV
system able to deal with unexpected events, such as dynamic
obstacles or vehicles errors, that change the expected traf-
fic scenario. A frequent path re-planning and traffic status
updating is the key to allow the vehicles to avoid unforeseen
congested areas due to dynamic objects. Thus, the coordination
algorithm is frequently executed to keep reactive the coordi-
nation of vehicles over the planned routes.

A software library has been developed to model the AGV
motion over the time steps. Since the average of the AGV
velocity is constant and known, the time required to travel
every edge in the roadmap is known. Hence, the planned
route, which consists in a list of adjacent nodes over the plant
graph, can be projected over time. The coordination algorithm
manages the vehicle possible conflicts stopping or slowing it
down in free collision nodes, so that the time the AGV takes
to reach the conflicting node is modified. Moreover, every
time an unexpected event occurs, the schedule of the AGVs
changes and an execution of the control algorithm is necessary
to update the model of the AGVs motion over time. A frequent
execution of the control algorithm is computationally demand-
ing, but makes the systems able to compensate the delays
introduced by vehicles alarms, obstacles or communication
errors.

A. Computational Complexity

Coupled approaches typically have a time complexity that
grows with the size of the configuration space, which grows
exponentially with the number of robots and plant dimen-
sion [46]. The computational effort of the proposed software
is mainly defined by two components: the path planning and
the coordination of vehicles. The complexity of the algorithm
to coordinate the AGVs preventing conflicts and deadlocks
is analyzed below. The path computation is lightened by the
hierarchical architecture, specially in large environments and
complex and high redundancy roadmaps: the Dijkstra’s algo-
rithm is modified to compute a path πG over the plant graph
G constrained to be contained into the subgraph of G defined
by πW , see Section V. The path πW is computed exploiting
the Dijkstra’s algorithm over the graph of subsectors W .

The computational efficiency of the proposed multi-layer
path planning architecture is compared with the conventional
approach, in which the Dijkstra search algorithm is applied
directly on the roadmap graph(see Figure 8). In the con-
ducted test, executed on a average laptop with Intel core i7-
10510U and NVIDIA Geforce MX230, a range of graphs

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



12 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 8. The figure illustrates the computational benefits of a decoupled
approach as compared to a standard coupled approach in terms of the path
planning computation. The graph displays the computation time in seconds
required to calculate the path for 8 AGVs in a roadmap with varying size
between two of the most distant nodes in the graph. The discrepancy in
computation time becomes more pronounced as the dimension and complexity
of the graph increases.

with varying dimensions and complexities were considered.
The time needed to complete the path planning computation
for 8 AGVs between two of the most distant nodes in the
graph was analyzed using both the standard approach and
the proposed multi-layer architecture. The results, depicted in
Figure 8, demonstrate that as the dimension and complexity of
the graph increase, the difference in computation time between
the standard and proposed approach becomes increasingly
pronounced. It is noteworthy that a low computational time for
path planning is crucial for the effectiveness of the replanning
feature in the proposed control strategy.

The computational effort incurred by the coordination algo-
rithm, which includes the deadlock prevention policy, must
also be taken into consideration. Analyzing Algorithm 3,
similarly to [47], it consists in two main inherited loops over
the number of AGVs N and over the time steps t in the
time window H . The processes inside these loops are mainly
independent from H and N and require a constant amount of
resources to be executed. The deadlock prevention algorithm
requires a relevant computational effort. In order to determine
the computational effort we consider the worst case scenario
for the iterative generation of the time expanded graph: this
is constituted by H + 1 layers, each one containing N nodes.
In the worst case, we suppose all the AGVs are in collision for
the whole time window H . Thus, once an AGV winner is cho-
sen, every layer of the time expanded graph has to be updated
with all the edges representing the precedences between the
AGVs. The computational complexity of the deadlock pre-
vention algorithm becomes O(N H). Since this process is
executed inside Algorithm 3, the computational complexity
of the whole coordination strategy becomes O(N 2 H 2)

The deadlock prevention algorithm computational cost has
been tested in some simulations since its high expected compu-
tational demanding. Starting from a set of precomputed paths
from a set of critical mission previously chosen for the test,
we evaluated the number of iterations required to end properly

Fig. 9. The figure shows an evaluation of the deadlock prevention policy
algorithm computational cost. We compared the theoretical exponential com-
putational cost with the one tested with several simulations. The orange and
blue line show respectively the highest and the average number of iterations
tested from simulations. The green line shows the theoretical expected number
of iteration in the worst computational scenario.

the coordination. The tests were executed varying the number
of AGVs from 2 to 8. The results are shown in Fig. 9 and
indicates that the average and the maximum number or itera-
tions are well below the maximum theoretical values estimated
previously. In fact, as a result of the efficient planning and
traffic modeling described in Section V, only a part of the
AGVs operating in the system needs to be coordinated in order
to prevent deadlocks, and therefore the worst-case scenario
previously theorized is efficiently prevented.

We notify that the time required to complete the traffic
manager computation is, typically, in the range of few seconds.
In particular, the computation time has to be inferior to
the time period T , where T determines how frequently the
control algorithm is executed and, hence, how frequently the
path planning algorithm and the coordination algorithm are
executed (see Algorithm 2).

Finally, we conducted an evaluation of the efficiency in
the traffic management and coordination of a variable fleet
of AGVs in the considered industrial use case. We studied
a comparison between the time the AGV is ideally required
to reach its goal (i.e. without stops due to traffic, obsta-
cles, ecc.) and the actual time, tested in simulations, with
delays introduced by the vehicle coordination. In particular,
we compute the management efficiency as the ratio between
the time the vehicle is effectively moving and the overall
time required to complete the task, i.e. the combination of
the moving time and the waiting time of the vehicle: η =

Tmoving/(Tmoving+Twaiting). Figure 10 shows the results about
the efficiency η from the tests conducted with up to 8 AGVs.
The efficiency decreases with a large fleet of AGVs, since the
traffic management and the vehicles coordination increase in
complexity and congestions are more likely to happen.

B. Experimental Validation

The software developed on the proposed control architecture
has been initially tested on a simulation environment provided
by Proxaut s.r.l., which emulates the nominal activity of a
working day in the automated factory. Moreover, the simulator

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



PRATISSOLI et al.: HIERARCHICAL TRAFFIC MANAGEMENT OF MULTI-AGV SYSTEMS 13

Fig. 10. The figure shows an evaluation of the efficiency in the traffic
management and vehicles coordination. The results were obtained by a series
of simulations conducted on the industrial use case scenario. The efficiency
parameter aims to determine how much time is wasted due to the coordination.
The blue line shows the average efficiency seen in several tests. The orange
line shows the worsts values obtained from some tests. It is worth noting how
the efficiency only slightly decreases, increasing the number of AGVs.

Fig. 11. A photo taken during the experiments conducted in the automated
factory. The 4 AGVs are coordinating in a load and unload cargo area.

allows to test unexpected events that normally occur during
the factory operation, such as alarms, vehicle errors, commu-
nication errors and delays introduced by operators. Finally,
the software has been implemented and validated on a real
industrial environment in collaboration with the company, see
Fig. 11. The critical parameters that require careful selection
to optimize the performance of the software for a specific
application are the time horizon H and update frequency T
of the traffic manager. These parameters are chosen based on
the dimensions and layout of the plant under consideration.
For the considered use case, a time horizon of 100 seconds
was selected, as the longest dead-end in the plant takes
approximately 80 seconds to be traversed by the AGV. The
computational complexity of the traffic manager algorithm is
within the range of 7 seconds of execution, and thus, a time
frequency of 10 seconds was selected, which is confirmed
through multiple simulations.

In the nominal operation, the software manages 8 AGVs
over the provided plant. The video attached in the supple-
mentary material shows some of the tests conducted in the
automated factory. The performance of the control architecture
proposed in this paper has been compared to the commercial
software developed by the company. The company’s software
implements a traffic coordination of the AGVs based on
manually synthesized traffic rules, which are compared among
all the AGVs at every iteration. Given the path for each AGV,
that is a sequence of nodes, each iteration consists in assigning
the following node to each AGV. Moreover, this software does

Fig. 12. The figure shows the number of missions completed over time
by the fleet of AGVs. The blue line indicates the company’s software
performance at full potential, while the orange one indicates the proposed
software performance at full potential. The proposed software managed to
coordinate 8 vehicles simultaneously. The company’s software managed to
coordinate 6 vehicles simultaneously. The green line shows the performance of
the proposed software when constrained to move only 6 AGVs simultaneously.

not consider the traffic status, and does not allow replanning
the path: hence, the shortest path is assigned to each AGV.
At each iteration, future conflicts are detected as intersections
among the planned paths. Such conflicts are solved imposing
stops to one or more AGVs. The AGVs to be stopped are
defined by means of a greedy algorithm, computing all the
possible combinations. Since such computation is performed
at each iteration, the computational cost is very large, which
makes it difficult to manage the traffic in large factories, as the
considered use case.

The developed software, based on the architecture proposed
in this paper, has been installed at the automated factory
managing the traffic of the fleet of 8 AGVs.

In order to compare the two systems, a set of critical
missions has been chosen and repeated over time. A mission
consists in a load and unload task the AGV has to accomplish.
Every mission chosen for the experiment has very distant
load and unload positions, in order to generate long paths.
However, all the load positions are close to each other, in order
to generate high traffic scenarios (the same holds for the
unload positions). Figure 12 shows the number of mission
completed over time. A mission is considered completed when
the AGV has accomplished both loading and unloading tasks.
The performance difference, which was evaluated in terms of
total number of mission completed per hour, is evident: with
a set of critical missions, the proposed system was able to
complete more than 340 missions in 8 hours of simulation,
while the company’s system was able to complete approxi-
mately 130 missions in the same amount of time. In fact, the
company’s software, under a critical set of missions, is able to
coordinate no more than 6 AGVs, leaving 2 vehicles parked. In
order to perform a fair comparison, the proposed system was
tested in the same conditions, leaving 2 AGVs parked, and
approximately 250 missions were accomplished in the same
amount of time.

The attached video shows some of the experiments con-
ducted to test and validate the software based on the proposed
control strategy. Firstly, several simulations were executed to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



14 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

test the reliability and the robustness of the control software.
Subsequently, the developed architecture has been imple-
mented in the industrial use case environment, to manage
the traffic and coordinate the movements of a fleet of AGVs.
Various traffic scenarios and congestions were faced during
the experiments. Moreover, the control software was tested
to deal with unexpected events that cause the vehicle to stop
affecting the traffic and the coordination. These events are
typically static or dynamic obstacles, vehicles alarms or errors.

VIII. CONCLUSION AND FUTURE WORKS

In this paper we present a novel methodology for the coordi-
nation and the traffic management of a fleet of AGVs deployed
in a real industrial environment. The proposed multi-layer
control architecture has the aim to improve the efficiency,
the robustness and the flexibility of the global system. The
control strategy consists in two main parts: a hierarchical path
planning approach and a coordination strategy able to deal
with collisions, deadlocks and vehicles errors.

The methodology proposed aims at the realization of a con-
trol software implementable on the majority of the industrial
layouts and able to deal with the non idealities of a real
implementation. Unlike what is usually found in literature,
no assumptions are made on the roadmap and the presence of
dynamical obstacles or execution errors has been considered.
A novel hierarchical approach based on a sector and subsector
division of the plant has been introduced to better model the
traffic evolution and to design a traffic sensitive path planner.
We propose a coordination strategy which is not based on
predefined ad hoc rules able to manage the vehicles over time
avoiding collisions and congestions. Moreover, the coordina-
tion methodology exploits a novel approach to recognize and
deal with deadlocks based on time expanded graphs. Finally,
the whole control architecture is robust to unpredictable events
(typical of a real industrial implementation), such as dynamical
obstacles, vehicles delays, communications errors.

The validity of the developed software is supported by
different simulations and, especially, by tests executed in
a real automated factory. The results show the hierarchical
planner and traffic manager performs better compared to
the company’s control software based on common planning
algorithms and predefined traffic rules. Moreover, the proposed
strategy was able to cope with high traffic situations and
unpredictable events, such as dynamic obstacles or alarms,
during the experiments conducted in the real environment.

No assumption was made on homogeneity of the AGVs:
while evaluation has been performed using homogeneous
AGVs only, the proposed coordination strategy can be eas-
ily adapted to deal with heterogeneous AGVs. This can be
achieved, for instance, opportunely tuning the weights of the
graph.

The sector definition proposed in this paper requires a
human operator assistance to differentiate the plant areas, such
as intersections, corridors, load/unload positions, etc. Current
work aims at developing a reliable method to automatically
define the different plant areas and automatically generate the
sectors clustering the roadmap nodes.

ACKNOWLEDGMENT

This article describes the results found during the research
project in collaboration with Proxaut s.r.l.

REFERENCES

[1] H. Andreasson et al., “Autonomous transport vehicles: Where we are and
what is missing,” IEEE Robot. Autom. Mag., vol. 22, no. 1, pp. 64–75,
Mar. 2015.

[2] F. Oleari, M. Magnani, D. Ronzoni, and L. Sabattini, “Industrial
AGVs: Toward a pervasive diffusion in modern factory warehouses,” in
Proc. IEEE 10th Int. Conf. Intell. Comput. Commun. Process. (ICCP),
Sep. 2014, pp. 233–238.

[3] L. E. Parker, “Path planning and motion coordination in multiple
mobile robot teams,” in Encyclopedia of Complexity and System Science.
New York, NY, USA: Springer, 2009, pp. 5783–5800.

[4] Y. Zhang and H. Mehrjerdi, “A survey on multiple unmanned vehi-
cles formation control and coordination: Normal and fault situa-
tions,” in Proc. Int. Conf. Unmanned Aircr. Syst. (ICUAS), May 2013,
pp. 1087–1096.

[5] S. M. LaValle and S. A. Hutchinson, “Optimal motion planning for
multiple robots having independent goals,” IEEE Trans. Robot. Autom.,
vol. 14, no. 6, pp. 912–925, Jun. 1998.

[6] A. Cámara, D. Silva, P. H. Abreu, and E. Oliveira, “Comparing a cen-
tralized and decentralized multi-agent approaches to air traffic control,”
in Proc. 28th Eur. Simulation Modeling Conf., 2014, pp. 22–24.

[7] T. Simeon, S. Leroy, and J.-P. Lauumond, “Path coordination for
multiple mobile robots: A resolution-complete algorithm,” IEEE Trans.
Robot. Autom., vol. 18, no. 1, pp. 42–49, Jun. 2002.

[8] R. Stern et al., “Multi-agent pathfinding: Definitions, variants, and
benchmarks,” in Proc. 12th Annu. Symp. Combinat. Search, 2019,
pp. 1–12.

[9] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artif. Intell., vol. 219,
pp. 40–66, Feb. 2015.

[10] R. Olmi, “Traffic management of automated guided vehicles in flexible
manufacturing systems,” Univ. Ferrara, Ferrara, Italy, Tech. Rep., 2011.
[Online]. Available: https://hdl.handle.net/11392/2388756

[11] I. Draganjac, D. Miklic, Z. Kovacic, G. Vasiljevic, and S. Bogdan,
“Decentralized control of multi-AGV systems in autonomous ware-
housing applications,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 4,
pp. 1433–1447, Oct. 2016.

[12] L. Sabattini, V. Digani, C. Secchi, and C. Fantuzzi, “Hierarchical
coordination strategy for multi-AGV systems based on dynamic geodesic
environment partitioning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Oct. 2016, pp. 1–6.

[13] C. Wei, K. V. Hindriks, and C. M. Jonker, “Multi-robot cooperative
pathfinding: A decentralized approach,” in Proc. Int. Conf. Ind., Eng.
Appl. Appl. Intell. Syst. Cham, Switzerland: Springer, 2014, pp. 21–31.

[14] D. Herrero-Perez and H. Martinez-Barbera, “Decentralized coordination
of automated guided vehicles,” in Proc. 7th Int. Joint Conf. Auto. Agents
Multiagent Syst. (AAMAS), vol. 3, 2008, pp. 1195–1198.

[15] P. Yang, R. A. Freeman, and K. M. Lynch, “Multi-agent coordination
by decentralized estimation and control,” IEEE Trans. Autom. Control,
vol. 53, no. 11, pp. 2480–2496, Dec. 2008.

[16] L. Pallottino, V. G. Scordio, A. Bicchi, and E. Frazzoli, “Decentralized
cooperative policy for conflict resolution in multivehicle systems,” IEEE
Trans. Robot., vol. 23, no. 6, pp. 1170–1183, Dec. 2007.

[17] W. Zhang, M. Kamgarpour, D. Sun, and C. J. Tomlin, “A hierarchical
flight planning framework for air traffic management,” Proc. IEEE,
vol. 100, no. 1, pp. 179–194, Jan. 2012.

[18] M. Jager and B. Nebel, “Decentralized collision avoidance, deadlock
detection, and deadlock resolution for multiple mobile robots,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., Expanding Societal Role Robot.
Next Millennium, Mar. 2001, pp. 1213–1219.

[19] R. Luna and K. E. Bekris, “Efficient and complete centralized multi-
robot path planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Sep. 2011, pp. 3268–3275.

[20] Y. Guo and L. E. Parker, “A distributed and optimal motion planning
approach for multiple mobile robots,” in Proc. IEEE Int. Conf. Robot.
Autom., Oct. 2002, pp. 2612–2619.

[21] I. F. A. Vis, “Survey of research in the design and control of automated
guided vehicle systems,” Eur. J. Oper. Res., vol. 170, no. 3, pp. 677–709,
May 2006.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



PRATISSOLI et al.: HIERARCHICAL TRAFFIC MANAGEMENT OF MULTI-AGV SYSTEMS 15

[22] V. Digani, L. Sabattini, C. Secchi, and C. Fantuzzi, “Towards decen-
tralized coordination of multi robot systems in industrial environments:
A hierarchical traffic control strategy,” in Proc. IEEE 9th Int. Conf. Intell.
Comput. Commun. Process. (ICCP), Sep. 2013, pp. 209–215.

[23] R. Olmi, C. Secchi, and C. Fantuzzi, “Coordination of industrial AGVs,”
Int. J. Vehicle Auto. Syst., vol. 9, nos. 1–2, pp. 5–25, 2011.

[24] R. Olmi, C. Secchi, and C. Fantuzzi, “Coordination of multiple AGVs
in an industrial application,” in Proc. IEEE Int. Conf. Robot. Autom.,
May 2008, pp. 1916–1921.

[25] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580,
Jun. 1996.

[26] J. P. van den Berg, D. Nieuwenhuisen, L. Jaillet, and M. H. Overmars,
“Creating robust roadmaps for motion planning in changing environ-
ments,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Aug. 2005,
pp. 1053–1059.

[27] R. Geraerts and M. H. Overmars, “A comparative study of probabilistic
roadmap planners,” in Algorithmic Foundations of Robotics V. Cham,
Switzerland: Springer, 2004, pp. 43–57.

[28] V. Digani, L. Sabattini, C. Secchi, and C. Fantuzzi, “Ensemble coordina-
tion approach in multi-AGV systems applied to industrial warehouses,”
IEEE Trans. Autom. Sci. Eng., vol. 12, no. 3, pp. 922–934, Jul. 2015.

[29] A. Mannucci, “Intra-logistics with integrated automatic deployment:
From one to multi-mobile robot systems,” Univ. Pisa, Pisa, Italy,
Tech. Rep., 2020. [Online]. Available: https://etd.adm.unipi.it/t/etd-
06242020-232157

[30] F. Pratissoli, N. Battilani, C. Fantuzzi, and L. Sabattini, “Hierarchical
and flexible traffic management of multi-AGV systems applied to
industrial environments,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2021, pp. 10009–10015.

[31] A. Mannucci, L. Pallottino, and F. Pecora, “Provably safe multi-robot
coordination with unreliable communication,” IEEE Robot. Autom. Lett.,
vol. 4, no. 4, pp. 3232–3239, Oct. 2019.

[32] Y. Wang, Y. Yuan, Y. Ma, and G. Wang, “Time-dependent graphs:
Definitions, applications, and algorithms,” Data Sci. Eng., vol. 4, no. 4,
pp. 352–366, Dec. 2019.

[33] E. G. Coffman, M. Elphick, and A. Shoshani, “System deadlocks,” ACM
Comput. Surv., vol. 3, no. 2, pp. 67–78, Jun. 1971.

[34] J. W. Havender, “Avoiding deadlock in multitasking systems,” IBM Syst.
J., vol. 7, no. 2, pp. 74–84, 1968.

[35] C. Godsil and G. Royle, “Algebraic graph theory,” in Graduate Texts in
Mathematics. New York, NY, USA: Springer, 2001.

[36] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Math., vol. 1, no. 1, pp. 269–271, Dec. 1959.

[37] S. Bandi and D. Thalmann, “Path finding for human motion in virtual
environments,” Comput. Geometry, vol. 15, nos. 1–3, pp. 103–127,
Feb. 2000.

[38] F. Schulz, D. Wagner, and K. Weihe, “Dijkstra’s algorithm on-line:
An empirical case study from public railroad transport,” ACM
J. Experim. Algorithmics, vol. 5, p. 12, Dec. 2000.

[39] R. V. Bostelman, T. H. Hong, and R. Madhavan, “Towards AGV safety
and navigation advancement obstacle detection using a TOF range
camera,” in Proc. 12th Int. Conf. Adv. Robot., 2005, pp. 460–467.

[40] M. Boehning, “Improving safety and efficiency of AGVs at warehouse
black spots,” in Proc. IEEE 10th Int. Conf. Intell. Comput. Commun.
Process. (ICCP), Sep. 2014, pp. 245–249.

[41] D. Chen et al., “Trajectory tracking control method and experiment of
AGV,” in Proc. IEEE 14th Int. Workshop Adv. Motion Control (AMC),
Apr. 2016, pp. 24–29.

[42] P. S. Pratama, A. V. Gulakari, Y. D. Setiawan, D. H. Kim, H. K. Kim,
and S. B. Kim, “Trajectory tracking and fault detection algorithm for
automatic guided vehicle based on multiple positioning modules,” Int.
J. Control, Autom. Syst., vol. 14, no. 2, pp. 400–410, Apr. 2016.

[43] L. Sabattini, V. Digani, M. Lucchi, C. Secchi, and C. Fantuzzi, “Mis-
sion assignment for multi-vehicle systems in industrial environments,”
in Proc. IFAC Symp. Robot Control (SYROCO), Salvador, Brazil,
Aug. 2015, pp. 1–13.

[44] T. Shimomura and K. Ikeda, “Two types of deadlock detection: Cyclic
and acyclic,” in Intelligent Systems for Science and Information. Cham,
Switzerland: Springer, 2014, pp. 233–259.

[45] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proc. 7th Python
Sci. Conf. (SciPy), G. Varoquaux, T. Vaught, and J. Millman, Eds.
Pasadena, CA, USA, Aug. 2008, pp. 11–15.

[46] M. Peasgood, C. M. Clark, and J. McPhee, “A complete and scalable
strategy for coordinating multiple robots within roadmaps,” IEEE Trans.
Robot., vol. 24, no. 2, pp. 283–292, Apr. 2008.

[47] S. MohaimenianPour, M. Behbooei, and S. S. Ghidary, “Adaptive multi-
agent path planning with dynamic heuristic,” in Intelligent Autonomous
Systems 13. Cham, Switzerland: Springer, 2016, pp. 591–603.

Federico Pratissoli (Graduate Student Member,
IEEE) received the B.S. and M.S. degrees in mecha-
tronic engineering and the Ph.D. degree in indus-
trial innovation engineering from the University of
Modena and Reggio Emilia, Italy, in 2016, 2018,
and 2023, respectively. In 2018, he was a Visiting
Student with Sheffield University, Sheffield, U.K.
He has been a Visiting Researcher with the Univer-
sity of Cambridge, Cambridge, U.K. He is currently
a Postdoctoral Researcher with the Department of
Sciences and Methods for Engineering (DISMI),

University of Modena and Reggio Emilia. His main research interests include
multi-robot systems, UAV systems, coordination and path planning, multi-
AGV industrial systems, distributed control, and multi-agent learning.

Riccardo Brugioni received the B.Sc. and M.Sc.
degrees in mechatronic engineering from the Uni-
versity of Modena and Reggio Emilia, Italy, in
2018 and 2021, respectively. Since 2021, he has
been working as a Chassis Control and Vehicle
Simulations Engineer at Automotive Industry. His
main research interests include multi-AGV industrial
systems, integrated active chassis controls, X-in-
the-loop approaches to vehicle development, and
sensorless controls for IPM motors.

Nicola Battilani received the B.Sc. and M.Sc.
degrees in mechatronic engineering and the Ph.D.
degree in industrial innovation engineering from
the University of Modena and Reggio Emilia,
Italy, in 2011, 2014, and 2017, respectively.
He was a Research Scientist with the Lagadic
Team, Inria Rennes Bretagne Atlantique, Rennes,
France, in 2016. His research topics include mobile
autonomous robots, machine vision, human–robot
collaboration, human–machine interface, and
industrial systems.

Lorenzo Sabattini (Senior Member, IEEE) received
the B.Sc. and M.Sc. degrees in mechatronic engi-
neering from the University of Modena and Reggio
Emilia, Italy, in 2005 and 2007, respectively, and
the Ph.D. degree in control systems and opera-
tional research from the University of Bologna, Italy,
in 2012. In 2010, he has been a Visiting Researcher
with the University of Maryland, College Park, MD,
USA. He has been an Associate Professor with the
Department of Sciences and Methods for Engineer-
ing, University of Modena and Reggio Emilia, since

2018. His main research interests include multirobot systems, decentralized
estimation and control, and mobile robotics. He has been the Founding
Co-Chair of the IEEE RAS Technical Committee on Multi-Robot Systems.
He has served as the Corresponding Co-Chair from 2014 to 2021. He has
been serving as an Associate Editor for IEEE ROBOTICS AND AUTOMATION
LETTERS from 2015 to 2018 and IEEE Robotics and Automation Magazine
from 2017 to 2019. He is currently serving as an Editor for the IEEE ICRA
Conference and IEEE/RSJ IROS Conference and an Associate Editor for the
International Journal of Robotics Research (IJRR).

Open Access funding provided by ‘Università degli Studi di Modena e Reggio Emilia’ within the CRUI CARE Agreement

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 


