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Abstract: Air pollution is a major risk factor, and it still remains a global cause of death for millions
of people. Indoor air quality (IAQ) plays an important role in human health as people spend most of
their time in confined spaces. Many studies have recently addressed this issue, but no systematic
analysis has been conducted, which is the aim of our study. We present a bibliographic analysis of
articles on IAQ in industrial environments from 2010 to 2021. A total of 658 articles were collected,
and 409 were used. The NVivo tool was used to analyze the collected documents both quantitatively
and qualitatively. This analysis of the literature enables us to identify the most studied working
environments and pollutants, the analysis tools, and the types of measurement used to provide a clear
overview of the theme, which includes a comparison between the studied working environments
and the state of origin of the authors. Our analysis of each working environment and the related
frequently cited pollutants provides a clear approach to identifying the specific areas of focus when
improving the quality of the air in a specific working environment. In addition, a research gap and
future research areas have been identified in the conclusions.

Keywords: indoor air quality; industrial environment; bibliographic analysis

1. Introduction

In recent years, people have been forced to spend more time than ever before in
confined spaces. The outbreaks of SARS-CoV-2, declared a pandemic by the Word Health
Organization (WHO) [1], have caused a global health and socio-economic crisis [2] that
forced governments to impose various lockdown measures (including social distancing
and the mandatory use of protective masks) in an attempt to flatten the epidemic curve [3].
While information is provided by the media almost every day about the health risk caused
by air pollution that is now out of control, it is difficult to accept that the air contained in
homes or confined spaces can also be considered a real threat to one’s psycho-physical
well-being [4]. On average, individuals spend approximately 90% of their time indoors
without being aware of the indoor environment’s conditions and their potential effects on
health [5]. Adverse health conditions through household air pollution were supposed to
be responsible for the premature deaths of 2.31 million people in 2019, according to the
Global Burden of Disease [6] study. To put this in context, this is three times the number
of death related to unsafe sanitation, which caused 756,588 in 2019 [6]. This makes this
risk factor one of the largest environmental contributors to ill health [7]. Long exposure
to air pollution can damage the respiratory system [8] and reduce life expectancy [9]. In
addition to these commonly known effects, an impact on cognitive performance has also
recently been recognized [10]. Given the aforementioned data, the significance of indoor
air pollution for human health is clear. However, its effects vary drastically according to
the level of development: household air pollution is supposed to be responsible for almost
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10% of deaths in low- and middle-income countries and for 7.7% of global mortality [7,11].
Major differences in national death rates can be clearly observed, and they are much higher
in low-income countries, particularly those of sub-Saharan Africa and Asia [12]. The issue
of indoor air pollution, therefore, has a clear economic subdivision: it has been almost
completely eliminated in high-income countries, but it remains a major environmental
and health problem in countries with lower incomes. For example, in [13], the authors
demonstrated how human development and poverty are major influencing factors for air
quality and how relatively poor economic performance is, in part, a consequence of long
periods of political instability and weak governance, in addition to corruption, which is a
common problem for emerging countries. The data indicate that poor air quality is one of
the largest environmental contributors to the poor health of individuals [14].

However, it should be recognized that although indoor air pollution is still a major
mortality risk factor and one of the main risk factors in low-income countries, significant
progress has been made globally in recent decades [7]. The number of annual deaths world-
wide from indoor air pollution fell by more than 1 million since 1990, when an estimated
2.7 million died prematurely, to 1.6 million by 2017, as Figure 1 shows [6]. Thus, despite
the population growth over recent decades, the total number of deaths from indoor air
pollution is in decline. There is not any single explanation for this phenomenon, but the
recognition of the various adverse impacts of air pollution on human health and the conse-
quent social and economic costs [15] must be an influencing factor. Industrial buildings can
be considered a key context for examining indoor air quality for the following reasons:

(1) Workers spend a large amount of time indoors, with about 1720 h per year spent at
work for a full-time employee;

(2) Poor air quality has been associated with a loss of productivity in simulated task
environments and with declines in cognitive scores [16,17];

(3) Many people are often concentrated in small spaces in workplaces, which increases
their exposure;

(4) Industrial buildings often contain significant sources of atmospheric pollutants and
are in locations that also have problems in terms of the quality of the outdoor air
(Fung et al. [18]; Meadow et al. [19], Kuo and Shen [20],; Jones et al. [21]; Baek et al. [22])

Strategically operating building heating, ventilation, and air-conditioning (HVAC) sys-
tems can improve IAQ and reduce the risk of infection from airborne viral particles [23–26].
In addition, a very high level of a single pollutant can lead to damage, even if all other
conditions are ideal [27].

Recently, air quality in sports gained a lot of attention in the literature, with two
bibliometric analyses on the theme. The first one studied indoor environments used for
sports [28], while the second focused on outdoor sports [29]. Given this attention to air
quality in sports environments, IAQ in working environments is even more important since
the time spent working is usually higher.

However, even if IAQ has gained increasing interest due to its effect on the health of
individuals, there is only one bibliometric analysis related to IAQ in general terms that
focuses on its past and present trends [30]. At the same time, in this work [30], the indoor
working environments, relative pollutants, and instruments exploited were not included in
the analysis, while these are the main focus of our work.

Therefore, this study aims to investigate and analyze the results obtained in studies
of indoor air pollution in various workplace contexts through a bibliometric analysis.
The conclusions regarding issues such as the most cited pollutants, most used keywords,
most studied countries, commonly used instruments, and leading authors are presented.
The results presented in this paper are obtained using the bibliometric analysis software
NVivo [31]. The research implications and a summary of the main findings are then
given, and we conclude with an acknowledgment of the limitations and suggestions for
future research.
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2. Bibliometric Method

Bibliometrics is a research area of information and library sciences in which biblio-
graphic data derived from scientific publications are quantitatively analyzed [32,33]. The
purpose of bibliometrics is to highlight the nature and development of a research do-
main [34] and thus classify and provide a representative overview of a set of bibliographic
documents [35]. The dataset for this analysis was developed by drawing on the databases
of ScienceDirect, Taylor & Francis, Web of Science, MDPI, and ResearchGate. The papers
considered were published between 2010 and 2021. Approaches and technologies aimed at
the control and analysis of indoor air quality evolve very quickly, so this time frame was
chosen to ensure the analysis is as current as possible. The first step in the data-collection
process was to identify the keywords and determine the inclusion and exclusion criteria.
Two groups of search terms were formed. The first (Group A) refers to the main topics
of the research, and the second (Group B) represents the type of environment considered.
Both are reported in Table 1.

Table 1. Groups of searched terms.

Group “A” Group “B”

Air Quality
OR

Pollution
OR

Pollutants Industrial environment
OR AND OR

Emissions Indoor
OR OR

Exposure Work environment
OR

Chemicals

We took an operational approach to select a suitable sample of papers for review:

1. Identification of the papers using the keywords.
2. Screening and abstract control.
3. Eligibility by applying content criteria.
4. Full-text assessment.

The general scheme and relative screening of the papers are illustrated in Figure 1.
The following content exclusion criteria were applied:

• Articles that analyze schools, means of transport, restaurants, and spaces used for
sports activities.

• Use of biological methods for the analysis of pollutants, such as blood, saliva, urine
analysis, etc.

• Review articles containing no information on pollutants or relevant results.

A total of 656 articles were identified using search terms, and 409 met all of our
inclusion criteria. Table 2 shows the number of papers distributed by year of publication
and indicates that more than 50% of the papers collected over the past 12 years were
published in the last 5 years, which highlights the increasing interest in the literature. We
considered papers published up until March 2021, and thus the percentage of publications
in this final year is relatively low.
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Figure 1. Operational approach for the selection of papers and screening flowchart.

Table 2. Number of annual published articles between 2010 and 2021.

Year Count Percentage (%) Accumulated Percentage (%)

2010 4 0.98 0.98
2011 25 6.10 7.08
2012 34 8.29 15.37
2013 29 7.07 22.44
2014 34 8.29 30.73
2015 34 8.29 39.02
2016 33 8.05 47.07
2017 35 8.54 55.61
2018 49 12.20 67.81
2019 65 15.85 83.66
2020 60 14.63 98.29
2021 7 1.71 100.00

After collecting the literature, a bibliographic database file was created to generate
bibliographic tables using NVivo software. This is a type of qualitative data analysis (QDA)
software produced by QSR International [31]. NVivo provides a qualitative method of
collecting open data and for identifying qualitative insights such as interviews, survey
responses, magazine articles, and social media and web content, in which in-depth levels
of analysis on small or large volumes of data are required.

We selected sub-categories to represent the various working environments and grouped
industries within the same broad area together. Table 3 gives these groupings.
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Table 3. Specific industry grouping.

Industry Macro Category Specific Industry

Food Coffee-processing factories
Water bottling

Food production factory
Food and beverage plant

Grain industry
Fish-processing industry

Swine production
Sugar industry
Cheese factory

Grain and animal feed production industry

Waste Waste electrical and electronic
equipment (WEEE) treatment facility

E-waste dismantling workshop
E-waste recycling workshops

Recycling process for waste TV
Mobile e-waste recycling plant
E-waste processing workshops

Battery-recycling industries
Recycling process of waste printed circuit

board

Mines Metal mines
Chrysotile mine and processing factories

Gold miners
Taconite mines
Potash mines

Sangan iron ore mines
Platinum mines

Underground mines
Coal mines

Artisanal mercury mining communities

Textiles Shoe-manufacturing facilities
Clothes-manufacturing factories

Facility that produces rain jackets
Integrated textile factory

Texile industry
Textile dyeing, chemical manufacturer

Bra cup manufacturing facility
Rubber footwear industries
Textile-processing workers

Office Office building
Office room

Green office buildings
Mass timber office building

Open-plan offices
Commercial office

Urban office
Nuclear research center

Dental office

3. Results

This section may be divided into sub-headings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.



Sustainability 2022, 14, 10108 6 of 26

3.1. Pollutants

From our NVivo analysis, we identified a total of 153 types of pollutants examined
in the literature. Figure 2 shows the number of times a pollutant was considered in the
collected papers.

Figure 2. Pollutants and relative number of articles where they were investigated.

The group “Other pollutants” includes the 63 that have only been detected once, such
as Cytochrome P450 2E1 (CYP2E1) [36], Polytetrafluoroethylene (PTFE), Acrylamide [37],
Hydrochloric acid [38], Nitric acid (HNO3) [39], Isocyanic acid [40], Selenium (Se), Trigly-
cidyl Isocyanurate (TGIC) [41], and Vinyl chloride monomer [42]. As the graph shows,
the first three categories of TPM (Total Particulate Matter), VOCs (Volatile Organic Com-
pounds), and Metals correspond to 59.81% of the total investigated pollutants in indoor
environments. Nurul et al. [43] assessed the levels of particulate matter ((PM2.5, PM10, and
Total Particulate Matter (TPM)) and traced metal dust concentrations in different sections
of a steel plant and compared them with the occupational exposure values. Particulate
matter is classified according to the size of the particle: coarse particulate matter, PM10
(particles with a diameter of 10 micrometers (µm) or less); fine particulate matter, PM2.5
(particles with a diameter of 2.5 micrometers (µm) or less); PM1 (particles with a diameter
of 1 micrometer (µm) or less); and ultrafine particulate matter, PM0.1 (particles with a
diameter of 100 nanometers (nm) or less). The findings showed that chromium and cobalt
exposure exceeded the recommended limit by one to three times, but nickel exposure and
particulate matter (PM2.5, PM10, and TPM) did not exceed the limit [44]. Unacceptable
work conditions, such as a lack of engineering control, and unsafe behavior, such as no
respiratory mask use, were found to be potential contributors to the higher exposure to
metal dust among the workers. Improvements in working conditions and in safety behavior
are thus required to ensure the well-being of these workers. The authors of [45] reported
the occupational inhalation exposure of workers to VOCs in the Kuwaiti printing industry.
VOCs are particularly dangerous to human health [46]. The researchers’ results indicate
that efforts to reduce worker exposure to VOCs in recent years have been successful, but
there is still much to be completed to protect them. Unexpected findings included the use
of the carcinogen vinyl chloride and 1,2-Dichlorotetrafluoroethane (CFC-114), which is
banned under the Montreal Protocol, in printing activities. Lapses in safety procedures
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were observed, including the failure to use ventilation systems or closing doors between
work areas, indicating that management and worker education should remain a priority.
These categories can be considered macro-areas containing different variants of the same
main element. The composition of each macro-area is shown below. Figure 3 shows the
elements that appear in the “VOCs” macro-area. Many authors (41.6%) who analyze VOCs
do not provide information about their composition. Formaldehyde is the focus of many
studies, as a typical pollutant of indoor environments, and is found in materials used
for the insulation of buildings and furnishings. BTEXs (Benzene, Toluene, Ethylbenzene,
Xylene) are also widely studied, such as Benzene [36,37], Styrene [47,48], and Toluene [49].
Tetrachloroethylene and Trichloroethylene are also analyzed to a lesser extent.
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Figure 3. Composition of the ”VOCs” macro‐area on the left and of BTEXs on the right. 
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Figure 3. Composition of the ”VOCs” macro-area on the left and of BTEXs on the right.

The macro-area of TPM consists of the two sub-categories of PM (55.05%) and Dust
(44.95%). Figure 4 shows the composition of the “PM” macro-area. PM2.5 (44.0%) and PM10
(31.2%) are the most often considered PMs in terms of both the indoor and the outdoor
environment. The authors of [50–52] carried out an analysis of the hazard quotient (HQ, or
quotient of danger) and the cancer risk (CR) of PM2.5 in cases of chronic exposure. Five
offices were considered, and a comparison was made between the indoor and outdoor
environments. The hazard quotient (HQ) associated with PM2.5 was, in all five cases,
higher in the indoor than in the outdoor environment. The authors of [53] analyzed
the air quality level in 13 open-plan administrative offices (OAOs) and 12 open-plan
research offices (OROs) in China. The concentrations of PM2.5 and PM10 in the OAOs were
55.0 µg/m3 and 68.8 µg/m3, with 60.9 µg/m3 and 74.6 µg/m3 in the OROs, respectively.
As recommended by the BS EN Standard 15251:2007 [54] and ANSI/ASHRAE Standard
62.1–2013 [55], the concentrations of PM2.5 and PM10 should be lower than 15 µg/m3

and 50 µg/m3, respectively. This therefore indicates that the concentrations of PM2.5 and
PM10 did not satisfy the requirements of these standards. The authors of [56] studied the
inhalation exposure to size-specific particulate matter (PM) among workers in an informal
electronic-waste (e-waste) recovery site. Burning activities led to the highest PM2.5 exposure
(203 µg m3). However, median PM2.5 concentrations between work- and non-work-related
activities were largely similar, and all individuals on the site, regardless of their activities,
experienced poor air quality. PM2.5 exposures during long periods of non-work-related
activities exceeded the WHO standard in 88% of the measured data.
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Figure 5 shows the composition of the “Dust” macro-area. Most of the studies did
not specify the dust composition, but in those that did, the most detected type of dust was
silica dust. In many industries (mineral, fuel–energy, metal, chemical, and construction),
workers are exposed to silica dust, and thus assessing this exposure is essential to avoid
adverse health consequences (such as silicosis, pneumoconiosis, chronic kidney disfunction,
and other general respiratory problems) [57–60]. Unfortunately, monitoring for silica
requires expensive equipment, health and safety staff with the knowledge to conduct the
monitoring, and an available laboratory to perform the analysis, making it particularly
difficult to perform monitoring in low- and middle-income countries [61]. The authors
of [62] analyzed mortality levels in 29 mines in China and their relationship to silica
exposure. The cohort included 74,040 employees, of which 49,309 (66.6%) were found
to be exposed to silica dust, and 19,516 deaths were reported. Workers exposed to silica
had significantly elevated mortality from all causes of death compared with the national
mortality rate in China, as measured by the standardized mortality ratio (SMR). These
findings highlight the importance of effective controls of silica dust exposure in workers.
Safety management along with a quantitative assessment of dust exposure can play an
important role in reducing dust concentrations at vulnerable sites.

Figure 6 shows the composition of the “Metals” macro-area. The incidence of studies
that investigated metals is well-balanced in terms of types of metal. Lead was investigated
in 12.8% of the studies, for example, by [63]; mercury was investigated in 11.6%, for
example, by [64]; the presence and effects of chromium were evaluated, for example,
by [65]; and [66] analyzed the exposure to solid chemical agents in biomass-fired power
plants and the associated health effects. The MIXIE program was used to evaluate the
risks the workers faced from the metals. The results suggest that multiple 4exposures to
different metals are associated with an increased risk of cancer, central nervous system
disorders, and upper and lower respiratory tract irritation. The increased cancer risk can be
explained by the combined effects of As, Be, Cd, and Pb; central nervous system disorders
by those of Mn, Pb, and Se; irritation of the upper respiratory tract by those of Al, As, and
Se; and irritation of the lower respiratory tract by the combined effects of Be, Cd, Mn, and
Se. The most evident exposure-associated health risk of multiple exposures to metals was
that of cancer.
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3.2. Indoor Working Environments

We identified 263 types of indoor working environments. Table 4 shows the top 16 most
analyzed types of environments.

Table 4. Top sixteen working environments most analyzed.

Indoor Working Environment N. Citations Percentage (%)

Office 37 8.71
E-waste 26 6.12

Mine 22 5.18
Food 22 5.18

Textile 15 3.53
Cement factory 13 3.06

Petroleum refinery 12 2.82
Steel industry 11 2.59
Paint factory 9 2.12

Plastic factory 9 2.12
Recycling facility 9 2.12

Vehicle manufacturing 8 1.88
Hospital 7 1.65

Printing industry 6 1.41
Foundry 6 1.41

Wastewater treatment plant 6 1.41
Others 207 48.71

The remaining 48.71% includes working environments investigated less than six times,
such as ceramics, wood, and fertilizers; and 93 considered one environment each (or 21.88%
of the total), such as silicon production, fireworks plants, and the porcelain industry. As
described in the Materials and Methods section, the five categories of Office, E-Waste,
Mines, Food, and Textiles are macro-areas that contain working environments that share
specific characteristics. For the five most analyzed categories (Office, E-waste, Mines, and
Food), further research was carried out on the pollutants detected in each specific area.
The 16 working environments were examined in 218 papers, amounting to 53% of the
total. The 247 papers focusing on the remaining 47% of indoor environments mean that the
percentage of investigations into each environment was less than 0.5%, which highlights
the increasing interest in this research area. At the same time, Table 4 highlighted the
scarcity of studies related to a highly potentially polluted working environment from an
aerial perspective, such as in the Printing Industry, where only six studies took place, which
was also the case for Wastewater Treatment Plants.

3.2.1. Office

Much of the time spent indoors is within offices [67]. Many studies have confirmed that
indoor environmental quality (IEQ), measured in terms of thermal comfort, air quality, and
brightness, has a significant impact on occupant comfort, health, and productivity [68–72].
Good IEQ should therefore be ensured in offices. Many new offices are now located
in green buildings [73], which provide a better indoor environment with less energy
consumption [74] than traditional approaches. With the rapid development of this new
type of building, the question of whether or not the specific IEQ performance meets the
high expectations is a subject of debate. Several studies have been conducted to evaluate
the actual IEQ performance of green buildings [70,75,76]. Some researchers have found
that green buildings have good IEQ performance, such as [77], who showed that green
buildings typically have a higher IEQ performance than non-green buildings. However,
others have argued that green buildings do not show higher IEQ levels than conventional
buildings or when compared to standard guidelines. For example, [78] found no differences
between green buildings and conventional buildings in terms of thermal comfort and air
quality. Thus, no final conclusions can be drawn, and it is unclear whether green office
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buildings really perform better in terms of IEQ and thus increase employee satisfaction
or work performance [79–84]. Some evidence suggests that although green buildings can
achieve energy efficiency targets [85], unintended consequences may reduce the quality of
indoor environments and reduce occupant satisfaction [86]. For example, green buildings
with airtight envelopes and poorly thought-out ventilation systems can lead to poor air
quality and consequently increase the health problems and discomfort of occupants [87–91].
Table 5 shows the pollutants detected most often in the working environments that are part
of the “Office” macro-area.

Table 5. Pollutants most detected in “Office” working environment.

Pollutant N. Detection Percentage (%)

PM 17 22.67
VOCs 17 22.67
CO2 13 17.33

Metals 5 6.67
O3 5 6.67
CO 4 5.33

Others 14 18.67

The results for the Office macro-area are in line with those reported in Figure 2, which
shows that the most investigated pollutants are PMs, VOCs, and CO2. The remaining
18.67% include pollutants detected less than four times. The relatively high presence of
CO2 in in offices is because the spaces are typically smaller than in industrial working
environments, and the production of CO2 from the workers cannot be ignored. The CO2
concentration can be estimated based on the number of occupants, the ventilation rate, and
the external CO2 concentration, as suggested by the literature [92,93]. The obtained results
are also in line with those in Figures 3 and 4. The macro-area “PM” includes 10 detections
for PM2.5, 5 for PM10, 1 detection for PM1, and the type of PM is not specified in the
remaining studies. The “VOCs” macro-area consists of seven detections of Formaldehyde,
one of RVOCs (Reactive Volatile Organic Compound), one of TVOCs (total volatile organic
compounds), and eight detections for unspecified VOCs. The “Metals” macro-area includes
one detection of chromium (CR), one detection of cobalt (Co), one detection of indium (In),
one detection of lead (Pb), and one detection of mercury (Hg). This highlights the limited
variation in the metal pollutants analyzed in the literature.

3.2.2. E-Waste

Electric and electronic waste (e-waste) is currently the fastest-growing type of toxic
waste (about 4% per year) in global terms [94,95]. Most components of electrical and elec-
tronic appliances, particularly printed circuit boards (PCBAs), are recycled [96]. However,
several toxic components of electrical and electronic waste end up in the air, water, soil,
or on workers, causing damage to human health and the environment [97–99]. The main
pollutants detected during the e-waste recycling process are heavy metals and potentially
harmful organic substances [98,100]. Metals are usually present in the various substances
emitted, as experiments conducted in laboratories have also revealed [101]. Table 6 shows
the pollutants analyzed for the “E-Waste” macro-area. The most detected pollutant is
represented by the “Metals” macro-area, which alone corresponds to 36.96% of the total
pollutants. This includes four detections of lead (Pb), three detections of cadmium (Cd),
three of copper (Cu), two of chromium (Cr), two of zinc (Zn), two measurements of mercury
(Hg), and one of nickel (Ni). The PM macro-area consists of three PM2.5 detections, two of
PM10, one of PM0.1, and three unspecified PM detections. The types of VOCs are not speci-
fied. The extensive presence of PBDEs is interesting, as out of the 10 total PBDEs detections,
only 7 were in the “E-Waste” macro-area, as Figure 2 shows. PBDEs are a type of persistent
organic pollutants, or POPs, and are used for various commercial purposes, mainly as a
flame retardant (FR). The high presence of PBDEs in this macro area is understandable,
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as the “E-Waste” macro-area is composed exclusively of waste of electrical and electronic
equipment, or WEEE, and PBDEs are mainly used in these types of equipment, including
molded modules, electrical components, electrical connectors, automobile interior parts
connectors, home appliances, and other flame-retardant applications.

Table 6. Pollutants most detected in “E-Waste” working environment.

Pollutant N. Detection Percentage (%)

Metals 17 36.96
PM 9 19.57

PBDEs 8 17.39
VOCs 4 8.70

Flame retardants 3 6.52
PAHs 3 6.52
PCBs 2 4.35

3.2.3. Mines

Table 7 shows the pollutants most often detected in the “Mines” macro-area and
indicates that the remaining 20.68% consists of the pollutants detected only once. Dust
represents 44.83% of the total pollutants investigated in mines, and 4 of the 13 measurements
are of crystalline silica dust. Exposure to dust is inevitable in mines because the process
of extracting minerals involves breaking rocks. This dust can penetrate the alveoli of the
pulmonary system and can cause respiratory impairment [102]. Most of the dust generated
from the extraction processing is silica [103]. Silica appears in different forms and is one of
the most common minerals in the Earth’s crust [104]. Crystalline silica dust can appear at
almost all stages of the manufacturing processes of many mining industries [105], and so it
is natural that many studies focus on these pollutants in mines.

Table 7. Pollutants most detected in “Mines” working environment.

Pollutant N. Detection Percentage (%)

Dust 13 44.83
Metals 8 27.59

Diesel Particulate Matter 2 6.90
Other 6 20.68

3.2.4. Food

Table 8 shows the pollutants detected at least twice in the “Food” working environ-
ments. The remaining 31.11% (corresponding to 14 elements) includes pollutants detected
only once, and 8.89% of the total pollutants are endotoxins. These are produced by Gram-
negative bacteria and represent a widespread environmental contaminant in numerous
industrial and agricultural settings [106]. Endotoxin-induced inflammation leading to im-
mune system upregulation has been proposed as a likely anti-carcinogenic mechanism [107].
However, more recent studies provide conflicting evidence regarding the effect of endotoxin
exposure on lung cancer. Exposure to endotoxins has been studied in several industries
associated with organic dust exposure, such as food [108–110].

Table 8. Pollutants most detected in “Food” working environment.

Pollutant N. Detection Percentage (%)

Dust 9 20.00
VOCs 5 11.11

Endotoxin 4 8.89
Bacteria or Fungi 4 8.89
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Table 8. Cont.

Pollutant N. Detection Percentage (%)

CO 3 6.67
O3 2 4.44

CO2 2 4.44
β-glucan 2 4.44

Other 14 31.11

3.2.5. Textile

The textile and clothing industries are the main sources of economic growth and social
development in many developing countries and elsewhere. This sector contributes about
15% of the total GDP of some low-income countries and creates jobs for 35% to 90% of
the total workforce in manufacturing industries [111]. Less-developed countries such as
Bangladesh, Cambodia, and Lesotho all have very high shares of total manufacturing
employment in the T&C industry (77%, 90%, and 89%, respectively) [111]. In China, the
textile sector plays a fundamental role in the national economy, and in 2017, China’s textile
exports reached a value of about USD 110 billion, representing 37.2% of the global market
share, followed by the European Union and India [112]. Table 9 shows the pollutants most
often detected for the “Textile” macro-area.

Table 9. Pollutants most detected in “Textile” working environment.

Pollutant N. Detection Percentage (%)

VOCs 10 33.33
Dust 5 16.67

Endotoxin 2 6.67
Other 13 43.33

The remaining 43.33% (corresponding to 13 elements) includes all the pollutants de-
tected only once. Like other types of industrial activities, the textile industry releases toxic
substances into the environment, thus contributing to environmental pollution, and in
particular, water pollution and toxic gases emitted by wastewater. According to the China
Environment Statistical Yearbook, more than 1.8 billion tons of wastewater were produced
in 2015, containing dyes, heavy metal ions, solvents, and other pollutants [113]. The most
detected pollutant in the studies was VOCs, which contribute 33.33% of the total pollutants.
Of the 10 detections of VOCs, 3 are of benzene, 3 of formaldehyde, 2 of trichloroethylene,
and 2 of unspecified VOCs. Although wastewater can be purified through various tech-
nologies and treatments, the VOCs present in fabrics, surfaces, detergents, and solvents
can be emitted into the environment during these treatments [114,115]. The second-most
detected pollutant is dust, at 16.67%. Exposure to cotton dust in the textile industry is asso-
ciated with work-specific and non-work-specific respiratory symptoms. In addition, cotton
dust is often contaminated with Gram-negative bacteria, which contain endotoxins [116].
Thus, the third-most detected pollutants are endotoxins, at 6.67%, which are released into
the air during the processing of cotton [117]. The detections of trichlorethylene are also
interesting. Trichlorethylene is a synthetic product that, at room temperature, appears
as a non-flammable, colorless liquid with a characteristic (sweetish) odor [118]. This is
considered a group-one carcinogen (confirmed as carcinogenic to humans) [119]. In the
textile sector, it was used as a solvent for dry cleaning until it was replaced in the 1950s by
tetrachlorethylene [120]. Even today, however, it can be found in hardware stores, and is
used as a stain remover. The recommendation is that it should only be used when wearing
appropriate personal protective equipment (PPE), such as masks, gloves and protective
goggles, to avoid any possible contact.
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3.3. Authors

Table 10 shows the authors who have published 3 or more articles out of the 371 identified,
and 32 have published more than 1 article on the subject.

Table 10. Authors with most published articles.

Authors N. Articles Percentage (%) Affiliation

Jie Guo 4 0.98
School of Environmental Science and

Engineering, Shanghai Jiao Tong University,
800 Dongchuan Road, Shanghai 200240, China

Samson Wakuma Abaya 3 0.73

Department of Preventive Medicine, School of
Public Health, College of Health Sciences,

Addis Ababa, Ethiopia University,
PO Box 9086, Addis Ababa, Ethiopia

Solange Costa 3 0.73
Department of Environmental Health,

National Institute of Health, Rua Alexandre
Herculano nº 321, Porto 4000-055, Portugal

Ranran Liu 3 0.73

State Key Laboratory of Organic Geochemistry
and Guangdong Key Laboratory of

Environmental Protection and Resources
Utilization, Guangzhou Institute of

Geochemistry, Chinese Academy of Sciences,
Guangzhou 510640, China

Anne Straumfors 3 0.73

Department of Chemical and
Biological Work Environment,

National Institute of Occupational Health,
PO Box 8149 Dep, Oslo N-0033, Norway

Others 393 96.09 -

The authors shown in Table 10 cover only 3.91% of the total, and the remaining 96.9%
(corresponding to 366 authors) includes all who have published fewer than 3 articles. Jie
Guo focused his investigations in China and mainly investigated the recycling and disposal
processes of electrical waste, including televisions and printed circuit boards [121–124].
The keywords most used in his articles are risk assessment, particle pollution, recycling pro-
cess, electronic waste, fumes, particulate matter, thermal degradation, pollution emission,
pollution control, and PBDEs. The three keywords of “Fumes”, “Particulate matter”, and
“PBDEs” are connected, and in fact, many researchers [125–127] have studied the airborne
and floor pollution caused by the WPCB de-soldering processes in WEEE recycling areas.
They report that particulate matter (PM) and polybrominated diphenyl ethers (PBDEs) are
two key pollutants contained in the fumes emitted during the WPCB de-soldering process.
Samson Wakuma Abaya focused on dust exposure and the health problems of workers in
coffee and water bottling factories in Ethiopia [128–130]. The keywords most used in his
works are coffee dust, exposure determinants, personal exposure, primary coffee factory,
lung function, and respiratory symptoms. The keywords are in line with the findings of
this study, as in the “Food” macro-area, the most detected pollutant is “Dust”. Solange
Costa focused on the exposure to formaldehyde of those working in laboratories [131–133].
Ranran Liu examined emissions of harmful substances at dismantling and recycling sites
for electronic waste and assessed their implications for the health of workers [134–136]. The
keywords most used in Liu’s works are E-waste recycling, E-waste dismantling, human
exposure, and pollution patterns. Anne Straumfors focused her investigations on Norway.
In her first two works, she studied the distribution of grain dust in industries that produce
animal feed and process grain [137,138]. The keywords most used by Straumfors are bacte-
ria, endotoxin, exposure assessment, fungal spores, and grain industry. The presence of
"endotoxin” among these keywords is not surprising, and it supports the results presented
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in Table 8 for the “Food” macro area, in addition to the presence of bacterial and fungal
spores. In her third study, she analyzed exposure to wood dust in sawmills [139].

3.4. Journals

Table 11 shows the top 16 journals that have published the majority of the analyzed
articles. The International Journal of Environmental Research and Public Health has published
the most. This covers environmental sciences and engineering, public health, environmental
health, occupational hygiene, economic and global health research, etc.

Table 11. Journals that published more papers.

Journals N. Papers Percentage (%)

International Journal of Environmental Research and Public Health 23 5.62
Science of the Total Environment 19 4.65

Annals of Work Exposures and Health 18 4.40
Journal of Occupational and Environmental Hygiene 15 3.67

Ann. Occupational Hygiene 15 3.67
Environmental Science and Pollution Research 15 3.67

Journal of Hazardous Materials 12 2.93
International Archives of Occupational and Environmental Health 12 2.93

Environment International 11 2.69
Environmental Research 10 2.44

Ecotoxicology and Environmental Safety 9 2.20
Industrial Health 9 2.20

Building and Environment 9 2.20
Toxicology Letters 8 1.96

Toxicology and Industrial Health 8 1.96
International Journal of Hygiene and Environmental Health 8 1.96

3.5. Country of Origin of the Authors and States Analyzed

The authors’ countries of origin were compared with those in which the investigations
on indoor air quality were conducted. Tables 12 and 13 show the top ten countries of origin
of the authors and those of analyses for the highest number of citations, respectively.

Tables 12 and 13 indicate that despite the change in the number of citations, the
countries that appear the most remain the same (China, the USA, Iran, Italy, and Poland).
However, the countries of origin of the authors and those in which the analyses took place
differ. Thus, some authors decided to conduct their analyses in countries other than their
own. Table 14 shows these particular cases and the differences.

Table 12. Top ten countries of origin of the authors.

State N. Citations Percentage (%)

China 63 15.33
USA 48 11.68
Iran 32 7.79
Italy 21 5.11

Poland 17 4.14
Norway 15 3.65
Portugal 13 3.16
Sweden 13 3.16
France 13 3.16

South Korea 12 2.92
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Table 13. Top ten countries in which studies took place.

State N. Citations Percentage (%)

China 65 15.78
USA 42 10.58
Iran 32 8.06
Italy 21 5.29

Poland 17 4.28
Portugal 13 3.27
Sweden 12 3.02

South Korea 12 3.02
France 12 3.02

Norway 12 3.02

Table 14. Differences between the countries of origin of the authors and those under analysis.

State
N. Citations Percentage (%)

Authors’ State
of Origin Case Study Authors’ State

of Origin Case Study

China 63 65 15.33 15.78
USA 48 42 11.68 10.19

Finland 10 9 2.43 2.18
Sweden 13 12 3.16 2.91
France 13 12 3.16 2.91

Norway 15 12 3.65 2.91
Spain 9 10 2.19 2.43

Denmark 8 6 1.95 1.46
Different states 0 7 0.00 1.70

Egypt 4 5 0.97 1.21
Russian

Federation 4 5 0.97 1.21

United Kingdom 7 6 1.70 1.46
South Africa 5 4 1.22 0.97

Brazil 6 5 1.46 1.21
Nepal 2 6 0.49 1.46

Tanzania 1 5 0.24 1.21
Canada 3 4 0.73 0.97
Nigeria 2 3 0.49 0.73

Australia 3 1 0.73 0.24
Vietnam 1 2 0.24 0.49

Saudi Arabia 1 2 0.24 0.49
Greece 2 1 0.49 0.24

Hungary 3 1 0.73 0.24
Jordan 2 1 0.49 0.24
Kuwait 0 1 0.00 0.24
Bolivia 0 1 0.00 0.24

Bangladesh 1 0 0.24 0.00
Netherlands 2 1 0.49 0.24

Table 14 shows these particular cases and the differences.
The wording “Different states” is used for searches carried out in multiple states. China

appears to be the most analyzed country, accounting for 15.78% of the total. Its rapid
urbanization and the expansion of industrial activities mean that huge amounts of VOCs
are emitted into the atmosphere from various sources, such as vehicle emissions, solvent
use, and the petrochemical industry [140–142]. In addition, a large workforce surplus
resulted from the urbanization process and began to flow toward the cities. A new group
of migrant workers emerged, who were considered special and vulnerable. Cheap labor,
extensive work, and weak environmental regulations have led to many industries with
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high levels of pollution. These industries are often labor-intensive, and workers suffer from
environmental and occupational exposure risks. By the end of 2014, a total of 168.21 million
migrant workers left their homes to work in other cities, which was an increase of 1.3%
from 2013 [143]. The top five countries in the number of studies and number of authors, as
Tables 12 and 13 show, are the same: China, the USA, Iran, and Italy.

However, as visible in Table 14, some authors conducted their research in countries
other than their own, particularly countries in South-West Asia, South Asia, West and East
Africa, and South America. This is understandable, and as stated previously, the issue of
indoor air pollution is more serious in sub-Saharan Africa and Asia [7].

At the same time, there is a scarcity of work in low-income countries; for example, as
visible, no studies were conducted in Bangladesh, even if the air pollution there is a problem
not only in working places but also in households [144]. Thus, an improvement in the
literature regarding air quality in workplaces located in low-income countries is required.

3.6. Keywords

The keywords used by the authors to describe their articles were examined, and the
most cited keywords were identified, which amounted to 1028 keywords used 7050 times
(Figure 7). Keywords used more than 20 times are listed in Table 15.

Table 15. Keywords used more than 20 times.

Keyword N. Citations Percentage (%)

Exposure 407 5.78
Occupational 220 3.13

Air 161 2.29
Assessment 145 2.06

Dust 131 1.86
Risk 121 1.72

Health 108 1.53
Indoor 89 1.26

Pollution 62 0.88
Quality 62 0.88
Workers 62 0.88

Waste 58 0.82
Industry 56 0.80

Monitoring 51 0.72
Respiratory 46 0.65

Lung 44 0.63
Organic 44 0.63

Environmental 42 0.60
Matter 37 0.53
Cancer 36 0.51

Particulate 36 0.51
Compounds 36 0.51

VOCs 35 0.50
Volatile 35 0.50
Carbon 35 0.50

Function 32 0.45
Particles 32 0.45

Symptoms 32 0.45
Building 30 0.43

Industrial 30 0.43
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Table 15. Cont.

Keyword N. Citations Percentage (%)

Nanoparticles 30 0.43
Plant 30 0.43

Recycling 30 0.43
Acid 28 0.40

Benzene 28 0.40
Hygiene 28 0.40
Metals 28 0.40

Respirable 28 0.40
Emission 26 0.37

Workplace 26 0.37
Endotoxin 25 0.36

Particle 25 0.36
Personal 25 0.36

Metal 24 0.34
PAHs 24 0.34
Silica 24 0.34
Work 24 0.34

Biological 22 0.31
Cement 22 0.31

Formaldehyde 22 0.31
Office 21 0.30
PM2.5 21 0.30

All of the keywords identified in this research (see Table 3 in the Materials and Methods
Section) also appear among the most used keywords. Six of these are among those shown
in Table 15: “Exposure”, “Air”, “Indoor”, “Pollution”, “Quality”, and “Industrial”. The
most used keyword combinations are: “Occupational exposure”, which appears 148 times;
“Exposure assessment” (54 times); “Indoor air” (62 times); “Air quality” (54 times); “Indoor
air quality” (32 times); and “Air pollution” (29 times). The frequency of these combinations
confirms the similarity in the data set of the papers collected.

3.7. Measuring Instruments

A total of 426 cited instruments were divided between active and passive. Devices
that include a pump are referred to as “active” monitors, and those that do not include a
pump are “passive” monitors.

As visible in Table 16, we found that most of the papers took a passive measurement
approach. Passive samplers have several advantages over more traditional indoor-air
sampling techniques. The sampling protocols are simple as passive samplers are small
and lightweight; they operate without the risk of power loss, clogging, or leaks; and
provide accurate results for a range of sampling durations, from daily to quarterly, for
various compounds [145,146]. The author of [42] explored a new biological monitoring
method for workers in the plastics industry to measure their exposure to the vinyl chloride
monomer. He applied an active method in which personal sampling was conducted using
a pump with a low flow of 50 mL/min for a period of 200 min. The authors of [147] used
both active and passive methods to examine the exposure of benzene in petrochemical
plants. Shift-long passive sampling with organic vapor monitors (OVM 3500, 3MUSA). A
pump (Gillian LFS-113, Gillian, Cincinnati, OH, USA) was then used to estimate external
benzene inhalation. Yousefian et al. [148] studied the concentration of BTEX compounds
in municipal solid waste facilities. The measurements were taken using passive BTEX
samplers. Glass pipe sorbent tubes were pre-packed with activated charcoal and were open
at both ends. The air samples were then diffused into the sorbent tubes through a cellulose
acetate diffusion barrier.
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Figure 7. Keywords linked to the keyword “Air” (Figure from NVivo).
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Table 16. Measuring instruments used.

Measure Approach N. Citations Percentage (%)

Active 126 29.58
Passive 300 70.42

4. Conclusions

In this study, we present a bibliometric analysis of indoor air quality in industrial
environments that includes 409 articles. For each article, the following characteristics
were analyzed:

X The working environment under consideration.
X The pollutants detected.
X The instruments and the types of measurements used.
X The country in which the study took place.
X Paper’s attributes: author’s name, the journal of publication, the year of publication,

and the author’s country of origin.

We thus identified and confirmed the various approaches in the literature through a
structured method. We first identified the most-investigated air pollutants, which are TPM,
VOCs, and Metals, that alone correspond to 59.81% of the total investigated pollutants. We
individuated a total of 263 working environments, from which we derived five macros
areas of the working environment: Offices, E-Waste, Mines, Food, and Textiles. For each
one of these macros’ areas, we have identified the most investigated pollutants and the
reasons behind the investigations. We found that the most analyzed working environment
was Offices, followed by E-Waste, Mines, Food, and Textiles. This focus on offices is
understandable, as most people spend about 90% of their time indoors [149,150].

In Offices, PMs were the most detected pollutants, along with VOCs. Outdoor air
pollution is the main source of PMs in offices [151], and PMs level can be harmful; for
example, a Beijing office can reach a PM2.5 level of 100 µg/m3, while the limit recommended
by the National Ambient Air Quality Standard (NAAQS) is 35 µg/m3 [152]. We have also
provided a clear view of the most exploited instruments for air quality monitoring, which
are passive samplers since, compared to active ones are small and lightweight, they operate
without the risk of power loss, clogging, or leaks and provide accurate results for a range
of sampling durations, from daily to quarterly, for various compounds [145].

Our study provides a clear overview of the situation of air quality in industrial
environments and its effects on human health, as well as a comprehensive outline of what
the problems are and where they lie. Conclusions and further research directions include:
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Refinery (only 12 studies), Printing Industry, or Waste water Treatment Plant (only
6 studies). Thus, there is a clear need for in-depth studies of IAQ in the working
environments identified here.
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years, confirming the increasing interest in the theme. 

 We identified a huge number of different working environments analyzed, namely, 
263. However, except for the five macro-categories studied here in depth (Offices, E-
Waste, Mines, Food, Textile), the other working environments have been investi-
gated at most 12 times, even for highly potentially polluted ones such as a Petroleum 
Refinery (only 12 studies), Printing Industry, or Waste water Treatment Plant (only 
6 studies). Thus, there is a clear need for in-depth studies of IAQ in the working en-
vironments identified here. 

 As can be noticed in Tables 12 and 13, the top five countries in which studies took 
place are the same as the top five states of origin of the authors. In addition, in both 
rankings, there is a scarcity of low-income countries. As visible in Table 14, for exam-
ple, no studies were conducted in Bangladesh, even if air pollution there is a problem 
not only in the working environment but also in the household [144], indicating how 
the literature on IAQ in working environments in low-income countries needs to be 
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