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Abstract

We study the mechanics of sheet straight cutting in terms of a linear elastic fracture mechanics (LEFM)
problem for a infinite thin elastic Kirchhoff plate partly supported by a Winkler foundation. The plate
features a semi-infinite crack that is located at the edge of the supported zone and that is subjected to shear
and bending loads, representing the action of the cutting tool (e.g. scissors blades). The fact that the plate is
only partly supported by the foundation significantly complicates the analysis for it creates a non-symmetric
framework, both locally and globally. Yet, a semi-analytical solution is obtained through casting the matrix
Wiener-Hopf problem in terms of a pair of convolution integral equations defined on a semi-infinite domain.
Stress intensity factors (SIFs) are obtained which converge to the known limits for a symmetric and skew-
symmetric free plate. This analysis reveals the fundamental role played by the support in affecting the SIFs in
an opposing manner, by enhancing/decreasing the symmetric/skew-symmetric components. Consequently,
changing the support stiffness is capable of shifting the failure mechanism, from bending to shear. This
observation may be taken advantage of when cutting materials which are more sensitive to either of these
failure mechanisms. Also, it proves that the role of the support cannot be neglected when developing
mechanical models of any cutting process.

Keywords: Linear Fracture Mechanics; Foundation; Stress Intensity Factors; Thin sheet cutting

1. Introduction1

In a typical sheet cutting process, a sheet of material is divided in two parts through application of a pair2

of large enough forces as to cause material failure. A common example is metal sheet cutting, which usually3

occurs by applying a shearing force, for example through a punch, to the sheet resting on a die (in which4

case the process is named ”punching”). This process is sometimes referred to as shearing cutting (Figure 1)5

and it belongs to the large family of manufacturing procedures aimed at deforming a metal, such as blanking6

(making holes in a sheet), bending, calendering and slitting. The same basic process occurs when tearing7

paper with a ruler or along a table edge, as in Figure 2, for the edge operates as the cutting tool and, most8

importantly, the paper has to be carefully kept well in place (like from a die) for the operation to take place9

smoothly.10

Alternatively, a pair of blades may be used, as in familiar scissor cutting. The cutting process is generally11

delicate and error prone, in dependence of material flaws but also of imperfections in applying the right12

constraining conditions, which prove crucial [2]. In particular, it is easy to see that, at the microscale, crack13

formation and propagation induced by the cutting process proceed in zig-zag fashion, although this may not14

appear so clearly at the macroscale. However, this feature may sometimes also emerge at the macroscale,15

when the material crack unexpectedly deviates from the straight path. In fact, we show that this behaviour16

is not extraneous to the classical theory of cracks, which is traditionally based on linear elastic fracture17

mechanics (LEFM) results that are crucially supplemented by a local symmetry requirement to predict the18

crack path [14, 7]. This is well straightforward inasmuch as the geometry under consideration indeed supports19

such symmetry requirement, at least locally, and this is in fact the case of many fracture mechanics problems20

∗Corresponding author

Preprint submitted to Elsevier August 10, 2023

Title Page (with Author Details) Click here to view linked References

https://www.editorialmanager.com/jens/viewRCResults.aspx?pdf=1&docID=17191&rev=0&fileID=152560&msid=872bc3f7-39d4-4eff-809c-994fa61ae72d
https://www.editorialmanager.com/jens/viewRCResults.aspx?pdf=1&docID=17191&rev=0&fileID=152560&msid=872bc3f7-39d4-4eff-809c-994fa61ae72d


Figure 1: Skematics of shearing cutting of a steel sheet

which may be solved explicitly [1, 27, 17, 19]. Remarkably, they form the basis of many technical solutions21

that are applied, in the form of guidelines or codes, for the design of thin light structures, especially in the22

shape of shells and plates for the aerospace and high performance sectors [27, 13, 6]. The matter becomes23

blurred when general non-symmetric conditions are dealt with, precisely in the close neighborhood of the24

crack tip.25

Figure 2: Tearing paper along a table edge

Clearly, the problem of cutting, even in the case of brittle materials, cannot be fully represented within26

the framework of LEFM, given that elasto-plastic, nonlinear, thermo-mechanical and irreversible processes27

may play an important role [2]. Consequently, for the full picture, numerical methods have to be reverted to28

in order to solve the nonlinear coupled model which emerges. However, even then, the starting point is often29

the stress intensity factor (SIF) of LEFM, to avoid attacking an overwhelmingly complicated problem, see,30

for example, [4] and [33, Chap.6]. Moreover, it is most striking that, to our best knowledge, no contributions31

are available in the literature which take into consideration the role of the support (the die) in affecting32

the mechanics of the cutting. This is all the more remarkable if one considers that any cutting, say scissor33

cutting, cannot take place without the action of a support, if only in consideration of the fact that cutting34

forces can never be fully self-equilibrated (whence the role of the clearance in Fig.1). Further, we mention35

that other pathways to failure exist beside cracking, as described in [32] for delamination.36

Only a limited number of crack problems have been solved analytically within elastic plate theory [29],37

and this despite the utmost practical importance of these structures in engineering applications [15, Chap.11].38

The reasons behind this shortcoming may be traced to the difficulties attached to solving a fourth order PDE39

with complicated boundary conditions, for which the superposition principle is of limited help. Consequently,40

only symmetric or skew-symmetric conditions could be solved in general [28]. When introducing an elastic41

foundation, matters become even more intricate, because, from a mathematical standpoint, the presence of42

the foundation destroys the homogeneous character of the plate PDE. In their pioneering work, [1] could43
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work out the SIFs in bending of a fully supported plate, that is a symmetric setting. This work was later44

extended to a weakly nonlocal foundation [17, 18] and then generalized to dynamical effects [19]. Incidentally,45

these problems are also very relevant to the engineering design of pavements [25]. The case of a finite crack46

and of a shell were considered by [5] and later by [16], while a simplified 3D theory was adopted in [9].47

In [3], a closed-form Green function for a Griffith crack or a rigid line inclusion (anticrack) in an infinite48

anisotropic elastic plate could be obtained. These results were recently improved by [10] to reconcile the rigid49

body motions of the plate with that of the inclusion. The problem of studying the role of the foundation in50

affecting crack propagation is conceptually similar to that recently considered in [24], where crack penetration51

is antagonized by contrast in fracture toughness. In such studies, analysis of the Energy Release Rate (ERR)52

or, equivalently, of the SIF, plays a crucial role [23]. Moreover, specific boundary conditions may significantly53

influence not only the those fracture measures, but even leads to different singularities at the crack/defect54

tip. For example, if one considers surface stress prescribed along the body surface, the relations between the55

ERR and SIFs may change, as well as the stress singularity itself [8] that requires an additional separate56

analysis in terms of possible fracture initiation/propagation.57

In this paper, we investigate the fundamental LEFM problem of an infinite thin elastic Kirchhoff plate58

partially supported by an elastic local (Winkler) foundation (the die). The plate sustains a semi-infinite59

rectilinear crack, located precisely along the foundation edge, which is loaded, in continuous fashion, at the60

crack flanks, to simulate the cutting tool action, for example the scissors blades. Spotlight is set on determin-61

ing the stress intensity factors and, in particular, on being able to assess the role of the foundation properties62

on the cutting process and specifically on its path. The problem is laid out in Section 2 and then recast in63

the Fourier domain in Sec.3 in the form of a pair of inhomogeneous Weiner-Hopf functional equations [21].64

Since the kernel matrix is non-diagonal, this coupled problem cannot be tackled in general. This difficulty65

is overcome first by regularization (Sec.4) and subsequently by reduction to a pair of Fredholm convolution66

equations (Sec.5), which are then solved numerically (Sec.6). In an attempt to lighten the mathematical67

structure of the manuscript, detailed derivations have been moved to the Appendix. Conclusions are drawn68

in Sec.7. Results compare favourably with the limiting cases of a free plate under symmetric and skew-69

symmetric global conditions (see Sec.Appendix A). Interestingly, the limiting case of an exceedingly stiff70

(weak) support does not correspond to the solution of a built-in (free) half-plate, unless special symmetries71

are assumed for the loading.72

2. Governing equations73

Let us consider an infinite Kirchhoff plate partially supported by a Winkler elastic foundation and par-74

tially free (Fig.3). A Cartesian reference frame is attached to the plate in such a manner that the x-axis75

coincides with the transition line at the supported/free zone. We assume that the supported plate occupies76

the upper half-plane A, y > 0, and the free plate is located in the lower half-plane B, y < 0. A semi-infinite77

rectilinear crack is located at negative values of the x-axis. The governing equation for the transverse

Figure 3: A Kirchhoff plate partially supported on a Winkler elastic foundation

78

displacement of the plate uz reads79

D44uz = q − π, (1)
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being 4 = ∂xx + ∂yy the Laplace operator in two dimensions, q the transverse distributed load, D =80

Eh3/(12(1 − ν)) the plate bending stiffness and π the soil reaction. Here, E is Young modulus and ν81

Poisson’s ratio. For the case at hand, the soil reaction is given by82

π =

 kuz, y > 0,

0, y < 0,
(2)

wherein k is Winkler elastic modulus. Assuming no applied external loading, Eqs.(1, 2) may be rewritten as83

(cf.[20] in the static framework)84  44uz + λ−4uz = 0, y > 0,

44uz = 0, y < 0.
(3)

having let the plate bending length scale85

λ =
4

√
D

k
.

Hereinafter, we adopt the dimensionless variables86

(x1, x2, w) = λ−1(x, y, uz). (4)

Besides, we denote by wA,B the restriction of w to the domain above (below) the crack line, namely87

wA,B(x1, x2) = w(x1, x2) with x2 ≷ 0. Further, we let the dimensionless quantities: slope (along x2),88

bending moment and Kirchhoff equivalent shearing force (acting across the crack line)89

φ = ∂x2
w,

m = (∂x2x2
+ ν∂x1x1

)w,

v = ∂x2 [∂x2x2 + (2− ν)∂x1x1 ]w,

(5)

where the last two have been brought in dimensionless form dividing by Dλ−1 and Dλ−2, respectively.90

The boundary conditions demand continuity beyond the crack-tip91

wA(x1, 0) = wB(x1, 0)

φA(x1, 0) = φB(x1, 0)

mA(x1, 0) = mB(x1, 0)

vA(x1, 0) = vB(x1, 0)


x1 > 0, (6)

and a prescribed continuous (and symmetric) loading at the crack flanks92

mA(x1, 0) = M0(x1)

mB(x1, 0) = M0(x1)

vA(x1, 0) = V0(x1)

vB(x1, 0) = V0(x1)


x1 < 0, (7)

where it is understood that M0(x1) and V0(x1) are the bending moment and shearing force applied at the93

crack faces. Symmetry in the applied load is not really important here and it is only assumed for simplicity94

because, otherwise, additional balance conditions would be needed.95

We further assume that the given loads are not singular and decay at infinity:96

|M0(x1)|, |V0(x1)| <∞, x1 ∈ (−∞, 0], (8)
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and97

M0(x1) = O (eγ∞x1) , V0(x1) = O (eγ∞x1) , x1 → −∞, (9)
98

M0(x1) = O (|x1|γ0) , V0(x1) = O
(
|x1|γ0−1

)
, x1 → 0−, (10)

where γ∞ > 0, γ0 > 1/2 are any constants not weaker than the specific behaviour of the solution. Those99

conditions may be weakened but it is not our goal in this paper.100

We agree to add a subscript zero to denote the restriction of a function to the crack line x2 = 0, i.e.
w0(x1) = w(x1, 0). Clearly, Eqs.(6) and (7) imply continuity of bending moment and shearing force along
the entire x1 axis. Indeed, taking the difference, we get

JwK = 0, JφK = 0, x1 > 0, (11a)

JmK = 0, JvK = 0, −∞ < x1 <∞, (11b)

mB
0 (x1) = M0(x1), vB0 (x1) = V0(x1), x1 < 0. (11c)

where JfK = fA0 − fB0 at x2 = 0.101

Assuming sufficient decay at infinity, one can observe that the following balance conditions should be102

satisfied for any x2 ≤ 0 (that is in the free plate)103

ˆ ∞
−∞

vB(x1, x2)dx1 = 0,

ˆ ∞
−∞

mB(x1, x2)dx1 = 0,

ˆ ∞
−∞

x1v
B(x1, x2)dx1 = 0, (12)

expressing vertical and rotational equilibrium about x1 and x2, respectively. In particular, along the sup-104

ported/free plate transition line x2 = 0, taking into account the conditions (11b), one gets105

ˆ ∞
−∞

mA,B
0 (x1)dx1 = 0,

ˆ ∞
−∞

vA,B0 (x1)dx1 = 0,

ˆ ∞
−∞

x1v
A,B
0 (x1)dx1 = 0. (13)

Besides, we anticipate that106

w(r, θ) = Pw(x1, x2) + r3/2 [Kewe(θ) +Kowo(θ)] +O
(
r2
)
, as r → 0, (14)

where θ ∈ [−π, π], θ = ±π corresponding to the upper/lower crack flank, and we have let the rigid body107

motion (rbm)108

Pw(x1, x2) =W0 +W1x1 +W2x2.

Here, we have introduced the polar coordinates (r, θ) such that (x1, x2) = r(cos θ, sin θ). Also, we,o(θ) is the109

even/odd part in θ of the first asymptotic term in the displacement [31, Eq.(8)]110

we(θ) = − cos
3θ

2
+

3(1− ν)

ν + 7
cos

θ

2
, wo(θ) = sin

3θ

2
− 3(1− ν)

3ν + 5
sin

θ

2
, (15)

where Ke,o are the normalized stress intensity factors (SIFs). From the asymptotics (14), we can easily
compute the slope, bending moment and shearing force across a surface with normal in the θ direction

φθ(r, θ) =W2 + r1/2
(
Keφo(θ) +Koφe(θ)

)
+O (r) , as r → 0, (16a)

mθ(r, θ) = r−1/2
(
Keme(θ) +Komo(θ)

)
+M0 +O

(
r1/2

)
, as r → 0, (16b)

vθ(r, θ) = r−3/2
(
Kevo(θ) +Kove(θ)

)
+ V1r

−1 +O
(
r−1/2

)
, as r → 0, (16c)

where

φe(θ) =
3

2

(
cos

3θ

2
− 1− ν

3ν + 5
cos

θ

2

)
, φo(θ) =

3

2

(
sin

3θ

2
− 1− ν
ν + 7

sin
θ

2

)
,

me(θ) =
3

4
(1− ν)

(
cos

3θ

2
+

3ν + 5

ν + 7
cos

θ

2

)
, mo(θ) = −3

4
(1− ν)

(
sin

3θ

2
+ sin

θ

2

)
,

ve(θ) = −3

8
(1− ν)

(
cos

3θ

2
+

ν + 7

3ν + 5
cos

θ

2

)
, vo(θ) = −3

8
(1− ν)

(
sin

3θ

2
+ sin

θ

2

)
.

As well known, the squares of Ke,o are proportional to the energy release rate.111
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2.1. Apriori asymptotic estimate of the solution components at infinity112

To deliver the unique solution to the problem, we demand that it decays within the supported plate as113

wA(r, θ) ∼ φA(r, θ) = O(r−5/2), θ ∈ [0, π], as r → +∞, (18)

whence, by continuity, the same occurs in the free plate at θ = 0. Motivation of these assumptions is given
in Sec.Appendix C.1. Conversely, little knowledge is available concerning the behaviour of the solution in
the free plate outside the line θ = 0. For this reason, we look at some auxiliary problems which emerge from
taking symmetric or anti-symmetric conditions (see Appendix Appendix A). From these, we deduce

wB(r,−π) = W∞1 r +W∞2 +O(r−1/2), as r → +∞, (19a)

φB(r,−π) = Ψ∞1 log r + Ψ∞2 +O(r−1/2), as r → +∞, (19b)

where the constants (which may also vanish) are to be found in the following. The corresponding estimates114

for the jumps across the crack line easily follow, also in light of the fact that all functions vanish at infinity115

in the supported zone, namely116

JwK = Φ0x1 −W∞0 +O(|x1|−1/2), JφK = Ψ0(|x1|)1/2 +O(|x1|−1/2), x1 → −∞. (20)

Furthermore, we point out that those estimates emerge by assuming the fastest growing scenario, and may117

well be slower than assumed, also in dependence of the applied loading. Yet, for specific external forces, these118

estimates may be sharpened at the expense of generality. Instead, we prefer to stick with general results to119

show that the solution technique does not rely on specific assumptions on the given functions.120

For the remaining two unknowns121

m(r, θ) = O(r−5/2), v(r, θ) = O(r−7/2), θ ∈ (−π, 0), as r → +∞. (21)

Having all these information in place, we are now in position to develop solution to the problem. For this, we122

move to the Fourier space and use Abelian- and Tiberian-type of theorems [22] to evaluate the corresponding123

asymptotic behavior for the unknowns.124

3. Application of the Fourier transform and asymptotics of the Fourier images125

3.1. Fourier analysis of the general equations126

In the following, we take advantage of the Fourier transform method, which has proven extremely useful127

in several problems dealing with continuum as well as discrete media (and even for hybrid solids, see [30]).128

We therefore introduce the (two-sided or bilateral) Fourier transform129

w̄(s, x2) =

ˆ ∞
−∞

w(x1, x2) exp(isx1)dx1, (22)

alongside the half-transforms130

w̄±(s, x2) =

ˆ ∞
−∞

w±(x1, x2) exp(isx1)dx1, (23)

where w±(x1, x2) = H(±x1)w(x1, x2) and H(x1) is Heavyside’s step function. Immediately, we have131

w̄(s, ·) = w̄+(s, ·) + w̄−(s, ·). (24)

In the same way we denote the Fourier transforms of the remaining fields φ, m and v, noting only that, for132

the last, the respective integral should be treated in the sense of distributions.133

We are now in a position to take the Fourier transform of the transmission conditions (11a,11b)134

Jw̄+K = Jφ̄+K = Jm̄K = Jv̄K = 0, (25)
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whence, clearly,135

Jw̄K = Jw̄−K, Jφ̄K = Jφ̄−K. (26)

In similar fashion, the balance conditions (13) may be rewritten as136

m̄A
0 (0) = m̄B

0 (0) = v̄A0 (0) = v̄B0 (0) =
dv̄A0
ds

(0) =
dv̄B0
ds

(0) = 0, (27)

where the notation fA,B0 stands for137

fA0 (·) = lim
x2→0+

fA(·, x2), fB0 (·) = lim
x2→0−

fB(·, x2).

Besides, we recall the inverse Fourier transform138 [
w,w+, w−

]
(x1, x2) = (2π)−1

ˆ ∞
−∞

[
w̄, w̄+, w̄−

]
(s, x2) exp(−isx1)ds. (28)

Taking the bilateral Fourier transform along x1 of the first of Eqs.(3) lends a linear constant coefficient139

ODE whose general solution is140

w̄A(s, x2) = A1e
−α1x2 +A2e

−α2x2 , αj =
√
s2 + i(−1)j , j = 1, 2, x2 > 0, (29)

where Aj = Aj(s) and i is the imaginary unit, i.e. i2 = −1. Here, provision should be taken so that the141

square roots lend positive real values on the real axis and branch cuts are not intersecting the real axis (for142

example, branch cuts may be taken parallel to the imaginary axis, see [21]). Denoting by z∗ = <(z)− i=(s)143

the complex conjugate of z = <(z) + i=(s), we have144

α1(0) = α∗2(0) = e−iπ/4, (30)

so that α2
1,2(0) = ∓i. Similarly, the solution of the second of Eqs.(3) reads (free domain)145

w̄B(s, x2) = (B1 + x2B2) exp (βx2) , x2 < 0, (31)

and it is understood that Bj = Bj(s) (j = 1, 2) and we have β(s) =
√
s2 such that sign s = β(s)/s for s ∈ R.146

Moreover, to prevent having branch cuts reaching the real axis, we may perturb β(s) = limε→0

√
s2 + ε2 so147

that no zero sits right on the real axis [21]. With this, we are now able to introduce the splitting148

β(s) = β+(s)β−(s), β+(s) =
√

0− is, β−(s) =
√

0 + is, (32)

where we take the standard definition of the square root with the cut on the negative part of real axis. It149

is emphasized that Fourier transforms are defined on the real axis only, but can be extended by analytic150

continuation into the complex plane.151

In terms of the general solution, we have, in the supported plate x2 ≥ 0,

φ̄A(s, x2) = −α1A1e
−α1x2 − α2A2e

−α2x2 , (33a)

m̄A(s, x2) = A1e
−α1x2

(
α2

1 − νs2
)

+A2e
−α2x2

(
α2

2 − νs2
)
, (33b)

v̄A(s, x2) = −α1A1e
−α1x2

(
α2

1 + (ν − 2)s2
)
− α2A2e

−α2x2
(
α2

2 + (ν − 2)s2
)
, (33c)

and in the free plate x2 ≤ 0

φ̄B(s, x2) = eβx2 [β (B2x2 +B1) +B2] , (34a)

m̄B(s, x2) = eβx2
[
−(ν − 1)s2 (B2x2 +B1) + 2βB2

]
, (34b)

v̄B(s, x2) = eβx2
[
β(ν − 1)s2 (B2x2 +B1) +B2(ν + 1)s2

]
. (34c)

Finally, substituting (33) and (34) into the transmission conditions (25), we have:

Jw̄K = A1(s) +A2(s)− β−1B∗(s) = Jw̄−K, (35a)

Jφ̄K = −α1A1(s)− α2A2(s)−B∗(s)−B2(s) = Jφ̄−K, (35b)

0 = (α2
1 − νs2)A1(s) + (α2

2 − νs2)A2(s) + (ν − 1)βB∗(s)− 2βB2(s), (35c)

0 = −α1(α2
1 + (ν − 2)s2)A1(s)− α2(α2

2 + (ν − 2)s2)A2(s)− (ν − 1)s2B∗(s)− (ν + 1)s2B2(s), (35d)
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having introduced the convenient shorthand (see Appendix B).152

B∗(s) ≡ β(s)B1(s). (36)

In the equations above (33) – (36), it is understood that αj = αj(s), β = β(s) and s ∈ R, while (35a) and153

(35b) can be analytically extended into the complex half-plane s ∈ C−.154

3.2. Derivation of the Wiener-Hopf system155

In light of (25), the boundary conditions (7) reads

m̄−0 (s) ≡ m̄A,B
0
−(s) = M̄−0 (s), (37a)

v̄−0 (s) ≡ v̄A,B0
−(s) = V̄ −0 (s). (37b)

We consider the linear system of algebraic equations (35) in the unknowns A1, A2, B1, B2. This system156

is regular, because its determinant has no zeros. Upon solving these unknowns in terms of Jw̄−K and Jφ̄−K157

and then plugging the result into (37), we get the system of inhomogenenous functional equations of the158

Wiener-Hopf type159 −K11Jφ̄−K +K12Jw̄−K = m̄0
+ + M̄−0 (s),

−K12Jφ̄−K + s2K22Jw̄−K = v̄0
+ + V̄ −0 (s),

(38)

where

δ0K11 = (1− ν)s4 [(α1 + α2) (3 + ν) + 2(1 + ν)β] + 4(1− ν)s2α1α2β + 2β,

δ0K12 = s2
{

(1− ν)2
(
s2 − α1α2

)
s2 + 1 + ν

}
,

δ0K22 = δ0K11 + i(1− ν)(3 + ν)s2 (α1 − α2) ,

and having let160

δ0(s) = (α1(s) + β(s))
2

(α2(s) + β(s))
2
. (39)

It is observed that, when the plate is everywhere free, that is for λ → ∞, the system (38) decouples owing161

to symmetry, i.e. K12 → 0. Besides, it is K11 → K22.162

At the origin, we have the following asymptotics for the components, that are even functions of s ∈ R,163

K11 = K22 = 2β(s)
(
1 +O(β(s))

)
K12 = (1 + ν)s2

(
1 +O(β(s))

)
 as s→ 0, (40)

thus, by (Appendix C.13,Appendix C.36), we get asymptotic consistency at zero

K11Jφ̄−K = O(s3/2), K12Jw̄−K = O(s3/2), m̄0
+ + M̄−0 (s) = O(s3/2),

K12Jφ̄−K = O(s5/2), s2K22Jw̄−K = O(s5/2), v̄0
+ + V̄ −0 (s) = O(s5/2),

s→ 0.

We point out that individual terms at RHS of (38) have different asymptotics than their sum, namely164

m̄+
0 (s), M̄−0 (s), v̄+

0 (s), V̄ −0 (s) = O(1), s→ 0, (41)

as it appears from (Appendix C.35a,Appendix C.35b). Indeed, this result comes from the balance conditions165

(27)166

m̄+
0 (0) + M̄−0 (0) = v̄+

0 (0) + V̄ −0 (0) =
dv̄+

0

ds
(0) +

dV̄ −0
ds

(0) = 0, (42)

and accounting for (Appendix C.12)167

dm̄+
0

ds
(0) +

dM̄−0
ds

(0) =
d2v̄+

0

ds2
(0) +

d2V̄ −0
ds2

(0) = 0. (43)
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At infinity we have168

K11 = K22 = cβ(s) +O(s−3)

K12 = 1+4ν−ν2

32 s−2 +O(s−6)

 as |s| → +∞, (44)

where we have let169

c = 1
4 (1− ν)(3 + ν). (45)

Besides, from (Appendix C.37c,Appendix C.37d), it is

sm̄+
0 (s) ∼ v̄+

0 (s) = O(s1/2), sM̄−0 (s) ∼ V̄ −0 (s) = O(s−γ0), |s| → ∞ and γ0 > 1/2.

Thus, by (Appendix C.39), we see that diagonal terms asymptotics match that of the RHS170

K11Jφ̄−K = O(s−1/2), K12Jw̄−K = O(s−9/2), m̄0
+ + M̄−0 (s) = O(s−1/2),

K12Jφ̄−K = O(s−7/2), s2K22Jw̄−K = O(s1/2), v̄0
+ + V̄ −0 (s) = O(s1/2),

s→∞. (46)

Besides, for the determinant we have171

∆(s) = K2
12 − s2K11K22 = −4cs4δ−1

0

((
1− ν2

)
s4 + 2α1α2(1− ν)s2 + 1

)
, (47)

whence

∆(s) = 4cs4 +O(s6), s→ 0, (48)

∆(s) = c2s4 +O(s2), s→∞. (49)

Thus, the determinant of this Wiener-Hopf system tends to zero both as s → 0 and as s → ∞, which172

fact suggests that the unknown quantities are not properly normalized. Consequently, in the following, we173

transform the system (38) so that it has total index zero and both partial indices also equal to zero.174

4. Regularization of the Wiener-Hopf system175

Let’s transform the system (38) by dividing the first equation by β and the second by sβ176  β−1K11h̄
−
1 + (sβ)−1K12h̄

−
2 = β−1

(
m̄+

0 + M̄−0
)
,

(sβ)−1K12h̄
−
1 + β−1K22h̄

−
2 = (sβ)−1

(
v̄+

0 + V̄ −0
)
,

(50)

where we have let the new unknowns177

h̄−1 (s) = −Jφ̄−K, h̄−2 (s) = sJw̄−K.

For these, recalling (26) and using (Appendix C.36,Appendix C.39), we get the in their domains of
analyticity:

h̄−1 (s) ∼ h̄−2 (s) = O(s1/2), s→ 0, (51a)

h̄−1 (s) ∼ h̄−2 (s) = O(s−3/2), s→∞. (51b)

Similarly, by (40),178

β−1K11 = β−1K22 = 2 +O(β(s)),

(sβ)−1K12 = (1 + ν) sign s+O(s),

 as s→ 0, (52)

whence terms in the W-H system have the following balanced asymptotics at zero

β−1K11h̄
−
1 (s) = O(s1/2), (sβ)−1K12h̄

−
2 (s) = O(s1/2), β−1

(
m̄+

0 (s) + M̄−0 (s)
)

= O(s1/2),

(sβ)−1K12h̄
−
1 (s) = O(s1/2), β−1K22h̄

−
2 (s) = O(s1/2), (sβ)−1

(
v̄+

0 (s) + V̄ −0 (s)
)

= O(s1/2),

 s→ 0.
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Likewise, at infinity, we have, by (44),179

β−1K11 = β−1K22 = c+O(s−4),

(sβ)−1K12 = 1+4ν−ν2

32 s−4 sign s+O(s−7β),

 as |s| → +∞. (53)

whereby

β−1K11h̄
−
1 (s) = O(s−3/2), (sβ)−1K12h̄

−
2 (s) = O(s−11/2), β−1

(
m̄+

0 (s) + M̄−0 (s)
)

= O(s−3/2),

(sβ)−1K12h̄
−
1 (s) = O(s−11/2), β−1K22h̄

−
2 (s) = O(s−3/2), (sβ)−1

(
v̄+

0 (s) + V̄ −0 (s)
)

= O(s−3/2),

 s→∞.

In anticipation of splitting plus and minus terms in (50), we need to make sure that, besides their sum,180

also each individual term at RHS is well behaved. To this effect, we set181

m̄+
∗ (s) = m̄+

0 (s) +
M̄−0 (0) + sqm

(1− is)ζM
, M̄∗(s) = M̄−0 (s)− M̄−0 (0) + sqm

(1− is)ζM
, (54)

and182

v̄+
∗ (s) = v̄+

0 (s) +
V̄ −0 (0) + sqv1 + s2qv2

(1− is)ζV
, V̄∗(s) = V̄ −0 (s)− V̄ −0 (0) + sqv1 + s2qv2

(1− is)ζV
. (55)

Here, ζM , ζV > γ0 + 2 are some constants, to be specified later for convenience, which warrant fast enough
decay at infinity. The important point here is that, with these definitions, the starred unknowns m̄+

∗ (s) and
v̄+
∗ (s) preserve the same plus character as well as behaviour at infinity of the original variables m̄+

0 (s) and
v̄+

0 (s), respectively. Furthermore, m̄+
∗ (s) and v̄+

∗ (s) satisfy the same balance conditions (42,43) as m̄(s) and
v̄(s). This is achieved by simply letting

qm = −iζMM̄
−
0 (0) +

dM̄−0
ds

(0), qv1 = −iζV V̄
−
0 (0) +

dV̄ −0
ds

(0), (56)

qv2 =
1

2

(
ζV (1− ζV )V̄ −0 (0)− 2iζV

dV̄ −0
ds

(0) +
d2V̄ −0
ds2

(0)
)
, (57)

having used (42), (43) to rewrite the last terms at RHS in terms of the applied load. With such provisions
and recalling (Appendix C.35), (Appendix C.37), (Appendix C.38), we obtain the asymptotics of each
term

sm̄+
∗ (s), v̄+

∗ (s) = O(s5/2), sM̄∗(s), V̄∗(s) = O(s3), s→ 0, (58a)

sm̄+
∗ (s), v̄+

∗ (s) = O(s−1/2), sM̄∗(s), V̄∗(s) = O(s−γ0), s→ ±∞. (58b)

Therefore, the W-H system now reads β−1K11h̄
−
1 + (sβ)−1K12h̄

−
2 = β−1

(
m̄+
∗ + M̄∗

)
,

(sβ)−1K12h̄
−
1 + β−1K22h̄

−
2 = (sβ)−1

(
v̄+
∗ + V̄∗

)
,

that, multiplying through by β−, becomes183  β−1K11ĥ
−
1 + (sβ)−1K12ĥ

−
2 = m̂+

∗ + M̂∗,

(sβ)−1K12ĥ
−
1 + β−1K22ĥ

−
2 = v̂+

∗ + V̂∗,
(59)

having lumped minus terms together in the new unknowns184

ĥ−1,2(s) = β−(s)h̄−1,2(s), (60)

and similarly for the plus terms at RHS185

m̂+
∗ =

1

β+
m̄+
∗ , v̂+

∗ =
1

sβ+
v̄+
∗ , M̂∗ =

1

β+
M̄∗, V̂∗ =

1

sβ+
V̄∗. (61)
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The relative estimates are easily obtained from (51) and (58),

ĥ−1 (s), ĥ−2 (s), m̂+
∗ (s), v̂+

∗ (s) = O(s), s→ 0, (62)

ĥ−1 (s), ĥ−2 (s), m̂+
∗ (s), v̂+

∗ (s) = O(s−1), s→∞, (63)

while the terms representing the applied loading M̄∗(s) and V̄∗(s) behave better than the unknown functions186

in the W-H system at both zero and infinity. As a result, we eventually arrive at the vectorial Wiener-Hopf187

problem:188

N(s)H−(s) + H+(s) = F (s), (64)

where189

H−(s) = c[ĥ−1 , ĥ
−
2 ], H+(s) = −[m̂+

∗ , v̂
+
∗ ], F (s) = [M̂∗, V̂∗], (65)

and clearly190

N(s) = c−1

 β−1K11 (sβ)−1K12

(sβ)−1K12 β−1K22

 . (66)

.191

The matrix N(s) has the following asymptotics at zero192

N0(s) = 2c−1

 1 +O(β) 1
2 (1 + ν) sβ +O(s)

1
2 (1 + ν) sβ +O(s) 1 +O(β)

 , s→ 0, (67)

and at infinity193

N∞(s) = I +O
(
s−4
)
, s→∞. (68)

The determinant of this matrix is different from zero along the closed real axis (including infinity) and it
is an even function. As a result, by Gohberg and Krein’s theorem (see for example, [26]), the index of the
matrix is equal to zero (ind det N = 0). Next, the matrix N(s) is symmetric and even on the main diagonal
and odd on the off-diagonal terms, thus it is also positive definite. As a result, its partial indices are both
equal to zero. The unknowns components asymptotics at infinity along the real axis are related to the SIFs
as follows:

H−1 (s), −H+
1 (s) ∼ ±12

√
πeiπ/4Ke

c

7 + ν
|s|−1, s→ ±∞, (69a)

H−2 (s), −H+
2 (s) ∼ ±12

√
πe−iπ/4Ko

c

5 + 3ν
|s|−1, s→ ±∞. (69b)

5. Transformation to a system of Fredholm convolution equations194

Note that due to the estimate of the sought for solution of the W-H equation (64), there exists a vector195

function h ∈ L1(R) such that196

FP±h = H±, (70)

and this function is unique. Here, as usual, F is the full Fourier transform and P± are the projectors defined
through multiplication by the characteristic functions H(x) and 1 − H(x) of the respective half axes R±.
We note that P+ + P− is the identity operator thus, using (70), the system (64) takes the form

Fh(s) + (N(s)− I)FP−h(s) = F (s).

Applying now the inverse Fourier transform (28), we get197

h(ξ) + F−1 [(N(s)− I)FP−h(s)] (ξ) = g(ξ) ≡ F−1[F (s)](ξ). (71)

Reversing the order of the integration on application of Fubini’s theorem, Eq.(71) may be rewritten as an198

integral equation of the second kind, namely199

h(ξ) +

ˆ 0

−∞
K(ξ − y)h(y)dy = g(ξ), ξ ∈ R, (72)
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where the kernel is the well defined and easily computed matrix-function200

K(λ) =
1

2π

ˆ ∞
−∞

(
N(s)− I

)
e−iλsds.

Remark. Interestingly, to solve the integral equation (72) we begin by considering the half-axis x ∈ R− and,
once the solution h∗(x) is obtained there, it may be extended to the positive half-axis by direct computation,
in a sort of post-processing stage, through

h(ξ) = g(ξ)−
ˆ 0

−∞
K(ξ − y)h(y)dy, ξ ∈ R+.

In contrast, when considering the classical approach to systems of integral equations defined on either half201

axis, one moves in the opposite direction to reduce it in Wiener-Hopf form, namely one needs to introduce202

an auxiliary function on the other half-axis and then one transforms the system to have a difference kernel.203

To establish a link between the solution of the system of integral equations (72) and the SIFs we integrate
by parts

H− =

ˆ 0

−∞
h(x)eisxdx =

h(x)

is
eisx
∣∣0
−∞ −

1

is

ˆ 0

−∞

dh

dx
(x)eisxdx = ∓ih(0)|s|−1 + o(s−1), s→ ±∞,

H+ =

ˆ ∞
0

h(x)eisxdx =
h(x)

is
eisx
∣∣∞
0
− 1

is

ˆ −∞
0

dh

dx
(x)eisxdx = ±ih(0)|s|−1 + o(s−1), s→ ±∞,

and, upon recalling asymptotic relationships (69), we get the sought for relationships:204

h1(0) = −12e−iπ/4 c
√
π

7 + ν
Ke, h2(0) = 12eiπ/4 c

√
π

5 + 3ν
Ko. (73)

6. Numerical solution205

Let us assume for the dimensionless crack loading206

M0(x1) =
λMd

y

D
= Cmζfm(−ζx1), V0(x1) =

λ2V dy
D

= Cvζ
2fm(−ζx1), x1 < 0, (74)

where Md
y and V dy are the dimensional bending moment and shearing force applied at the crack line in terms207

of the dimensional coordinate x208

Md
y = Qmfm

(
− x

x0

)
, V dy = Qvfv

(
− x

x0

)
, x < 0. (75)

Clearly, the constants Qm and Qv have dimensions of force and force over length, respectively, and they209

are brought in dimensionless form as Cm = Qmx0D
−1 and Cv = Qvx

2
0D
−1. Here, we have introduced the210

dimensionless parameter ζ211

λ = x0ζ, or, equivalently, k =
D

x4
0

ζ−4 ≡ k0ζ
−4, (76)

x0 > 0 being a reference length. We point out that, due to the introduced normalisation, the original212

dimensional stress intensity factors Kd
e , Kd

o are related to their dimensionless counterparts through213

√
x0

D
Kd
e = ζ−1/2Ke(ζ),

√
x0

D
Kd
o = ζ−1/2Ko(ζ). (77)

In the following, we consider two cases, namely Cm = 1, Cv = 0 and Cm = 0, Cv = 1.214
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6.1. Bending moment applied to the crack faces (Cm = 1, Cv = 0)215

We first consider the following function in (75)216

fm(t) = tnme−t.

By applying the Fourier transform we obtain217

M̄−0 (s) =
ζnm+1Γ(nm + 1)

(ζ + is)nm+1
, (78)

while the Mellin transform lends218

M̃0(s) =

ˆ ∞
0

rs+1ζnm+1rnme−ζrdr =
1

ζs+1
Γ(s+ nm + 2). (79)

Note that M̄0(0) = M̃0(−1) = Γ(nm+1) 6= 0 independent of ζ. This behavior warrants that the displacement
wB0 (x1) in the free plate grows linearly to infinity along the crack line, i.e. as x1 → −∞. After the
transformations of Eqs.(54,61), one finds

M̂∗ =
ζnm+1Γ(nm + 1)

β+(s)

(
1

(ζ + is)nm+1
− 1

(1− is)ξM ζnm+1
+ i

s(ζξM + nm + 1)

(1− is)ξM ζnm+2

)
.

Hereinafter, for the numerics, we take219

ν = 0.25, nm = 4, nv = 3, ξM = ξv = 7. (80)

Owing to the absence of the sharing force, the second component of the vector from the right-hand side220

of the system of integral equations (72), namely g2(ξ), equals zero, while the first component, g1(ξ), can221

be computed in closed form, as presented in Sec.Appendix B.1. However, it was not possible to obtain222

an analytical representation for the kernel K(ξ), which is therefore computed numerically. As discussed in223

Section 5, we first compute the solution on the negative ξ-axis and then reconstruct it on the positive axis.224

Since the system is well defined and the projection methods converge [26], we reduce the infinite domain of225

integration to a finite one through controlling the behaviour of the solution at infinity. Computations are226

carried out on a finite grid of points whose density guarantees that the relative error is of the order of 10−4.227
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Figure 4: Numerical solution of the system of integral equations (72), in the absence of shearing force, for different values of
the Winkler parameter k = k0ζ−4 (compare (76)). It appears that the fisrt solution component, h1, is very close to the right
hand side already, while the contribution from h2 is negligible.

Figure 4 shows the real part of the components in the unknown vector h(ξ) as well as the nonzero right-228

hand side g1(ξ) for the system of the integral equations (72). Interestingly, the first component h1(ξ) is very229

similar to the right-hand side g1(ξ), while the second component h2(ξ) is 2 order of magnitude smaller. This230

means that, within this loading, the system is almost symmetric and the numerical system diagonal. Clearly,231

results depend significantly on the Winkler parameter, especially near the crack-tip.232
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Figure 5: Jump of the displacement and rotation, bending moment and shearing force along the crack line y = 0 where a
distribution of bending moment is applied, in the absence of shearing force, i.e. V0 ≡ 0. The dimensional coordinate x is used
as the abscissa to bring about the role of the foundation through ζ.
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Figure 6: Far-field behavior of the jump of the displacement along the crack surfaces for the case of bending moment, i.e.
V0 ≡ 0.

Figure 5 illustrates the mechanical unknowns over the line y = 0 (that is along the crack surfaces and233

at the interface between the supported and the unsupported plate). It is emphasized that the jump of the234

displacement and slope is identically zero beyond the crack-tip (x > 0), while the bending moment and235

shearing force correspond to the applied load on the crack line (x < 0).236

To highlight the behaviour of the solution in the far-field, Figure 6 presents the jump of the displacement237

on a wider interval. Here, we observe a linear growth of the displacement at infinity (compare (20)) for large238

value of ζ (small k). On the other hand, for small values of ζ, square root growth represents the dominant239

asymptotics, that is related to the skew-symmetric part of the solution. This is in the agreement with the240

analysis provided in Appendix A (see Table A.1) and is a direct consequence of the condition M̃0(−1) 6= 0.241

Finally, Figure 7 shows the normalised SIFs as functions of the Winkler parameter ζ, as computed242
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Figure 7: Normalised stress intensity factors ζ−1/2Ke(ζ) and ζ−1/2Ko(ζ) (compare (77)) as functions of the auxiliary parameter
ζ representing changes in the Winkler parameter k (see (76)): Case of applied bending moment, i.e. V0 ≡ 0. The horizontal
dashed line corresponds to ζ−1/2Ke for a free plate under symmetric conditions, see (Appendix A.9).

through the relationships (73). In particular, the limiting value of Ke as ζ →∞ matches the corresponding243

SIF obtained setting ν = 0.25 in (Appendix A.9), namely Keζ−1/2 = −3.67085. This appears in the Fig.7244

as a horizontal asymptote. A curve fitting by the Least SQuare (LSQ) method for Ke(ζ)ζ−1/2 on the interval245

ζ = [65, 100] is given by Ko(ζ)ζ−1/2 ≈ −3.668977 + 3.237402ζ−1 as ζ →∞, with relative error of 5.1e− 04,246

that is consistent with the accuracy achieved when computing the solution of the system of the integral247

equations.248

6.2. Shearing force applied to the crack faces (Cm = 0, Cv = 1)249

In this case, we take g1 ≡ 0 and g2(x) = iF−1[V̂∗(s)](x) as the right hand side of the system of integral
equations (72). Consequently, it is

V̄ −0 (s) = isM̄−0 (s),

where the function M̄0(s) is defined in (78). It is easy to see that the condition V̄ −0 (0) = 0 is satisfied250

automatically. The original function (after normalisation) takes the form251

V0(x1) = ζnv+1(ζx1 + nv)(−x1)nv−1eζx1 . (81)

and its Mellin transform is252

Ṽ −0 (s) = −2 + s

ζs+1
Γ(nv + s+ 2). (82)

Hereinafter, we assume ξv = 6.253

The counterparts of Figures 4–7 are presented in Figures 8–11, this time for shearing force, i.e. M0 ≡ 0.254

In particular, Figure 8 reveals that h2(ξ) is really the dominating component of the solution, with a small255

contribution from h1(ξ), which fact suggests that the loading condition is close to skew-symmetry.256

Figure 9 presents the mechanical unknowns for the case when a shearing force is applied. Once again we257

see that no jump of displacement and slope occurs beyond the crack-tip (x > 0), while the applied loading258

appears along the crack faces (x < 0).259

To highlight the behaviour of the solution in the far field, e.g. as x → −∞, Figure 10 presents the260

jump of the displacement and of the slope on a wide interval. Here, we observe square root growth of the261

displacement at infinity (compare (20)) for large ζ (small k). On the other hand, for small ζ (large k), the262

displacement tends to the symmetric part of the solution and grows linearly. This again is in the agreement263

with the limiting analysis provided in Appendix A (see Table A.1) and is a direct consequence that the264

condition Ṽ0(−1) 6= 0.265

As it can be seen in Figure 11, the normalised SIF Koζ−1/2 asymptotes, as ζ →∞, to the limiting case of a266

free plate under skew-symmetric conditions, given in (Appendix A.6) (see Appendix A). The corresponding267

horizontal asymptote is drawn in the picture. Comparing this limiting value, Koζ−1/2 = 0.831818, with the268

approximated SIF computed from the solution of the system of integral equations provides the relative error269

of the order of 3.6 · 10−4, that again is consistent with the accuracy of the computations.270
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Figure 8: Numerical solution of the system of the integral equations (72) in case of applied shear force for various values of the
Winkler parameter k = k0ζ−4 (compare (76)). The first two graphs correspond to the two components of the solution, while
the third one represents the nonzero component at the right hand side.

7. Conclusions271

In this paper, we consider the Linear Elastic Fracture Mechanics (LEFM) problem of a thin Kirchhoff272

plate partially supported by a Winkler foundation, in an attempt to incorporate the role of the support in273

any model related to sheet cutting. Indeed, almost any (possibly nonlinear) thermo-mechanical dissipative274

model of cutting, at some stage, takes into consideration the LEFM stress intensity factors (SIFs). In fact,275

our deepest motivation lies in the observation that providing good mechanical constraining conditions is276

crucial for any quality cutting process. The Kirchhoff plate is endowed with a semi-infinite rectilinear crack277

that sits right at the boundary of the supported zone. As a result, the problem is no longer symmetric even278

locally, in the neighborhood of the crack-tip. The problem is first formulated in terms of a pair of coupled279

functional equations of the Wiener-Hopf type, whose kernel cannot be factored in general. To circumvent280

this shortcoming, the problem is then recast in terms of a pair of integral equations on a half-domain, which281

are then easily solved numerically. However, to guarantee that the numerical solution is meaningful, the282

problem structure is manipulated and regularized, taking advantage of the features of the mechanical setup,283

mostly the global equilibrium conditions in the free (unsupported) plate.284

The resulting numerical system is very stable and may be efficiently computed. The numerical solution285

reveals that the supporting condition is very relevant in determining (a) the fields in the neighborhood of286

the crack-tip and (b) their asymptotic value in far-field on the crack line. Indeed, while the observation (a)287

is consistent with the intuition and with the fact that stable cutting requires solid support, finding (b) is288

somewhat surprising because it reveals that little support imperfections may be amplified in the far-field289

behaviour of the free plate. In fact, we show how the loading properties determine the far-field behaviour.290

Besides, we show that, for the limiting situation of an exceedingly stiff support and in dependence of the291

applied loading, SIFs converge to the case of a free plate in either symmetric or skew-symmetric deformation,292

or, in general, to a linear combination thereof.293

Contrarily to intuition, in neither case the situation of a clamped plate is retrieved, because it possesses294

a different decay rate in the neighborhood of the crack tip. In general, we find that both symmetric and295

skew-symmetric SIFs appear simultaneously, which depend on the support stiffness in opposing fashion,296

namely one increases while the other decreases. As a result, although no optimal support stiffness may be297

envisaged, it is deduced that the role of the support is to couple the symmetric and the skew-symmetric part298

of the solution. Therefore, the nature of the support affects the failure mode in a fundamental manner, and299

it is capable of shifting failure from mode II (bending) to mode III (shear). This observation may produce300

far reaching consequences, once it is associated with the fact that, in general, materials behave in a very301

different manner when subjected to different failure modes (e.g. in shear or bending).302
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Figure 9: Jump of the displacements and of the rotations, bending moment and shearing force on the line x2 = 0 for the case
of applied shearing force (M0 ≡ 0).
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Appendix A. Limiting problems313

Exceedingly weak foundation314

When the stiffness of the support is exceedingly week (k → 0), the corresponding solution for a free plate
loaded along the crack surfaces can be found in closed form and it will be a combination of two fundamental
solutions, symmetric or skew-symmetric, in dependence of the prescribed loading. On the other hand, when
the stiffness of the foundation becomes infinite k → ∞ ($ → 0), the plate becomes fixed on the crack line
beyond the crack tip. Again, the solution is obtained by combining the symmetric and skew-symmetric
fundamental loading conditions. In either case, solutions may be readily found in terms of Mellin transforms
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(hereinafter denoted by an overtilde),

w̃−0 (s) =

ˆ ∞
0

rs−1w(r,−π)dr, φ̃−0 (s) =

ˆ ∞
0

rsφ(r,−π)dr, (Appendix A.1a)

m̃−0 (s) =

ˆ ∞
0

rs+1m(r,−π)dr, ṽ−0 (s) =

ˆ ∞
0

rs+2v(r,−π)dr, (Appendix A.1b)

suitably defined to have the same strip of analyticity for all functions. The inverse of Mellin is accordingly
defined as

w(r,−π) =
1

2πi

ˆ c+i∞

c−i∞
r−sw̃−0 (s)ds, φ(r,−π) =

1

2πi

ˆ c+i∞

c−i∞
r−s−1φ̃−0 (s)ds, (Appendix A.2a)

m(r,−π) =
1

2πi

ˆ c+i∞

c−i∞
r−s−2m̃−0 (s)ds, v(r,−π) =

1

2πi

ˆ c+i∞

c−i∞
r−s−3ṽ−0 (s)ds. (Appendix A.2b)

We look for solutions which abide by the zero asymptotics (14), whence315

− 3
2 < <(s) < <(s∗). (Appendix A.3)
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Skew-symmetric cracked free plate316

We now consider a skew-symmetric problem along the crack line for a free plate, whence w+
0 = m+

0 ≡ 0.
This solution is given by

w̃−0 (s) =
− (1 + ν)

(3 + ν) (1− ν)s(s+ 1)
M̃0(s) +

2 tan(πs)

(3 + ν) (1− ν)s(s+ 1)(s+ 2)
Ṽ0(s), (Appendix A.4)

φ̃−0 (s) =
−2 cot(πs)

(3 + ν) (1− ν)(s+ 1)
M̃0(s) +

(1 + ν)

(3 + ν) (1− ν)(s+ 1)(s+ 2)
Ṽ0(s). (Appendix A.5)

For Ṽ0(s) ≡ 0, if we have the balance condition M̃0(−1) = 0 due to symmetry, then <(s) < 0, and the317

behaviour at infinity of w−0 (r) is O(1). Similarly, we have φ−0 (r) = O(1) at infinity. Conversely, assuming318

M̃0(−1) 6= 0, we have <(s) < −1 and w−0 (r) = O(r) and φ−0 (r) = O(ln(r)) at infinity. Analysing behaviour319

of the solution near the point s = −3/2 we conclude that in this case both SIFs are equal to zero:320

Ko = Ke = 0.

For M̃0(s) ≡ 0, we have − 3
2 < <(s) < − 1

2 , and the behaviour at infinity of w−0 (r) is O(r1/2). Conversely,321

for φ̃−0 (s), it is <(s) < +∞ assuming the skew-symmetric equilibrium condition Ṽ0(−1) = 0, whence φ−0 (r)322

behaves like V0(r) at infinity. If, instead, Ṽ0(−1) 6= 0, we have φ−0 (r) = O(1) at infinity.323

Finally, computing the residue of w̃(s, θ) at s = −3/2, we find324

w(r, θ) = Kowo(θ)r3/2 +O(r), as r → 0,

which matches the asymptotic analysis (14) and provides the displacement intensity factor325

Ko = −i
4(3ν + 5)

3(ν + 3)(1− ν)
Ṽ0(−3/2), Ke = 0. (Appendix A.6)

Symmetric cracked free plate326

The symmetric solution whereby φ+
0 = v+

0 = 0 lends

w̃−0 (s) =
(1 + ν)

(3 + ν) (1− ν)s(s+ 1)
M̃0(s)− 2 cot(πs)

(3 + ν) (1− ν)s(s+ 1)(s+ 2)
Ṽ0(s), (Appendix A.7)

φ̃−0 (s) =
2 tan(πs)

(3 + ν) (1− ν)(s+ 1)
M̃0(s) +

(1 + ν))

(3 + ν)) (1− ν)(s+ 1)(s+ 2)
Ṽ0(s). (Appendix A.8)

Again, we first consider the case Ṽ0(s) ≡ 0 and observe that, for w−0 , we find no poles assuming the327

equilibrium condition M̃0(−1) = 0 and it follows that w−0 (r) behaves just like M0(r) does as r tends to328

infinity. Conversely, assuming M̃0(−1) 6= 0, we have <(s) < −1 and w−0 (r) = O(r) at infinity. For φ−0 (r) we329

have <(s) < −1/2 and φ−0 (r) = O(r−1/2) at infinity. The residue of w at s = −3/2 lends330

Ke = −2i
ν + 7

3(1− ν)(ν + 3)
M̃0(−3/2), Ko = 0. (Appendix A.9)

In case M̃0(s) ≡ 0, we have <(s) < −1 and w−0 (r) = O(ln r) as r goes to infinity. If Ṽ0(−1) = 0, φ−0 (r)331

behaves like V0(r) at infinity, otherwise φ−0 (r) = O(1). In this case both SIFs are zeros.332

The following table collects information on the behaviour of all possible solutions at infinity.333

Half-plate clamped and cracked along the boundary334

We consider an infinite half-plate, with a rectilinear boundary at x2 = 0. The plate is clamped along this
boundary for x1 > 0, and it is cracked for x1 < 0. Demanding w = φ = 0 for x1 > 0, one gets

w̃−0 (s) =
2 (1 + ν) M̃0 sin2(πs)

s(s+ 1)∆cl(s)
+

2Ṽ0 sin(2πs)

s (s+ 1) (s+ 2)∆cl(s)
, (Appendix A.10)

φ̃−0 (s) =
2M̃0 sin(2πs)

(s+ 1)∆cl(s)
− 2 (1 + ν) Ṽ0 sin2(πs)

(s+ 1) (s+ 2)∆cl(s)
, (Appendix A.11)
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skew-symmetric Ṽ0(s) ≡ 0 M̃0(s) ≡ 0

w−0 (r) O(1) if M̃0(−1) = 0, O(r) otherwise O(r−1/2) if Ṽ0(−1/2) = 0, O(
√
r) otherwise

φ−0 (r) O(1) if M̃0(−1) = 0, O(ln(r)) otherwise V0(r) if Ṽ0(−1) = 0, O(1) otherwise

symmetric Ṽ0(s) ≡ 0 M̃0(s) ≡ 0

w−0 (r) O(1) if M̃0(−1) = 0, O(r) otherwise O(1) if Ṽ0(−1) = 0, O(ln r) otherwise

φ−0 (r) O(1/
√
r) V0(r) if Ṽ0(−1) = 0, O(1) otherwise

Table A.1: Behaviour of the solutions of the limiting problems as r →∞

where335

∆cl(s) = 4 + (3− ν)2 + (1− ν)(3 + ν) cos(2πs).

The first pole of this solution is located at s = −3/2± iε, where336

ε =
1

2π
cosh−1

(
4 + (3− ν)2

(1− ν)(3 + ν)

)
> 0.

Thus, the singularity in the displacement takes the form337

w(r, θ) = O(r3/2∓iε), as r → 0,

which does not match the singularity of the problem in the presence of a foundation, no matter how stiff.338

Interestingly, a recent paper [11] has been devoted to analysis of the stress singularity for a partially clamped339

plate with a crack on the boundary exhibiting surface stress effects.340

Appendix B. Forcing terms in the system of integral equations341

Appendix B.1. Bending moment342

g1(x) = F−1[M̂∗(s)](x) =

ζnm+1
√

2
1+i (−x)nm+ 1

2 eζxU
(

1
2 ,

3
2 + nm,−ζx

)
, x < 0,

√
2Γ(nm+1)

1+i

(√
ζ
πU
(

1
2 ,

1
2 − nm, ζx

)
− x

ξM−
1
2

Γ
(
ξM+

1
2

) M (
ξM , ξM + 1

2 ,−x
)
−

(2ξM−1)(nm+ζξM+1)Γ( 1
2−ξM )

2πζ cos(πξM )xξM−
3
2M

(
ξM , ξM − 1

2 ,−x
) )
, x > 0,

(Appendix B.1)

where M(a, b, c) is Kummer’s and U(a, b, c) Tricomi’s (confluent hypergeometric) function (for the definitions,343

see [12]).344

Appendix C. Asymptotics of the solution components in the frequency domain345

Appendix C.1. Asymptotic behavior at s = 0346

Appendix C.1.1. Analysis of the balance conditions347

The notation (36) is motivated by the following analysis which demonstrates that348

Aj(0) = Bj(0) = 0.
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Indeed, rewriting (27) through (33), we get, for the supported plate, an homogeneous systems of three linear349

equations in the unknowns Aj , namely350

lim
s→0

[
A1

(
α2

1 − νs2
)

+A2

(
α2

2 − νs2
)]

= 0,

351

lim
s→0

[
α1A1

(
α2

1 + (ν − 2)s2
)

+ α2A2

(
α2

2 + (ν − 2)s2
)]

= 0,

352

lim
s→0

d

ds

(
α1A1

(
α2

1 + (ν − 2)s2
)

+ α2A2

(
α2

2 + (ν − 2)s2
) )

= 0.

Recalling (30), we observe that the first pair of equations provide a regular system with determinant
(
α2(0)−353

α1(0)
)
α2

1(0)α2
2(0) 6= 0, whence Aj(0) = 0, (j = 1, 2). Consequently, alongside the balance conditions (27),354

we have355

w̄A0 (0) = φ̄A0 (0) = 0. (Appendix C.1)

The last equation gives immediately356

lim
s→0

[
α3

1(0)A′1(s) + α3
2(0)A′2(s)

]
= 0,

whence, by (30),357

A′1(s) = iA′2(s) +O(|s|), s→ 0. (Appendix C.2)

In terms of asymptotic estimates, this gives either (j = 1, 2)358

Aj(s) ∼ ajs$, a1 = ia2, s→ 0, 0 < $ ≤ 1, (Appendix C.3)

that will be proved incorrect in Eq.(Appendix C.17), or359

Aj(s) ∼ ajs$j , s→ 0, $j > 1, (Appendix C.4)

with a1 and a2 complex-valued constants. The same path of reasoning may be carried out for Bj(s), but we360

choose to follow another approach.361

Appendix C.1.2. Connecting B∗, B2 to the transforms m̄0 and v̄0362

Specializing (34) to the crack line and accounting for (36), one finds

m̄0 = −(ν − 1)βB∗ + 2βB2, (Appendix C.5a)

v̄0 = (ν − 1)s2B∗ + (ν + 1)s2B2, (Appendix C.5b)

where no superscript appears at LHS in light of (25). This system of equations provides a non-singular363

constant-coefficient linear transformation of the functions B∗ and B2 to m̄0 and v̄0, whence these share the364

same asymptotics. We may easily solve the linear system365 B∗
B2

 =

1− ν 2

ν − 1 1 + ν

−1 β−1m̄0

s−2v̄0

 =
1

4c

1 + ν −2

1− ν 1− ν

β−1m̄0

s−2v̄0

 , (Appendix C.6)

to get366

B∗ =
(1 + ν)m̄0β

−1 − 2v̄0s
−2

(1− ν)(3 + ν)
, B2 =

1

3 + ν

(
m̄0β

−1 + v̄0s
−2
)
. (Appendix C.7)
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Appendix C.1.3. Refined asymptotics at zero367

Taking advantage of the results (35), we can better determine the asymptotics of B∗ and B2 (and likewise368

for A1, A2) as s→ 0. We begin with the transformed bending moment m̄0(s). First, it follows from (21) and369

(16b), that mA,B
0 (x1) ∈ L1(R), x1m

A,B
0 (x1) ∈ L1(R), as a result, we conclude that m̄0(s) = m̄(s, 0) ∈ C1

loc370

and thus371

m̄0(s) = m0 + m1s+O(|s|3/2), s→ 0. (Appendix C.8)

Similarly, it follows from (21) and (16c), that vA,B0 (x1) ∈ L1(R), x1v
A,B(x1) ∈ L1(R) and x2

1v
A,B(x1) ∈372

L1(R), as a result, we conclude that v̄0(s) = v̄(s, 0) ∈ C2
loc near the origin and thus373

v̄0(s) = v0 + v1s+ v2s
2 +O(|s|5/2), s→ 0. (Appendix C.9)

From the transformed balance conditions (27), it immediately follows that m0 = v0 = v1 = 0. Besides,374

plugging (Appendix C.4,Appendix C.7) into (35a), one gets375

Jw̄K ∼ a1s
$1 +a2s

$2 − 1

(1− ν)(3 + ν)

(
(1 +ν)m1 sign s−2v2

)
β−1 +O(|s|−1/2), s→ 0, (Appendix C.10)

and for this to be consistent with the first of (20) it is necessary that the β−1-term drops out, i.e. ±(1+ν)m1 =
2v2 as s→ ±0. Similarly, using (Appendix C.4,Appendix C.7) into (35b) and recalling (30), we get

Jφ̄K ∼ −e−iπ/4a1s
$1 − eiπ/4a2s

$2 − 1

(1− ν)(3 + ν)

(
(1 + ν)m1 sign s− 2v2

)
− 1

3 + ν

(
m1 sign s+ v2

)
+O(|s|1/2), s→ 0, (Appendix C.11)

and the constant term needs to disappear, i.e. ±m1 = v2 as s→ ±0. As a result, one concludes that376

m1 = v2 = 0. (Appendix C.12)

Then, we can write the respective assumptions for m̄0(s) and v̄0(s) more accurately377

m̄0(s) = O(|s|3/2), v̄0(s) = O(|s|5/2), s→ 0, (Appendix C.13)

and returning back to (Appendix C.7) we conclude that378

B∗(s), B2(s) = O(|s|1/2), s→ 0. (Appendix C.14)

With this knowledge, returning back to Eq.(35c) while substituting the asymptotics (Appendix C.4,Appendix379

C.14), we get380

m̄A
0 = −ia1s

$1 + ia2s
$2 = O(|s|3/2), s→ 0. (Appendix C.15)

The same argument, this time applied to (35d), gives381

v̄A0 = −e−i3π/4a1s
$1 − ei3π/4a2s

$2 = O(|s|5/2), s→ 0, (Appendix C.16)

and the system (Appendix C.15,Appendix C.16) is consistent only if382

$1 = $2 =
3

2
, (Appendix C.17)

and we finally prove that the asymptotics (Appendix C.3) is incorrect. Furthermore, plugging this result383

into (Appendix C.16), one sees that384

a1 = ia2, (Appendix C.18)

whence we obtain the leading asymptotics of w̄A0 and φ̄A0 at the origin, namely385

w̄A0 = A1 +A2 = (1 + i)a2s
3/2, φ̄A0 = −α1A1 − α2A2 = −

√
2(1 + i)a2s

3/2, s→ 0. (Appendix C.19)
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Appendix C.2. Asymptotic behavior at s→ ±∞386

From the Abelian theorem [22] applied to (16b), it follows387

m̄+
0 (s) = m∞e

±iπ/4|s|−1/2 +O(|s|−1), s→ ±∞, (Appendix C.20)

where, clearly,

m∞ =
12
√
πc

ν + 7
Ke.

Likewise, from (10), it is388

m̄−0 (s) ≡ M̄−0 (s) = O
(
s−1−γ0

)
, |s| → ∞, =(s) < 0, (Appendix C.21)

that, recalling γ0 >
1
2 , decays faster than (Appendix C.20). Thus, summing (Appendix C.20) and (Appendix C.21)389

together, we have390

m̄0(s) = b1|s|−1/2 = m∞e
±iπ/4|s|−1/2 +O(|s|−1), s→ ±∞. (Appendix C.22)

In similar fashion, it follows from (16c) and the Abelian theorem that391

v̄+
0 (s) = v∞e

∓iπ/4|s|1/2 +O(1), s→ ±∞, (Appendix C.23)

with

v∞ =
12
√
πc

3ν + 5
Ko.

Again, the applied shearing force decays faster because it was assumed γ0 >
1
2392

v̄−0 (s) = V̄ −0 (s) = O(s−γ0), |s| → ∞, =(s) < 0, (Appendix C.24)

whence, summing, one gets393

v̄0(s) = b2|s|
1
2 = v∞e

∓iπ/4|s| 12 +O(1), s→ ±∞, (Appendix C.25)

whose diverging character denotes that this is a Fourier transform in the sense of distributions.394

Substituting the asymptotics (Appendix C.22) and (Appendix C.25) into (33b) and (33c), respectively,395

we get a linear system for the asymptotics of A1,2(s), namely396  (α2
1 − νs2)A1 + (α2

2 − νs2)A2 = b1|s|−1/2,

−α1(α2
1 + (ν − 2)s2)A1 − α2(α2

2 + (ν − 2)s2)A2 = b2|s|1/2,
s→ ±∞. (Appendix C.26)

Lets write this system in the form397

Ma = b, s→ ±∞, (Appendix C.27)

where398

M =

 α2
1 − νs2 α2

2 − νs2

−α1

(
α2

1 + (ν − 2)s2
)
−α2

(
α2

2 + (ν − 2)s2
)
 , (Appendix C.28)

and399

b ∼
[
b1|s|−1/2, b2|s|1/2

]
, s→ ±∞, (Appendix C.29)

This system is nonsingular (at least at infinity), for we have400

det M = −4ic|s|3 +O(|s|−1), s→ ±∞. (Appendix C.30)

Hence, it can be solved giving401  A1 = i(b1−b2)
ν+3 |s|

−1/2 + b1(ν+1)+2b2
2(1−ν)(ν+3) |s|

−5/2 + o(|s|−5/2),

A2 = − i(b1−b2)
ν+3 |s|

−1/2 + b1(ν+1)+2b2
2(1−ν)(ν+3) |s|

−5/2 + o(|s|−5/2),
s→ ±∞. (Appendix C.31)
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By substituting this expansion into the general solution (29) for the supported plate, we obtain, to leading
order,

w̄A0 = A1 +A2 =
b1(ν + 1) + 2b2
(1− ν)(ν + 3)

|s|−5/2, s→ ±∞,

whence402

w̄A0 = 3
√
π

(
e±iπ/4Ke

ν + 1

ν + 7
+ e∓iπ/4Ko

2

3ν + 5

)
|s|−5/2, s→ ±∞. (Appendix C.32)

Similarly, substituting (Appendix C.31) into (33a), we get

φ̄A0 = −α1A1 − α2A2 = −b2(ν + 1) + 2b1
(1− ν)(ν + 3)

|s|−3/2,

thus, to leading order,403

φ̄A0 = −3
√
πe±iπ/4

(
2

ν + 7
Ke ± i

ν + 1

3ν + 5
Ko
)
|s|−3/2, s→ ±∞. (Appendix C.33)

Appendix C.3. Asymptotics of the half-transforms w̄±, φ̄±, m̄±, v̄±404

In the previous Sections, we have obtained the asymptotics of the full range Fourier transforms, both as
s→ 0 and as s→ ±∞, see Table C.2. Moving from these, we here deduce, the corresponding behaviour of

s→ 0 |s| → ∞

w̄A0 s3/2 s−5/2

φ̄A0 s3/2 s−3/2

m̄0 = m̄+ s3/2 s−1/2

v̄0 = v̄+ s5/2 s1/2

Jw̄K = Jw̄−K s−1/2 s−5/2

Jφ̄K = Jφ̄−K s1/2 s−3/2

Table C.2: Asymptotics of the full range Fourier transforms

the half-transforms. From the Taylor expansion of (23) as s→ 0, we write

φ̄+
0 (s) =

ˆ ∞
0

φ0(x)dx+O(s1/2), φ̄B−0 (s) =

ˆ 0

−∞
φB0 (x)dx+O(s1/2), s→ 0, (Appendix C.34a)

m̄+
0 (s) =

ˆ +∞

0

m0(x)dx+ is

ˆ +∞

0

xm0(x)dx+O(s3/2), s→ 0, (Appendix C.34b)

m̄−0 (s) =

ˆ 0

−∞
M0(x)dx+ is

ˆ 0

−∞
xM0(x)dx+O(s2), s→ 0, (Appendix C.34c)

v̄+
0 (s) =

ˆ +∞

0

v0(x)dx+ is

ˆ +∞

0

xv0(x)dx− 1
2s

2

ˆ +∞

0

x2v0(x)dx+O(s5/2), s→ 0, (Appendix C.34d)

v̄−0 =

ˆ 0

−∞
V0(x)dx+ is

ˆ 0

−∞
xV0(x)dx− 1

2s
2

ˆ 0

−∞
x2V0(x)dx+O(s3), s→ 0. (Appendix C.34e)

Accounting for (Appendix C.13), we deduce the asymptotics

m̄+
0 (s) = −M̄−0 (0)− sdM̄−0

ds
(0) +O(s3/2), s→ 0, (Appendix C.35a)

v̄+
0 (s) = −V̄ −0 (0)− sdV̄ −0

ds
(0)− 1

2s
2 d2V̄ −0

ds2
(0) +O(s5/2), s→ 0. (Appendix C.35b)
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Also, from (Appendix C.10) and (Appendix C.11) we have405

Jw̄K = O(s−1/2), Jφ̄K = φ̄A0 − (φ̄+
0 + φ̄B−0 ) = O(s1/2), s→ 0, (Appendix C.36)

where, recalling (Appendix C.19), it is w̄A0 = O(s3/2) and φ̄A0 = O(s3/2). For the last asymptotics to hold
true, it is required that ˆ ∞

−∞
φ0(s)dx = 0.

The asymptotics at infinity are compute directly taking the positive half-transform of (14,16)

w̄+
0 (s) = iW0s

−1 −W1s
−2 + 3

√
π
ν + 1

ν + 7
e±iπ/4Ke|s|−5/2 +O(s−7/2), s→ ±∞, (Appendix C.37a)

φ̄+
0 (s) = iW2s

−1 − 3
√
π
ν + 1

3ν + 5
e∓iπ/4Ko|s|−3/2 +O(s−5/2), s→ ±∞, (Appendix C.37b)

m̄+
0 (s) = 12c

√
π
e±iπ/4

ν + 7
Ke|s|−1/2 +O(s−3/2), s→ ±∞, (Appendix C.37c)

v̄+
0 (s) = 12c

√
π
e∓iπ/4

3ν + 5
Ko|s|1/2 + C1 +O(s−1/2), s→ ±∞. (Appendix C.37d)

where the first two formulae are valid inasmuch as =(s) > 0 and the last only in the sense of distributions.
Similarly, for the negative half transforms, we get

w̄B−0 (s) = −iW0s
−1 +W1s

−2 − 6
√
π
e∓iπ/4

3ν + 5
Ko|s|−5/2 +O(s|−7/2), s→ ±∞, (Appendix C.38a)

φ̄B−0 (s) = −iW2s
−1 + 6

√
π
e±iπ/4

ν + 7
Ke|s|−3/2 +O(s−5/2), s→ ±∞, (Appendix C.38b)

m̄−0 (s) = M̄−0 (s) = O(s−γ0−1), v̄−0 (s) = V̄ −0 (s) = O(s−γ0), s→∞, (Appendix C.38c)

Accounting for (Appendix C.32,Appendix C.33), we obtain, to leading order,406

Jw̄K = w̄A0 − (w̄+
0 + w̄B−) ∼ 12

√
π e
∓iπ/4

5+3ν Ko|s|
−5/2,

Jφ̄K = φ̄A0 − (φ̄+
0 + φ̄B−) ∼ −12

√
π e
±iπ/4

7+ν Ke|s|
−3/2,

m̄0 ∼ m∞e
±iπ/4Ke|s|−1/2, v̄0 ∼ v∞e

∓iπ/4Ko|s|1/2,

s→ ±∞. (Appendix C.39)

References407

[1] DD Ang, ES Folias, and ML Williams. The bending stress in a cracked plate on an elastic foundation.408

Journal of Applied Mechanics, 1963.409

[2] T Atkins. The science and engineering of cutting: the mechanics and processes of separating, scratching410

and puncturing biomaterials, metals and non-metals. Butterworth-Heinemann, 2009.411

[3] Z-Q Cheng and JN Reddy. Green’s functions for an anisotropic thin plate with a crack or an anticrack.412

International journal of engineering science, 42(3-4):271–289, 2004.413

[4] K-R Deibel, C Raemy, and K Wegener. Modeling slice-push cutting forces of a sheet stack based on414

fracture mechanics. Engineering Fracture Mechanics, 124:234–247, 2014.415

[5] ES Folias. On a plate supported by an elastic foundation and containing a finite crack. International416

Journal of Fracture Mechanics, 6(3):257–263, 1970.417

[6] J P Gallagher. Usaf damage tolerant design handbook: guidelines for the analysis and design of damage418

tolerant aircraft structures. Technical report, 1984.419

25



[7] R V Gol’dstein and R L Salganik. Brittle fracture of solids with arbitrary cracks. International journal420

of Fracture, 10:507–523, 1974.421

[8] N Gorbushin, V Eremeyev, and G Mishuris. On stress singularity near the tip of a crack with surface422

stresses. International Journal of Engineering Science, 146:103183, 2020.423

[9] RJ Hartranft and GC Sih. An approximate three-dimensional theory of plates with application to crack424

problems. International Journal of Engineering Science, 8(8):711–729, 1970.425

[10] C-W Hsu and C Hwu. Green’s functions for unsymmetric composite laminates with inclusions. Pro-426

ceedings of the Royal Society A, 476(2233):20190437, 2020.427

[11] Zhen-Liang Hu, Xue-Yang Zhang, and Xian-Fang Li. Oscillatory singularity for bending of a partially428

clamped nanoplate with consideration of surface effect. Engineering Fracture Mechanics, page 109495,429

2023.430

[12] I.S.Gradshtein and I.M.Ryzhik. Tables of integrals, series and products. Academic Press, fifth edition,431

1996.432

[13] VGMD Kumar, MD German, and C F Shih. Engineering approach for elastic-plastic fracture analysis.433

Technical report, General Electric Co., 1981.434

[14] H Liebowitz and GC Sih. Mathematical theories of brittle fracture. chapter 2. ACADEMIC PRESS,435

INC.,, 1968.436

[15] P C Miedlar, A P Berens, A Gunderson, and JP Gallagher. Analysis and support initiative for structural437

technology (asist) delivery order 0016: Usaf damage tolerant design handbook: guidelines for the analysis438

and design of damage tolerant aircraft structures. Technical report, DAYTON UNIV OH RESEARCH439

INST, 2002.440

[16] SA Mohamed, S Bichir, MS Matbuly, and M Nassar. Analytical solution of cracked shell resting on441

elastic foundation. Acta mechanica solida sinica, 9(4):306–319, 1996.442

[17] A Nobili, E Radi, and L Lanzoni. A cracked infinite kirchhoff plate supported by a two-parameter443

elastic foundation. Journal of the European Ceramic Society, 34(11):2737–2744, 2014.444

[18] A Nobili, E Radi, and L Lanzoni. On the effect of the backup plate stiffness on the brittle failure of a445

ceramic armor. Acta Mechanica, 227:159–172, 2016.446

[19] A Nobili, E Radi, and L Lanzoni. Flexural edge waves generated by steady-state propagation of a447

loaded rectilinear crack in an elastically supported thin plate. Proceedings of the Royal Society A:448

Mathematical, Physical and Engineering Sciences, 473(2204):20170265, 2017.449

[20] Andrea Nobili and Valentina Volpini. Microstructured induced band pattern in love wave propagation for450

novel nondestructive testing (ndt) procedures. International Journal of Engineering Science, 168:103545,451

2021.452

[21] B Noble. Methods based on the Wiener-Hopf technique for the solution of partial differential equations,453

International Series of Monographs on Pure and Applied Mathematics. Vol. 7. Pergamon Press, New454

York, 1958.455

[22] A Piccolroaz, G Mishuris, and A Movchan. Symmetric and skew-symmetric weight functions in 2d456

perturbation models for semi-infinite interfacial cracks. Journal of the Mechanics and Physics of Solids,457

57:1657–1682, 2009.458

[23] A Piccolroaz, D Peck, M Wrobel, and G Mishuris. Energy release rate, the crack closure integral459

and admissible singular fields in fracture mechanics. International Journal of Engineering Science,460

164:103487, 2021.461

26



[24] Y Pronina, A Maksimov, and M Kachanov. Crack approaching a domain having the same elastic462

properties but different fracture toughness: Crack deflection vs penetration. International Journal of463

Engineering Science, 156:103374, 2020.464

[25] DV Ramsamooj. Fracture of highway and airport pavements. Engineering Fracture Mechanics,465

44(4):609–626, 1993.466

[26] S Rogosin and G Mishuris. Constructive methods for factorization of matrix-functions. IMA Journal467

of Applied Mathematics, 81:365–391, 2016.468

[27] G C Sih. Bending of a cracked plate with arbitrary stress distribution across the thickness. Technical469

report, NASA Technical report Nr.6, 1969.470

[28] G C Sih. A review of the three-dimensional stress problem for a cracked plate. International Journal471

of Fracture Mechanics, 7(1):39–61, 1971.472

[29] G C Sih. Plates and shells with cracks: a collection of stress intensity factor solutions for cracks in473

plates and shells, volume 3. Springer Science & Business Media, 2012.474

[30] L Slepyan. Forced waves in a uniform waveguide with distributed and localized dynamic structures475

attached. International Journal of Engineering Science, 173:103628, 2022.476

[31] M L Williams. The bending stress distribution at the base of a stationary crack. J. Appl. Mech., pages477

78–82, 1961.478

[32] Haiying Zhang, Zhenwen Zhou, Alexander Chudnovsky, and Hoang Pham. Time-dependent buckling479

delamination of thin plastic films and their conformability: Observations and modeling. International480

Journal of Engineering Science, 150:103258, 2020.481

[33] Z. Zhuang, Z. Liu, B. Cheng, and J. Liao. Extended finite element method, chapter X-FEM on482

Continuum-Based Shell Elements. Tsinghua University Press computational mechanics series. Tsinghua483

University Press, Beijing, 2014.484

27



Declaration of interests 
  
☐ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
  
☒ The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests: 
 

Andrea Nobili reports financial support was provided by Government of Italy Ministry of Education 
University and Research. Gennady Mishuris reports a relationship with European Union that includes: 
funding grants. 

 

Declaration of Interest Statement


