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ABSTRACT In applications that require a high availability and high performance (for example
aerospace),modular power electronics and multi-phase machines represent an advantageous choice. In this
framework, a control system able to handle a high number of PWM signals and communication interfaces as
well as featuring a high computational power is required. This paper proposes a novel HDL plus soft-core
approach to be implemented on System-on-Chip hardware which allows for the efficient and modular
implementation of the modern control techniques with strong guarantees in terms of determinism. The
proposal lies in the adoption of a very simplified and optimized floating-point soft-core, the femtocore
(fCore) and its tool-chain, which allows C-like implementation of complex algorithms in a HDL-design
power electronics control framework. Several fCore units can be arranged for parallel processing to handle
the time requirements of a complex modular system even with low sampling time (100 kHz or more). The
proposed architecture is experimentally validated in a proof-of-concept, six-phase electric machine including
a comparison against a traditional method.

INDEX TERMS Digital signal processors, control system implementation, current control, machine drive.

I. INTRODUCTION
Advances in the field of static power conversion and machine
drives have started to put a lot of strain on the traditional ar-
chitectures used for their control systems. The first of several
factors contributing to this issue is the advent of wide-bandgap
devices, Silicon Carbide (SiC) and Gallium Nitride (GaN)
transistors, which can be operated at very high switching
frequencies in the range of hundreds of kilohertz to mega-
hertz range [1], [2], without significant increases in switching
losses, reducing the need for bulky and expensive filtering
components. Another trend exacerbating this issue is the ever
growing adoption of modern high performance control tech-
niques, such as Model Predictive control (MPC) [3], [4] where
a mathematical model is used to predict the effect that the

controller actions will have on the physical system, one or
more cycles in the future. This allows not only to achieve
the desired action from the system, but also minimize (or
maximize) other performance metrics, that are typically not
actively controlled in simpler control systems, through their
inclusion in the cost function. The main drawback of these
methods, is the large computational complexity, as a mathe-
matical model needs to be evaluated multiple times per period.
Last but not least, there is a heavier focus on fault tolerance
due to a strong push toward transport electrification. In this
field, failure of fundamental systems, can have extremely se-
vere consequences, that are not typically encountered in an
industrial automation setting. In fields like marine and off-
shore drilling [5] or aerospace [6]–[8], a failure in one of
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the critical mission components can easily have catastrophic
consequences, like the loss of a vehicle, large oil spills and
potentially even loss of lives. For these reasons, both reli-
ability and fault tolerance are key design specifications in
such mission critical applications. To address this need, ma-
chine and converter architectures [9], [10] that can tolerate
one or more faults, are being studied. The introduction of
redundancy at multiple levels, has the unwanted side effect of
further increasing the computational needs of control systems.
The net effect of all these trends, is a growing inadequacy
of the traditional control system architecture [11], where a
monolithic microcontroller (MCU) is directly in charge of the
whole system. Vertical and horizontal scaling has been pro-
posed as a solution, by silicon manufacturers, which propose
both high frequency and multi-core microcontroller designs.
These techniques, although effective in increasing computa-
tional power of these platforms, have the drawback of de-
creasing the overall system determinism and execution time
consistency, as jitter increases. As high frequency designs
need to employ caches and deeper pipelines in order to hit the
required frequencies, and multi-core processors, while utiliz-
ing unaltered cores, need to deal with the problems brought
about by inter process communication (IPC) and shared re-
source access contention,with similar effects [12]–[14]. While
these trade-offs might be acceptable in most applications,
they are not acceptable for mission critical hard real-time. In
such a setting a significant amount of execution time jitter
increase cost; as computational resources need to be over-
provisioned to a degree where deadline overrun are certifi-
ably avoided in the worst case scenario. Field Programmable
Gate Arrays (FPGA) have also been proposed for the full
implementation of control systems, as in [15]–[17]. While
these type of devices and architectures can scale to massive
systems with very high computational capabilities, they are
much more complex to realise due to the difficulty of HDL
(Hardware definition Language) development as opposed to
software development. Finally, commercial Hardware-in-the-
Loop (HIL) systems can be used to implement the whole
control system, as in [18], [19] directly from simulation mod-
els, in a black box manner, typically using conventional pro-
cessors, with some FPGA assistance. While this last option
massively simplifies implementation, but is also fairly lim-
ited for high speed application, where the latency of these
platform becomes a bottleneck, in addition to their high
cost.

In this paper a novel control system implementation archi-
tecture is presented, based on a FPGA/SoC platform contain-
ing programmable logic and a dual core processor in the same
package (Xilinx Zynq or equivalent), it includes a custom
processor core, specifically developed to assist in the imple-
mentation of digital control systems. It features:
� Deterministic and constant execution time.
� Purely software based control system implementation.
� Intermediate FPGA architecture between soft-core and

full HDL.
� Cost-effective industrial deployment capability.

FIGURE 1. System Layers diagram.

In Section II the overall system architecture is presented,
in Section III the custom processor core is detailed, in Sec-
tion IV the proposed core and architecture are compared with
a traditional implementation. In Section V a real world system
is presented to experimentally validate the architecture perfor-
mance and then conclusions are drawn in Section VI.

II. SYSTEM ARCHITECTURE
The proposed system architecture is constituted by three sep-
arate layers, as shown in Fig. 1, each one responsible for a
subset of functionalities, starting from the top we find the HMI
(Human Machine Interface) layer, that translates the users
commands to a form that can be easily acted upon by the
underlying layers. The management layer offloads the most
common tasks like configuring the FPGA with the correct
bitstream and programming the processing core, along with
being in charge of storing all user and application specific in-
formation. The lowest layer, the control layer, is the one where
all the hard real-time control functions are implemented.

The HMI is running directly on the user PC, leveraging
modern web standards, through a web application, allowing
easy provisioning of the whole system, with no additional
software installation required. All other layers, that form the
backend server to the application, are implemented in a Sys-
tem on Chip (SoC) that is comprised by a programmable logic
(PL) part, which contains a FPGA fabric, and a dual core
ARM cortex A9 processor system, with relative peripherals.
Client and server can thus be connected through a standard
wired or wireless network connection capable of supporting
TCP/IP standards.

A. CONTROL LAYER
The control layer, shown in Fig. 2 is responsible for the
hard real-time aspects of the whole system. It interfaces with
external sensors, calculates the required control actions and
then passes them along to the rest of the system. The first
step is fulfilled through several standard interfaces (SPI, I2C,
etc.) that connect the main SoC with the external ADCs and
sensors. The raw data is then processed with ad-hoc logic
and DSP blocks to perform calibration and filtering. Then the
treated samples are inserted through Direct Memory Access
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FIGURE 2. SoC architecture diagram.

(DMA) in the register space of the processing core, that cal-
culates the required control actions. Once this is complete,
another DMA engine will extract the result and push them
out to the communication units, so that the information can
be pushed out to to each power cell for actuation. A highly
configurable timebase module is used to synchronise all the
logic in the system, enabling arbitrary variation in frequency
and timing of the various phases.

B. MANAGEMENT LAYER
The main purpose of this layer is to abstract away the com-
plexity of the hardware platform, providing a stable interface
that the HMI layer can build upon. To this effect, the layer
performs multiple tasks. Being a pure software component,
without hard real-time constraints, several implementation
options are possible. On one hand, a certified real-time OS
(RTOS) can be used, if needed for safety related regulatory
reasons. On the other hand, if permitted, a standard Linux
system can deliver better security, thanks to a much more
audited code base, ease of use, with a standard compliant,
secure and fully featured networking stack and access to a
range of other technologies. To ease deployment and increase
manageability, the whole layer makes heavy use of container-
ization. A side benefit of this approach is the establishment
of a clear and distinct interface between the HMI and other
user facing components, that could potentially be connected to
the internet, and the rest of the system. This separation allows
easy authentication and enhance system security, through the
use of firewalls, and the application of a defense in depth
technique, where multiple independent layers of protection
need to be breached to fully gain control of the system.

The first and only user facing component of this layer is
a REST server that acts as the back-end for the HMI appli-
cation and functions as a gateway between it and the rest of
the system. All application specific and configuration data is
stored in a separate database that allows the whole system
to be self contained, and completely independent from the
client machine. Finally, the driver component communicates
with the server and upon its commands acts on the control

layer accordingly. This is comprised of two separate parts: the
first is a lower level loadable kernel module (LKM) which
abstracts away all the platform dependent functionalities, such
as bus and DMA access. The second is a high level C++ driver,
implemented as a regular user mode application that does all
the low level data processing, such as sorting, filtering, and so
on.

C. HUMAN MACHINE INTERFACE
This component, implemented as a standard client side web
application, allows the user to interact with the control system
in the most natural way possible, allowing on the fly change of
parameter, triggering of actions and facilitating data visualiza-
tion, with a real-time display of selected parameter gathered
in the control layer, such as sensor readings, error variables,
desired control actions, etc.

In order to allow the user to act on meaningful control
variables, rather than having to work directly on the register
values exposed by the control layer, whose values need to be
parsed and pre-processed through a set of simple operations,
like re-scaling, addition of offset, conversion to other formats
etc. A simple scripting system has been introduced, that al-
lows the user to program all this required steps. Upon a user
triggering of a pre-defined and configurable event, this code
will be run, with the results being sent for action to the lower
layers. This strikes a balance between complexity of the layer
and usability, allowing the user to work with familiar values
and parameters, while not requiring a complete redesign of the
HMI component structure for each different application.

III. FEMTOCORE PROCESSOR
The implementation of control systems on FPGA can take
two routes: the fully custom logic, which can attain much
higher operating frequencies, at the cost of a long and complex
implementation and verification process, or the serial, through
some kind of processor or finite automata. This second choice
allows the use of a much quicker software development
model, as opposed to the HDL one, with the main drawbacks
being longer cycle times and potentially a lack of determin-
ism. The frequency trade off does not impact the considered
application as modern FPGA working frequencies are high
enough to allow the calculations to take up to few thousand
cycles while still respecting the required deadlines. The issue
of determinism is much more problematic for mission critical
applications, as it brings about all the problems inherent in
real-time low jitter safety critical software development, and
the related certifications.

Upon close examination of the desired use case, it is ap-
parent that the implementation of most control systems can
be reduced to the solution of one or more equations, and
provided that all required data is made available by the rest
of the system, the processing core’s only responsibility is to
perform a series of arithmetic and logic operations in order
to obtain the required control action. To take advantage of this
characteristic of the application, a custom instruction set (ISA)
and processor core has been specifically designed in order to
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FIGURE 3. High level fCore architecture diagram.

TABLE 1. Available Operations

allow the implementation of the control system calculations
as software, while retaining a fully deterministic execution.

A. PROCESSOR ARCHITECTURE
The high level architecture of the designed processor, shown
in Fig. 3. The design is fairly traditional, loosely following a
harvard architecture, yet with few unconventional characteris-
tics: the base is a simple three stage pipeline with a decoder,
an execution unit and finally result write-back. It is derived
from the classic five stage RISC pipeline, eliminating the
instruction fetch stage, as all instructions have a fixed size, and
the memory access, not needed in this architecture. The core
utilizes a single pool of memory, denominated register file, to
hold all intermediate values, the size of which is limited by the
width of the operand and destination register specified in the
ISA. In the currently proposed implementation this consists
of thirty-two 32-bit general purpose registers (r1 to r31) and
a single zero register (r0), that holds the constant value of
zero and is used internally to implement several virtual op-
erations, such as register to register data movement and the
no operation (also known as nop). The current structure of the
ISA, also allows extension of the memory pool to 512 words
while keeping a 32 b instruction word, through 9 b register
addresses. A control unit starts the linear flow of execution
upon reception of an external trigger signal and halts it when
reaching either the stop instruction or the end of the program
memory. This unit also contains the program counter that is
advanced once for each execution cycle. A DMA endpoint is
also present that allows the external logic to load the inputs
directly in the register file, at the appropriate location, and to
extract the results once the done signal is issued. Each one of
the available operations, listed in Tab. 1, can be encoded in
a single 32-bit wide instruction, except for the constant load
which takes two. The most important feature of this core is
the lack of any control flow instruction, such as conditional
or unconditional jumps. This guarantees that the duration of

each execution of a single program to be exactly identical
completely eliminating jitter by design. This allows also to
easily evaluate ahead of time, during compilation, how long
a specific program will take to complete execution, and of
consequence its maximum operating frequency.

In a trade off between functionality and resource consump-
tion, the implementation of full floating point division is ex-
cluded from the ISA. In its place a reciprocal operation is
included allowing the calculation of the 1/x fraction, to be
multiplied by the desired divided. It should be noted that these
two operations are not strictly equivalent, as rounding can
lead to differing results between the two. As shown in [20],
the error is at most 1.5 Units of Least Precision (ULP), a
value small enough to be overshadowed by the much larger
uncertainties introduced in feedback control system by noise
and other sources of error in sensors or during the analog to
digital processing.

In order to reach a reasonable clock frequency, the execu-
tion of a single floating point operation is implemented as a
five stage pipeline, that once filled, can process an instruction
every clock cycle. It should be noted that in traditional design
a long pipeline is undesirable since it might need to be flushed
upon a jump or branch instruction, leading to uncertainty in
the run time and decreasing throughput. In the femtoCore,
the execution time is largely independent from the pipeline
length, that, once full, will never be flushed, leading to a fully
deterministic execution time.

The only minor downside from the multi cycle operation of
the execution unit is the need for delay slots in the program
to avoid data hazards when the next adjacent instructions are
co-dependent. This addition can be performed either by the
compiler/assembler, through a simple static analysis pass, or
in hardware, with a small increase in front-end complexity.

When dealing with uncoupled multi-channel systems, as in
the intended application, the same program will need to be
executed multiple times, once for each channel. To benefit
this use case, the core has support for automated Single In-
struction Multiple Data (SIMD) execution. When this mode is
enabled, the execution is interleaved, executing each instruc-
tion on every channel before advancing the program counter,
the Register file is also expanded to have a full complement
of thirty-two registers for each channel. A channel counter
helps to select the active partition of the full register file.
When operating in this mode since no data dependency is
present between channels, less delay slots are needed. When
more than six channels are present the pipeline latency is
completely masked requiring no additional delay slots.

B. ISA
The principal distinctive feature of this architecture is the
restricted Instruction Set Architecture (ISA), which plays a
fundamental role, along with processor architecture and im-
plementation in achieving the goal of a completely deter-
ministic and consistent execution time. A careful design of
the allowed operations, can ensure bounded execution time,
while not impeding software development for the targeted
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FIGURE 4. Physical instruction structures.

application. The main manifestation of this philosophy is the
lack of ISA support for branching or procedure call, ensuring
a linear, predictable and constant flow of execution. Another
side benefit of this limitation is the enablement of pure instruc-
tion counting as an execution time measurement technique,
without having to make any assumptions on inputs or state of
memory. Allowing the toolchain, once clock frequencies and
deadlines have been evaluated, to detect and report potential
overruns at compile time. The unified memory structure also
eliminate the need for most data handling operations, as the
whole memory pool can be directly accessed by the execution
units, leaving the load constant as the only operation in this
class.

From a physical perspective all instructions have a very
similar structure with a 5-bit opcode followed by a series
of optional 6-bit arguments representing the addresses of
operands and destination. In particular four different struc-
tures, shown in Fig. 4, are used.
� Independent instructions: This structure is used for

a varied class of instructions mainly needed to control
the execution flow of the program. The instructions are
composed by the opcode only, with the remaining bits
zeroed.

� Load Constant: This structure, used for the load con-
stant instruction only, here the opcode is followed by a
destination address, with all other bits zeroed. The con-
stant to load needs to be placed as a complete 32-bit word
after this instruction, interleaving it with the instruction
stream.

� Unary instructions: This structure is used for instruc-
tion that act on a single operand, and is used for conver-
sion between float and integer number formats. For these
the opcode is followed by operand and result destination
addresses.

� Binary instructions: This structure is used for arith-
metic, logic and comparison instructions that act on two
operands and return a result. Here the opcode is followed
by the two operand and destination addresses.

C. TOOLCHAIN
Complementing the femtoCore processor, a software/
firmware development tool-chain, as shown in Fig. 5, has been
developed, which greatly simplifies the task of translating
the desired control techniques to executable machine code.
The first of its components is an Assembler, which can be
used to extract the most performance out of the architecture,

FIGURE 5. Structure of the femtocore tool-chain.

through hand written assembly code. Few high level features
have been implemented simplify the development, such as
named variable, to avoid having to directly allocate registers
or automatic floating point constant conversion. The second
component of the tool-chain is a higher level compiler, aimed
at a more general developer audience, that can be used with a
strict subset of the C language, supporting all possible features
given the limitations of the hardware. While a debugger is
also usually provided, with all general purpose compilers,
to allow single stepping through the code in order to verify
its behaviour, its usefulness for the application targeted by
this paper, as halting execution of a hard real-time control
system will lead to hardware faults or even damage. In its
place, an emulator developed in MATLAB is supplied instead,
that reads and executes the same machine instructions used in
the real hardware, allowing single step debugging through the
code. Last but not least HDL simulation can be used, to verify
the cycle accurate behaviour of the core when integrated in a
larger system. To aid in this process the tool-chain can directly
produce verilog memory initialization files to pre-populate the
instruction memory, avoiding the need to use a dedicated AXI
Bus Functional Model (BFM) to emulate the ARM processor
to femtocore interface

IV. COMPARATIVE ANALYSIS
The first, in Fig. 6(a), is the use of separate FPGA and pro-
cessor, on the same circuit board connected together through
the processor external bus interface. This solution is typically
the least flexible and slowest of the four, the external interface
severely limits the maximum frequency of the communica-
tion, the synchronisation of the two elements can also be
challenging when bidirectional information flow is required.
Due to these limitations, when this solution is adopted, the
programmable logic device is only used to implement the final
modulation. Consequently the control tasks are performed
completely by the processor. As such the advantages and
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FIGURE 6. Architecture considered in the comparison.

TABLE 2. Metrics Comparison Between the Solutions

disadvantages for this solution are the same as for the tradi-
tional single MCU implementation. The second solution, in
Fig. 6(c), consists of integrating the processor directly inside
the FPGA using a softcore IP, these are available both from
FPGA vendors (Xilinx Microblaze and Intel Nios II) or third
parties (ARM cortex M1 and M3). The integration of both
components on the same die allows much higher bandwidth
between the two components and makes synchronisation of
the different parts of the design much simpler, allowing some
degree of acceleration of computationally intensive tasks by
the FPGA. The third architecture, in Fig. 6(b), replaces the
softcore processor with a hard macro processor, realised in
silicon on the same die of the FPGA, and connects them with
a communication bus (typically AMBA AXI). This solution
allows the use of a much more performing processor core,
like the Cortex A9 running at several hundred megahertz on
the Zynq. This change comes however with some stark dis-
advantages. While the softcore processor can be configured
to minimize the amount of execution time jitter, by removing
caches, disabling branch prediction, where present and so on;
the hard processor system on the SoCs is optimized for raw
throughput, as opposed to latency or low jitter, forcing the
adoption of large timing margins to compensate, negatively
affecting the achievable performance. The last Architecture,
the one proposed in this paper, shown in Fig. 6(d) is closely
related to the second one, where the general purpose softcore
processor is replaced by the femtoCore processor. The main
advantage of this arrangement is easy synchronization, since
the core execution can be started with an external signal and
the run-time is constant.

In Table 2 it is shown a more detailed qualitative com-
parison of few key features and metrics between the four
solutions. The + symbol denotes a strength of the archi-
tecture, a − signifies a weakness and an = shows where
the solution is average. In the clock frequency category the
hard processor shows its definite advantage. Both softcore
and the proposed solution are average and the separate IC
topology is considered weak, as in this last architecture, the
separate components might be able separately to run at high
frequencies, however the communication bottleneck between
them limits the overall system effectiveness. As shown in the
previous section, only the proposed solution can claim a truly
deterministic execution time, for the control algorithm that
can be known in advance. In the category of programming
complexity solution, (C) is weak, as the processors found in
these type of systems are designed with compatibility with
modern operating systems in mind, making them a lot more
complex to use with respect to all other architectures that
use microcontroller architectures specifically designed to be
used in a bare metal context. The proposed solution on the
other hand can be easily developed for since, for the targeted
application, only a relatively short sequence of mathematical
operations are required, as all other I/O and timing tasks are
carried out by the custom logic outside of the core. When
looking at hardware complexity, we see solution (A) and (B)
having a clear advantage with respect to the remaining two as
solution (C) requires dealing with the data exchange between
hard core and FPGA portion, while the proposed solution
requires external logic to handle sensor sampling and data
movement.

V. CASE STUDY
A. SYSTEM DESCRIPTION
In order to validate the claims, a case study has been set up,
in order to compare the proposed architecture with a more
traditional one. The target application is a multi-phase drive,
the target motor, a permanent magnet synchronous machine,
is composed by two set of threephase winding, radially offset
by a 30◦ electrical angle. The neutral points of the two stars
can be connected together or kept separate, depending on
whether galvanic isolation or better performance under fault
are prioritised.

With regards to power electronics and control, two different
systems have been used, the first, implemented following the
proposed architecture, uses a six phase distributed design,
where single phase cells, composed of a half bridge inverter
sub-section, control each winding, with a digital communi-
cation network connecting them to the central controller, as
shown in Fig. 7. The second system used in this comparison
follows a more traditional architecture, shown in Fig. 8, where
the two three-phase sets of the machine are kept completely
separate, neutral connection included, and driven by two iden-
tical monolithic three-phase diode clamped NPC inverters.
The control system is implemented with a single Texas In-
struments (TMS320F377D) Microcontroller/DSP that takes
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FIGURE 7. Diagram of the hardware and control system configuration
used in the case study with the proposed architecture.

TABLE 3. Main System Parameters

care off everything, from the analog to digital conversion of
the sensor signals to the PWM output generation. The use
of two different power electronics platforms was necessary,
given the incompatibility of the interfaces between them and
the relative control logic boards. To make the comparison
as valid as possible, the same current control technique has
been implemented, following the exact same structure using
floating point math, on both the traditional and the proposed
architecture. From an hardware control perspective, the only
difference between the two systems is the presence of a neutral
point controller in the NPC inverter control system. The exe-
cution time used in this task was not included in the measure-
ments. All other differences, including Switching frequency,
power devices topology, etc. are inconsequential to the result
of the comparison, as a functionally equivalent portion of code
executed by the two processors (femtoCore and TI DSP), and
only a single switching cycle is considered.

The main parameters for both systems are shown in Table 3.
The overall goal of the system is to have a completely fault
tolerant actuation solution, where upon one or more phase
faults, the system can react, isolating the damaged part and
reconfigure itself, either statically or at run-time, to run as a
lower phase count system. This will allow, in mission critical
applications, to keep the potentially damaged actuator run-
ning, once appropriate de-rating factors are applied, for long
enough to reach a safe global system condition, where the
actuator can be safely excluded from operation, until serviced.

While the power electronics hardware for the two systems
is different, the exact same control strategy is used in both

FIGURE 8. Diagram of the hardware and control system configuration
used in the case study with the traditional architecture.

FIGURE 9. Pictures of the experimental setups.

cases, making the comparison of the two implementations fair.
For fault tolerance reasons it has been decided against the use
of a more traditional field oriented control, using Vector Space
Decomposition (VSD) and rotating reference techniques, due
to potential instability in the fault mode transition.

Instead, a Proportional Integral Resonant (PIR) approach is
used to directly control each phase current in a static reference
frame, where the controllers, can track sinusoidal signals,
thanks to the resonant elements, that gives the closed loop
system, potentially infinite, gain at the operating frequency.

To test the performance of the system current control, a
standard testing rig, shown in figure 9 has been used, with the
controlled motor mechanically coupled to a second machine
that is used to load the first one. During the test the load was
controlled by a commercial drive to keep a constant rotational
speed, while the test machine, generated an constant torque
opposing the rotation.

VOLUME 2, 2021 485



SAVI ET AL.: FEMTOCORE: AN APPLICATION SPECIFIC PROCESSOR FOR VERTICALLY INTEGRATED HIGH PERFORMANCE REAL-TIME CONTROLS

FIGURE 10. Experimental Current Waveforms.

An example of output current quality resulting from the
aforementioned control can be seen in figure 10. The currents,
after being sensed by six LEM LA55P-SP1 closed loop hall
effect transducers, have been simultaneously sampled by six
independent 14-bit analog to digital converters (LTC2313-14),
each one running at 240 kSps. The resulting data as cap-
tured has been saved and plotted without any further post-
processing step.

A quantitative comparison between the two solutions has
been performed in order to show the relative performance
gains attainable with the proposed architectures.

B. PROPOSED ARCHITECTURE TIMING ANALYSIS
Since the proposed architecture behaviour is fully determin-
istic, its performance can be evaluated through a cycle ac-
curate simulation of the system, including the control layer,
communications and the power cell control logic. This route
has been chosen as opposed to runtime measurement since
it can provide visibility of the whole system state without any
additional performance penalty, as opposed to the introduction
of instrumentation points for dynamic analysis. To perform
the simulation, the FPGA vendor toolchain (Xilinx in this
instance), has been used, hooking the top level module of the
design with a set of Functional models that emulate in cycle
accurate fashion the external sensing components, and run at
a clock frequency of 100 MHz.

The latency from ADC sampling to PWM modulators con-
trol register update is 5.81 µs,supporting, on suitable hard-
ware, a switching frequency of 172 kHz, of which, 710 ns
constitute the pre-calculation time, from when the sampling
command is issued to when the femtoCore starts running,
the complete execution time is 3.31 µs, 520 ns per channel.
Lastly 1.79 µs is the post execution time, that covers from the
conclusion of the execution to the update of the modulators,
whose most important factor is the communication transmis-
sion latency.

TABLE 4. Comparison of the Number of Clock Cycles Needed for the
Execution of the Current Control With the Traditional and Proposed
Architecture

C. TRADITIONAL ARCHITECTURE TIMING ANALYSIS
The evaluation of the performance of the proposed traditional
architecture, unlike the proposed one must be carried out on
hardware at runtime, as neither simulation nor instruction
counting can fully capture the complex dynamics of a modern
processor system. To capture timing information with the low-
est impact possible several runs are made each one measuring
the duration of a different portion of interest in the code. In
particular a single GPIO pin is toggled at the start of a task
and then again upon completion. An oscilloscope is used to
measure the duration of the resulting pulse.

For a core clock frequency of 200 MHz, the total end-to-end
delay in this architecture is 3.64 µs, of which 640 ns are
of pre-execution time, comprising the ADC measurement;
while the remaining portion comprises the execution of two
controllers for each three phase winding, as the third phase
reference is derived as the algebraic sum of the other two.

D. TIMING COMPARISON
For the comparison between the two architectures to be com-
pletely fair, few factors need to be accounted for, first and fore-
most is the difference in the clock frequency the two systems
are run at. In order to compensate for this, the duration of the
various phases is shown in amount of clock cycles instead of
absolute time. Also the traditional architecture controls only
two phases for each set, four in total, with the third reference
being generated as the algebraic sum of the other two in order
to obtain a balanced set, while on the proposed architecture
all six controllers are run. To compensate for this difference
the execution time is shown in number of clock cycles per
phase, as well as globally. The results of the comparison are
shown in Table 4, where it is clearly shown that the proposed
architecture is able to execute an equivalent control task in
roughly a third of the time with respect to a regular controller,
while retaining the benefits of a programmed system. When
comparing the pre-execution times, the gain of moving to
a completely custom logic solution are more limited, as its
lower bound is given by the ADC used.

VI. CONCLUSION
In this paper an implementation architecture for high per-
formance real-time control systems is proposed, constituting
an intermediate step between both full HDL and software
based implementations, retaining the determinism and execu-
tion time consistency of the first, while adopting the faster
and more accessible software development paradigm. A novel
custom designed floating point processor is proposed. The
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completely deterministic execution time, and specifically de-
signed Instruction Set Architecture allows an effortless trans-
lation of even complex algorithms with minimal loss of preci-
sion. Automatic parallelization through SIMD execution fur-
ther simplifies software development for multi-phase systems.
The proposed system has also been experimentally compared
to a traditional MCU based one, showing a much better ef-
ficiency, implementing the same control technique in just a
third of the number of cycles.

APPENDIX RESONANT CONTROLLER C CODE

const float damping = 0.005;
const float Kr = 800;
const float Ki = 0.5;
const float Kp = 0.8;
const float Ts = 1/60e3;
const float sat_max = 135.0;
const float sat_min = -135.0;

float Ki_out = 0;
float fwd_integ = 0;
float back_integ = 0;
float fwd_in = 0;

float sat(float in, float ub, float lb){
//N.B. The femtocore compiler will
//recognise this pattern and
//emit saturation instructions.
if(in > ub)
return ub;
else if (in < lb)
return lb;
else
return in;
}

float pir(float error, float omega){

/* calculate proportional action*/
float Kp_out = Kp*error;
float pir_out = Kp_out;

/* calculate integral action*/
Ki_out += Ts*Ki*error;
sat(Ki_out, sat_max, sat_min);
pir_out += Ki_out;

/* calculate resonant action */
fwd_integ += Ts*fwd_in*omega;
sat(fwd_integ, sat_max, sat_min);
back_integ += Ts*fwd_integ*omega;
sat(back_integ, sat_max, sat_min);
float s_error = (Kr*error)-fwd_integ;
fwd_in = (s_error*damping)-back_integ;
pir_out += fwd_integ;

sat(pir_out, sat_max, sat_min);

return pir_out;
}
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