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Abstract: 

Background - Exome sequencing is a promising tool for gene mapping in Mendelian disorders. 

We utilized this technique in an attempt to identify novel genes underlying monogenic 

dyslipidemias.

Methods and Results - We performed exome sequencing on 213 selected family members from 

41 kindreds with suspected Mendelian inheritance of extreme levels of low-density lipoprotein 

(LDL) cholesterol (after candidate gene sequencing excluded known genetic causes for high 

LDL cholesterol families) or high-density lipoprotein (HDL) cholesterol. We used standard 

analytic approaches to identify candidate variants and also assigned a polygenic score to each 

individual in order to account for their burden of common genetic variants known to influence 

lipid levels.  In nine families, we identified likely pathogenic variants in known lipid genes 

(ABCA1, APOB, APOE, LDLR, LIPA, and PCSK9); however, we were unable to identify 

obvious genetic etiologies in the remaining 32 families despite follow-up analyses.  We 

identified three factors that limited novel gene discovery: (1) imperfect sequencing coverage 

across the exome hid potentially causal variants; (2) large numbers of shared rare alleles within 

families obfuscated causal variant identification; and (3) individuals from 15% of families 

carried a significant burden of common lipid-related alleles, suggesting complex inheritance can 

masquerade as monogenic disease.

Conclusions - We identified the genetic basis of disease in nine of 41 families; however, none of 

these represented novel gene discoveries. Our results highlight the promise and limitations of 

exome sequencing as a discovery technique in suspected monogenic dyslipidemias. Considering 

the confounders identified may inform the design of future exome sequencing studies.  

Key words: genetics, human, DNA sequencing, exome, lipids, exome sequencing, mendelian 
genetics
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Introduction

“Exome” sequencing refers to the use of next generation sequencing (NGS) technology1 to 

sequence all protein-coding regions of the genome.  This approach has emerged as a promising 

tool for gene discovery in families with suspected monogenic disorders2 with some reports 

suggesting a success rate in excess of 50%3. Identifying the genetic basis underlying monogenic 

forms of dyslipidemia has revealed insights into human biology4 and spurred the development of 

novel therapeutics5. In an attempt to map novel dyslipidemia genes, we performed exome 

sequencing on 213 selected family members from 41 kindreds with suspected Mendelian 

inheritance of extreme levels of low-density lipoprotein cholesterol (LDL-C) or high-density 

lipoprotein cholesterol (HDL-C). To enrich for novel gene discoveries, we excluded probands 

from high LDL-C families that had mutations in genes known to cause monogenic 

hypercholesterolemia.

Methods

Subject Recruitment

Forty-one families of European ancestry with suspected Mendelian inheritance of extreme LDL-

C or HDL-C levels were recruited from eight different centers across North America and Europe. 

The pedigrees of these 41 families are shown in Supplementary Figure 1.  Families A1-A9 were 

recruited as part of the French National Research Network on Hypercholesterolemia that 

includes clinicians from 11 different cities in France.  Probands were selected if they met the 

following criteria: total and LDL-C levels above the 95th percentile when compared with a sex- 

and age-matched French population6, triglyceride level below 1.5 mmol/L, and presumed 

autosomal dominant transmission of hypercholesterolemia in the family.  Family A10 was 

recruited from the Preventive Cardiology/Lipid Clinic of the McGill University Health Centre. 
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Affected individuals had LDL-C concentration exceeding the 95th percentile for age- and 

gender-matched subjects, a plasma triglyceride concentration less than 1.0 mmol/L, and no 

known secondary causes of hypercholesterolemia. Families A11-A14 were recruited from the 

Lipid Clinic at the Academic Medical Center, University of Amsterdam, the Netherlands based 

on a clinical diagnosis of familial hypercholesterolemia in the proband. LDL-C levels exceeding 

the 95th percentile when adjusted for age and gender defined affected family members. Families 

A15-A20 were recruited from the Lipid Clinic of the University Hospital of Palermo.  The 

Simon-Broome Register criteria were used to clinically diagnose heterozygous autosomal 

dominant hypercholesterolemia after excluding secondary hypercholesterolemia.  In family A20, 

a pathogenic mutation in LDLR (c.2390-1G/A) was discovered previously but displayed 

incomplete penetrance (Supplementary Figure 1; A20, individuals shaded in black) and was not 

present in the individual with the highest level of LDL-C (the proband III:1 did not carry the 

LDLR mutation and had LDL-C = 455 mg/dL in addition to a history of myocardial infarction at 

the age of 35). Two other subjects (Supplementary Figure 1; A20, individuals shaded in blue) 

also showed high LDL-C and did not have the LDLR mutation. Based on a review of the 

pedigrees (Supplementary Figure 1) an autosomal dominant mode of inheritance was presumed 

for Families A1-A20 with the exception of A13 in which an autosomal recessive mode of 

inheritance was presumed.   

 Families B1 and B2 were recruited from the University Hospital of Palermo and Modena-

Reggio Emilia. Families B3-B12 were recruited from the Washington University Lipid Research 

Clinic.  Affected individuals in these families were identified due to an LDL-C level 

corresponding to the bottom 5th percentile when adjusted for age, ethnicity, and gender. The 

proband (subject III:A) in family B13 was referred to the MGH Lipid Metabolism Unit due to a 
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LDL-C value of 25 mg/dL.  She was noted to have 4 family members with LDL-C values less 

than 47 mg/dL. An autosomal recessive mode of inheritance was presumed for family B1 while 

an autosomal dominant mode of inheritance was presumed for B2-B13 based on the pedigrees 

(Supplementary Figure 1).   

Family C1 was recruited as part of the Genomic Resource in Arteriosclerosis and 

Metabolic Disease at the Cardiovascular Research Institute of the University of California, San 

Francisco. The clinical diagnosis of familial hypoalphalipoproteinemia was based on levels of 

HDL-C below the 5th percentile for five individuals, and below the 10th percentile for one 

individual, when adjusted for age, sex, and the known inverse relationship between TG and 

HDL-C. Family C2 was recruited from the Preventive Cardiology/Lipid Clinic of the McGill 

University Health Centre. Families C3 and C4 were recruited from the outpatient clinic for 

Vascular Medicine at the Academic Medical Center, University of Amsterdam, the Netherlands. 

Affected individuals from families C2-C4 had HDL-C concentration below the 5th percentile for 

age- and gender-matched subjects, a plasma triglyceride concentration less than 1 mmol/L, and 

no known secondary causes of hypoalphalipoproteinemia. An autosomal dominant mode of 

inheritance was presumed for families C1-C4 based on the pedigrees (Supplementary Figure 1).   

 The probands in families D1 and D2 were ascertained from a general patient population 

in the center of The Netherlands and were selected based on having HDL-C levels above the 99th

percentile after adjusting for age and gender7. Family members with HDL-C levels above the 

95th percentile for age- and gender-matched subjects were considered affected.  Families D3 and 

D4 were recruited at the Perelman School of Medicine at the University of Pennsylvania as part 

of a study enrolling individuals with HDL-C levels above the 75th percentile for age-, race-, and 

gender-matched subjects. Spouses and blood relatives of affected individuals were also recruited.  
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An autosomal dominant mode of inheritance was presumed for families D1-D4 based on the 

pedigrees (Supplementary Figure 1).   

Causal mutations in LDLR, APOB, and PCSK9 were excluded in the probands of families 

A1-A20 as previously described8, 9.  In addition, causal mutations in LDLRAP1 were excluded in 

the proband from family A13 in which an autosomal recessive mode of inheritance was 

presumed. Candidate gene sequencing was not performed in the other families. 

Replication in Japanese Families

The families shown in Supplementary Figure 6 (Families A-D) were recruited from Kanazawa 

University Hospital in Kanazawa, Japan.  The probands in Families A, C, and D were identified 

due to high LDL-C values and tendinous xanthomas.  An off-treatment LDL-C value was not 

available for the proband in Family B; her LDL-C value was normal, however she was on 

intensive lipid-lowering therapy and was noted to have tendinous xanthomas.  Affected relatives 

in Families A-D had LDL-C values exceeding 200mg/dL. An autosomal dominant mode of 

inheritance was presumed for all four families based on the pedigrees (Supplementary Figure 6).  

All individuals in Families A-D were of self-described Japanese ancestry.

Exome Sequencing

Subsets of samples from each family were selected for exome sequencing based on DNA 

availability, presence of informed consent allowing for genetic studies, and prioritization of 

phenotypic extremes.  These selected samples underwent exome sequencing at the Broad 

Institute.  The IRB at the Broad Institute and all participating sites approved the study protocols 

and all individuals who were selected for sequencing provided informed consent.  Randomly 

sheared genomic DNA was used as input for library construction and in-solution hybrid selection 

to enrich for exomic DNA as previously described10.  In all samples except seven, 33Mb of 
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genomic sequence was defined as the “exome” and targeted using the Whole Exome Agilent 1.1 

plus boosters preparation kit (Agilent Technologies, Santa Clara, CA, USA).  The remaining 

seven samples underwent hybrid selection using a prior version of the Agilent whole exome 

preparation kit that targeted 28.6 Mb of genomic sequence.  Exome-enriched DNA for each 

sample was then sequenced on an Illumina GA-II sequencer using 75-base pair paired-end reads.  

Samples were sequenced with a goal of achieving at least 20-fold coverage in at least 80% of 

were not used for the primary analysis.

 The Burroughs-Wheeler Alignment algorithm11 was used to map raw sequence reads to 

the human reference sequence (UCSC build HG19).  The Genome Analysis Toolkit (GATK 

version 2)12 and SAMtools13 were used to locally realign reads, recalibrate individual base 

qualities, and flag duplicate sequencing reads for removal.  The GATK UnifiedGenotyper (UG) 

was then used to identify single nucleotide variants and small insertions and deletions in the 

exome target definition specific for each sample along with up to 50 flanking intronic bases.  The 

UG was used in multisample mode and samples were grouped into three batches keeping related 

samples together when possible.  The GATK Variant Score Recalibration tool was used to 

update the quality score of the identified variants and SnpEff14 was used to predict the functional 

consequences of each variant.   The population allele frequency of each variant was estimated 

using the National Heart Lung and Blood Institute’s Exome Sequencing Project (ESP) Exome 

Variant Server (http://evs.gs.washington.edu/EVS).   

Analysis of Exome Sequencing Data 

To exclude genetic variation unlikely to be causal for the extreme phenotype in the affected 

individuals from the families, we employed a heuristic analytical process commonly used in the 
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analysis of exome sequencing studies15.  Starting with the total number of variants shared by 

individuals from the family, we excluded variation that did not fit the expected pattern of 

inheritance based on examining the pedigree.  Next, we excluded common genetic variation, 

extreme excess of very rare alleles in the 

human population16, the exact choice of this threshold – i.e. 1% or 0.01% – has little practical 

impact since most rare alleles within families are well below this threshold).  On the assumption 

that a specific causal variant could not be responsible for both high and low lipid levels, we 

excluded variation present in the affected individuals of the opposite extreme.  Finally, we 

excluded silent and non-genic variation as most Mendelian syndromes are caused by coding or 

splice site mutations that alter the protein sequence17.  The remaining single nucleotide variants 

and short insertions or deletions were considered candidates.  When possible, from this list of 

candidates we attempted to identify variants demonstrating co-segregation with the phenotype in 

the extended kindred.  We considered candidate mutations as causal if (1) the mutation was 

identified in prior publications as causal for the same phenotype; (2) if the mutation was novel 

but in a gene known to cause the phenotype and functionally similar to causal mutations in that 

gene (i.e. a novel nonsense mutation occurring in a gene in which other nonsense mutations have 

been shown to be causal), or (3) if the mutation was novel and occurred in a novel gene but

demonstrated co-segregation with the phenotype in the extended kindred.  The 95% confidence 

intervals (CI) surrounding the success estimates were estimated from the binomial distribution.

Polygenic score analysis 

To determine the likelihood that polygenic inheritance could explain the extreme lipid phenotype 

in some families, individuals with sufficient DNA (n=130) were genotyped on the Illumina 

HumanExome Beadchip v1.0 according to the manufacturer’s recommended protocol.  This 
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genotyping array includes the SNPs reported in the Global Lipids Genetic Consortium (GLGC) 

meta-analysis of genome-wide association studies of plasma lipid levels18.  Of the 102 SNPs 

reported in GLGC Table 1, we successfully genotyped 87 SNPs plus 4 proxies (r2 > 0.9 with the 

GLGC SNP).  Using all 91 SNPs (all SNPs were used for each lipid trait since some of the SNPs 

are associated with more than one lipid fraction), we built baseline polygenic models for the 

LDL-C and HDL-C phenotypes in 9,134 subjects not taking lipid-lowering medications from the 

Ottawa Heart Study19, PROCARDIS20 and the Malmo Diet and Cancer Study21 to obtain 

estimated regression coefficients.  Next, we used the estimated coefficients to obtain a predicted 

lipid level for each individual in our study based on these 91 SNPs.  This predicted lipid level 

was the population mean plus the sum of the individual’s observed genotypes weighted by the 

estimated coefficients. We calculated a residualized phenotype for each individual by subtracting 

the observed lipid level from the predicted lipid level based on the common SNPs.  The observed 

lipid levels were either obtained off treatment or adjusted for lipid-lowering treatment by 

dividing the observed value by 0.7.  Externally standardized residuals were created to assess the 

0.01 (a Bonferroni correction for the average number of individuals sequenced in each family) to 

define a significant residualized score. 

Results

We performed exome sequencing on 213 selected individuals from the 41 families with 

suspected monogenic inheritance of extreme lipid levels, with a median of 4 individuals selected 

per kindred. On average, the mean coverage of targeted bases for each individual was 103.  We 

identified an average of 12,544 nonsynonymous single nucleotide variants and 802 

insertion/deletions per individual.  Within each kindred, we used standard approaches to identify 

ients to obtain a pppprererered
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candidate variants15 (Supplementary Figure 2).  In five families (12%), we identified likely 

pathogenic variants (Table 1) in genes previously proven to cause monogenic dyslipidemias 

(“known lipid genes”, Supplementary Table 1).  We also identified the genetic etiology in three 

families after follow-up analysis of their candidate variants (Supplementary Figure 1, Families 

A126, A1030, and A1327) and one after considering the effect of common genetic variants 

(described below), bringing the total to nine (22%; 95% CI [9.3%,34.7%]) (see Table 1 and 

Supplementary Table 2 for details).   

 In the remaining 32 families however, the number of candidate variants ranged from 0-

287, without obvious genetic etiologies despite follow-up analyses.  We sought to understand 

potential reasons for the lack of novel gene discovery and identified three main confounders: 1) 

an inability to identify potentially causal variants due to imperfect sequencing coverage; 2) an 

inability to identify the causal variant among hundreds of shared variants within families; and 3) 

an inability to identify the effect of complex genetics using exome sequencing. 

 To successfully discover a causal variant, the variant must first be identified.  We find 

that despite high average coverage across the exome (on average 89% of targeted bases are 

covered with 

covered across all affected individuals.  Across the known lipid genes we find affected 

ds (Figure 

1a), a sequencing depth that provides 99% confidence of observing a rare allele at least twice.  

At these positions there is a chance we would fail to identify a variant in the affected individual 

with shallow sequencing coverage and these positions would then be removed from 

consideration under the assumption of complete penetrance without phenocopies.   

Family A1 (Supplementary Figure 1) illustrates this problem. In this family, affected
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individuals were identified to harbor a pathogenic APOE deletion26. Initially, the pathogenic 

deletion (p.Leu167del) was only identified in two of three affected individuals using exome 

sequencing and was thus removed from further consideration.  When orthogonal methods 

(linkage analysis and sequencing under linked peaks) identified p.Leu167del as a candidate, we 

performed Sanger sequencing to confirm the presence of the deletion in all affected individuals.  

This mutation occurs in the last exon of APOE which is difficult to capture and sequence with 

NGS31 and has the lowest coverage and highest GC content of the known lipid genes 

(Supplementary Tables 3 and 4).  The individual in Family A1 initially misclassified by NGS 

only had one sequencing read at that position of the genome.  Across the remainder of the 

e

sequencing reads (Figure 1a). This effect appears to be independent of overall sequencing depth 

(Supplemental Figure 3) suggesting it cannot be solved simply by sequencing to deeper overall 

coverage. It has been previously suggested that exome sequencing fails to identify the genetic 

basis of some strongly inherited conditions due to causal non-coding mutations32; another 

explanation could be that the causal variant is present in the coding region but hitherto 

unidentified. 

 Second, we find a confounding effect from the many rare alleles within families that also 

segregate with the phenotype by chance.  This is highlighted by examining the total number of 

candidate variants even in families harboring pathogenic variants in a known lipid gene.  In these 

families, between 2-346 additional variants remain candidates at the end of the analysis and 

would be considered potentially causal if a pathogenic variant had not been identified.  This is 

similar to the number of variants remaining in families without known genetic causes (range 0-

287; see Figure 1b), highlighting the vast amount of very rare variation “private” to families that  
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segregates with the disease phenotype merely by chance.

Third, we also find that the effect of complex genetics in families with suspected 

monogenic dyslipidemias can be substantial.  Both LDL-C and HDL-C levels are influenced by 

multiple common genetic loci18; we18 and others33 have previously demonstrated that polygenic 

inheritance may be sufficient to explain extreme lipid phenotypes.  To address this possibility in 

the families sequenced in the present study, we genotyped a set of common genetic variants 

robustly associated with lipid traits in genome-wide association studies18.  Using these common 

variants, we created a polygenic score and calculated a residualized phenotypic z-score, 

effectively assigning a level of statistical significance to each individual’s lipid level after 

correcting for that individual’s burden of common lipid-related alleles (Supplementary Figure 4).  

 As a proof-of-principle, we find highly significant scores for individuals from families 

A9 and B2, in which pathogenic PCSK9 and APOB mutations, respectively, perfectly segregate 

with disease status, indicating that common genetic factors are not sufficient to explain the 

phenotype in these families (Supplementary Table 5). In contrast, of the families without a 

readily apparent genetic answer, we find six (15% of all families) where either all affected 

individuals have non-significant scores or only one affected individual retains a significant score, 

suggesting that the burden of common alleles is sufficient to largely explain the extreme 

phenotype in these families (Supplementary Table 6 and Supplementary Figure 5). 

 We also find this approach can help refine phenotypic definitions within families.  In 

Family A7, an initial analysis using clinically-defined affection status (Figure 2a) yielded 17 

candidate variants; additional analyses were unable to identify a causal variant from this list.  

Using the polygenic score, we found individuals III-1 and III-2 had LDL-C levels that were 

largely explained by a burden of common variants whereas individuals II-3 and III-5 had highly 
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significant residualized scores (Supplementary Table 7).  An analysis using these updated 

phenotypes identified a candidate variant in LDLR (p.E228K, also known as FH Modena, 

previously shown to be pathogenic28) that was subsequently confirmed to perfectly segregate 

with extreme LDL-C levels in the extended kindred (Figure 2b).  

 We attempted to extend these findings to a non-European population and found similar 

results in families of Japanese descent with extreme LDL-C levels (Supplementary Figure 6).  In 

this analysis a pathogenic variant in LDLR was found in one family (Supplementary Table 8) 

while there was no clear molecular etiology in the remaining three, resulting in a 25% success 

rate.  We found similar levels of imperfect sequence coverage and numbers of rare variants 

segregating within the family (Supplementary Table 9) compared to the families of European 

descent.

Discussion

The present study summarizes our experience using exome sequencing to map novel genes in 

families with a suspected Mendelian dyslipdemia.  After sequencing the exome in 213 

individuals across 41 kindreds, we find this technique identifies a likely causal variant in 22% of 

cases.  Three of these families harbor causal mutations in known lipid genes that were excluded 

by candidate sequencing prior to entry into this study, reconfirming previous results that 

candidate gene sequencing can fail to identify causal mutations in candidate genes that are 

subsequently identified via NGS34.  Notably, we did not identify any novel monogenic 

dyslipidemia genes.  From the remainder of the families in our study, we identify evidence of 

polygenic inheritance in 15%.  We are, however, currently unable to define the genetic basis in 

the remaining 63% of families (Figure 3). 

 Several conclusions emerge from these results. First, from this empiric evaluation, we  
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find the yield of exome sequencing as a tool for novel gene mapping to be modest.  Multiple 

reports detailing the success of this technique have been published since 20092; however, these 

reports may be susceptible to the well-known bias to publish positive results.  Overall, we are 

unaware of reports detailing the overall success rate of exome sequencing.  Our study highlights 

the “real-world” challenges in using this technique for mapping novel genes in Mendelian 

disorders and appears to reflect the collective experience in monogenic dyslipidemias as 

evidenced by the current literature. We are unaware of a Mendelian dyslipidemia gene other than 

ANGPTL335 that has been identified using exome sequencing.  

 Second, we identified several technical issues that have not been previously highlighted 

that adversely impacted our ability to discover novel genes.  An underlying assumption when 

mapping genes with NGS is that all potentially causal variants will be identified. Our study 

reveals some of the limitations of exome sequencing which may be useful to address in future 

design of research or clinical sequencing studies.  

 Third, we find a substantial concerted effect of common lipid-related alleles that appears 

to result in extreme phenotypes in some individuals and families. A similar effect has been 

shown previously for samples drawn from the extremes of the population distribution of plasma 

lipids18 and in a significant proportion of mutation-negative probands who underwent clinical 

genetic testing for familial hypercholesterolemia33. While only approximately 10% of the total 

phenotypic variance in lipid traits is explained by the common variants genotyped in our study18,

by removing this variance we were able to create a more refined phenotype and enrich for 

genetic factors not present in the set of common variants.   We show that incorporating this 

information may inform genetic mapping as we have demonstrated above in Family A7.  

Our study has several limitations. Exome sequencing has limited reliability to identify
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large structural variants and while we did consider small insertions and deletions, this technique 

is less reliable in identifying these compared with single nucleotide substitutions.  Reliable 

incorporation of these forms of genetic variation might identify additional candidates36. We also 

did not consider genome-wide linkage data due to the small size of the pedigrees and 

incorporating such information has the potential to reduce the number of candidates37.  From a 

technical perspective, it is possible that other exome capture reagents or sequencing platforms 

(including longer reads) may result in more complete coverage.  Finally, it is important to note 

this experience may not necessarily generalize to other phenotypes.  For example, one might 

expect the yield to be higher for studying extreme syndromic phenotypes less susceptible to the 

influences of polygenic inheritance and environmental factors.  

 Addressing the three problematic areas outlined above has the potential to improve the 

success of gene mapping.  Whole genome sequencing (WGS) could be used to remove the bias 

of target definition and hybrid selection inherent in exome sequencing, although we recognize 

certain portions of the genome will remain recalcitrant to NGS technology38.  The process for 

identifying causal rare alleles within families can be improved as larger population-based 

sequencing studies are performed and as better high-throughput functional assays are developed.  

Sequencing more distantly related relatives can decrease the total number of shared alleles; 

however, investigators typically resort to exome sequencing in small pedigrees for which linkage 

analysis has been intractable. Finally, as we identify additional alleles contributing to complex 

phenotypic traits, we can use these findings to inform family-based genetic studies by both 

selecting families without significant polygenic inheritance and refining phenotypic definitions 

within families. 
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Table 1: Genetic etiologies identified from exome sequencing 

Family 
(Trait) Gene Genomic 

position*
Reference 

allele
Alternate 

allele Effect † Notes

Genetic etiology discovered during initial exome sequencing analysis

A4  
(high LDL) APOB 2:21229554 C T p.A3396T ‡

A9  
(high LDL) PCSK9 1:55509689 T A p.S127R §

B2  
(low LDL) APOB 2:21233022 T A p.K2240* ||

B13  
(low LDL) APOB 2:21229005 - G p.T3579Hfs*34 #

C1
(low HDL) ABCA1 9:107553287 T C p.N1948S **

Genetic etiology discovered from follow-up analysis  

A1  
(high LDL) APOE 19:45412048 CTC - p.L167del ††

A10  
(high LDL) APOE 19:45412048 CTC - p.L167del ††

A13  
(high LDL) LIPA 10:90982268 C T Disruption of donor 

splice site ‡‡

Genetic etiology discovered based on phenotypic refinement within the family 

A7  
(high LDL) LDLR 19:11216264 G A p.E228K §§

*Genomic position lists chromosome and position in hg19 coordinates. 
†Effect refers to the predicted protein change using proposed nomenclature22 based on the cDNA sequence with the 
ATG initiation codon numbered p.1. The following reference sequences were used: ABCA1: NM_005502.3, APOB:
NM_000384.2, APOE: NM_000041.2, LDLR: NM_000527.4, PCSK9: NM_174936.3, LIPA: NM_000235.2.
‡To our knowledge this mutation has not been previously identified as causing autosomal dominant 
hypercholesterolemia (ADH). However, this mutation occurs at a highly conserved position within the highly 
conserved LDLR-binding domain of ApoB where other missense mutations causing ADH have been identified. A 
threonine for alanine substitution at this position is computationally predicted to be damaging.
§This mutation has been previously identified as causing ADH in other families5. 
||A report detailing this mutation has been previously published23. 
#To our knowledge this mutation has not been previously identified as causing familial hypobetalipoproteinemia 
(FHBL) however this is expected type of causal mutation for FHBL, inducing a premature truncation of ApoB.
**To our knowledge this mutation has not been previously identified as causing Tangier disease. However, this 
mutation is in the second conserved nucleotide-binding domain (ATP binding cassette) within the Walker A/P-loop 
of ABCA1. It affects the amino acid residue position corresponding to the equivalent Asparagine in the 1st 
nucleotide binding domain which is known to be causal in Tangier disease24,25. The sequences are 
GHNGAGKTTTM (domain 1) and GVNGAGKSSTF (domain 2) (the mutated residue is underlined).
††A report of this mutation causing ADH has been previously published26. 
‡‡A report detailing this mutation has been previously published27. 
§§This mutation, also known as FH-Jerusalem, has been previously identified as causing familial 
hypercholesterolemia28,29. 
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Figure Legends: 

Figure 1: Selected metrics from exome sequencing analysis. (a) Percent targeted bases across 

the exome

sequencing reads (Green).  (b) Number of candidate variants after analysis for families with a 

suspected pathogenic variant in a gene known to cause monogenic dyslipidemia (orange) 

compared with families without known cause (brown).  P refers to the p-value from the 

Kolmogorov–Smirnov test in testing for differences between the distributions. 

Figure 2:  Pedigree of Family A7, demonstrating the utility of refining phenotypes based on 

burden of common alleles.  (A) Initial pedigree defining affected individuals (shaded) by LDL-C

level adjusted for age and gender. (B) Updated pedigree based on residualized phenotype score 

(see text) where individuals III-1 and III-2 are classified as unaffected. LDLR p.E228K carrier 

status is indicated with + (heterozygous) or - (wild type). The superscript (a) indicates the LDL-

C level was obtained while the individual was on lipid-lowering medication therapy.

Figure 3: Discovery rates from exome sequencing.  The distribution of final discovery status for 

the 41 families with suspected monogenic dyslipidemias that underwent exome sequencing is 

shown with approximate percentages.
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Supplementary Figure 1. Pedigrees of families with suspected monogenic 

dyslipidemias included in the study. Individuals selected for exome sequencing 

are indicated with asterisks (*). Black shading indicates clinically affected 

individuals; grey shading indicates an uncertain clinical diagnosis. 

 

A) Families with suspected monogenic inheritance of high low-density lipoprotein 

cholesterol (LDL-C) levels. LDL-C levels in mg/dL are displayed below individual 

identifiers. Individuals with LDL-C values obtained while taking lipid-lowering 

medications are noted with (a). For individuals noted with (b), total cholesterol is 

reported in mg/dL instead of LDL-C. 
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B) Families with suspected monogenic inheritance of low LDL-C levels. LDL 

levels in mg/dL are displayed below individual identifiers. LDL-C value not 

available in individual II-3 from Family B13; TC refers to Total Cholesterol. 
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C) Families with suspected monogenic inheritance of low high density lipoprotein 

cholesterol (HDL-C) levels. HDL-C levels in mg/dL are displayed below individual 

identifiers.  
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D) Pedigrees of families with suspected monogenic inheritance of high HDL-C 

levels. HDL-C levels in mg/dL are displayed below individual identifiers.  
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Supplementary Figure 2. Flowchart describing analytical process for removing 

variants unlikely to explain the phenotype within each family. 
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Supplementary Figure 3. Missing coverage in individuals across the exome as a 

function of overall sequencing depth.  
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Supplementary Figure 4. Overview of method for determining likelihood of 

polygenic inheritance of lipid levels.  
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Supplementary Figure 5. Distribution of residualized phenotypes in families after 

removing phenotypic variance due to common lipid-related alleles. In each panel, 

the median standardized residual LDL of affected individuals is plotted for each 

family having a polygenic score available in more than one individual. The black 

line is the standardized residual in the training population as described in the 

Methods. (A) Families with causal mutations discovered. (B) Families thought to 

have significant polygenic inheritance. (C) Families without causal mutations.  
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Supplementary Figure 6. Pedigrees of families of Japanese descent with 

suspected monogenic inheritance of high LDL-C levels.  LDL-C levels in mg/dL 

are displayed below individual identifiers. Individuals selected for exome 

sequencing are indicated with asterisks (*). Individuals with LDL-C values 

obtained while taking lipid-lowering medications are noted with (a) and those 

noted to have tendinous xanthomas on clinical examination are noted with (b). 
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Supplementary Table 1.  Genes previously identified to cause monogenic 

dyslipidemia 

Gene Locus Disorder and lipid phenotype 

ABCA1 9q31.1 Tangier disease: low HDL 

ABCG5 2p21 Sitosterolemia: high LDL 

ABCG8 2p21 Sitosterolemia: high LDL 

ANGPTL3 1p31 Combined familial hypolipidemia: low LDL, HDL, and 
VLDL 

APOA1 11q23-q24 ApoA-I deficiency: low HDL 

APOA5 11q23 ApoA-V deficiency: high VLDL and chylomicrons 

APOB 2p24 
Familial hypobetalipoproteinemia: low LDL 
Familial defective ApoB-100: high LDL 

APOC2 19q13 Familial ApoC-II deficiency: high chylomicrons 

APOE 19q13 Familial dysbetalipoproteinemia: high VLDL remnants 
and chylomicrons 

CETP 16q13 Cholesteryl ester transfer protein deficiency: high 
HDL 

LCAT 16q22 Lecithin-cholesterol acyltransferase deficiency (fish-
eye disease): low HDL 

LDLR 19p13 Familial hypercholesterolemia: high LDL 

LDLRAP1 1p36-p35 Autosomal recessive hypercholesterolemia: high LDL 

LIPC 15q22 Familial hepatic lipase deficiency: high VLDL 
remnants 

LPL 8p21 Lipoprotein lipase deficiency: high chylomicrons 

MTTP 4q24 Abetalipoproteinemia: low LDL 

PCSK9 1p32 
Autosomal-dominant hypercholesterolemia: high LDL 

PCSK9 deficiency: low LDL 
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Supplementary Table 2. Number of families with successful identification of 

causal mutations by trait. 

Trait Total families 
sequenced 

Families with causal 
mutations 

Low LDL 13 2 (15%) 

High LDL 20 6 (30%) 

Low HDL 4 1 (25%) 

High HDL 4 0 (0%) 

 

Supplementary Table 3. Average sequencing coverage across targeted bases in 

known lipid genes. “Percent GC content” refers to the percentage of targeted 

bases in the respective gene that are guanine or cytosine.   

Gene Average sequencing 
coverage 

Average percent targeted 
bases with ≤ 10-fold 

coverage 

Percent GC content 

ANGPTL3 130 0 36% 

APOB 99 1.8 43% 

CETP 115 0.1 43% 

APOA5 62 2.9 44% 

MTTP 100 1.1 45% 

LPL 99 1.9 49% 

ABCA1 100 1.6 50% 

ABCG5 91 9.9 52% 

LIPC 98 3.6 52% 

ABCG8 97 4.5 57% 

APOC2 110 0.01 58% 

LDLR 100 1.5 58% 

LDLRAP1 89 12.2 60% 

LCAT 88 13.2 61% 

APOA1 94 7.0 63% 

PCSK9 79 21.9 65% 

APOE 56 44.9 70% 
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Supplementary Table 4. Average sequencing coverage for targeted bases in the 

three targeted exons of APOE. The first exon of APOE encodes the 5’-

untranslated region and was not targeted by the Agilent exome capture reagent.   

“Percent GC content” refers to the percentage of targeted bases in the respective 

exon that are guanine or cytosine.   

Gene Average sequencing 
coverage 

Percent GC content 

APOE Exon 2 158 55% 

APOE Exon 3 51 65% 

APOE Exon 4 13 72% 

 

Supplementary Table 5.  Polygenic score analysis results for Families A9 and 

B2. LDL-C value refers to each individual’s baseline LDL-C value. LDL-Corr 

represents each individual’s expected LDL-C value after correcting for that 

individual’s burden of common lipid-related alleles. P-value refers to the 

statistical significance of the difference between LDL-C and LDL-Corr.  

Family  ID Mutation carrier 
status 

LDL-C LDL-Corr P-value 

A9 II-4 Heterozygous 
PCSK9 p.S127R 285 mg/dL 159 mg/dL 0.0007 

A9 IV-2 Heterozygous 
PCSK9 p.S127R 257 mg/dL 157 mg/dL 0.007 

B2 III-13 Heterozygous APOB 
p.K2240Ter  50 mg/dL 141 mg/dL 0.01 

B2 IV-5 Heterozygous APOB 
p.K2240Ter  29 mg/dL 137 mg/dL 0.003 
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Supplementary Table 6. Polygenic score analysis results for six families 

exhibiting polygenic inheritance. LDL-C value refers to each individual’s baseline 

LDL-C value. LDL-Corr represents each individual’s expected LDL-C value after 

correcting for that individual’s burden of common lipid-related alleles. P-value 

refers to the statistical significance of the difference between LDL-C and LDL-

Corr. 

Family  ID LDL-C LDL-Corr P-value 

A8 II-1 108 mg/dL (154 mg/dL 
correcting for medications) 146 mg/dL 0.82 

A8 II-2 222 mg/dL 140 mg/dL 0.03 

A8 II-4 168 mg/dL 147 mg/dL 0.57 

A8 II-5 224 mg/dL 150 mg/dL 0.04 

B4 II-1 66 mg/dL 136 mg/dL 0.06 

B4 II-2 156 mg/dL 145 mg/dL 0.76 

B4 II-5 76 mg/dL 136 mg/dL 0.11 

B4 II-8 116 mg/dL 145 mg/dL 0.41 

B4 III-1 78 mg/dL 135 mg/dL 0.12 

B4 III-2 104 mg/dL 150 mg/dL 0.21 

B4 III-4 63 mg/dL 145 mg/dL 0.03 

B4 III-5 95 mg/dL 140 mg/dL 0.22 

B4 III-8 85 mg/dL 146 mg/dL 0.10 

B5 I-1 147 mg/dL 149 mg/dL 0.95 

B5 II-2 132 mg/dL 149 mg/dL 0.64 

B5 II-3 81 mg/dL 126 mg/dL 0.23 

B5 II-4 97 mg/dL 129 mg/dL 0.38 

B5 III-1 61 mg/dL 126 mg/dL 0.08 

B5 III-3 63 mg/dL 148 mg/dL 0.02 

B5 III-4 47 mg/dL 140 mg/dL 0.01 

B6 I-2 110 mg/dL 147 mg/dL 0.32 

B6 II-1 80 mg/dL 152 mg/dL 0.05 

B6 II-2 127 mg/dL 146 mg/dL 0.61 
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Family  ID LDL-C LDL-Corr P-value 

B6 II-3 66 mg/dL 140 mg/dL 0.04 

B6 II-4 142 mg/dL 158 mg/dL 0.67 

B6 II-5 82 mg/dL 145 mg/dL 0.09 

B6 II-6 111 mg/dL 133 mg/dL 0.56 

B6 III-1 87 mg/dL 156 mg/dL 0.06 

B6 III-2 47 mg/dL 153 mg/dL 0.004 

B6 III-4 62 mg/dL 142 mg/dL 0.03 

B6 III-5 64 mg/dL 144 mg/dL 0.03 

B8 I-1 114 mg/dL 154 mg/dL 0.27 

B8 II-3 78 mg/dL 152 mg/dL 0.05 

B8 II-5 65 mg/dL 131 mg/dL 0.08 

B8 II-6 138 mg/dL 160 mg/dL 0.56 

B8 II-7 108 mg/dL 141 mg/dL 0.37 

B8 II-9 121 mg/dL 145 mg/dL 0.51 

B8 II-11 95 mg/dL 154 mg/dL 0.11 

B8 II-12 119 mg/dL 154 mg/dL 0.34 

B8 III-4 70 mg/dL 155 mg/dL 0.02 

B8 III-6 34 mg/dL 144 mg/dL 0.003 

B10 I-1 79 mg/dL 118 mg/dL 0.29 

B10 II-1 68 mg/dL 119 mg/dL 0.16 

B10 II-2 103 mg/dL 165 mg/dL 0.09 

B10 III-1 78 mg/dL 141 mg/dL 0.09 

B10 III-2 67 mg/dL 138 mg/dL 0.05 

B10 III-3 70 mg/dL 148 mg/dL 0.03 
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Supplementary Table 7. Polygenic score analysis results for Family A7. LDL-C 

value refers to each individual’s baseline LDL-C value. LDL-Corr represents each 

individual’s expected LDL-C value after correcting for that individual’s burden of 

common lipid-related alleles. P-value refers to the statistical significance of the 

difference between LDL-C and LDL-Corr. 

Family  ID Mutation carrier 
status 

LDL-C LDL-Corr P-value 

A7 II-3 Heterozygous LDLR 
p.E187K 

180 mg/dL (257 
mg/dL correcting 
for medication) 

149 mg/dL 0.004 

A7 III-1 Wild type 148 mg/dL 173 mg/dL 0.49 

A7 III-2 Wild type 167 mg/dL 164 mg/dL 0.93 

A7 III-5 Heterozygous LDLR 
p.E187K 259 mg/dL 157 mg/dL 0.006 

 

Supplementary Table 8.  Likely pathogenic variant identified from exome 

sequencing data in families of Japanese descent  

Family 
(Trait) 

Gene Genomic 
position* 

Reference 
allele 

Alternate 
allele 

Effect	
  † Notes 

Genetic etiology discovered during initial exome sequencing analysis  

2A  
(high LDL) LDLR 19:11238761 G A p.V797M ‡ 

*Genomic position lists chromosome and position in hg19 coordinates.  

†Effect refers to the predicted protein change using proposed nomenclature1 

based on the cDNA reference sequence for LDLR (NM_000527.4) with the ATG 

initiation codon numbered p.1.  

‡This mutation has been identified in multiple individuals with familial 

hypercholesterolemia2.  
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Supplementary Table 9. Selected metrics from exome sequencing analysis in 

families of Japanese descent 

Metric Average Range 

Percent targeted bases across the 
exome supported by ≤ 20 

sequencing reads 
15.9% 9.1% – 18.7% 

Percent targeted bases across the 
exome supported by ≤ 10 

sequencing reads 
7.6% 4.7% – 8.9% 

Percent targeted bases across “lipid 
genes” supported by ≤ 10 

sequencing reads 
4.2% 2.7% – 4.8% 

Number of candidate variants 
remaining after analysis in Family 2A 

discovered to have a pathogenic 
mutation in LDLR 

53 Not applicable 

Number of candidate variants 
remaining after analysis in families 
without an obvious genetic etiology 

52.6 0 – 103 
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