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Abstract
We develop a time and space-dependent predator—prey
model. The predators’ equation is a nonlocal hyper-
bolic balance law, while the diffusion of prey obeys a
parabolic equation, so that predators “hunt” for prey,
while prey diffuse. A control term allows to describe
the use of predators as parasitoids to limit the growth
of prey–parasites. The general well-posedness and sta-
bility results here obtained ensure the existence of opti-
mal pest control strategies, as discussed through some
numerical integrations. The specific example we have
in mind is that of Trichopria drosophilæ used to fight
against the spreading of Drosophila suzukii.
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1 INTRODUCTION

We consider the following mixed system on ℝ𝑛{
𝜕𝑡𝑢 + ∇⋅ (𝑢 𝑣(𝑡, 𝑤)) = 𝑓(𝑡, 𝑥, 𝑤) 𝑢 + 𝑞(𝑡, 𝑥)

𝜕𝑡𝑤 − 𝜇Δ𝑤 = 𝑔(𝑡, 𝑥, 𝑢, 𝑤)𝑤,
(1)

where 𝑢 = 𝑢(𝑡, 𝑥) and 𝑤 = 𝑤(𝑡, 𝑥) represent, respectively, the predator and the prey density at
time 𝑡 ∈ ℝ+ and position 𝑥 ∈ ℝ𝑛. We remark that in the vector field 𝑣 the dependence on the
prey density𝑤 is of a functional nature thus allowing, for instance, to describe predators that hunt
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840 COLOMBO and ROSSI

for the prey they perceive within a given distance. The parameter 𝜇, related to the prey diffusion
speed, is assumed to be strictly positive.
Once the fundamental well-posedness and stability properties for (1) are obtained, we consider

the problem to steer the solution to (1) to optimize a goal, typically represented by the minimiza-
tion of a functional defined on the solutions to (1). In the driving example we have in mind, the
term 𝑞 in (1) represents the space and time-dependent deployment of parasitoids (predators) in
the environment, aiming at limiting a given parasites (prey). In other words, (1) provides a possi-
ble structure for the search for an optimal strategy in biological pest control. Preliminary general
numerical results are provided in Ref. 1.
A specific situation that fits the present framework is the current attempt to limit the spreading

of Drosophila suzukii (a pest damaging fruits’ cultivation) by means of ad hoc deployments of
Trichopria drosophilæ (a parasitoid laying its eggs in the larvæ of theDrosophila suzukii), see Refs.
2–4. An obvious question risen by the adoption of these biological strategies is the search for the
optimal time and space choices for the release of parasitoids in the environment. The present
paper offers a framework to test and compare different strategies, see Section 3.
The range of applications of renewal equations, like the first in (1), and diffusion equations,

like the second in (1), is extremely vast, in particular in the “local” version. To recall other fields
where these equations play a role, we point to Ref. 5 as an optimal reference on renewal equa-
tions with applications to biology or also to Ref. 6, where age structured population models and
epidemiological models are considered in detail.
From the analytic point of view, besides the introduction of the control, the mixed system (1)

comprehends the one studied in Ref. 7 also by taking into account general source terms that may
depend on the unknown variables, as well as on both 𝑡 and 𝑥. Moreover, the flow 𝑢 𝑣(𝑡, 𝑤) in the
first equation in (1) accounts for the velocity chosen by predators in response to the prey density
distribution 𝑤. A key feature of the mixed system (1) is the nonlocality and nonlinearity of the
function 𝑣 with respect to the prey density. For instance, the choice

(𝑣(𝑡, 𝑤))(𝑥) = 𝜅(𝑡, 𝑥)
∇(𝑤 ∗ 𝜂)(𝑥)√

1 + ‖∇(𝑤 ∗ 𝜂)(𝑥)‖2 , (2)

means that predators are directed toward regions where the concentration of prey is greater.
Above, the positive function 𝜅 is the maximal speed of predators and may depend on time and
space. For any fixed positive smooth mollifier 𝜂, the space-convolution product (𝑤(𝑡) ∗ 𝜂)(𝑥) is
an average of the prey density at time 𝑡 around position 𝑥. The denominator in (2) acts as a smooth
normalization factor.
The next section is devoted to the well-posedness and stability of the Cauchy Problem for (1).

Then, we also deal with the optimal control of the solutions to (1) by means of the control 𝑞 and
aiming at the minimization of a given integral functional. A specific application of these theoret-
ical results is in Section 3. All analytic proofs are deferred to Section 4.

2 MAIN RESULTS

Below, we fix 𝑇 > 𝑡𝑜 ≥ 0, possibly allowing the case 𝑇 = +∞, and correspondingly we set

𝐼 = [𝑡𝑜, 𝑇] or 𝐼 = [𝑡𝑜, +∞[ and 𝐽 =
{
(𝑡1, 𝑡2) ∈ 𝐼

2 ∶𝑡1 < 𝑡2
}
. (3)
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COLOMBO and ROSSI 841

The space dimension 𝑛 is fixed throughout, as well as the parameter 𝜇 > 0. For the heat kernel,
we use the notation𝐻𝜇(𝑡, 𝑥) = (4𝜋 𝜇 𝑡)−𝑛∕2 exp(−‖𝑥‖2∕(4 𝜇 𝑡)), where 𝑡 ∈ 𝐼, 𝑥 ∈ ℝ𝑛. As it is well
known, ‖𝐻𝜇(𝑡)‖𝐋1(ℝ𝑛;ℝ) = 1.
We recall below the definition of solution to (1), slightly extending that in Ref. 7, and adapting

it to the present setting of time- and space-dependent coefficients.

Definition 1. A pair (𝑢, 𝑤) ∈ 𝐂0(𝐼; 𝐋1(ℝ𝑛;ℝ2)) is a solution to problem (1) on 𝐼 if

∙ setting 𝑎(𝑡, 𝑥) = 𝑔(𝑡, 𝑥, 𝑢(𝑡, 𝑥), 𝑤(𝑡, 𝑥)), 𝑤 is a weak solution to 𝜕𝑡𝑤 − 𝜇Δ𝑤 = 𝑎𝑤;
∙ setting 𝑏(𝑡, 𝑥) = 𝑓(𝑡, 𝑥, 𝑤(𝑡, 𝑥)) and 𝑐(𝑡, 𝑥) = (𝑣(𝑡, 𝑤(𝑡)))(𝑥), 𝑢 is a weak solution to 𝜕𝑡𝑢 +

∇⋅ (𝑢 𝑐) = 𝑏 𝑢 + 𝑞.

The extension of Definition 1 to Cauchy problems is immediate. For completeness, Definition 2
provides the definition of solution to the parabolic equation 𝜕𝑡𝑤 − 𝜇Δ𝑤 = 𝑎𝑤, while Definition 3
recalls the definition of solution to the balance law 𝜕𝑡𝑢 + ∇⋅ (𝑢 𝑐) = 𝑏 𝑢 + 𝑞.
Introduce the spaces

=(𝐋1 ∩ 𝐋∞ ∩ 𝐁𝐕)(ℝ𝑛;ℝ)  + = (𝐋1 ∩ 𝐋∞ ∩ 𝐁𝐕)(ℝ𝑛;ℝ+)= × + =  + × + (4)

and the norm

‖(𝑢, 𝑤)‖ = ‖𝑢‖𝐋1(ℝ𝑛;ℝ) + ‖𝑤‖𝐋1(ℝ𝑛;ℝ). (5)

We are now ready to state the key well-posedness and stability result of this paper.

Theorem 1. Consider problem (1) under the following assumptions:

(𝒗) 𝑣 ∶ 𝐼 × (𝐋1 ∩ 𝐋∞)(ℝ𝑛;ℝ) → (𝐂2 ∩𝐖1,∞)(ℝ𝑛;ℝ𝑛) admits two maps 𝐾𝑣 ∈ 𝐋∞𝐥𝐨𝐜(𝐼; ℝ+) and
𝐶𝑣 ∈ 𝐋

∞
𝐥𝐨𝐜
(𝐼 × ℝ+;ℝ+) weakly increasing in each argument and such that, for all 𝑡 ∈ 𝐼 and

𝑤,𝑤1, 𝑤2 ∈ (𝐋
1 ∩ 𝐋∞)(ℝ𝑛;ℝ),

‖𝑣(𝑡, 𝑤)‖𝐋∞(ℝ𝑛;ℝ𝑛) ≤ 𝐾𝑣(𝑡) ‖𝑤‖𝐋1(ℝ𝑛;ℝ),‖∇𝑣(𝑡, 𝑤)‖𝐋∞(ℝ𝑛;ℝ𝑛×𝑛) ≤ 𝐾𝑣(𝑡) ‖𝑤‖𝐋∞(ℝ𝑛;ℝ),‖𝑣(𝑡, 𝑤1) − 𝑣(𝑡, 𝑤2)‖𝐋∞(ℝ𝑛;ℝ𝑛) ≤ 𝐾𝑣(𝑡) ‖𝑤1 − 𝑤2‖𝐋1(ℝ𝑛;ℝ),‖∇(∇⋅ 𝑣(𝑡, 𝑤))‖𝐋1(ℝ𝑛;ℝ𝑛) ≤ 𝐶𝑣(𝑡, ‖𝑤‖𝐋1(ℝ𝑛;ℝ)) ‖𝑤‖𝐋1(ℝ𝑛;ℝ),‖∇⋅ (𝑣(𝑡, 𝑤1) − 𝑣(𝑡, 𝑤2))‖𝐋1(ℝ𝑛;ℝ) ≤ 𝐶𝑣(𝑡, ‖𝑤2‖𝐋∞(ℝ𝑛;ℝ)) ‖𝑤1 − 𝑤2‖𝐋1(ℝ𝑛;ℝ).
(𝒇) 𝑓 ∶ 𝐼 × ℝ𝑛 × ℝ → ℝ𝑛 admits a weakly increasing map 𝐾𝑓 ∈ 𝐋∞𝐥𝐨𝐜(𝐼; ℝ+) such that, for a.e. 𝑡 ∈

𝐼, all 𝑤1,𝑤2 ∈ ℝ+ and all 𝑤 ∈ 𝐁𝐕(ℝ𝑛;ℝ),

sup
𝑥∈ℝ𝑛
|𝑓(𝑡, 𝑥, 𝑤1) − 𝑓(𝑡, 𝑥, 𝑤2)| ≤ 𝐾𝑓(𝑡) |𝑤1 − 𝑤2| ,

sup
𝑥∈ℝ𝑛

𝑓(𝑡, 𝑥, 𝑤1) ≤ 𝐾𝑓(𝑡) (1 + 𝑤1),
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842 COLOMBO and ROSSI

TV 𝑓(𝑡, ⋅, 𝑤(⋅)) ≤ 𝐾𝑓(𝑡)(1 + ‖𝑤‖𝐋∞(ℝ𝑛;ℝ) + TV (𝑤)).
(𝒈) 𝑔 ∶ 𝐼 × ℝ𝑛 × ℝ × ℝ → ℝ admits a weakly increasing map 𝐾𝑔 ∈ 𝐋∞𝐥𝐨𝐜(𝐼; ℝ+) such that, for

a.e. 𝑡 ∈ 𝐼 and all 𝑢1, 𝑢2, 𝑤1, 𝑤2 ∈ ℝ+,

sup
𝑥∈ℝ𝑛
|𝑔(𝑡, 𝑥, 𝑢1, 𝑤1) − 𝑔(𝑡, 𝑥, 𝑢2, 𝑤2)| ≤ 𝐾𝑔(𝑡) (|𝑢1 − 𝑢2| + |𝑤1 − 𝑤2|),

sup
(𝑥,𝑢,𝑤)∈ℝ𝑛×ℝ+×ℝ+

𝑔(𝑡, 𝑥, 𝑢, 𝑤) ≤ 𝐾𝑔(𝑡).

(𝒒) 𝑞 ∈ 𝐋∞(𝐼 × ℝ𝑛;ℝ+) ∩ 𝐋
∞(𝐼; 𝐋1(ℝ𝑛;ℝ+)) and 𝑞(𝑡) ∈ 𝐁𝐕(ℝ𝑛;ℝ+), for a.e. 𝑡 ∈ 𝐼.

Then, for any initial datum (𝑢𝑜, 𝑤𝑜) ∈ +, problem (1) admits a unique solution

(𝑢, 𝑤) ∈ 𝐂0
(
𝐼, 𝐋1
(
ℝ𝑛;ℝ2+

))
in the sense of Definition 1 and, moreover,

(𝐓.𝟏) A priori estimates: for all 𝑡 ∈ 𝐼, we have

‖𝑤(𝑡)‖𝐋1(ℝ𝑛) ≤ ‖𝑤𝑜‖𝐋1(ℝ𝑛) e𝐾𝑔(𝑡) (𝑡−𝑡𝑜),
‖𝑤(𝑡)‖𝐋∞(ℝ𝑛) ≤ ‖𝑤𝑜‖𝐋∞(ℝ𝑛) e𝐾𝑔(𝑡) (𝑡−𝑡𝑜),
‖𝑢(𝑡)‖𝐋1(ℝ𝑛) ≤ (‖𝑢𝑜‖𝐋1(ℝ𝑛) + ‖𝑞‖𝐋1([𝑡𝑜,𝑡]×ℝ𝑛))

×exp
[
𝐾𝑓(𝑡) (𝑡 − 𝑡𝑜)

(
1 + ‖𝑤𝑜‖𝐋∞(ℝ𝑛)e𝐾𝑔(𝑡) (𝑡−𝑡𝑜))],

‖𝑢(𝑡)‖𝐋∞(ℝ𝑛) ≤ (‖𝑢𝑜‖𝐋∞(ℝ𝑛) + ‖𝑞‖𝐋1([𝑡𝑜,𝑡];𝐋∞(ℝ𝑛)))
×exp

[(
𝐾𝑓(𝑡) + 𝐾𝑣(𝑡)

)
(𝑡 − 𝑡𝑜)

(
1 + ‖𝑤𝑜‖𝐋∞(ℝ𝑛)e𝐾𝑔(𝑡) (𝑡−𝑡𝑜))].

(𝐓.𝟐) Lipschitz continuous dependence on the initial data: for (𝑢𝑜, 𝑤𝑜), (𝑢̃𝑜, 𝑤̃𝑜) ∈ +,

‖(𝑢(𝑡), 𝑤(𝑡)) − (𝑢̃(𝑡), 𝑤̃(𝑡))‖ ≤ 𝑜(𝑡, 𝑟) ‖(𝑢𝑜, 𝑤𝑜) − (𝑢̃𝑜, 𝑤̃𝑜)‖ , (6)

where the locally bounded function 𝑜 is defined in (61) and 𝑟 is an upper bound for the 𝐋1
norm, the 𝐋∞ norm, and the total variation of the initial data, see (43).

(𝐓.𝟑) Stability with respect to the control 𝑞, 𝑞 satisfying (𝒒), for all 𝑡 ∈ 𝐼,

‖(𝑢(𝑡), 𝑤(𝑡)) − (𝑢̃(𝑡), 𝑤̃(𝑡))‖ ≤ 𝑞(𝑡, 𝑟) ‖𝑞 − 𝑞‖𝐋1([𝑡𝑜,𝑡]×ℝ𝑛), (7)

where the locally bounded function 𝑞 is defined in (64) and 𝑟 is an upper bound for the 𝐋1
norm, the 𝐋∞ norm, and the total variation of the initial data, see (43).
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COLOMBO and ROSSI 843

ToproveTheorem 1, following the general lines of Ref. 7,we study separately, but symmetrically,
the parabolic and the hyperbolic problems that constitute (1), namely,

𝜕𝑡𝑤 − 𝜇Δ𝑤 = 𝑎(𝑡, 𝑥)𝑤 and 𝜕𝑡𝑢 + ∇⋅ (𝑐(𝑡, 𝑥) 𝑢) = 𝑏(𝑡, 𝑥) 𝑢 + 𝑞(𝑡, 𝑥),

with 𝑎, 𝑏 and 𝑐 as in Definition 1. All estimates use exclusively the 𝐋1 or 𝐋∞ norms and the total
variation in space.
The various hypotheses are rather technical and are motivated by our interest in providing

sharp well-posedness and stability estimates, rather than aiming at the widest generality. In par-
ticular, we refrain from extending to the mere 𝐁𝐕 dependence on the space variable in the speed
𝑣, as it stems from assumption (𝒗), in particular from the fourth requirement therein.
The assumptions on the reaction functions 𝑓 and 𝑔 play a key role. Essentially, they require

for both Lipschitz continuity in 𝑢 and 𝑤, sublinearity for 𝑓, and boundedness for 𝑔. The latter
condition on 𝑓 is satisfied, for instance, if 𝑓 has bounded variation in the space variable and is 𝐂1
in the latter one.

Remark 1. Note the different behaviors of 𝑓 and 𝑔 allowed by conditions (𝒇) and (𝒈), namely,
sup𝑥∈ℝ𝑛 𝑓(𝑡, 𝑥, 𝑤) ≤ 𝐾𝑓(𝑡) (1 + 𝑤) and sup(𝑥,𝑢,𝑤)∈ℝ𝑛×ℝ+×ℝ+ 𝑔(𝑡, 𝑥, 𝑢, 𝑤) ≤ 𝐾𝑔(𝑡). For instance, 𝑓
may well increase in 𝑤, while 𝑔may decrease in both 𝑢 and 𝑤. Thus, the classical Lotka–Volterra
source terms 𝑓(𝑤) = 𝛼𝑤 − 𝛽 and 𝑔(𝑢) = 𝛾 − 𝛿 𝑢 (for 𝛼, 𝛽, 𝛾, 𝛿 positive and constant) are compat-
ible with (𝒇) and (𝒈), comprising the problem studied in Ref. 7 when 𝑞 ≡ 0.
Theorem 1 allows to consider optimal control problems based on (1). To this aim, introduce a

cost functional measuring the relevance of the presence of the pest, for instance quantifying its
effect on cultivation. Inspired by Ref. [1, Section 4], we propose a cost of the general form

 = ∫
𝐼
∫
ℝ𝑛
Φ(𝑡, 𝑥, 𝑢(𝑡, 𝑥), 𝑤(𝑡, 𝑥)) 𝑑 𝑥 𝑑 𝑡. (8)

It is clear that various assumptions on the function Φ ensure that the integral on the right-hand
side of (8) is a continuous function of (𝑢, 𝑤) in  . Therefore, (T.3) in Theorem 1 ensures that  is
a continuous function of the control 𝑞 in 𝐋1.
In practice, the choice of a real strategy depends on a finite set of parameters, say 𝑝 ∈ ℝ𝑚,

defining, for instance, the (time/space) support of 𝑞, or the maximal value of 𝑞, or its (time/space)
integral. We are thus lead to minimize a composition of maps of the type

ℝ𝑚 → 𝐋∞(𝐼; 𝐋1(ℝ𝑛;ℝ)) → + → ℝ,

𝑝 → 𝑞 → (𝑢,𝑤) → 
to which, thanks to Theorem 1, Weierstraß Theorem can be applied, ensuring the existence of an
optimal strategy 𝑝∗. The actual computation of 𝑝∗ can be achieved through standard numerical
procedures dedicated to the optimization of Lipschitz continuous functions. The next section is
devoted to specific examples.
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844 COLOMBO and ROSSI

3 OPTIMIZED TIMING OF PARASITOIDS’ RELEASES

We present below a sample of the possible behaviors of solutions to (1). Further examples can be
found in Ref. 1.
Inspired by Refs. 3, 4, we address the problem of optimizing the timing and the location of

parasitoids’ (=predators’) releases in the case of a parasite (=prey)whose reproduction is seasonal
and geographically localized. To this aim, we consider the following instance of (1) in the case of
𝑛 = 2 space dimensions

⎧⎪⎨⎪⎩
𝜕𝑡𝑢 + ∇⋅ (𝑢 𝑣(𝑤)) = (𝛼 𝑤 − 𝛽)𝑢 + 𝑞(𝑡, 𝑥),

𝜕𝑡𝑤 − 𝜇Δ𝑤 =

(
𝛾 (1 − sin 𝑡) 𝜒

𝐵
(𝑥)
(
1 −

𝑤

𝐶

)
− 𝛿 𝑢

)
𝑤.

(9)

Here, as usual, 𝑡 is time and 𝑥 is the space coordinate inℝ2. Moreover, 𝛼𝑤 is the predator natality
due to predation, 𝛽 is the predators’ mortality, 𝛿 is the preymortality due to predation, and𝐶 is the
prey carrying capacity. The prey natality1𝛾 (1 − sin 𝑡) 𝜒

𝐵
(𝑥) is seasonal, that is, it is 2𝜋-periodic in

time, and localized, that is, it is supported in the ball 𝐵 centered at the origin with radius 2. The
speed 𝑣 is chosen as in (2), with 𝜅 constant. The parasitoids predate hunting for parasites in the
direction of the highest average prey density gradient within a radius 𝓁, which hence measures
the predator horizon. This parameter, determining the distance at which predators feel the prey,
thus plays a key role. We refer to Ref. 8 for a detailed study on the dependence of the solution on
this parameter in a similar framework.
We summarize here the choices of functions and parameters in (9)–(2), apart from 𝑞 to be cho-

sen below:

𝛼 =0.25 𝛽 =2.00 𝛾 = 9.00

𝛿 = 0.50 𝐶 =10.0 𝓁= 0.80

𝜅 = 2.00

𝜂(𝑥) =

⎧⎪⎨⎪⎩
4

𝜋 𝓁2

(
1 −
‖𝑥‖2
𝓁2

)3 ‖𝑥‖≤𝓁 ,
0 ‖𝑥‖>𝓁 . (10)

We now seek strategies 𝑞 = 𝑞(𝑡, 𝑥) to release parasitoids so that the parasite population is kept
small in the rectangle 𝑅 = [1, 3] × [−3, 3], which we assume is the region where the presence
of the parasites is most harmful. The regions 𝐵 and 𝑅 are chosen so that they are different but
overlapping. Thus, for simplicity, we aim at the minimization of

 = ∫
12𝜋

4𝜋
∫
𝑅

𝑤(𝑡, 𝑥) 𝑑 𝑥 𝑑 𝑡, (11)

although within the present framework (8) more complex costs can be considered. Another natu-
ral choice, for instance, might be the minimization of the pest population 𝑤 only in specific peri-
ods, for example, when fruits are ripening on the trees, as in the case of the Drosophila suzukii.
As initial datum, we choose

𝑢𝑜(𝑥) ≡ 0, 𝑤𝑜(𝑥) = 2𝜒𝐵
(𝑥). (12)

Clearly, Theorem 1 applies to (9)–(2)–(10)–(12) and the cost (11) fits into (8).

1𝜒
𝐵
is the characteristic function of the set 𝐵: 𝜒

𝐵
(𝑥) = 1 ⟺ 𝑥 ∈ 𝐵 and 𝜒

𝐵
(𝑥) = 0 ⟺ 𝑥 ∈ ℝ𝑛 ⧵ 𝐵.
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COLOMBO and ROSSI 845

F IGURE 1 Left, the initial datum (12) for 𝑤 in the 𝑥-plane and, right, the total amount of parasites
∫
[−4,4]2

𝑤(𝑡, 𝑥) 𝑑 𝑥 on the whole physical domain as a function of time

In the examples below, we use the Lax–Friedrichs scheme (Ref. [9, Section 12.5]) to inte-
grate the hyperbolic convective term and an explicit finite difference algorithm to deal with the
parabolic equation. Furthermore, we exploit dimensional splitting Ref. [9, Section 19.5] and a
further splitting to take care of the source terms (Ref. [9, Section 17.1]) which are computed
through a second-order Runge–Kutta method (corresponding to 𝛼 = 1∕2 in [Ref. 10, Section 12.5,
p. 327]). Refer to Refs. 11–13 for alternative algorithms. The numerical domain is the rectangle
[−4 − 𝓁, 4 + 𝓁] × [−4 − 𝓁, 4 + 𝓁] andwe let the parameters 𝛼, 𝛽, and 𝛾 vanish outside the physical
domain [−4, 4] × [−4, 4]. The computations belowwere obtained with a uniformmesh consisting
of 210 × 210 points.
First, as a reference case, we integrate (9)–(2)–(10)–(12) with 𝑞 ≡ 0. The results are displayed

in Figure 1. Since parasitoids are absent, parasites evolve with a logistic growth with capacity 𝐶
and a 2𝜋-periodic natality. After two periods, the total number of parasites is approximately time
periodic, with a high mean value.
We now assume that at time 4𝜋measures need to be taken to reduce the presence of parasites.

This is achieved through the release in the environment of the parasitoid 𝑢, which is described
by the function 𝑞 in (9). Different strategies correspond to different choices of 𝑞. The ones we
consider below differ both in the space and time dependence: they may take place in the ball
𝐵 where the parasites are born, or on the rectangle 𝑅 where parasites are harmful. Moreover,
they can take place uniformly in time (on 𝐼0 = [4𝜋, 12𝜋]) or in the time intervals where par-
asites are more (𝐼1 = sin

−1
([−1, −1∕

√
2]) ∩ 𝐼0), middle (𝐼2 = cos−1([−1, −1∕

√
2]) ∩ 𝐼0), or less

(𝐼3 = sin
−1
([1∕
√
2, 1]) ∩ 𝐼0) prolific (see Figure 2). These strategies correspond to the following

choices of 𝑞:

𝑞𝐵0 (𝑡) = 3.166287𝜒𝐼0(𝑡) 𝜒𝐵(𝑥) 𝑞𝑅0 (𝑡) = 3.315728𝜒𝐼0(𝑡) 𝜒𝑅(𝑥)

𝑞𝐵1 (𝑡) = 12.66515𝜒𝐼1(𝑡) 𝜒𝐵(𝑥) 𝑞𝑅1 (𝑡) = 13.26291𝜒𝐼1(𝑡) 𝜒𝑅(𝑥)

𝑞𝐵2 (𝑡) = 12.66515𝜒𝐼2(𝑡) 𝜒𝐵(𝑥) 𝑞𝑅2 (𝑡) = 13.26291𝜒𝐼2(𝑡) 𝜒𝑅(𝑥)

𝑞𝐵3 (𝑡) = 12.66515𝜒𝐼3(𝑡) 𝜒𝐵(𝑥) 𝑞𝑅3 (𝑡) = 13.26291𝜒𝐼3(𝑡) 𝜒𝑅(𝑥).

(13)
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846 COLOMBO and ROSSI

F IGURE 2 Characteristic functions of the time intervals, from left to right, 𝐼0, 𝐼1, 𝐼2, and 𝐼3 used in the
definitions of the controls (13), plotted together with the map 𝑡 → 1 − sin 𝑡 appearing in the natality of the
parasite in (9)

The above values are chosen so that the amount of parasitoids inserted in the environment is
constant, that is,

∫
12𝜋

0
∫
ℝ2
𝑞𝐴
𝑖
(𝑡, 𝑥) 𝑑 𝑥 𝑑 𝑡 = 1000 for 𝑖 = 0, 1, 2, 3 and 𝐴 = 𝐵, 𝑅.

The numerical integrations of (9)–(2)–(10)–(12) with the controls (13) yield the following values
for the cost (11):

 0 1 2 3
𝐵 1179.05 1318.74 1332.75 1232.41 when 𝑞 ≡ 0,  = 1866.98
𝑅 874.420 1068.13 1098.85 1080.19

In the different cases of the controls in (13), the instantaneous costs 𝑡 → ∫
𝑅
𝑤(𝑡, 𝑥) 𝑑 𝑥 are

displayed in Figure 3. All solutions to (9)–(2)–(10)–(12) show a somewhat periodic behavior for
𝑡 > 4𝜋.
With respect to the cost (11), where the rectangle 𝑅 obviously plays a key role, the most effec-

tive strategy consists in a constant release of parasitoids over the rectangle 𝑅, corresponding to
the control 𝑞𝑅0 in (13). This solution is somewhat periodic and displays a maximum, respectively,
a minimum, of the running cost at the time 𝑡 ≈ 33.30, respectively, 𝑡 ≈ 30.79: level plots of the
corresponding solutions computed at these times are in Figure 4.
It is evident that the convective term in the first equation in (9) allows the parasitoids to move

toward the region with the highest parasite concentration. On the other hand, the Laplace oper-
ator in the second equation makes the parasites diffuse everywhere.
We expect that a precise simulation of a real scenario requires a model more complex than (9)–

(11), aswell as the obvious tuning of the various parameters. For instance, also𝛼, 𝛽, and 𝛿 are likely
to be better substituted by “seasonal” (i.e., time periodic) functions. While such an experimental
fitting is out of the scopes of the present work, we remark that the generality of the framework
presented here, and in particular Theorem 1, allows to comprehend it.
Boundary conditions deserve a specific treatment on their own. At the modeling level, the

immigration of parasites is neglected in the present work. At the analytic level, general well-
posedness and stability results are currently apparently still missing, see Ref. 14 for recent pre-
liminary results. The numerical algorithm to deal with boundary conditions would then be nec-
essarily adapted.
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COLOMBO and ROSSI 847

F IGURE 3 Graphs of the instantaneous cost 𝑡 → ∫
𝑅
𝑤(𝑡, 𝑥) 𝑑 𝑥 corresponding to the controls (13) on the

time interval [4𝜋, 12𝜋]. Figure 3(a) corresponds to the diffusion of parasites with no control. The most effective
strategy, in the sense it minimizes (11), is in Figure 3(c)

F IGURE 4 Contour plots of the solution to (9)–(10)–(12) corresponding to the best strategy 𝑞𝑅0 in (13). Left,
at time 𝑡 = 30.79 approximately corresponding to a maximum of the running cost (11) and, right, at time 𝑡 = 33.30
approximately corresponding to a minimum

4 ANALYTIC PROOFS

The following lemmas will be of use below. The proofs, where immediate, are omitted.
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848 COLOMBO and ROSSI

Lemma 1 [15, Formula (1.8) and Remark 1.16]. Let 𝜓 ∈ (𝐋1 ∩ 𝐋∞ ∩ 𝐁𝐕)(ℝ𝑛;ℝ). Then, there exists
a sequence 𝜓ℎ ∈ 𝐂∞(ℝ𝑛;ℝ) such that for ℎ ∈ ℕ ⧵ {0}

𝜓ℎ →
ℎ→+∞

𝜓 in 𝐋1(ℝ𝑛;ℝ), ‖𝜓ℎ‖𝐋∞(ℝ𝑛) ≤ ‖𝜓‖𝐋∞(ℝ𝑛), TV (𝜓ℎ) →
ℎ→+∞

TV (𝜓). (14)

Lemma 2. Let 𝜓 ∈ (𝐋∞ ∩ 𝐁𝐕)(ℝ𝑛;ℝ). Then, there exists a sequence 𝜓ℎ ∈ 𝐂∞(ℝ𝑛;ℝ) such that for
ℎ ∈ ℕ ⧵ {0}, 𝜓ℎ → 𝜓 in 𝐋∞(ℝ𝑛;ℝ), so that also 𝜓ℎ → 𝜓 in 𝐋1

𝐥𝐨𝐜
(ℝ𝑛;ℝ), and

‖𝜓ℎ‖𝐋∞(ℝ𝑛) ≤ ‖𝜓‖𝐋∞(ℝ𝑛), TV (𝜓ℎ) ≤ TV (𝜓).
Proof. Let 𝜌 be a mollifier: 𝜌 ∈ 𝐂∞𝑐 (ℝ𝑛,ℝ), 𝜌 ≥ 0, spt 𝜌 ⊆ {𝑥 ∈ ℝ2 ∶ ‖𝑥‖ ≤ 1} and ∫

ℝ𝑛
𝜌 = 1.

Define 𝜌ℎ(𝑥) = ℎ𝑛 𝜌(ℎ 𝑥) for ℎ ∈ ℕ ⧵ {0} and set 𝜓ℎ = 𝜌ℎ ∗ 𝜓. The 𝐋1𝐥𝐨𝐜 convergence follows from‖𝜓ℎ − 𝜓‖𝐋∞(ℝ𝑛) → 0, ensured by Ref. [16, Theorem 8.14]. The 𝐋∞ estimate is a consequence of
Ref. [16, Proposition 8.7]. Finally, Ref. [16, Proposition 8.68] implies the latter bound. ■

Lemma 3. Let 𝜓 ∈ 𝐋∞(𝐼 × ℝ𝑛;ℝ) be such that for all 𝑡 ∈ 𝐼, 𝜓(𝑡) ∈ 𝐁𝐕(ℝ𝑛;ℝ). Then, there exists
a sequence 𝜓ℎ ∈ 𝐋∞(𝐼 × ℝ𝑛;ℝ) such that for all ℎ ∈ ℕ ⧵ {0} and for a.e. 𝑡 ∈ 𝐼, 𝜓ℎ(𝑡) ∈ (𝐂∞ ∩

𝐁𝐕)(ℝ𝑛;ℝ), 𝜓ℎ(𝑡) → 𝜓(𝑡) in 𝐋1
𝐥𝐨𝐜
(ℝ𝑛;ℝ) and

‖𝜓ℎ(𝑡)‖𝐋∞(ℝ𝑛) ≤ ‖𝜓(𝑡)‖𝐋∞(ℝ𝑛), TV(𝜓ℎ(𝑡)) ≤ TV(𝜓(𝑡)).

4.1 About the parabolic equation 𝝏𝒕𝒘 − 𝝁𝚫𝒘 = 𝒂(𝒕, 𝒙)𝒘

We here focus on the parabolic problem:{
𝜕𝑡𝑤 − 𝜇Δ𝑤 = 𝑎(𝑡, 𝑥)𝑤

𝑤(𝑡𝑜, 𝑥) = 𝑤𝑜(𝑥)
(𝑡, 𝑥) ∈ 𝐼 × ℝ𝑛. (15)

Similarly to Ref. 7, solutions to (15) are sought as 𝐋1 functions defined on ℝ𝑛 and all estimates
refer to the 𝐋1 or 𝐋∞ norms, see (5), which is somewhat unusual in relation to (15).

Definition 2. Let 𝑎 ∈ 𝐋∞(𝐼 × ℝ𝑛;ℝ) and𝑤𝑜 ∈ 𝐋1(ℝ𝑛;ℝ). A solution to problem (15) is a function
𝑤 ∈ 𝐂0(𝐼; 𝐋1(ℝ𝑛;ℝ)) such that

𝑤(𝑡, 𝑥) = (𝐻𝜇(𝑡) ∗ 𝑤𝑜)(𝑥) + ∫
𝑡

𝑡0

(𝐻𝜇(𝑡 − 𝜏) ∗ (𝑎(𝜏)𝑤(𝜏)))(𝑥) 𝑑 𝜏. (16)

The above definition is classical, see, for instance, Ref. [17, Section 48.3]. The results below are
instrumental in the sequel. We only quote them, providing full reference to the proofs.

Lemma 4 [7, Lemma 2.4]. Let 𝑎 ∈ 𝐋∞(𝐼 × ℝ𝑛;ℝ). Assume that 𝑤𝑜 ∈ 𝐋1(ℝ𝑛;ℝ) and 𝑤 ∈

𝐂0(𝐼; 𝐋1(ℝ𝑛;ℝ)). Then, the following statements are equivalent:

1. The function 𝑤 solves (15) in the sense of Definition 2.
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COLOMBO and ROSSI 849

2. The function 𝑤 is a weak solution to (15), that is, for all test functions 𝜑 ∈ 𝐂2𝑐(𝐼 × ℝ𝑛;ℝ)

∫
𝑇

𝑡𝑜
∫
ℝ𝑛
(𝑤 𝜕𝑡𝜑 + 𝜇𝑤Δ𝜑 + 𝑎𝑤 𝜑) 𝑑 𝑥 𝑑 𝑡 = 0 (17)

and 𝑤(𝑡𝑜, 𝑥) = 𝑤𝑜(𝑥).

Proposition 1 [7, Proposition 2.5]. Fix 𝑎 ∈ 𝐋∞(𝐼 × ℝ𝑛;ℝ). Then, (15) generates the process

 ∶ 𝐽 × 𝐋1(ℝ𝑛;ℝ) → 𝐋1(ℝ𝑛;ℝ)

(𝑡𝑜, 𝑡) , 𝑤𝑜 → 𝑤

with 𝑤 defined as in (16), with the following properties, for a suitable  ∈ 𝐋∞
𝐥𝐨𝐜
(𝐼; ℝ) that depends

only on norms of the map 𝑎 on 𝐼 × ℝ𝑛.

(𝐏𝟏)  is a Process: 𝑡,𝑡 = Id for all 𝑡 ∈ 𝐼 and 𝑡2,𝑡3◦𝑡1,𝑡2 = 𝑡1,𝑡3 for all 𝑡1, 𝑡2, 𝑡3 ∈ 𝐼, with 𝑡1 ≤
𝑡2 ≤ 𝑡3.

(𝐏𝟐) Regularity in time: For all 𝑤𝑜∈𝐋1(ℝ𝑛;ℝ), the map 𝑡→𝑡𝑜,𝑡𝑤𝑜 is in 𝐂0(𝐼; 𝐋1(ℝ𝑛;ℝ)), and,
moreover, for every 𝜗 ∈]0, 1[ and for all 𝜏, 𝑡1, 𝑡2 ∈ 𝐼, with 𝑡2 ≥ 𝑡1 ≥ 𝜏 > 0,

‖𝑡𝑜,𝑡2𝑤𝑜 − 𝑡𝑜,𝑡1𝑤𝑜‖𝐋1(ℝ𝑛) ≤ ‖𝑤𝑜‖𝐋1(ℝ𝑛) [ 𝑛

𝜏 − 𝑡𝑜
+ (𝑡2)

] |𝑡2 − 𝑡1|𝜗,
(𝐏𝟑) Regularity in space: For all 𝑡 > 𝑡𝑜, 𝑤(𝑡) ∈ 𝐂∞(ℝ𝑛;ℝ).
(𝐏𝟒) Regularity in (𝒕, 𝒙): If 𝑤𝑜 ∈ (𝐋1 ∩ 𝐂1)(ℝ𝑛;ℝ), then (𝑡, 𝑥) → (𝑡𝑜,𝑡𝑤𝑜)(𝑥) ∈ 𝐂1(𝐼 × ℝ𝑛;ℝ).
(𝐏𝟓) 𝐋1 continuous dependence on 𝒘𝒐: For all 𝑡 ∈ 𝐼, the map 𝑡𝑜,𝑡 ∶ 𝐋1(ℝ𝑛;ℝ) → 𝐋1(ℝ𝑛;ℝ) is

linear and continuous, with ‖𝑡𝑜,𝑡𝑤𝑜‖𝐋1(ℝ𝑛) ≤ (𝑡) ‖𝑤𝑜‖𝐋1(ℝ𝑛).
(𝐏𝟔) Stability with respect to 𝒂: Let 𝑎1, 𝑎2 ∈ 𝐋∞(𝐼 × ℝ𝑛;ℝ) with 𝑎1 − 𝑎2 ∈ 𝐋1(𝐼 × ℝ𝑛;ℝ) and

call1,2 the corresponding processes. Then, for all 𝑡 ∈ 𝐼 and for all𝑤𝑜 ∈ (𝐋1 ∩ 𝐋∞)(ℝ𝑛;ℝ),
‖1𝑡𝑜,𝑡𝑤𝑜 − 2𝑡𝑜,𝑡𝑤𝑜‖𝐋1(ℝ𝑛) ≤ (𝑡) ‖𝑤𝑜‖𝐋∞(ℝ𝑛) ‖𝑎1 − 𝑎2‖𝐋1([𝑡𝑜,𝑡]×ℝ𝑛).

(𝐏𝟕) 𝐋∞ estimate: For all 𝑤𝑜 ∈ (𝐋
1 ∩ 𝐋∞)(ℝ𝑛;ℝ), for all 𝑡 ∈ 𝐼, ‖𝑡𝑜,𝑡𝑤𝑜‖𝐋∞(ℝ𝑛) ≤(𝑡) ‖𝑤𝑜‖𝐋∞(ℝ𝑛).

(𝐏𝟖) 𝐖1,1 estimate: For all 𝑤𝑜 ∈ 𝐋1(ℝ𝑛;ℝ), for all 𝑡 ∈ 𝐼 with 𝑡 > 𝑡𝑜,

‖∇(𝑡𝑜,𝑡𝑤𝑜)‖𝐋1(ℝ𝑛;ℝ𝑛) ≤ 𝐽𝑛√
𝜇 (𝑡 − 𝑡𝑜)

‖𝑤𝑜‖𝐋1(ℝ𝑛)
×

(
1 + 2 (𝑡 − 𝑡𝑜) ‖𝑎‖𝐋∞([𝑡𝑜,𝑡]×ℝ𝑛)𝑒∫ 𝑡𝑡𝑜 ‖𝑎(𝜏)‖𝐋∞(ℝ𝑛)𝑑𝜏

)
,

where 𝐽𝑛 =
Γ((𝑛+1)∕2)

Γ(𝑛∕2)
and Γ is the Gamma function.
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850 COLOMBO and ROSSI

In the statement above, we used the term process to emphasize the present nonautonomous
setting:whenever𝑎 is not time-dependent, the process is indeed a semigroup. The latter estimate
in (P8) and (P3) provide a 𝐁𝐕 bound on the solution 𝑡𝑜,𝑡𝑤𝑜 for 𝑡 > 𝑡𝑜.
In the sequel, we need the following strengthened version of (P8).

Proposition 2. Let 𝑎 ∈ 𝐋∞(𝐼 × ℝ𝑛;ℝ) and assume𝑤𝑜 ∈ (𝐋1 ∩ 𝐋∞ ∩ 𝐁𝐕)(ℝ𝑛;ℝ). Call𝑤 the solu-
tion to (15). Then, for all 𝑡 ∈ 𝐼, 𝑤(𝑡) ∈ 𝐁𝐕(ℝ𝑛;ℝ) and the following estimate holds:

TV (𝑤(𝑡)) ≤ TV (𝑤𝑜) + 2 𝐽𝑛√
𝜇

(𝑡) ‖𝑎‖𝐋∞([𝑡𝑜,𝑡]×ℝ𝑛) ‖𝑤𝑜‖𝐋1(ℝ𝑛), (18)

where 𝐽𝑛 =
Γ((𝑛+1)∕2)

Γ(𝑛∕2)
and Γ is the Gamma function.

Proof. Approximate𝑤𝑜 bymeans of a sequence𝑤ℎ𝑜 as defined in Lemma 1. Define𝑤ℎ through (16)
by

𝑤ℎ(𝑡, 𝑥) =
(
𝐻𝜇(𝑡) ∗ 𝑤

ℎ
𝑜

)
(𝑥) + ∫

𝑡

𝑡0

(𝐻𝜇(𝑡 − 𝜏) ∗ (𝑎(𝜏)𝑤ℎ(𝜏)))(𝑥) 𝑑 𝜏. (19)

Let 𝑤 be defined by (16) and compute

‖𝑤ℎ(𝑡) − 𝑤(𝑡)‖𝐋1(ℝ𝑛) ≤ ‖‖‖𝑤ℎ𝑜 − 𝑤𝑜‖‖‖𝐋1(ℝ𝑛) + ∫
𝑡

𝑡𝑜

‖𝑎(𝜏)‖𝐋∞(ℝ𝑛)‖𝑤ℎ(𝜏) − 𝑤(𝜏)‖𝐋1(ℝ𝑛) 𝑑 𝜏.
An application of Gronwall Lemma (Ref. [18, Chapter I, 1.III]) yields

‖𝑤ℎ(𝑡) − 𝑤(𝑡)‖𝐋1(ℝ𝑛) ≤ ‖‖‖𝑤ℎ𝑜 − 𝑤𝑜‖‖‖𝐋1(ℝ𝑛) exp
(
∫

𝑡

𝑡𝑜

‖𝑎(𝜏)‖𝐋∞(ℝ𝑛) 𝑑 𝜏
)
.

Thus, as ℎ goes to +∞, 𝑤ℎ(𝑡) converges to 𝑤(𝑡) in 𝐋1(ℝ𝑛;ℝ) for a.e. 𝑡 ∈ 𝐼.
It follows immediately from (19) and from the regularity of the heat kernel 𝐻𝜇 that 𝑤ℎ(𝑡) ∈

𝐂∞(ℝ𝑛;ℝ) for a.e. 𝑡 ∈ 𝐼. Moreover,

∇𝑤ℎ(𝑡, 𝑥) = (𝐻𝜇(𝑡) ∗ ∇𝑤
ℎ
𝑜 )(𝑥) + ∫

𝑡

𝑡𝑜

∇𝐻𝜇(𝑡 − 𝜏) ∗ (𝑎(𝜏)𝑤ℎ(𝜏))(𝑥) 𝑑 𝜏,

so that, using the properties of the heat kernel𝐻𝜇 and (P5) in Proposition 1, we obtain

‖∇𝑤ℎ(𝑡)‖𝐋1(ℝ𝑛;ℝ𝑛) ≤ ‖‖‖∇𝑤ℎ𝑜 ‖‖‖𝐋1(ℝ𝑛;ℝ𝑛)
+∫

𝑡

𝑡𝑜

‖∇𝐻𝜇(𝑡 − 𝜏)‖𝐋1(ℝ𝑛;ℝ𝑛)‖𝑎(𝜏)‖𝐋∞(ℝ𝑛)‖𝑤ℎ(𝜏)‖𝐋1(ℝ𝑛) 𝑑 𝜏
≤ ‖‖‖∇𝑤ℎ𝑜 ‖‖‖𝐋1(ℝ𝑛;ℝ𝑛) + (𝑡) ‖𝑎‖𝐋∞([𝑡𝑜,𝑡]×ℝ𝑛) ‖𝑤𝑜‖𝐋1(ℝ𝑛) ∫ 𝑡

𝑡𝑜

𝐽𝑛√
𝜇(𝑡 − 𝜏)

𝑑 𝜏
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COLOMBO and ROSSI 851

≤ ‖‖‖∇𝑤ℎ𝑜 ‖‖‖𝐋1(ℝ𝑛;ℝ𝑛) + (𝑡) ‖𝑎‖𝐋∞([𝑡𝑜,𝑡]×ℝ𝑛) ‖𝑤𝑜‖𝐋1(ℝ𝑛) 2 𝐽𝑛√𝜇 √𝑡 − 𝑡𝑜 .
Let now ℎ → +∞: Lemma 1 and the lower semicontinuity of the total variation imply that:

TV (𝑤(𝑡)) ≤ lim
ℎ→+∞

TV (𝑤ℎ(𝑡)) = lim
ℎ→+∞

‖∇𝑤ℎ(𝑡)‖𝐋1(ℝ𝑛;ℝ𝑛)
≤ TV (𝑤𝑜) + (𝑡) ‖𝑤𝑜‖𝐋1(ℝ𝑛) ‖𝑎‖𝐋∞([𝑡𝑜,𝑡]×ℝ𝑛) 2 𝐽𝑛√𝜇 √𝑡 − 𝑡𝑜,

completing the proof. ■

In the case of positive initial data, we need the following improvements of the estimates in
Propositions 1 and 2.

Corollary 1. Let 𝑎 ∈ 𝐋∞(𝐼 × ℝ𝑛;ℝ), 𝑤𝑜 ∈ 𝐋1(ℝ𝑁;ℝ) with 𝑤𝑜 ≥ 0. Then,
(𝐏𝟗) Positivity: 𝑡𝑜,𝑡 𝑤𝑜 ≥ 0 for all 𝑡 ∈ 𝐼.
(𝐏𝟏𝟎) A priori estimates: Assume that 𝑤𝑜 ∈ (𝐋1 ∩ 𝐋∞)(ℝ𝑛;ℝ) and set, for all 𝑡 ∈ 𝐼, 𝐴(𝑡) =

ess sup𝜉∈ℝ𝑛 𝑎(𝑡, 𝜉). Then,

‖𝑡𝑜,𝑡 𝑤𝑜‖𝐋1(ℝ𝑛) ≤ ‖𝑤𝑜‖𝐋1(ℝ𝑛) exp∫ 𝑡

𝑡𝑜

𝐴(𝜏) 𝑑 𝜏 ,

‖𝑡𝑜,𝑡 𝑤𝑜‖𝐋∞(ℝ𝑛) ≤ ‖𝑤𝑜‖𝐋∞(ℝ𝑛) exp∫ 𝑡

𝑡𝑜

𝐴(𝜏) 𝑑 𝜏.

(20)

(𝐏𝟏𝟏) Stability with respect to 𝒂: Let 𝑎1, 𝑎2 ∈ 𝐋∞(𝐼 × ℝ𝑛;ℝ) with 𝑎1 − 𝑎2 ∈ 𝐋
1(𝐼 × ℝ𝑛;ℝ)

and call 1,2 the corresponding processes. Then, for all 𝑡 ∈ 𝐼 and for all 𝑤𝑜 ∈ (𝐋1 ∩
𝐋∞)(ℝ𝑛;ℝ),

‖1𝑡𝑜,𝑡𝑤𝑜 − 2𝑡𝑜,𝑡𝑤𝑜‖𝐋1(ℝ𝑛)
≤ ‖𝑤𝑜‖𝐋∞(ℝ𝑛) e∫ 𝑡𝑡𝑜 [‖𝑎1(𝜏)‖𝐋∞(ℝ𝑛)+‖𝑎2(𝜏)‖𝐋∞(ℝ𝑛)

]
𝑑𝜏 ‖𝑎1 − 𝑎2‖𝐋1([𝑡𝑜,𝑡]×ℝ𝑛). (21)

(𝐏𝟏𝟐) 𝐁𝐕 estimate: If 𝑤𝑜 ∈ (𝐋1 ∩ 𝐋∞ ∩ 𝐁𝐕)(ℝ𝑛;ℝ), define 𝐴(𝑡) = sup𝑥∈ℝ𝑛 𝑎(𝑡, 𝑥), then

TV
(𝑡𝑜,𝑡 𝑤𝑜) ≤ TV (𝑤𝑜) + 2 𝐽𝑛√

𝜇

√
𝑡 − 𝑡𝑜 ‖𝑎‖𝐋∞([𝑡𝑜,𝑡]×ℝ𝑛)‖𝑤𝑜‖𝐋1(ℝ𝑛) e∫ 𝑡𝑡𝑜 𝐴(𝜏)𝑑𝜏, (22)

where 𝐽𝑛 =
Γ((𝑛+1)∕2)

Γ(𝑛∕2)
and Γ is the Gamma function.

Above, the apparent mismatch between the ess sup in (P10) with no modulus and of the norm
in (P11) is due to the positivity of the solution, ensured by 𝑤𝑜 ≥ 0 in (P10).
Proof. The positivity (P9) follows from Ref. [7, Point 6 in Proposition 2.5] based on Ref. [19, Chap-
ter 2, Section 4, Theorem 9].
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852 COLOMBO and ROSSI

Starting now from (16), we have

𝑤(𝑡, 𝑥) = (𝐻𝜇(𝑡) ∗ 𝑤𝑜)(𝑥) + ∫
𝑡

𝑡𝑜
∫
ℝ𝑛
𝐻𝜇(𝑡 − 𝜏, 𝑥 − 𝜉) 𝑎(𝜏, 𝜉)𝑤(𝜏, 𝜉) 𝑑 𝜉 𝑑 𝜏

≤ (𝐻𝜇(𝑡) ∗ 𝑤𝑜)(𝑥) + ∫
𝑡

𝑡𝑜

𝐴(𝜏)∫
ℝ𝑛
𝐻𝜇(𝑡 − 𝜏, 𝑥 − 𝜉)𝑤(𝜏, 𝜉) 𝑑 𝜉 𝑑 𝜏.

In both cases of the 𝐋1 and 𝐋∞ estimate, an application of Gronwall Lemma Ref. [18, Chapter I,
1.III] completes the proof of (P10).
Concerning the stability with respect to 𝑎, denote 𝑤𝑖(𝑡) =  𝑖𝑡𝑜,𝑡𝑤𝑜, for 𝑖 = 1, 2 and 𝑡 ∈ 𝐼, and

using (16), compute

𝑤1(𝑡, 𝑥) − 𝑤2(𝑡, 𝑥) = ∫
𝑡

𝑡𝑜
∫
ℝ𝑛
𝐻𝜇(𝑡 − 𝜏, 𝑥 − 𝜉)(𝑎1(𝜏, 𝜉)𝑤1(𝜏, 𝜉) − 𝑎2(𝜏, 𝜉)𝑤2(𝜏, 𝜉)) 𝑑 𝜉 𝑑 𝜏

= ∫
𝑡

𝑡𝑜
∫
ℝ𝑛
𝐻𝜇(𝑡 − 𝜏, 𝑥 − 𝜉)(𝑎1(𝜏, 𝜉) − 𝑎2(𝜏, 𝜉))𝑤1(𝜏, 𝜉) 𝑑 𝜉 𝑑 𝜏

+∫
𝑡

𝑡𝑜
∫
ℝ𝑛
𝐻𝜇(𝑡 − 𝜏, 𝑥 − 𝜉) 𝑎2(𝜏, 𝜉)(𝑤1(𝜏, 𝜉) − 𝑤2(𝜏, 𝜉)) 𝑑 𝜉 𝑑 𝜏,

so that

‖𝑤1(𝑡) − 𝑤2(𝑡)‖𝐋1(ℝ𝑛) ≤ ∫
𝑡

𝑡𝑜

‖𝑎1(𝜏) − 𝑎2(𝜏)‖𝐋1(ℝ𝑛)‖𝑤1(𝜏)‖𝐋∞(ℝ𝑛) 𝑑 𝜏
+∫

𝑡

𝑡𝑜

‖𝑎2(𝜏)‖𝐋∞(ℝ𝑛) ‖𝑤1(𝜏) − 𝑤2(𝜏)‖𝐋1(ℝ𝑛) 𝑑 𝜏.
By Gronwall Lemma,

‖𝑤1(𝑡) − 𝑤2(𝑡)‖𝐋1(ℝ𝑛)
≤ ∫

𝑡

𝑡𝑜

‖𝑎1(𝜏) − 𝑎2(𝜏)‖𝐋1(ℝ𝑛)‖𝑤1(𝜏)‖𝐋∞(ℝ𝑛) 𝑑 𝜏 exp
(
∫

𝑡

𝑡𝑜

‖𝑎2(𝜏)‖𝐋∞(ℝ𝑛) 𝑑 𝜏
)

≤ ∫
𝑡

𝑡𝑜

‖𝑎1(𝜏) − 𝑎2(𝜏)‖𝐋1(ℝ𝑛)‖𝑤𝑜‖𝐋∞(ℝ𝑛) exp
(
∫

𝜏

𝑡𝑜

sup
𝜉∈ℝ𝑛

𝑎1(𝑠, 𝜉) 𝑑 𝑠

)
𝑑 𝜏

× exp

(
∫

𝑡

𝑡𝑜

‖𝑎2(𝜏)‖𝐋∞(ℝ𝑛) 𝑑 𝜏
)

≤ ‖𝑤𝑜‖𝐋∞(ℝ𝑛) exp
(
∫

𝑡

𝑡𝑜

(‖𝑎1(𝜏)‖𝐋∞(ℝ𝑛) + ‖𝑎2(𝜏)‖𝐋∞(ℝ𝑛)) 𝑑 𝜏
)‖𝑎1 − 𝑎2‖𝐋1([𝑡𝑜,𝑡]×ℝ𝑛)

completing the proof of (P11).
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COLOMBO and ROSSI 853

Finally, (P12) follows from Proposition 2, from (P9) and from the 𝐋∞ bound (20). ■

4.2 About the balance law 𝝏𝒕𝒖 + 𝛁⋅ (𝒄(𝒕, 𝒙) 𝒖) = 𝒃(𝒕, 𝒙) 𝒖 + 𝒒(𝒕, 𝒙)

We focus on the following Cauchy problem for a linear balance law{
𝜕𝑡𝑢 + ∇⋅ (𝑐(𝑡, 𝑥) 𝑢) = 𝑏(𝑡, 𝑥) 𝑢 + 𝑞(𝑡, 𝑥)

𝑢(𝑡𝑜, 𝑥) = 𝑢𝑜(𝑥).
(23)

Recall the following conditions on the functions defining problem (23):

(𝒃) 𝑏 ∈ 𝐋∞(𝐼 × ℝ𝑛;ℝ).
(𝒃+) 𝑏 ∈ 𝐋∞(𝐼 × ℝ𝑛;ℝ) and 𝑏(𝑡) ∈ 𝐁𝐕(ℝ𝑛;ℝ) for 𝑡 ∈ 𝐼.
(𝒄𝟏) The map 𝑐 satisfies 𝑐 ∈ (𝐂0 ∩ 𝐋∞)(𝐼 × ℝ𝑛;ℝ𝑛), 𝑐(𝑡) ∈ 𝐂1(ℝ𝑛;ℝ𝑛) for all 𝑡 ∈ 𝐼 and ∇𝑐 ∈

𝐋∞(𝐼 × ℝ𝑛;ℝ𝑛×𝑛).
(𝒄𝟐) Themap 𝑐 satisfies 𝑐 ∈ (𝐂0 ∩ 𝐋∞)(𝐼 × ℝ𝑛;ℝ𝑛); 𝑐(𝑡) ∈ 𝐂2(ℝ𝑛;ℝ𝑛) for all 𝑡 ∈ 𝐼,∇𝑐 ∈ 𝐋∞(𝐼 ×

ℝ𝑛;ℝ𝑛×𝑛) and ∇∇⋅ 𝑐 ∈ 𝐋1(𝐼 × ℝ𝑛;ℝ𝑛).
(𝒒−) 𝑞 ∈ 𝐋∞(𝐼 × ℝ𝑛;ℝ) ∩ 𝐋∞(𝐼; 𝐋1(ℝ𝑛;ℝ)).

The definition below is classical, see, for instance, Ref. [20, Chap. 3].

Definition 3. Let (𝒃), (𝒄𝟏), and (𝒒−) hold and choose 𝑢𝑜 ∈ (𝐋1 ∩ 𝐋∞)(ℝ𝑛;ℝ). A solution to (23)
is a function 𝑢 ∈ 𝐂0(𝐼; 𝐋1(ℝ𝑛;ℝ)) such that

𝑢(𝑡, 𝑥) = 𝑢𝑜(𝑋(𝑡𝑜; 𝑡, 𝑥)) exp

(
∫

𝑡

𝑡𝑜

(𝑏(𝜏, 𝑋(𝜏; 𝑡, 𝑥)) − ∇⋅ 𝑐(𝜏, 𝑋(𝜏; 𝑡, 𝑥))) 𝑑 𝜏

)
(24)

+∫
𝑡

𝑡𝑜

𝑞(𝑠, 𝑋(𝑠; 𝑡, 𝑥)) exp

(
∫

𝑡

𝑠

(𝑏(𝜏, 𝑋(𝜏; 𝑡, 𝑥)) − ∇⋅ 𝑐(𝜏, 𝑋(𝜏; 𝑡, 𝑥))) 𝑑 𝜏

)
𝑑 𝑠,

where

𝑡 ↦ 𝑋(𝑡; 𝑡𝑜, 𝑥𝑜) solves the Cauchy Problem
{
𝑋̇ = 𝑐(𝑡, 𝑋)

𝑋(𝑡𝑜) = 𝑥𝑜.
(25)

The next lemma clarifies the relations among different definitions of solutions.

Lemma 5 [7, Lemma 2.7] and [21, Lemma 5.1]. Let (𝒃), (𝒄𝟏), (𝒒−) hold, Fix 𝑢𝑜 ∈ (𝐋1 ∩ 𝐋∞)(ℝ𝑛;ℝ)
and 𝑢 ∈ 𝐂0(𝐼; 𝐋1(ℝ𝑛;ℝ)). Then, the following three statements are equivalent:

1. 𝑢 is a Kružkov solution to (23), that is, 𝑢(𝑡𝑜) = 𝑢𝑜 and for all 𝑘 ∈ ℝ and 𝜑 ∈ 𝐂1𝑐(𝐼̊ × ℝ𝑛;ℝ+),

∫
𝐼
∫
ℝ𝑛
[(𝑢 − 𝑘)(𝜕𝑡𝜑 + 𝑐 ⋅ ∇𝜑) + (𝑏 𝑢 + 𝑞 − 𝑘 ∇⋅ 𝑐) 𝜑] sgn(𝑢 − 𝑘) 𝑑 𝑥 𝑑 𝑡 ≥ 0. (26)

 14679590, 2021, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12402 by U
niversity M

odena, W
iley O

nline L
ibrary on [17/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



854 COLOMBO and ROSSI

2. 𝑢 is a weak solution to (23), that is, 𝑢(𝑡𝑜) = 𝑢𝑜 and for all 𝜑 ∈ 𝐂1𝑐(𝐼̊ × ℝ𝑛;ℝ),

∫
𝐼
∫
ℝ𝑛
(𝑢 𝜕𝑡𝜑 + 𝑢 𝑐 ⋅ ∇𝜑 + (𝑏 𝑢 + 𝑞)𝜑) 𝑑 𝑥 𝑑 𝑡 = 0 . (27)

3. 𝑢 solves (23) in the sense of Definition 3.

The proof amounts to mix the techniques used in Ref. [7, Lemma 2.7] and Ref. [21, Lemma 5.1].
We recall a different approach to the study of linear balance laws of type (23), which is adopted

in [22, Lemma 3.4]. That lemma guarantees the existence of a weak solution, in the sense of (27) in
Lemma 5, and provides an explicit formula for the solution in terms of characteristics, correspond-
ing exactly to (24). The regularity requirements in Ref. [22], on the functions defining problem (23)
are the following: for 𝑇 ∈ ℝ, 𝑇 > 0,

𝑢𝑜 ∈ 𝐋1(ℝ𝑛;ℝ), 𝑏 ∈ 𝐋1((0, 𝑇); 𝐋∞(ℝ𝑛;ℝ)), 𝑞 ∈ 𝐋1((0, 𝑇); 𝐋1(ℝ𝑛;ℝ)),

and 𝑐 ∈ 𝐂0((0, 𝑇); 𝐂1(ℝ𝑛;ℝ𝑛)) is globally Lipschitz continuous in space. Notice that, for 𝑇 ∈
ℝ, 𝑇 > 0, our assumptions (𝒃), (𝒄𝟏), and (𝒒−) are stronger than those required in Ref. [22,
Lemma 3.4], allowing to apply that result in the present setting.
The next proposition is not only an extension of [7, Proposition 2.8] to the present setting, but

it also improves it sharply. However, various similar statements are found in the literature: in
the case 𝑞 = 0, for instance, for the existence part refer to the results in Ref. [23], Other sources,
detailed in the proof below, are Refs. 14, 21, 22.

Proposition 3. Under the assumptions (𝒃), (𝒄𝟏), and (𝒒−), the Cauchy Problem (23) generates the
map

 ∶ 𝐽 ×  →  ,

(𝑡𝑜, 𝑡) , 𝑢𝑜 → 𝑢,

where 𝑢 is defined by (24), with the following properties:

(𝐇𝟏)  is a process:𝑡,𝑡 = Id for all 𝑡 ∈ 𝐼 and𝑡2,𝑡3◦𝑡1,𝑡2 = 𝑡1,𝑡3 for all 𝑡1, 𝑡2, 𝑡3 ∈ 𝐼, with 𝑡1 ≤
𝑡2 ≤ 𝑡3.

(𝐇𝟐) Positivity: If 𝑞 ≥ 0 and 𝑢𝑜 ∈  +, then𝑡𝑜,𝑡 𝑢𝑜 ∈  + for all 𝑡 ∈ 𝐼.
(𝐇𝟑) 𝐋1 continuous dependence on 𝒖𝒐: For all 𝑡 ∈ 𝐼, the map𝑡𝑜,𝑡 ∶  →  is linear, continu-

ous and

‖𝑡𝑜,𝑡𝑢𝑜‖𝐋1(ℝ𝑛) ≤ (‖𝑢𝑜‖𝐋1(ℝ𝑛) + ‖𝑞‖𝐋1([𝑡𝑜,𝑡]×ℝ𝑛)) exp∫ 𝑡

𝑡𝑜

‖𝑏(𝜏)‖𝐋∞(ℝ𝑛) 𝑑 𝜏 .
Moreover, if 𝑢𝑜 ≥ 0 and 𝑞 ≥ 0, then

‖𝑡𝑜,𝑡𝑢𝑜‖𝐋1(ℝ𝑛) ≤ (‖𝑢𝑜‖𝐋1(ℝ𝑛) + ‖𝑞‖𝐋1([𝑡𝑜,𝑡]×ℝ𝑛)) exp∫ 𝑡

𝑡𝑜

(
sup
𝑥∈ℝ𝑛

𝑏(𝜏, 𝑥)

)
𝑑 𝜏 .
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COLOMBO and ROSSI 855

(𝐇𝟒) 𝐋∞ estimate: For all 𝑢𝑜 ∈  , for all 𝑡 ∈ 𝐼,

‖𝑡𝑜,𝑡𝑢𝑜‖𝐋∞(ℝ𝑛) ≤ (‖𝑢𝑜‖𝐋∞(ℝ𝑛) + ‖𝑞‖𝐋1([𝑡𝑜,𝑡];𝐋∞(ℝ𝑛)))
×exp∫

𝑡

𝑡𝑜

(‖𝑏(𝜏)‖𝐋∞(ℝ𝑛) + ‖∇⋅ 𝑐(𝜏)‖𝐋∞(ℝ𝑛)) 𝑑 𝜏.
Moreover, if 𝑢𝑜 ≥ 0 and 𝑞 ≥ 0, then

‖𝑡𝑜,𝑡𝑢𝑜‖𝐋∞(ℝ𝑛) ≤ (‖𝑢𝑜‖𝐋∞(ℝ𝑛) + ‖𝑞‖𝐋1([𝑡𝑜,𝑡];𝐋∞(ℝ𝑛)))
×exp∫

𝑡

𝑡𝑜

((
sup
𝑥∈ℝ𝑛

𝑏(𝜏, 𝑥)

)
+ ‖∇⋅ 𝑐(𝜏)‖𝐋∞(ℝ𝑛)) 𝑑 𝜏.

(𝐇𝟓) Stability with respect to 𝒃, 𝒄, 𝒒: If 𝑏, 𝑏̃ satisfy (𝒃+) with 𝑏 − 𝑏̃ ∈ 𝐋1(𝐼 × ℝ𝑛;ℝ); 𝑐, 𝑐 sat-
isfy (𝒄𝟐) with ∇⋅ (𝑐 − 𝑐) ∈ 𝐋1(𝐼 × ℝ𝑛;ℝ), and 𝑞, 𝑞 satisfy (𝒒). Call , ̃ the corresponding
processes. Then, for all 𝑡 ∈ 𝐼 and for all 𝑢𝑜 ∈  ,

‖𝑡𝑜,𝑡𝑢𝑜 − ̃𝑡𝑜,𝑡𝑢𝑜‖𝐋1(ℝ𝑛)
≤ 1(𝑡) ‖𝑐 − 𝑐‖𝐋1([𝑡𝑜,𝑡];𝐋∞(ℝ𝑛;ℝ𝑛))

[‖𝑢𝑜‖𝐋∞(ℝ𝑛) + TV (𝑢𝑜)
+∫

𝑡

𝑡𝑜

(
max
{‖𝑞(𝜏)‖𝐋∞(ℝ𝑛), ‖𝑞(𝜏)‖𝐋∞(ℝ𝑛)} +max {TV (𝑞(𝜏)), TV (𝑞(𝜏))}) 𝑑 𝜏

]
+2(𝑡) ‖𝑞 − 𝑞‖𝐋1([𝑡𝑜,𝑡]×ℝ𝑛)
+2(𝑡)

(‖𝑢𝑜‖𝐋∞(ℝ𝑛) + ∫
𝑡

𝑡𝑜

max
{‖𝑞(𝜏)‖𝐋∞(ℝ𝑛), ‖𝑞(𝜏)‖𝐋∞(ℝ𝑛)} 𝑑 𝜏

)

×
(‖𝑏 − 𝑏̃‖𝐋1([𝑡𝑜,𝑡]×ℝ𝑛) + ‖∇⋅ (𝑐 − 𝑐)‖𝐋1([𝑡𝑜,𝑡]×ℝ𝑛)),

where

1(𝑡) = exp∫
𝑡

𝑡𝑜

max
{‖𝑏(𝜏)‖𝐋∞(ℝ𝑛), ‖𝑏̃(𝜏)‖𝐋∞(ℝ𝑛)}𝑑 𝜏

× exp∫
𝑡

𝑡𝑜

max
{‖∇𝑐(𝜏)‖𝐋∞(ℝ𝑛;ℝ𝑛×𝑛), ‖∇𝑐(𝜏)‖𝐋∞(ℝ𝑛;ℝ𝑛×𝑛)}𝑑 𝜏

×

[
1 + ∫

𝑡

𝑡𝑜

max

{
TV (𝑏(𝑠)) + ‖∇∇⋅ 𝑐(𝑠)‖𝐋1(ℝ𝑛;ℝ𝑛),
TV
(
𝑏̃(𝑠)
)
+ ‖∇∇⋅ 𝑐(𝑠)‖𝐋1(ℝ𝑛;ℝ𝑛)

}
𝑑 𝑠

]
,

2(𝑡) = exp∫
𝑡

𝑡𝑜

max
{‖𝑏(𝜏)‖𝐋∞(ℝ𝑛), ‖𝑏̃(𝜏)‖𝐋∞(ℝ𝑛)}𝑑 𝜏.
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856 COLOMBO and ROSSI

(𝐇𝟔) Total variation bound: Let (𝒃+), (𝒄𝟐), and (𝒒) hold. If 𝑢𝑜 ∈  , then, for all 𝑡 ∈ 𝐼,

TV (𝑡𝑜,𝑡𝑢𝑜) ≤ (𝑡)
(‖𝑢𝑜‖𝐋∞(ℝ𝑛) + TV (𝑢𝑜) + ∫

𝑡

𝑡𝑜

(‖𝑞(𝜏)‖𝐋∞(ℝ𝑛) + TV (𝑞(𝜏))) 𝑑 𝜏
)
,

where

(𝑡) = exp

(
∫

𝑡

𝑡𝑜

(‖𝑏(𝜏)‖𝐋∞(ℝ𝑛) + ‖∇𝑐(𝜏)‖𝐋∞(ℝ𝑛;ℝ𝑛×𝑛))𝑑 𝜏
)

×

(
1 + ∫

𝑡

𝑡𝑜

(
TV (𝑏(𝜏)) + ‖∇∇⋅ 𝑐(𝜏)‖𝐋1(ℝ𝑛;ℝ𝑛)) 𝑑 𝜏

)
.

(𝐇𝟕) Regularity in time: Let (𝒃+), (𝒄𝟐), and (𝒒) hold. For all 𝑢𝑜 ∈  , the map 𝑡 → 𝑡𝑜,𝑡𝑢𝑜 is in
𝐂0,1(𝐼; 𝐋1(ℝ𝑛;ℝ)), moreover for all 𝑡1, 𝑡2 ∈ 𝐼, with (𝑡) as above,
‖𝑡𝑜,𝑡2𝑢𝑜 −𝑡𝑜,𝑡1𝑢𝑜‖𝐋1(ℝ𝑛) ≤ (max{𝑡1, 𝑡2})

(‖𝑢𝑜‖𝐋∞(ℝ𝑛) + TV (𝑢𝑜)
+∫

max{𝑡1,𝑡2}

𝑡𝑜

(‖𝑞(𝜏)‖𝐋∞(ℝ𝑛) + TV (𝑞(𝜏))) 𝑑 𝜏
)|𝑡2 − 𝑡1|.

(𝐇𝟖) Finite propagation speed: If, for all 𝑡 ∈ 𝐼, the map 𝑥 → 𝑞(𝑡, 𝑥) is compactly supported and
𝑢𝑜 ∈  has compact support, then, for 𝑡 ∈ 𝐼 also, spt𝑡𝑜,𝑡𝑢𝑜 is compact.

Proof. Statement (H1) directly follows from Definition 3, Lemma 5, and Ref. [22, Lemma 3.4]
thanks to (𝒃), (𝒄𝟏), and (𝒒−). Using (24), points (H2), (H4), and (H8) are ensured.
To get the 𝐋1 bound (H3), exploit the change of variable 𝑦 = 𝑋(𝑠; 𝑡, 𝑥), see also Ref. [21, Sec-

tion 5.1]. Denoting the Jacobian of this change of variable by 𝐽(𝑡, 𝑦) = det(∇𝑥𝑋(𝑡; 𝑠, 𝑦)), 𝐽 solves

𝑑 𝐽(𝑡, 𝑦)

𝑑 𝑡
= ∇⋅ 𝑐(𝑡, 𝑋(𝑡; 𝑠, 𝑦)) 𝐽(𝑡, 𝑦) with 𝐽(𝑠, 𝑦) = 1.

Thus, 𝐽(𝑡, 𝑦) = exp(∫ 𝑡
𝑠
∇⋅ 𝑐(𝜏, 𝑋(𝜏; 𝑠, 𝑦)) 𝑑 𝜏), so that 𝐽(𝑡, 𝑦) > 0 for 𝑡 ∈ 𝐼 and (H3) follows.

To prove the remaining points, we exploit the techniques used in the proof of Ref. [14, lem-
mas 4.4 and 4.6] for an initial boundary value problem for a conservation law, thus without source
term. To this aim, we approximate 𝑏, respectively, 𝑞, by a sequence 𝑏ℎ, respectively, 𝑞ℎ, as in
Lemma 3. Regularize also the initial datum 𝑢𝑜 and call 𝑢ℎ𝑜 ∈ 𝐂∞(ℝ𝑛;ℝ) the sequence defined
by Lemma 1. Using (24), define the corresponding sequence 𝑢ℎ of solutions to{

𝜕𝑡𝑢ℎ + ∇⋅ (𝑐(𝑡, 𝑥) 𝑢ℎ) = 𝑏ℎ(𝑡, 𝑥) 𝑢ℎ + 𝑞ℎ(𝑡, 𝑥)

𝑢ℎ(𝑡𝑜, 𝑥) = 𝑢
ℎ
𝑜 (𝑥) ,

so that

𝑢ℎ(𝑡, 𝑥) = 𝑢ℎ𝑜 (𝑋(𝑡𝑜; 𝑡, 𝑥)) exp

(
∫

𝑡

𝑡𝑜

(𝑏ℎ(𝜏, 𝑋(𝜏; 𝑡, 𝑥)) − ∇⋅ 𝑐(𝜏, 𝑋(𝜏; 𝑡, 𝑥))) 𝑑 𝜏

)
(28)
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COLOMBO and ROSSI 857

+∫
𝑡

𝑡𝑜

𝑞ℎ(𝑠, 𝑋(𝑠; 𝑡, 𝑥)) exp

(
∫

𝑡

𝑠

(𝑏ℎ(𝜏, 𝑋(𝜏; 𝑡, 𝑥)) − ∇⋅ 𝑐(𝜏, 𝑋(𝜏; 𝑡, 𝑥))) 𝑑 𝜏

)
𝑑 𝑠,

where 𝑋 is defined in (25). Observe that for a.e. 𝑡 ∈ 𝐼, the map 𝑥 → 𝑢ℎ(𝑡, 𝑥) is of class 𝐂1, due to
Lemma 3, applied to both 𝑏 and 𝑞, and to (𝒄𝟐).
Pass now to (H6). Differentiate the solution to (25) with respect to the initial point, that is, for

𝜏 ∈ [𝑡𝑜, 𝑡],

∇𝑥𝑋(𝜏; 𝑡, 𝑥) = Id + ∫
𝜏

𝑡

∇𝑥𝑐(𝑠, 𝑋(𝑠; 𝑡, 𝑥))∇𝑥𝑋(𝑠; 𝑡, 𝑥) 𝑑 𝑠,

‖∇𝑥𝑋(𝜏; 𝑡, 𝑥)‖ ≤ 1 + ∫
𝑡

𝜏

‖∇𝑥𝑐(𝑠, 𝑋(𝑠; 𝑡, 𝑥))‖ ‖∇𝑥𝑋(𝑠; 𝑡, 𝑥)‖𝑑 𝑠,
so that, by Gronwall Lemma,

‖∇𝑥𝑋(𝜏; 𝑡, 𝑥)‖ ≤ exp(∫ 𝑡

𝜏

‖∇𝑥𝑐(𝑠)‖𝐋∞(ℝ𝑛;ℝ𝑛×𝑛)
)
𝑑 𝑠. (29)

By (28) and the properties of 𝑢ℎ𝑜 , the gradient ∇𝑢ℎ(𝑡) is well defined and continuous:

∇𝑢ℎ(𝑡, 𝑥) = exp

(
∫

𝑡

𝑡𝑜

(𝑏ℎ − ∇⋅ 𝑐)(𝜏, 𝑋(𝜏; 𝑡, 𝑥)) 𝑑 𝜏

)(
∇𝑢ℎ𝑜 (𝑋(𝑡𝑜; 𝑡, 𝑥))∇𝑥𝑋(𝑡𝑜; 𝑡, 𝑥)

+𝑢ℎ𝑜 (𝑋(𝑡𝑜; 𝑡, 𝑥))∫
𝑡

𝑡𝑜

∇(𝑏ℎ − ∇⋅ 𝑐)(𝜏, 𝑋(𝜏; 𝑡, 𝑥))∇𝑥𝑋(𝜏; 𝑡, 𝑥) 𝑑 𝜏

)

+∫
𝑡

𝑡𝑜

exp

(
∫

𝑡

𝑠

(𝑏ℎ − ∇⋅ 𝑐)(𝜏, 𝑋(𝜏; 𝑡, 𝑥)) 𝑑 𝜏

)(
∇𝑞ℎ(𝑠, 𝑋(𝑠; 𝑡, 𝑥))∇𝑥𝑋(𝑠; 𝑡, 𝑥)

+𝑞ℎ(𝑠, 𝑋(𝑠; 𝑡, 𝑥))∫
𝑡

𝑠

∇(𝑏ℎ − ∇⋅ 𝑐)(𝜏, 𝑋(𝜏; 𝑡, 𝑥))∇𝑥𝑋(𝜏; 𝑡, 𝑥) 𝑑 𝜏

)
𝑑 𝑠.

Therefore, for every 𝑡 ∈ 𝐼, we use the change of variable described at the beginning of the proof
together with (29) to get

‖∇𝑢ℎ(𝑡)‖𝐋1(ℝ𝑛;ℝ𝑛)
≤ exp

(
∫

𝑡

𝑡𝑜

‖𝑏ℎ(𝜏)‖𝐋∞(ℝ𝑛) 𝑑 𝜏
)
exp

(
∫

𝑡

𝑡𝑜

‖∇𝑐(𝜏)‖𝐋∞(ℝ𝑛;ℝ𝑛×𝑛) 𝑑 𝜏
)

×

[‖∇𝑢ℎ𝑜‖𝐋1(ℝ𝑛) + ∫
𝑡

𝑡𝑜

‖∇𝑞ℎ(𝜏)‖𝐋1(ℝ𝑛;ℝ𝑛) 𝑑 𝜏 (30)
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+

(‖𝑢ℎ𝑜‖𝐋∞(ℝ𝑛) + ∫
𝑡

𝑡𝑜

‖𝑞ℎ(𝜏)‖𝐋∞(ℝ𝑛) 𝑑 𝜏
)
∫

𝑡

𝑡𝑜

‖∇(𝑏ℎ − ∇⋅ 𝑐)(𝜏)‖𝐋1(ℝ𝑛;ℝ𝑛) 𝑑 𝜏
]
.

Let 𝑢 be defined as in (24): Lemmas 3 and 1 imply that 𝑢ℎ → 𝑢 in 𝐋1(ℝ𝑛;ℝ). By the lower
semicontinuity of the total variation, by (30) and (14), for 𝑡 ∈ 𝐼 we obtain

TV (𝑢(𝑡)) ≤ lim
ℎ
TV (𝑢ℎ(𝑡)) = lim

ℎ
‖∇𝑢ℎ(𝑡)‖𝐋1(ℝ𝑛;ℝ𝑛) (31)

≤ exp

(
∫

𝑡

𝑡𝑜

(‖𝑏(𝜏)‖𝐋∞(ℝ𝑛) + ‖∇𝑐(𝜏)‖𝐋∞(ℝ𝑛;ℝ𝑛×𝑛))𝑑 𝜏
)[

TV (𝑢𝑜) + ∫
𝑡

𝑡𝑜

TV (𝑞(𝜏)) 𝑑 𝜏

+

(‖𝑢𝑜‖𝐋∞(ℝ𝑛) + ∫
𝑡

𝑡𝑜

‖𝑞(𝜏)‖𝐋∞(ℝ𝑛) 𝑑 𝜏
)
∫

𝑡

𝑡𝑜

(
TV (𝑏(𝜏)) + ‖∇∇⋅ 𝑐(𝜏)‖𝐋1(ℝ𝑛;ℝ𝑛)) 𝑑 𝜏

]
,

concluding the proof of (H6).
The proof of (H7), is entirely analogous, leading to

‖𝑢(𝑡2) − 𝑢(𝑡1)‖𝐋1(ℝ𝑛) ≤ TV (𝑢(max{𝑡1, 𝑡2}))|𝑡2 − 𝑡1|.
To prove (H5), we follow the idea of the proof of Ref. [14, Lemma 4.6], adapting it to the present

setting. With obvious notation, we denote by 𝑏ℎ and 𝑏̃ℎ sequences of functions converging to 𝑏
and 𝑏̃, with the properties in Lemma 3. Similarly, we denote by 𝑞ℎ and 𝑞ℎ sequences of functions
converging to 𝑞 and 𝑞, with the properties in Lemma 3. Consider also the regularization of the
initial datum 𝑢ℎ𝑜 ∈ 𝐂

∞(ℝ𝑛;ℝ) provided by Lemma 1. For 𝜗 ∈ [0, 1], set

𝑏𝜗
ℎ
(𝑡, 𝑥) = 𝜗 𝑏ℎ(𝑡, 𝑥) + (1 − 𝜗) 𝑏̃ℎ(𝑡, 𝑥), 𝑐𝜗(𝑡, 𝑥) = 𝜗 𝑐(𝑡, 𝑥) + (1 − 𝜗) 𝑐(𝑡, 𝑥),

𝑞𝜗
ℎ
(𝑡, 𝑥) = 𝜗 𝑞ℎ(𝑡, 𝑥) + (1 − 𝜗) 𝑞ℎ(𝑡, 𝑥).

Let 𝑢𝜗
ℎ
be the solution to

{
𝜕𝑡𝑢

𝜗
ℎ
+ ∇⋅
(
𝑐𝜗(𝑡, 𝑥) 𝑢𝜗

ℎ

)
= 𝑏𝜗

ℎ
(𝑡, 𝑥) 𝑢𝜗

ℎ
+ 𝑞𝜗

ℎ
(𝑡, 𝑥),

𝑢𝜗
ℎ
(𝑡𝑜, 𝑥) = 𝑢

ℎ
𝑜 (𝑥) ,

where
{
𝑋̇𝜗 = 𝑐𝜗(𝑡, 𝑋𝜗),

𝑋𝜗(𝑡𝑜) = 𝑥𝑜,

that is,

𝑢𝜗
ℎ
(𝑡, 𝑥) = 𝑢ℎ𝑜 (𝑋

𝜗(𝑡𝑜; 𝑡, 𝑥)) exp

(
∫

𝑡

𝑡𝑜

(
𝑏𝜗
ℎ
− ∇⋅ 𝑐𝜗

)(
𝜏, 𝑋𝜗(𝜏; 𝑡, 𝑥)

)
𝑑 𝜏

)
+∫

𝑡

𝑡𝑜

𝑞𝜗
ℎ

(
𝑠, 𝑋𝜗(𝑠; 𝑡, 𝑥)

)
exp

(
∫

𝑡

𝑠

(
𝑏𝜗
ℎ
− ∇⋅ 𝑐𝜗

)(
𝜏, 𝑋𝜗(𝜏; 𝑡, 𝑥)

)
𝑑 𝜏

)
𝑑 𝑠.

(32)

Compute the derivative of 𝑋𝜗 with respect to 𝜗, recalling that 𝑋𝜗(𝑡; 𝑡, 𝑥) = 𝑥 for all 𝜗:{
𝜕𝑡𝜕𝜗𝑋

𝜗(𝜏; 𝑡, 𝑥) = 𝑐(𝜏, 𝑋𝜗(𝜏; 𝑡, 𝑥)) − 𝑐(𝜏, 𝑋𝜗(𝜏; 𝑡, 𝑥)) + ∇𝑐𝜗(𝜏, 𝑋𝜗(𝜏; 𝑡, 𝑥)) 𝜕𝜗𝑋
𝜗(𝜏; 𝑡, 𝑥),

𝜕𝜗𝑋
𝜗(𝑡; 𝑡, 𝑥) = 0.
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The solution to the above problem satisfies

𝜕𝜗𝑋
𝜗(𝜏; 𝑡, 𝑥) = ∫

𝜏

𝑡

exp

(
∫

𝜏

𝑠

∇𝑐𝜗(𝜎, 𝑋𝜗(𝜎; 𝑡, 𝑥)) 𝑑 𝜎

)
(𝑐 − 𝑐)(𝑠, 𝑋𝜗(𝑠; 𝑡, 𝑥)) 𝑑 𝑠

= ∫
𝑡

𝜏

exp

(
∫

𝑠

𝜏

−∇𝑐𝜗(𝜎, 𝑋𝜗(𝜎; 𝑡, 𝑥)) 𝑑 𝜎

)
(𝑐 − 𝑐)(𝑠, 𝑋𝜗(𝑠; 𝑡, 𝑥)) 𝑑 𝑠. (33)

Derive (32) with respect to 𝜗:

𝜕𝜗𝑢
𝜗
ℎ
(𝑡, 𝑥)

= exp

(
∫

𝑡

𝑡𝑜

(𝑏𝜗
ℎ
− ∇⋅ 𝑐𝜗)(𝜏, 𝑋𝜗(𝜏; 𝑡, 𝑥)) 𝑑 𝜏

){
∇𝑢ℎ𝑜 (𝑋

𝜗(𝑡𝑜; 𝑡, 𝑥)) 𝜕𝜗𝑋
𝜗(𝑡𝑜; 𝑡, 𝑥)

+𝑢ℎ𝑜 (𝑋
𝜗(𝑡𝑜; 𝑡, 𝑥))∫

𝑡

𝑡𝑜

(
𝑏ℎ − 𝑏̃ℎ − ∇⋅ (𝑐 − 𝑐)

)
(𝜏, 𝑋𝜗(𝜏; 𝑡, 𝑥)) 𝑑 𝜏

+𝑢ℎ𝑜 (𝑋
𝜗(𝑡𝑜; 𝑡, 𝑥))∫

𝑡

𝑡𝑜

∇(𝑏𝜗
ℎ
− ∇⋅ 𝑐𝜗)(𝜏, 𝑋𝜗(𝜏; 𝑡, 𝑥)) 𝜕𝜗𝑋

𝜗(𝜏; 𝑡, 𝑥) 𝑑 𝜏

}

+∫
𝑡

𝑡𝑜

exp

(
∫

𝑡

𝑠

(𝑏𝜗
ℎ
− ∇⋅ 𝑐𝜗)(𝜏, 𝑋𝜗(𝜏; 𝑡, 𝑥)) 𝑑 𝜏

)

×

{
(𝑞ℎ − 𝑞ℎ)(𝑥, 𝑋

𝜗(𝑠; 𝑡, 𝑥)) + ∇𝑞𝜗
ℎ
(𝑠, 𝑋𝜗(𝑠; 𝑡, 𝑥)) 𝜕𝜗𝑋

𝜗(𝑠; 𝑡, 𝑥)

+𝑞𝜗
ℎ
(𝑠, 𝑋𝜗(𝑠; 𝑡, 𝑥))∫

𝑡

𝑠

(
𝑏ℎ − 𝑏̃ℎ − ∇⋅ (𝑐 − 𝑐)

)
(𝜏, 𝑋𝜗(𝜏; 𝑡, 𝑥)) 𝑑 𝜏

+𝑞𝜗
ℎ
(𝑠, 𝑋𝜗(𝑠; 𝑡, 𝑥))∫

𝑡

𝑠

∇(𝑏𝜗
ℎ
− ∇⋅ 𝑐𝜗)(𝜏, 𝑋𝜗(𝜏; 𝑡, 𝑥)) 𝜕𝜗𝑋

𝜗(𝜏; 𝑡, 𝑥) 𝑑 𝜏

}
𝑑 𝑠

≤ exp

(
∫

𝑡

𝑡𝑜

(𝑏𝜗
ℎ
− ∇⋅ 𝑐𝜗)(𝜏, 𝑋𝜗(𝜏; 𝑡, 𝑥)) 𝑑 𝜏

){
∫

𝑡

𝑡𝑜

(𝑞ℎ − 𝑞ℎ)(𝑥, 𝑋
𝜗(𝑠; 𝑡, 𝑥)) 𝑑 𝑠

+

(
∇𝑢ℎ𝑜 (𝑋

𝜗(𝑡𝑜; 𝑡, 𝑥)) + ∫
𝑡

𝑡𝑜

∇𝑞𝜗
ℎ
(𝜏, 𝑋𝜗(𝜏; 𝑡, 𝑥)) 𝑑 𝜏

)

×∫
𝑡

𝑡𝑜

exp

(
∫

𝑠

𝑡𝑜

−∇𝑐𝜗(𝜎, 𝑋𝜗(𝜎; 𝑡, 𝑥)) 𝑑 𝜎

)
(𝑐 − 𝑐)(𝑠, 𝑋𝜗(𝑠; 𝑡, 𝑥)) 𝑑 𝑠

+

(
𝑢ℎ𝑜 (𝑋

𝜗(𝑡𝑜; 𝑡, 𝑥)) + ∫
𝑡

𝑡𝑜

𝑞𝜗
ℎ
(𝜏, 𝑋𝜗(𝜏; 𝑡, 𝑥)) 𝑑 𝜏

)

×

[
∫

𝑡

𝑡𝑜

(
𝑏ℎ − 𝑏̃ℎ − ∇⋅ (𝑐 − 𝑐)

)
(𝜏, 𝑋𝜗(𝜏; 𝑡, 𝑥)) 𝑑 𝜏
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860 COLOMBO and ROSSI

+∫
𝑡

𝑡𝑜

∇(𝑏𝜗
ℎ
− ∇⋅ 𝑐𝜗)(𝜏, 𝑋𝜗(𝜏; 𝑡, 𝑥))

×

[
∫

𝑡

𝜏

exp

(
∫

𝑠

𝜏

−∇𝑐𝜗(𝜎, 𝑋𝜗(𝜎; 𝑡, 𝑥)) 𝑑 𝜎

)
(𝑐 − 𝑐)(𝑠, 𝑋𝜗(𝑠; 𝑡, 𝑥)) 𝑑 𝑠

]
𝑑 𝜏

]}
,

where we made use of (33). Call 𝑢ℎ and 𝑢̃ℎ the functions defined by (32) for 𝜗 = 0 and 𝜗 = 1, that
is, 𝑢ℎ = 𝑢𝜗=0ℎ

and 𝑢̃ℎ = 𝑢𝜗=1ℎ
. Compute

‖𝑢ℎ(𝑡) − 𝑢̃ℎ(𝑡)‖𝐋1(ℝ𝑛) ≤ ∫
ℝ𝑛

||||∫
1

0

𝜕𝜗𝑢
𝜗
ℎ
(𝑡, 𝑥) 𝑑 𝜗

|||| 𝑑 𝑥 ≤ ∫
1

0
∫
ℝ𝑛
|𝜕𝜗𝑢𝜗ℎ(𝑡, 𝑥)| 𝑑 𝑥 𝑑 𝜗. (34)

Exploiting the change of variable introduced at the beginning of the proof, compute

∫
ℝ𝑛
|𝜕𝜗𝑢𝜗ℎ(𝑡, 𝑥)| 𝑑 𝑥

≤ exp

(
∫

𝑡

𝑡𝑜

‖𝑏𝜗
ℎ
(𝜏)‖

𝐋∞(ℝ𝑛)
𝑑 𝜏

){
∫

𝑡

𝑡𝑜

‖(𝑞ℎ − 𝑞ℎ)(𝜏)‖𝐋1(ℝ𝑛) 𝑑 𝜏
+

(
∫
ℝ𝑛
|∇𝑢ℎ𝑜 (𝑦)| 𝑑 𝑦 + ∫

𝑡

𝑡𝑜
∫
ℝ𝑛
|∇𝑞𝜗

ℎ
(𝜏, 𝑦)|𝑑 𝑦 𝑑 𝜏)

×exp

(
∫

𝑡

𝑡𝑜

‖∇𝑐𝜗(𝜎)‖𝐋∞(ℝ𝑛;ℝ𝑛×𝑛) 𝑑 𝜎
)
∫

𝑡

𝑡𝑜

‖(𝑐 − 𝑐)(𝑠)‖𝐋∞(ℝ𝑛;ℝ𝑛) 𝑑 𝑠
+

(‖𝑢ℎ𝑜‖𝐋∞(ℝ𝑛) + ∫
𝑡

𝑡𝑜

‖𝑞𝜗
ℎ
(𝜏)‖

𝐋∞(ℝ𝑛)
(𝜏) 𝑑 𝜏

)
∫

𝑡

𝑡𝑜

‖(𝑏ℎ − 𝑏̃ℎ − ∇⋅ (𝑐 − 𝑐))(𝜏)‖𝐋1(ℝ𝑛) 𝑑 𝜏
+

(‖𝑢ℎ𝑜‖𝐋∞(ℝ𝑛) + ∫
𝑡

𝑡𝑜

‖𝑞𝜗
ℎ
(𝜏)‖

𝐋∞(ℝ𝑛)
(𝜏) 𝑑 𝜏

)
∫

𝑡

𝑡𝑜

‖∇(𝑏𝜗
ℎ
− ∇⋅ 𝑐𝜗)(𝜏)‖

𝐋1(ℝ𝑛;ℝ𝑛)
𝑑 𝑠

× exp

(
∫

𝑡

𝑡𝑜

‖∇𝑐𝜗(𝜎)‖𝐋∞(ℝ𝑛;ℝ𝑛×𝑛) 𝑑 𝜎
)
∫

𝑡

𝑡𝑜

‖(𝑐 − 𝑐)(𝑠)‖𝐋∞(ℝ𝑛;ℝ𝑛) 𝑑 𝑠
}
.

Inserting the result above in (34), by the definitions of 𝑏𝜗
ℎ
, 𝑞𝜗

ℎ
and their properties as stated in

Lemma 3, we have

‖𝑢ℎ(𝑡) − 𝑢̃ℎ(𝑡)‖𝐋1(ℝ𝑛)
≤ exp

(
∫

𝑡

𝑡𝑜

max
{‖𝑏(𝜏)‖𝐋∞(ℝ𝑛), ‖𝑏̃(𝜏)‖𝐋∞(ℝ𝑛)}𝑑 𝜏

){
∫

𝑡

𝑡𝑜

‖(𝑞ℎ − 𝑞ℎ)(𝜏)‖𝐋1(ℝ𝑛) 𝑑 𝜏
+

(‖𝑢ℎ𝑜‖𝐋∞(ℝ𝑛) + ∫
𝑡

𝑡𝑜

max
{‖𝑞(𝜏)‖𝐋∞(ℝ𝑛), ‖𝑞(𝜏)‖𝐋∞(ℝ𝑛)}𝑑 𝜏

)
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×∫
𝑡

𝑡𝑜

‖(𝑏ℎ − 𝑏̃ℎ − ∇⋅ (𝑐 − 𝑐))(𝜏)‖𝐋1(ℝ𝑛) 𝑑 𝜏
+ exp

(
∫

𝑡

𝑡𝑜

max
{‖∇𝑐(𝑠)‖𝐋∞(ℝ𝑛;ℝ𝑛×𝑛), ‖∇𝑐(𝑠)‖𝐋∞(ℝ𝑛;ℝ𝑛×𝑛)}𝑑 𝑠

)

×∫
𝑡

𝑡𝑜

‖(𝑐 − 𝑐)(𝑠)‖𝐋∞(ℝ𝑛;ℝ𝑛) 𝑑 𝑠
×

[
∫
ℝ𝑛
|∇𝑢ℎ𝑜 (𝑦)|𝑑 𝑦 + ∫

𝑡

𝑡𝑜

max
{‖∇𝑞ℎ(𝑠)‖𝐋1(ℝ𝑛), ‖∇𝑞ℎ(𝑠)‖𝐋1(ℝ𝑛)}𝑑 𝑠

+

(‖𝑢ℎ𝑜‖𝐋∞(ℝ𝑛) + ∫
𝑡

𝑡𝑜

max
{‖𝑞(𝜏)‖𝐋∞(ℝ𝑛), ‖𝑞(𝜏)‖𝐋∞(ℝ𝑛)}𝑑 𝜏

)

×∫
𝑡

𝑡𝑜

max
{‖∇(𝑏ℎ − ∇⋅ 𝑐)(𝑠)‖𝐋1(ℝ𝑛;ℝ𝑛), ‖∇(𝑏̃ℎ − ∇⋅ 𝑐)(𝑠)‖𝐋1(ℝ𝑛;ℝ𝑛)}𝑑 𝑠

]}
.

Let now ℎ tend to +∞. We have:

‖𝑢ℎ(𝑡) − 𝑢̃ℎ(𝑡)‖𝐋1(ℝ𝑛) → ‖𝑢(𝑡) − 𝑢̃(𝑡)‖𝐋1(ℝ𝑛)‖𝑢ℎ𝑜‖𝐋∞(ℝ𝑛) ≤ ‖𝑢𝑜‖𝐋∞(ℝ𝑛) by (14)‖(𝑞ℎ − 𝑞ℎ)(𝜏)‖𝐋1(ℝ𝑛) → ‖(𝑞 − 𝑞)(𝜏)‖𝐋1(ℝ𝑛) by Lemma 3‖(𝑏ℎ − 𝑏̃ℎ − ∇⋅ (𝑐 − 𝑐))(𝜏)‖𝐋1(ℝ𝑛) → ‖(𝑏 − 𝑏̃ − ∇⋅ (𝑐 − 𝑐))(𝜏)‖𝐋1(ℝ𝑛) by Lemma 3‖∇𝑢ℎ𝑜‖𝐋1(ℝ𝑛;ℝ𝑛) → TV (𝑢𝑜) by (14)‖∇𝑏ℎ(𝑠)‖𝐋1(ℝ𝑛;ℝ𝑛) ≤ TV (𝑏(𝑠)) by Lemma 3‖∇𝑏̃ℎ(𝑠)‖𝐋1(ℝ𝑛;ℝ𝑛) ≤ TV
(
𝑏̃(𝑠)
)

by Lemma 3‖∇𝑞ℎ(𝑠)‖𝐋1(ℝ𝑛;ℝ𝑛) ≤ TV (𝑞(𝑠)) by Lemma 3‖∇𝑞ℎ(𝑠)‖𝐋1(ℝ𝑛;ℝ𝑛) ≤ TV (𝑞(𝑠)) by Lemma 3.

Therefore,

‖𝑢(𝑡) − 𝑢̃(𝑡)‖𝐋1(ℝ𝑛) (35)

≤ exp

(
∫

𝑡

𝑡𝑜

max
{‖𝑏(𝜏)‖𝐋∞(ℝ𝑛), ‖𝑏̃(𝜏)‖𝐋∞(ℝ𝑛)}𝑑 𝜏

){
∫

𝑡

𝑡𝑜

‖(𝑞 − 𝑞)(𝜏)‖𝐋1(ℝ𝑛) 𝑑 𝜏
+

(‖𝑢𝑜‖𝐋∞(ℝ𝑛) + ∫
𝑡

𝑡𝑜

max
{‖𝑞(𝜏)‖𝐋∞(ℝ𝑛), ‖𝑞(𝜏)‖𝐋∞(ℝ𝑛)}𝑑 𝜏

)

×∫
𝑡

𝑡𝑜

‖(𝑏 − 𝑏̃ − ∇⋅ (𝑐 − 𝑐))(𝜏)‖𝐋1(ℝ𝑛) 𝑑 𝜏
+ exp

(
∫

𝑡

𝑡𝑜

max
{‖∇𝑐(𝑠)‖𝐋∞(ℝ𝑛;ℝ𝑛×𝑛), ‖∇𝑐(𝑠)‖𝐋∞(ℝ𝑛;ℝ𝑛×𝑛)}𝑑 𝑠

)
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862 COLOMBO and ROSSI

×∫
𝑡

𝑡𝑜

‖(𝑐 − 𝑐)(𝑠)‖𝐋∞(ℝ𝑛;ℝ𝑛) 𝑑 𝑠
×

[
TV (𝑢𝑜) + ∫

𝑡

𝑡𝑜

max {TV (𝑞(𝑠)), TV (𝑞(𝑠))} 𝑑 𝑠

+

(‖𝑢𝑜‖𝐋∞(ℝ𝑛) + ∫
𝑡

𝑡𝑜

max
{‖𝑞(𝜏)‖𝐋∞(ℝ𝑛), ‖𝑞(𝜏)‖𝐋∞(ℝ𝑛)}𝑑 𝜏

)

×∫
𝑡

𝑡𝑜

max
{
TV (𝑏(𝑠)) + ‖∇∇⋅ 𝑐(𝑠)‖𝐋1(ℝ𝑛;ℝ𝑛), TV (𝑏̃(𝑠)) + ‖∇∇⋅ 𝑐(𝑠)‖𝐋1(ℝ𝑛;ℝ𝑛)}𝑑 𝑠

]}
.

This completes the proof. ■

4.3 Proof of the main result

Proof of Theorem 1. Choose an initial datum (𝑢𝑜, 𝑤𝑜) ∈ +. Define 𝑢0(𝑡, 𝑥) = 𝑢𝑜(𝑥) and𝑤0(𝑡, 𝑥) =
𝑤𝑜(𝑥) for (𝑡, 𝑥) ∈ 𝐼 × ℝ𝑛. Then, construct recursively for 𝑖 = 1, 2, … the following sequences of
functions:

𝑎𝑖(𝑡, 𝑥)=𝑔(𝑡, 𝑥, 𝑢𝑖−1(𝑡, 𝑥), 𝑤𝑖−1(𝑡, 𝑥));

𝑏𝑖(𝑡, 𝑥)=𝑓(𝑡, 𝑥, 𝑤𝑖−1(𝑡, 𝑥));

𝑐𝑖(𝑡, 𝑥)=(𝑣(𝑡, 𝑤𝑖−1(𝑡)))(𝑥);

𝑢𝑖 solves
{
𝜕𝑡𝑢𝑖 + ∇⋅ (𝑐𝑖(𝑡, 𝑥)𝑢𝑖) = 𝑏𝑖(𝑡, 𝑥)𝑢𝑖 + 𝑞(𝑡, 𝑥),

𝑢𝑖(𝑡𝑜, 𝑥) = 𝑢𝑜(𝑥);

𝑤𝑖 solves
{
𝜕𝑡𝑤𝑖 − 𝜇 Δ𝑤𝑖 = 𝑎𝑖(𝑡, 𝑥)𝑤𝑖,
𝑤𝑖(𝑡𝑜, 𝑥) = 𝑤𝑜(𝑥).

(36)
The existence part of the proof amount to verify that (𝑢𝑖, 𝑤𝑖) is a Cauchy sequence in a suitable
complete metric space and that its limit solves (1). We divide the proof into several steps.

Step 0: For all 𝑖 ∈ ℕ, (𝑢𝑖, 𝑤𝑖) is well defined and

for all 𝑡 ∈ 𝐼 𝑢𝑖(𝑡) ∈  + and 𝑢𝑖 ∈ 𝐂
0,1(𝐼; 𝐋1(ℝ𝑛;ℝ+)),

for all 𝑡 ∈ 𝐼 𝑤𝑖(𝑡) ∈  + and 𝑤𝑖 ∈ 𝐂
0(𝐼; 𝐋1(ℝ𝑛;ℝ+)).

(37)

Proof of Step. 0For 𝑖 = 0, the thesis holds true due to the choice of the initial data and the definition
of 𝑢0 and 𝑤0. We proceed by induction.
Assume now that the claim holds for 𝑖 − 1, with 𝑖 ≥ 1. Then, 𝑎𝑖 ∈ 𝐋∞(𝐼 × ℝ𝑛;ℝ) for all 𝑡 ∈ 𝐼,

by (𝒈) and by the inductive hypothesis. Propositions 1 and 2 and Corollary 1 hence ensure that 𝑤𝑖
is well defined, with𝑤𝑖(𝑡) ∈  + for all 𝑡 ∈ 𝐼. Similarly, 𝑏𝑖 satisfies (𝒃+) by (𝒇) and 𝑐𝑖 satisfies (𝒄𝟐)
by (𝒗). An application of Proposition 3 ensures the existence of 𝑢𝑖 , with 𝑢𝑖(𝑡) ∈  + for all 𝑡 ∈ 𝐼.
The time regularity of𝑤𝑖 follows from (P2) in Proposition 1 and, for 𝑢𝑖 , from (H7) in Proposition 3.

Step 1: For all 𝑖 ∈ ℕ, for all 𝑡 ≥ 𝑡𝑜
‖𝑤𝑖(𝑡)‖𝐋1(ℝ𝑛) ≤ ‖𝑤𝑜‖𝐋1(ℝ𝑛) e𝐾𝑔(𝑡) (𝑡−𝑡𝑜), ‖𝑤𝑖(𝑡)‖𝐋∞(ℝ𝑛) ≤ ‖𝑤𝑜‖𝐋∞(ℝ𝑛) e𝐾𝑔(𝑡) (𝑡−𝑡𝑜), (38)
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COLOMBO and ROSSI 863

‖𝑢𝑖(𝑡)‖𝐋1(ℝ𝑛)≤(‖𝑢𝑜‖𝐋1(ℝ𝑛) + ‖𝑞‖𝐋1([𝑡𝑜,𝑡]×ℝ𝑛))
×exp

[
𝐾𝑓(𝑡) (𝑡 − 𝑡𝑜)

(
1 + ‖𝑤𝑜‖𝐋∞(ℝ𝑛)e𝐾𝑔(𝑡) (𝑡−𝑡𝑜))], (39)

‖𝑢𝑖(𝑡)‖𝐋∞(ℝ𝑛)≤(‖𝑢𝑜‖𝐋∞(ℝ𝑛) + ‖𝑞‖𝐋1([𝑡𝑜,𝑡];𝐋∞(ℝ𝑛)))
×exp

[(
𝐾𝑓(𝑡) + 𝐾𝑣(𝑡)

)
(𝑡 − 𝑡𝑜)

(
1 + ‖𝑤𝑜‖𝐋∞(ℝ𝑛)𝑒𝐾𝑔(𝑡) (𝑡−𝑡𝑜))]. (40)

(The𝐋1 and𝐋∞ estimates on𝑤 are independent of𝑢. This fact plays a key role throughout,
in particular in Step 6 below.)

Proof of Step 1. By (𝒈) and (36), with obvious notation, for all 𝜏 ∈ [𝑡𝑜, 𝑡],

𝐴𝑖(𝜏) ∶= sup
𝜉∈ℝ𝑛

𝑎𝑖(𝜏, 𝜉) = sup
𝜉∈ℝ𝑛

𝑔(𝜏, 𝜉, 𝑢𝑖−1(𝜏, 𝜉), 𝑤𝑖−1(𝜏, 𝜉)) ≤ 𝐾𝑔(𝜏) ≤ 𝐾𝑔(𝑡) .

Hence, (38) follows by (P10) in Corollary 1.
Proceeding now similarly, using (36), (𝒇), and (38), compute for 𝜏 ∈ [𝑡𝑜, 𝑡],

sup
𝑥∈ℝ𝑛

𝑏𝑖(𝜏, 𝑥) = sup
𝑥∈ℝ𝑛

𝑓(𝜏, 𝑥, 𝑤𝑖−1(𝜏, 𝑥)) ≤ sup
𝑥∈ℝ𝑛

𝐾𝑓(𝜏)(1 + 𝑤𝑖−1(𝜏, 𝑥))

≤ 𝐾𝑓(𝜏)
(
1 + ‖𝑤𝑖(𝜏)‖𝐋∞(ℝ𝑛)) ≤ 𝐾𝑓(𝑡)(1 + ‖𝑤𝑜‖𝐋∞(ℝ𝑛) e𝐾𝑔(𝑡) (𝑡−𝑡𝑜)).

Estimate (39) now follows from (H3) in Proposition 3 and (36). Moreover, by (𝒗),

‖∇⋅ 𝑐(𝜏)‖𝐋∞(ℝ𝑛;ℝ) ≤ 𝐾𝑣(𝜏) ‖𝑤𝑖−1(𝜏)‖𝐋∞(ℝ𝑛) ≤ 𝐾𝑣(𝑡) ‖𝑤𝑜‖𝐋∞(ℝ𝑛) 𝑒𝐾𝑔(𝑡) (𝑡−𝑡𝑜).
Using now (H4) in Proposition 3 and (36), the bound (40) follows.

Step 2: There exists  ∈ 𝐂0(𝐼; ℝ+) such that for all 𝑡 ∈ 𝐼 and 𝑖 ∈ ℕ, TV (𝑤𝑖(𝑡)) ≤ (𝑡).
Proof of Step 2. By the definition of 𝑎𝑖 given in (36), by (𝒈) and by (P12) in Corollary 1 we obtain
TV (𝑤𝑖(𝑡)) ≤ (𝑡) where

(𝑡) = TV (𝑤𝑜) + 2 𝐽𝑛
√
𝑡 − 𝑡𝑜√
𝜇

𝐾𝑔(𝑡) ‖𝑤𝑜‖𝐋∞(ℝ𝑛) e𝐾𝑔(𝑡) (𝑡−𝑡𝑜).
Step 3: There exists  ∈ 𝐂0(𝐼; ℝ+) such that, for all 𝑡 ∈ 𝐼 and all 𝑖 ∈ ℕ, TV (𝑢𝑖(𝑡)) ≤ (𝑡).
Proof of Step 3. Exploiting the definitions of 𝑏𝑖 and 𝑐𝑖 given in (36), by (𝒗), for 𝜏 ∈ [𝑡0, 𝑡],

‖∇𝑐𝑖(𝜏)‖𝐋∞(ℝ𝑛;ℝ𝑛×𝑛) ≤ 𝐾𝑣(𝜏)‖𝑤𝑖−1(𝜏)‖𝐋∞(ℝ𝑛) ≤ 𝐾𝑣(𝜏) ‖𝑤𝑜‖𝐋∞(ℝ𝑛) e𝐾𝑔(𝜏) (𝜏−𝑡𝑜),
‖∇∇⋅ 𝑐𝑖(𝜏)‖𝐋1(ℝ𝑛;ℝ𝑛) ≤ 𝐶𝑣

(
𝜏, ‖𝑤𝑖−1(𝜏)‖𝐋1(ℝ𝑛))‖𝑤𝑖−1(𝜏)‖𝐋1(ℝ𝑛)
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864 COLOMBO and ROSSI

≤ 𝐶𝑣

(
𝜏, ‖𝑤𝑜‖𝐋1(ℝ𝑛) 𝑒𝐾𝑔(𝜏) (𝜏−𝑡𝑜))‖𝑤𝑜‖𝐋1(ℝ𝑛)e𝐾𝑔(𝜏) (𝜏−𝑡𝑜).

and by (𝒇), (38), and Step 2,

TV (𝑏𝑖(𝜏)) = TV (𝑓(𝜏, ⋅, 𝑤𝑖−1(𝜏, ⋅)))

≤ 𝐾𝑓(𝜏)
(
1 + ‖𝑤𝑖−1(𝜏)‖𝐋∞(ℝ𝑛) + TV (𝑤𝑖−1(𝜏)))

≤ 𝐾𝑓(𝜏)

(
1 + TV (𝑤𝑜) + ‖𝑤𝑜‖𝐋∞(ℝ𝑛)

(
1 +

2 𝐽𝑛
√
𝜏 − 𝑡𝑜√
𝜇

𝐾𝑔(𝜏)

)
e𝐾𝑔(𝜏) (𝜏−𝑡𝑜)

)
.

Insert the latter estimates above in (H6) of Proposition 3 to get TV (𝑢𝑖(𝑡)) ≤ (𝑡), where

(𝑡) =
(‖𝑢𝑜‖𝐋∞(ℝ𝑛) + TV (𝑢𝑜) + ∫

𝑡

𝑡𝑜

(‖𝑞(𝜏)‖𝐋∞(ℝ𝑛) + TV (𝑞(𝜏)))𝑑 𝜏
)

×exp

(
∫

𝑡

𝑡𝑜

(
𝐾𝑓(𝜏) + ‖𝑤𝑜‖𝐋∞(ℝ𝑛)(𝐾𝑓(𝜏) + 𝐾𝑣(𝜏))e𝐾𝑔(𝜏)(𝜏−𝑡𝑜)) 𝑑 𝜏

)

×

(
1 + ∫

𝑡

𝑡𝑜

𝐶𝑣

(
𝜏, ‖𝑤𝑜‖𝐋1(ℝ𝑛)e𝐾𝑔(𝜏)(𝜏−𝑡𝑜))‖𝑤𝑜‖𝐋1(ℝ𝑛) e𝐾𝑔(𝜏)(𝜏−𝑡𝑜) 𝑑 𝜏

+𝐾𝑓(𝑡)(𝑡 − 𝑡𝑜)

(
1 + TV (𝑤𝑜) +

4 𝐽𝑛

3
√
𝜇

√
𝑡 − 𝑡𝑜 𝐾𝑔(𝑡) ‖𝑤𝑜‖𝐋∞(ℝ𝑛) e𝐾𝑔(𝑡)(𝑡−𝑡𝑜)

))

concluding the proof of Step 3.
Observe for later use that, due to (𝒇), (𝒈), and (𝒗), on a bounded time interval [𝑡𝑜, 𝑇]

𝑎𝑖+1 − 𝑎𝑖, 𝑏𝑖+1 − 𝑏𝑖, ∇⋅ (𝑐𝑖+1 − 𝑐𝑖) ∈ 𝐋
1([𝑡𝑜, 𝑇] × ℝ

𝑛;ℝ) . (41)

Step 4: Referring to (4), (5), Step 2, and Step 3, consider the complete metric space

𝑇 =
{
(𝑢, 𝑤) ∈ 𝐂0([𝑡𝑜, 𝑇];+) ∶ TV (𝑢(𝑡)) ≤ (𝑡) and TV (𝑤(𝑡)) ≤ (𝑡) for all 𝑡 ∈ [𝑡𝑜, 𝑇]},

𝑑((𝑢1, 𝑤1), (𝑢2, 𝑤2)) = sup
𝑡∈[𝑡𝑜 ,𝑇]

‖(𝑢1(𝑡) − 𝑢2(𝑡), 𝑤1(𝑡) − 𝑤2(𝑡))‖ . (42)

Moreover, for 𝑟 > 0 introduce the following subset of +:

+
𝑟 =

{
(𝑢, 𝑤) ∈ + ∶

‖𝑢‖𝐋∞(ℝ𝑛) ≤ 𝑟, TV (𝑢)≤ 𝑟,‖𝑤‖𝐋∞(ℝ𝑛) ≤ 𝑟, ‖𝑤‖𝐋1(ℝ𝑛) ≤ 𝑟, TV (𝑤)≤ 𝑟
}
. (43)

Then, given (𝑢𝑜, 𝑤𝑜) ∈ +
𝑟 , there exists a continuous function 𝑟 ∶ [𝑡𝑜, 𝑇] → ℝ+, for a

suitable 𝑇 ∈ 𝐼 with 𝑇 > 𝑡𝑜, such that for all 𝑖 ∈ ℕ

𝑑((𝑢𝑖+1, 𝑤𝑖+1), (𝑢𝑖, 𝑤𝑖)) ≤ 𝑟(𝑇) (𝑇 − 𝑡𝑜) 𝑑((𝑢𝑖, 𝑤𝑖), (𝑢𝑖−1, 𝑤𝑖−1)). (44)
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COLOMBO and ROSSI 865

Proof of Step 4. In the following, we make use of the bounds (38)–(40). Start from (P11) in Corol-
lary 1: for all 𝑡 ∈ [𝑡𝑜, 𝑇], using (36) and (𝒈), we obtain

‖𝑤𝑖+1(𝑡) − 𝑤𝑖(𝑡)‖𝐋1(ℝ𝑛)
≤ 𝐾𝑔(𝑡) (𝑡 − 𝑡𝑜) ‖𝑤𝑜‖𝐋∞(ℝ𝑛)e2 (𝑡−𝑡𝑜)𝐾𝑔(𝑡) sup

𝜏∈[𝑡𝑜,𝑡]
‖(𝑢𝑖(𝜏) − 𝑢𝑖−1(𝜏), 𝑤𝑖(𝜏) − 𝑤𝑖−1(𝜏))‖

≤ 𝑤
𝑟 (𝑇) (𝑇 − 𝑡𝑜) 𝑑((𝑢𝑖, 𝑤𝑖), (𝑢𝑖−1, 𝑤𝑖−1)), (45)

with

𝑤
𝑟 (𝑇) = 𝑟 𝐾𝑔(𝑇) e2 (𝑇−𝑡𝑜)𝐾𝑔(𝑇). (46)

Now consider (H5) in Proposition 3: by (𝒗) and (𝒇), setting

̃1(𝑡) = exp
(
𝐾𝑓(𝑡)(𝑡 − 𝑡𝑜) + ‖𝑤𝑜‖𝐋∞(ℝ𝑛) (𝑡 − 𝑡𝑜)(𝐾𝑓(𝑡) + 𝐾𝑣(𝑡))e𝐾𝑔(𝑡) (𝑡−𝑡𝑜)) (47)

×

[
1 + (𝑡 − 𝑡𝑜) 𝐶𝑣(𝑡, ‖𝑤𝑜‖𝐋1(ℝ𝑛)e𝐾𝑔(𝑡)(𝑡−𝑡𝑜))‖𝑤𝑜‖𝐋1(ℝ𝑛)e𝐾𝑔(𝑡)(𝑡−𝑡𝑜)

+𝐾𝑓(𝑡)(𝑡 − 𝑡𝑜)

(
1 + TV (𝑤𝑜) +

4 𝐽𝑛

3
√
𝜇

√
𝑡 − 𝑡𝑜 ‖𝑤𝑜‖𝐋∞(ℝ𝑛) 𝐾𝑔(𝑡) e𝐾𝑔(𝑡)(𝑡−𝑡𝑜)

)]
,

̃2(𝑡) = exp
(
𝐾𝑓(𝑡) (𝑡 − 𝑡𝑜)

(
1 + ‖𝑤𝑜‖𝐋∞(ℝ𝑛)e𝐾𝑔(𝑡)(𝑡−𝑡𝑜))), (48)

we get

‖𝑢𝑖+1(𝑡) − 𝑢𝑖(𝑡)‖𝐋1(ℝ𝑛)
≤
[
̃1(𝑡)(𝑡 − 𝑡𝑜)

(‖𝑢𝑜‖𝐋∞(ℝ𝑛) + TV (𝑢𝑜) + ∫
𝑡

𝑡𝑜

(‖𝑞(𝜏)‖𝐋∞(ℝ𝑛) + TV (𝑞(𝜏)) 𝑑 𝜏)
)
𝐾𝑣(𝑡)

+̃2(𝑡)(𝑡 − 𝑡𝑜)
(‖𝑢𝑜‖𝐋∞(ℝ𝑛) + ∫

𝑡

𝑡𝑜

‖𝑞(𝜏)‖𝐋∞(ℝ𝑛) 𝑑 𝜏
)(

𝐾𝑓(𝑡) + 𝐶𝑣

(
𝑡, ‖𝑤𝑜‖𝐋∞e𝐾𝑔(𝑡)(𝑡−𝑡𝑜)))

]
× sup
𝜏∈[𝑡𝑜,𝑡]

‖𝑤𝑖(𝜏) − 𝑤𝑖−1(𝜏)‖𝐋1(ℝ𝑛)
≤ 𝑢

𝑟 (𝑇) (𝑇 − 𝑡𝑜) sup
𝜏∈[𝑡𝑜,𝑇]

‖𝑤𝑖(𝜏) − 𝑤𝑖−1(𝜏)‖𝐋1(ℝ𝑛), (49)

with

𝑢
𝑟 (𝑇) =

(
𝑟 + ∫

𝑇

𝑡𝑜

‖𝑞(𝜏)‖𝐋∞(ℝ𝑛) 𝑑 𝜏
)
exp
(
𝐾𝑓(𝑇)(𝑇 − 𝑡𝑜)

(
1 + 𝑟 e𝐾𝑔(𝑇)(𝑇−𝑡𝑜)

))
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866 COLOMBO and ROSSI

×
[
𝐾𝑓(𝑇) + 𝐶𝑣

(
𝑇, 𝑟 e𝐾𝑔(𝑇)(𝑇−𝑡𝑜)

)]
+

(
2 𝑟 + ∫

𝑇

𝑡𝑜

(‖𝑞(𝜏)𝐋∞(ℝ𝑛)‖ + TV (𝑞(𝜏)))𝑑 𝜏)

×exp
(
𝐾𝑓(𝑇)(𝑇 − 𝑡𝑜)

(
1 + 𝑟 e𝐾𝑔(𝑇)(𝑇−𝑡𝑜)

))
(50)

×𝐾𝑣(𝑇) exp
(
𝐾𝑣(𝑇) (𝑇 − 𝑡𝑜) 𝑟 e𝐾𝑔(𝑇)(𝑇−𝑡𝑜)

)
×

(
1 + 𝑟 (𝑇 − 𝑡𝑜) 𝐶𝑣(𝑇, 𝑟 e𝐾𝑔(𝑇)(𝑇−𝑡𝑜))e𝐾𝑔(𝑇)(𝑇−𝑡𝑜)

+(𝑇 − 𝑡𝑜) 𝐾𝑓(𝑇)

(
1 + 𝑟 +

4 𝐽𝑛

3
√
𝜇
𝐾𝑔(𝑇)

√
𝑇 − 𝑡𝑜 𝑟 e𝐾𝑔(𝑇)(𝑇−𝑡𝑜)

))
.

Thus, collecting together (45) and (49),

𝑑((𝑢𝑖+1, 𝑤𝑖+1), (𝑢𝑖, 𝑤𝑖)) = sup
𝑡∈[0,𝑇]

(‖𝑢𝑖+1(𝑡) − 𝑢𝑖(𝑡)‖𝐋1(ℝ𝑛) + ‖𝑤𝑖+1(𝑡) − 𝑤𝑖(𝑡)‖𝐋1(ℝ𝑛))
≤ (𝑢

𝑟 (𝑇) +𝑤
𝑟 (𝑇)) (𝑇 − 𝑡𝑜) 𝑑((𝑢𝑖, 𝑤𝑖), (𝑢𝑖−1, 𝑤𝑖−1)).

This proves (44), with𝑟(𝑇) = 𝑢
𝑟 (𝑇) +𝑤

𝑟 (𝑇) and Step 4 is completed.

Step 5: For any 𝑟 > 0, there exists a 𝑇𝑟 > 0 such that for all (𝑢𝑜, 𝑤𝑜) ∈ +
𝑟 , the sequence (𝑢𝑖, 𝑤𝑖)

converges in 𝑇𝑟 to a (𝑢∗, 𝑤∗) solving (1) in the sense of Definition 1.
Proof of Step 5. Choose𝑇𝑟 > 𝑡𝑜 such that𝑟(𝑇𝑟) (𝑇𝑟 − 𝑡𝑜) < 1. Thanks to (44), the sequence (𝑢𝑖, 𝑤𝑖)
defined through (36) is a Cauchy sequence and converges in the complete metric space (𝑇𝑟 , 𝑑)
defined in (42). Call (𝑢∗, 𝑤∗) the limit. Clearly, 𝑢∗ ∈ 𝐂0([𝑡𝑜, 𝑇𝑟]; +) and 𝑤∗ ∈ 𝐂0([𝑡𝑜, 𝑇𝑟]; +).
It remains to prove that (𝑢∗, 𝑤∗) is a solution to (1) in the sense of Definition 1. By Lemmas 4 and
5, it is sufficient to prove that 𝑢∗ is a weak solution to (23) and 𝑤∗ is a weak solution to (15) with

𝑎(𝑡, 𝑥) = 𝑔(𝑡, 𝑥, 𝑢∗(𝑡, 𝑥), 𝑤∗(𝑡, 𝑥)), 𝑏(𝑡, 𝑥) = 𝑓(𝑡, 𝑥, 𝑤∗(𝑡, 𝑥)) , 𝑐(𝑡, 𝑥) = (𝑣(𝑡, 𝑤∗(𝑡)))(𝑥).

The initial condition is satisfied: (𝑢∗, 𝑤∗)(0) = (𝑢𝑜, 𝑤𝑜). Using theweak formulations (27) and (17),
applying the Dominated Convergence Theorem, thanks to (𝒇) and (𝒈), we obtain that (𝑢∗, 𝑤∗)
solves (1) on [𝑡𝑜, 𝑇𝑟], with initial datum (𝑢𝑜, 𝑤𝑜), in the sense of Definition 1.

Step 6: The solution constructed above can be uniquely extended to all 𝐼.

Proof of Step 6. The uniform continuity in time of (𝑢∗, 𝑤∗) on [𝑡𝑜, 𝑇𝑟] ensures that
(𝑢∗(𝑇𝑟), 𝑤∗(𝑇𝑟)) = lim𝑡→𝑇𝑟−(𝑢∗(𝑡), 𝑤∗(𝑡)) is in +. The above results can be iteratively applied,
proving that (𝑢∗, 𝑤∗) can be uniquely extended to a maximal time interval [𝑡𝑜, 𝑇∗[.
The 𝐋1 and 𝐋∞ bounds in (38), together with the 𝐁𝐕 bound in Step 2, ensure that the limit

lim𝑡→𝑇∗− 𝑤∗(𝑡) exists and is in  +, so that we can define 𝑤∗(𝑇∗) = lim𝑡→𝑇∗− 𝑤∗(𝑡). Similarly,
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COLOMBO and ROSSI 867

Proposition 3, allows to uniquely extend 𝑢∗ in 𝑇∗, setting 𝑢∗(𝑇∗) = lim𝑡→𝑇∗− 𝑢∗(𝑡) with 𝑢∗(𝑇∗) ∈ +. A further application of the steps above then allows to further prolong (𝑢∗, 𝑤∗) beyond time
𝑇∗, unless 𝑇∗ = sup 𝐼, completing the proof of this step.

Step 7: Let 𝑟 > 0. Given (𝑢𝑜, 𝑤𝑜), (𝑢̃𝑜, 𝑤̃𝑜) ∈ +
𝑟 , call (𝑢, 𝑤) and (𝑢̃, 𝑤̃) the corresponding solu-

tions to (1). Then, for all 𝑡 ∈ 𝐼, (6) holds, with 𝑜 defined in (61).
Proof of Step 7. Define for (𝑡, 𝑥) ∈ 𝐼 × ℝ𝑛 the following functions:

𝑎(𝑡, 𝑥) = 𝑔(𝑡, 𝑥, 𝑢(𝑡, 𝑥), 𝑤(𝑡, 𝑥)), 𝑎̃(𝑡, 𝑥) = 𝑔(𝑡, 𝑥, 𝑢̃(𝑡, 𝑥), 𝑤̃(𝑡, 𝑥)),

𝑏(𝑡, 𝑥) = 𝑓(𝑡, 𝑥, 𝑤(𝑡, 𝑥)), 𝑏̃(𝑡, 𝑥) = 𝑓(𝑡, 𝑥, 𝑤̃(𝑡, 𝑥)),

𝑐(𝑡, 𝑥) = (𝑣(𝑡, 𝑤(𝑡)))(𝑥), 𝑐(𝑡, 𝑥) = (𝑣(𝑡, 𝑤̃(𝑡)))(𝑥).

(51)

Let 𝑤̂ be the solution to (15) with 𝑎 in the source term and initial datum 𝑤̃𝑜, and let 𝑢̂ be the
solution to (23) with coefficients 𝑏, 𝑐, and initial datum 𝑢̃𝑜. More precisely,{

𝜕𝑡𝑤̂ − 𝜇 Δ𝑤̂ = 𝑎(𝑡, 𝑥) 𝑤̂

𝑤̂(𝑡𝑜, 𝑥) = 𝑤̃𝑜(𝑥)
and

{
𝜕𝑡𝑢̂ + ∇⋅ (𝑐(𝑡, 𝑥) 𝑢̂) = 𝑏(𝑡, 𝑥) 𝑢̂ + 𝑞(𝑡, 𝑥)

𝑢̂(𝑡𝑜, 𝑥) = 𝑢̃𝑜(𝑥).
(52)

By (5), we need to compute

‖(𝑢(𝑡), 𝑤(𝑡)) − (𝑢̃(𝑡), 𝑤̃(𝑡))‖ = ‖𝑢(𝑡) − 𝑢̃(𝑡)‖𝐋1(ℝ𝑛) + ‖𝑤(𝑡) − 𝑤̃(𝑡)‖𝐋1(ℝ𝑛)
≤ ‖𝑢(𝑡) − 𝑢̂(𝑡)‖𝐋1(ℝ𝑛) + ‖𝑢̂(𝑡) − 𝑢̃(𝑡)‖𝐋1(ℝ𝑛) (53)

+ ‖𝑤(𝑡) − 𝑤̂(𝑡)‖𝐋1(ℝ𝑛) + ‖𝑤̂(𝑡) − 𝑤̃(𝑡)‖𝐋1(ℝ𝑛). (54)

Compute each term in (53) separately. The first one is the𝐋1-distance between solutions to balance
laws of the type (23) with different initial data. Exploiting (24) for the solution to these balance
laws and the bounds obtained in the proof of Step 1, we get

‖𝑢(𝑡) − 𝑢̂(𝑡)‖𝐋1(ℝ𝑛)≤‖𝑢𝑜 − 𝑢̃𝑜‖𝐋1(ℝ𝑛) exp [𝐾𝑓(𝑡) (𝑡 − 𝑡𝑜)(1 + ‖𝑤𝑜‖𝐋∞(ℝ𝑛) e𝐾𝑔(𝑡)(𝑡−𝑡𝑜))]. (55)

The second term in (53) is the 𝐋1-distance between solutions to balance laws of the type (23) with
different coefficients 𝑏, 𝑐 and same initial datum. Exploiting the computations in the proof of
Step 4, as well as (H5) in Proposition 3, we get

‖𝑢̂(𝑡) − 𝑢̃(𝑡)‖𝐋1(ℝ𝑛)
≤
{

̂1(𝑡, 𝑟)
(‖𝑢̃𝑜‖𝐋∞(ℝ𝑛) + TV (𝑢̃𝑜) + ∫

𝑡

𝑡𝑜

(‖𝑞(𝜏)‖𝐋∞(ℝ𝑛) + TV (𝑞(𝜏)))𝑑 𝜏
)
𝐾𝑣(𝑡)

+̂2(𝑡, 𝑟)
(‖𝑢̃𝑜‖𝐋∞(ℝ𝑛)+∫

𝑡

𝑡𝑜

‖𝑞(𝜏)‖𝐋∞(ℝ𝑛) 𝑑 𝜏
)(

𝐾𝑓(𝑡)+𝐶𝑣

(
𝑡, ‖𝑤̃𝑜‖𝐋∞(ℝ𝑛)e𝐾𝑔(𝑡)(𝑡−𝑡𝑜)))

}
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868 COLOMBO and ROSSI

×∫
𝑡

𝑡𝑜

‖𝑤(𝜏) − 𝑤̃(𝜏)‖𝐋1(ℝ𝑛) 𝑑 𝜏, (56)

with

̂1(𝑡, 𝑟) = exp
(
𝐾𝑓(𝑡) (𝑡 − 𝑡𝑜) + 𝑟 (𝑡 − 𝑡𝑜) e𝐾𝑔(𝑡)(𝑡−𝑡𝑜)

(
𝐾𝑓(𝑡) + 𝐾𝑣(𝑡)

))
×

[
1 + (𝑡 − 𝑡𝑜) 𝐶𝑣(𝑡, 𝑟 𝑒

𝐾𝑔(𝑡)(𝑡−𝑡𝑜)) 𝑟 e𝐾𝑔(𝑡)(𝑡−𝑡𝑜)

+ 𝐾𝑓(𝑡) (𝑡 − 𝑡𝑜)

(
1 + 𝑟 +

4 𝐽𝑛

3
√
𝜇
𝑟 𝐾𝑔(𝑡)

√
𝑡 − 𝑡𝑜 e𝐾𝑔(𝑡)(𝑡−𝑡𝑜)

)]
, (57)

̂2(𝑡, 𝑟) = exp
(
𝐾𝑓(𝑡) (𝑡 − 𝑡𝑜)

(
1 + 𝑟 e𝐾𝑔(𝑡)(𝑡−𝑡𝑜)

))
. (58)

The first term in (54) is the 𝐋1-distance between solutions to equations of the type (15) with
different initial data. Since  as defined in Proposition 1 is linear, by Step 1 we obtain

‖𝑤(𝑡) − 𝑤̂(𝑡)‖𝐋1(ℝ𝑛) ≤ ‖𝑤𝑜 − 𝑤̃𝑜‖𝐋1(ℝ𝑛) exp (𝐾𝑔(𝑡)(𝑡 − 𝑡𝑜)). (59)

The second term in (54) is the 𝐋1-distance between solutions to the parabolic equation (15) with
different coefficients in the source term and the same initial datum. Exploiting the computations
in the proof of Step 4, as well (P11) in Corollary 1, we get

‖𝑤̂(𝑡) − 𝑤̃(𝑡)‖𝐋1(ℝ𝑛) ≤ ‖𝑤̃𝑜‖𝐋∞(ℝ𝑛)𝐾𝑔(𝑡) e2𝐾𝑔(𝑡)(𝑡−𝑡𝑜) ∫ 𝑡

𝑡𝑜

‖(𝑢(𝜏) − 𝑢̃(𝜏), 𝑤(𝜏) − 𝑤̃(𝜏))‖ 𝑑 𝜏. (60)
Hence, (55), (56), (59), and (60) yield

‖(𝑢(𝑡), 𝑤(𝑡)) − (𝑢̃(𝑡), 𝑤̃(𝑡))‖ ≤ 1(𝑡, 𝑟) ‖(𝑢𝑜, 𝑤𝑜) − (𝑢̃𝑜, 𝑤̃𝑜)‖
+2(𝑡, 𝑟)∫

𝑡

𝑡𝑜

(‖(𝑢(𝜏) − 𝑢̃(𝜏), 𝑤(𝜏) − 𝑤̃(𝜏))‖) 𝑑 𝜏,
where we set

1(𝑡, 𝑟) = exp
(
max
{
𝐾𝑓(𝑡) (𝑡 − 𝑡𝑜)

(
1 + 𝑟 e𝐾𝑔(𝑡)(𝑡−𝑡𝑜)

)
, e𝐾𝑔(𝑡)(𝑡−𝑡𝑜)

})
,

2(𝑡, 𝑟) = ̂1(𝑡, 𝑟)
(
2 𝑟 + ∫

𝑡

𝑡𝑜

(‖𝑞(𝜏)‖𝐋∞(ℝ𝑛) + TV (𝑞(𝜏)))𝑑 𝜏
)
𝐾𝑣(𝑡)

+̂2(𝑡, 𝑟)
(
𝑟 + ∫

𝑡

𝑡𝑜

‖𝑞(𝜏)‖𝐋∞(ℝ𝑛) 𝑑 𝜏
)(

𝐾𝑓(𝑡) + 𝐶𝑣

(
𝑡, 𝑟 e𝐾𝑔(𝑡)(𝑡−𝑡𝑜)

))
+𝑟 𝐾𝑔(𝑡) e2𝐾𝑔(𝑡)(𝑡−𝑡𝑜).
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An application of Gronwall Lemma yields:

‖(𝑢(𝑡), 𝑤(𝑡)) − (𝑢̃(𝑡), 𝑤̃(𝑡))‖ ≤ ‖(𝑢𝑜, 𝑤𝑜) − (𝑢̃𝑜, 𝑤̃𝑜)‖ ∫
𝑡

𝑡𝑜

1(𝑠, 𝑟) exp

(
∫

𝑡

𝑠

2(𝜏, 𝑟) 𝑑 𝜏

)
𝑑 𝑠,

proving Step 7 with

𝑜(𝑡, 𝑟) = ∫
𝑡

𝑡𝑜

1(𝑠, 𝑟) exp

(
∫

𝑡

𝑠

2(𝜏, 𝑟) 𝑑 𝜏

)
𝑑 𝑠. (61)

Step 8: Given 𝑞, 𝑞 satisfying (𝒒), call (𝑢, 𝑤) and (𝑢̃, 𝑤̃) the solutions to (1) with the same initial
datum (𝑢𝑜, 𝑤𝑜) ∈ +

𝑟 . Then, for all 𝑡 ∈ 𝐼, (7) holds with 𝑞 defined in (64).
Proof of Step 8. Define for (𝑡, 𝑥) ∈ 𝐼 × ℝ𝑛 the functions 𝑎, 𝑎̃, 𝑏, 𝑏̃, 𝑐, 𝑐 as in (51).
The 𝐋1-distance between 𝑤(𝑡) and 𝑤̃(𝑡) can be computed as in (60), leading to

‖𝑤(𝑡) − 𝑤̃(𝑡)‖𝐋1(ℝ𝑛) ≤ ‖𝑤𝑜‖𝐋∞(ℝ𝑛)𝐾𝑔(𝑡) e2𝐾𝑔(𝑡)(𝑡−𝑡𝑜) ∫ 𝑡

𝑡𝑜

‖(𝑢 − 𝑢̃, 𝑤 − 𝑤̃)(𝜏)‖ 𝑑 𝜏. (62)

To compute the 𝐋1-distance between 𝑢(𝑡) and 𝑢̃(𝑡), we exploit (H5) in Proposition 3 and the com-
putations in the proofs of Step 4 and Step 7, to get

‖𝑢(𝑡) − 𝑢̃(𝑡)‖𝐋1(ℝ𝑛)
≤ ̂1(𝑡, 𝑟)

[‖𝑢𝑜‖𝐋∞(ℝ𝑛) + TV (𝑢𝑜)
+∫

𝑡

𝑡𝑜

(
max
{‖𝑞(𝜏)‖𝐋∞(ℝ𝑛), ‖𝑞(𝜏)‖𝐋∞(ℝ𝑛)} +max {TV (𝑞(𝜏)), TV (𝑞(𝜏))}) 𝑑 𝜏

]

×𝐾𝑣(𝑡)∫
𝑡

𝑡𝑜

‖𝑤(𝜏) − 𝑤̃(𝜏)‖𝐋1(ℝ𝑛) 𝑑 𝜏
+̂2(𝑡, 𝑟)

(‖𝑢𝑜‖𝐋∞(ℝ𝑛) + ∫
𝑡

𝑡𝑜

max
{‖𝑞(𝜏)‖𝐋∞(ℝ𝑛), ‖𝑞(𝜏)‖𝐋∞(ℝ𝑛)}𝑑 𝜏

)

×
(
𝐾𝑓(𝑡) + 𝐶𝑣

(
𝑡, ‖𝑤𝑜‖𝐋∞e𝐾𝑔(𝑡)(𝑡−𝑡𝑜)))

×∫
𝑡

𝑡𝑜

‖𝑤𝑖(𝜏) − 𝑤𝑖−1(𝜏)‖𝐋1(ℝ𝑛) 𝑑 𝜏 + ̂2(𝑡, 𝑟) ‖𝑞 − 𝑞‖𝐋1([𝑡𝑜,𝑡]×ℝ𝑛), (63)
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870 COLOMBO and ROSSI

where ̂1(𝑡, 𝑟) and ̂2(𝑡, 𝑟) are as in (57)–(58). Collecting together (62) and (63) and an application
of Gronwall Lemma completes the proof of Step 8 with

𝑞(𝑡, 𝑟) = ̂2(𝑡, 𝑟)∫
𝑡

𝑡𝑜

exp∫
𝑡

𝑠

{
𝑟 𝐾𝑔(𝜏) e2𝐾𝑔(𝜏)(𝜏−𝑡𝑜) + 𝐾𝑣(𝜏) ̂1(𝜏, 𝑟)

[
2 𝑟 (64)

+∫
𝜏

𝑡𝑜

[
max
{‖𝑞(𝜎)‖𝐋∞(ℝ𝑛), ‖𝑞(𝜎)‖𝐋∞(ℝ𝑛)} +max {TV (𝑞(𝜎)), TV (𝑞(𝜎))}] 𝑑 𝜎

]

+̂2(𝜏, 𝑟)
[
𝑟 + ∫

𝜏

𝑡𝑜

max
{‖𝑞(𝜎)‖𝐋∞(ℝ𝑛), ‖𝑞(𝜎)‖𝐋∞(ℝ𝑛)}𝑑 𝜎

]

×
[
𝐾𝑓(𝜏) + 𝐶𝑣

(
𝜏, 𝑟e𝐾𝑔(𝜏)(𝜏−𝑡𝑜)

)]}
𝑑 𝜏 𝑑 𝑠.

■

5 CONCLUSIONS

We introduced a predator–prey model amenable to describe the use of biological strategies in
fighting pests’ growth. Parasitoids–predators hunt for parasites–prey moving toward regions with
high pests’ density. The introduction of parasitoids in the environment is the space- and time-
dependent control parameter. Numerical integrations show the wide differences in pests’ control
outcome, due to different control strategies.
From the analytical point of view,wedealwith amixed systemof hyperbolic–parabolic nonlocal

partial differential equations, whose well-posedness and stability properties are ensured. Thus,
sufficient conditions for the existence of time- and space-dependent optimal controls are at hand,
while necessary conditions are still currently unknown.
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