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Abstract. Effective hospital resource management hinges on established
metrics such as Length of Stay (LOS) and Prolonged Length of Stay
(pLOS). Reducing pLOS is associated with improved patient outcomes
and optimized resource utilization (e.g., bed allocation).
This study investigates several Machine Learning (ML) models for both
LOS and pLOS prediction. We conducted a retrospective study analyz-
ing data from general inpatients discharged between 2022 and 2023 at
a northern Italian hospital. Sixteen regression and twelve classification
algorithms were compared in forecasting LOS as either a continuous or
multi-class variable (1-3 days, 4-10 days, >10 days). Additionally, the
same models were assessed for pLOS prediction (defined as LOS ex-
ceeding 8 days). All models were evaluated using two variants of the
same dataset: one containing only structured data (e.g., demographics
and clinical information), and a second one also containing features ex-
tracted from free-text diagnosis. Ensemble models, leveraging the com-
bined strengths of multiple ML algorithms, demonstrated superior ac-
curacy in predicting both LOS and pLOS compared to single-algorithm
models, particularly when utilizing both structured and unstructured
data extracted from diagnoses.
Integration of ML, particularly ensemble models, has the potential to
significantly improve LOS prediction and identify patients at high risk
of pLOS. Such insights can empower healthcare professionals and bed
managers to optimize patient care and resource allocation, promoting
overall healthcare efficiency and sustainability.

Keywords: LOS · pLOS · Machine Learning · Hospital Admissions ·
Public Healthcare · Sustainability.

1 Introduction

The Italian public healthcare system faces a complex challenge in managing bed
availability. The past few decades have witnessed a 30% reduction in hospital
bed capacity [2], along with a rise in bed occupancy rates, leading to congestion
and extended patient stays. Italy’s current provision of 11.6 beds per 100,000
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inhabitants falls below the OECD average of 16.9 [1]. This situation is further
exacerbated by a significant increase in national health expenditure, rising from
approximately 80 billion euros in 2002 to 129 billion euros in 2022 [12, 13], with
20% allocated to inpatient care.

Managing patient flow has become increasingly problematic due to factors
such as rising patient volumes, an aging population with higher comorbidity
rates, delayed discharges to non-acute care settings, and evolving working prac-
tices (as emphasized by the COVID-19 pandemic). Current bed modeling tech-
niques, often relying on midnight census data, lack the granularity needed for
optimal space management. A more comprehensive understanding of patient flow
dynamics and peak occupancy patterns is essential. In this context, the emer-
gence of Artificial Intelligence (AI) and Machine Learning (ML) offers promising
tools to assist bed managers in their daily operations.

2 Background

Length of Stay (LOS), defined as the duration between hospital admission and
discharge (i.e., total bed-days occupied by a patient), plays a fundamental role
in assessing healthcare service quality. Previous research has demonstrated cor-
relations between LOS and disease severity, readmission rates, and mortality [33,
25]. The reduction of LOS in public healthcare systems benefits both patients
and hospitals: early discharge and faster turnover improve inpatient outcomes by
preventing complications, reducing risk of adverse events (such as falls, throm-
bosis, drug reactions, and hospital-acquired infections) [3, 19], and promoting
patient autonomy [17]; on the other hand, hospitals experience advantages from
optimized treatment strategies, improved resource utilization (e.g., bed alloca-
tion), and better control over waiting lists [28]. Furthermore, LOS holds the
advantage of uniform measurability, making it comparable even across different
healthcare facilities on a global scale [26].

Conversely, Prolonged Length of Stay (pLOS) is associated with functional
limitations, cognitive impairment, and a higher burden of comorbidities among
patients [5]. Moreover, pLOS often results in cancellations of elective surgeries,
increased resource utilization (including raising medical costs, especially in Inten-
sive Care Units, ICUs), and potential delays in admitting critically ill patients.
Notably, a small percentage of patients with pLOS can consume up to 50% of
available resources [14, 36].

This holds particular relevance in Italy, where demographic shifts like increas-
ing life expectancy (80.6 years for men and 84.8 years for women in 2022 [21])
contribute to an escalation in chronic and degenerative diseases. A timely iden-
tification of inpatients with extended stays (often referred to as “bed-blockers”)
is essential for formulating effective treatment plans. Thus, pLOS serves as a key
metric, directly influencing healthcare expenditures and available capacity.

The present study aimed to develop ML-based models for predicting both
LOS and pLOS in general patient populations. Several techniques, including
regression, support vector machine, KNN, random forest, gradient boosting tree,
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neural networks, and ensembles, were compared to identify the most effective
models. Additionally, we investigated the most relevant features for accurate
prediction.

3 Related Works

Over the past two decades, researchers have employed various statistical tech-
niques to investigate LOS and the influence of covariates such as age, gender,
illness severity, diagnosis, and hospital characteristics. More recently, Machine
Learning and Deep Learning (DL) have emerged as promising alternatives to
these established methodologies in healthcare research [4, 15]. Studies explor-
ing LOS patterns exhibits considerable heterogeneity [35, 42], often focusing on
broad patient cohorts [27], specific age ranges [20, 38], explicit discipline ar-
eas [24, 32] and medical specialties [9, 34], surgical procedures [8, 40] and onco-
logical surgeries [16, 23], and individual hospital departments. However, only a
limited portion of the existing literature addresses the specific context of the
Italian public healthcare system.

Trunfio et al. [39] analyzed 2,515 patients undergoing hip-replacement surgery
at the University Hospital of Salerno, Italy. Their analysis revealed that Multiple
Linear Regression yielded the highest performance in predicting LOS (R2 =
0.616), whereas Random Forest and Gradient-Boosted Tree models achieved an
accuracy of 71.76% in predicting LOS as a discrete target (less than 7 days, 7-12
days, over 12 days).

Olivato et al. [31] developed an ML-based system to predict pLOS in COVID-
19 patients admitted to the “Spedali Civili” in Brescia. Their model, trained on
demographic information and laboratory test results from over 6,000 admissions,
attained a ROC-AUC score of 0.76.

Zeleke et al. [41] investigated 12,858 inpatients admitted through the emer-
gency department of an Italian hospital in Bologna. Their Gradient Boosting
classifier achieved an accuracy of 75% in predicting pLOS (defined as any stay
exceeding 6 days), while Ridge and XGBoost regressors were most effective in
forecasting LOS as a continuous outcome, with a prediction error ranging be-
tween 6 and 7 days.

In another Italian study by D’Onofrio et al. [11], the application of Random
Forest achieved a 77.79% accuracy in predicting LOS for 989 patients undergoing
mastectomy surgery at A.O.R.N. “Antonio Cardarelli” in Naples.

Di Matteo et al. [10] implemented an ML-driven system to forecast prolonged
LOS (defined as LOS > 7 days) for hip-/knee-arthroplasty patients at “Human-
itas Research” Hospital in Milan. Leveraging combined clinical and textual data
on 1,517 patients, their model achieved an AUC of 0.789.

While many of these studies focus on specific departments or rely on data par-
tially unavailable at admission (such as lab results), our research addresses this
gap by employing various supervised ML algorithms to predict LOS for general
inpatients using readily available data extracted from a medico-administrative
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platform. We analyzed LOS as a continuous, multi-class, and dichotomous vari-
able, encompassing all medical-surgical departments with the purpose of devel-
oping robust and adaptable models for effective generalization. This approach
mirrors real-world scenarios where patients may be relocated to alternate wards
(often regardless of their primary service) when a department reaches full capac-
ity. Evaluating all medical units collectively provides greater consistency. Addi-
tionally, focusing on admission data ensures immediate implementation across
diverse hospital settings.

4 Materials and Methods

4.1 Data Selection and Inclusion Criteria

This study was conducted at a general hospital located in Emilia-Romagna, Italy.
The “Ospedale di Sassuolo SpA”, guided by principles of intensity care, comprises
19 clinical units. We analyzed a dataset of 12,471 hospitalizations from 10,145
unique patients discharged between February 2022 and November 2023. All pa-
tients had a minimum stay of 24 hours. Data were extracted from the hospital’s
EBMS (Electronic Bed Management System), which included information on pa-
tient demographics, admission type, clinical features, and hospitalization details.
A summary of patient characteristics is provided in Table 1.

To minimize potential biases in model performance, patients undergoing Day
Surgery or Day Hospital procedures were excluded due to their predetermined
LOS of one day. Additionally, to ensure data integrity, we also excluded patients
deceased during hospitalization, inpatients with stays exceeding the 99.95th per-
centile of the LOS distribution (outliers), and maternity/infancy wards due to
their distinct clinical characteristics and potential data collection biases.

We further expanded the initial dataset by integrating historical informa-
tion regarding each patient’s prior hospitalizations, including: the number of
previous admissions in the last 12 months (particularly those requiring ICUs
or high-intensity care levels), the average and total length of stay during previ-
ous hospitalizations, and the average LOS for all patients admitted within the
same service as the current hospitalization in the preceding 30 days (in order to
capture any trends for a given department).

4.2 Models Development

The research employed two variants of the available dataset. Dataset A con-
tained only structured data, including demographics, clinical information, and
admission details. Conversely, dataset B included additional features derived
from unstructured free-text diagnoses documented by healthcare practitioners.

Initially, fourteen regression algorithms were implemented to predict LOS as
a continuous variable. Performance evaluation metrics included mean absolute
error (MAE), root mean squared error (RMSE), R-squared (R2), and adjusted
R-squared scores. Additionally, ten classification methods were employed to pre-
dict LOS as a multi-class target (1-3 days, 4-10 days, >10 days). Evaluation
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Table 1. Patient characteristics.

# Feature Total Type

Patient demographics
1 Seniority (age divided into 10-years groups) 12471 Categorical
2 Gender (M/F) 12471 Categorical
3 From outer province? (Y/N) 12471 Boolean
4 From outer administrative district? (Y/N) 12471 Boolean

Information from current admission
5 Admission month (1-12) 12471 Categorical
6 Admission day of week (1-7) 12471 Categorical
7 Admission on weekend (Y/N) 12471 Boolean
8 Admission on working day (Y/N) 12471 Boolean
9 Admission hour of day (0-23) 12471 Categorical
10 Admission on night-time? (Y/N) 12471 Boolean
11 Admission from outer facility? (Y/N) 12471 Boolean
12 Intensity care (L/M/H) 12471 Categorical
13 Admission from ER? (Y/N) 12471 Boolean
14 Short-Stay Observation (SSO)? (Y/N) 12471 Boolean
15 Single room? (Y/N) 12471 Boolean
16 Bed type 12471 Categorical

Clinical information
17 Terminal patient (End-of-Life)? (Y/N) 12471 Boolean
18 Bedridden patient? (Y/N) 12471 Boolean
19 Multidimensional geriatric assessment requested? (Y/N) 12471 Boolean
20 Integrated Home Care requested? (Y/N) 12471 Boolean
21 Isolation required? (Y/N) 12471 Boolean
22 COVID-19 isolation? (Y/N) 12471 Boolean
23 Contact isolation? (Y/N) 12471 Boolean
24 Structural isolation? (Y/N) 12471 Boolean
25 Other type of isolation? (Y/N) 12471 Boolean
26 Diagnosis (text) 12471 Text

Information from current hospitalization
27 Hospitalization area 12471 Categorical
28 Hospitalization area type 12471 Categorical
29 Specialty (service) 12471 Categorical
30 Recent transfers count 12471 Numeric
31 Past transfers count 12471 Numeric
32 Movements count 12471 Numeric
33 ICU movements count 12471 Numeric

Information from previous hospitalizations
34 Patient prev. hospitalizations count (prior 12 mo.) 12471 Numeric
35 Patient prev. ICU hospitalizations count (prior 12 mo.) 12471 Numeric
36 Patient prev. hosp. with high-intensity care count (prior 12 mo.) 12471 Numeric
37 Patient prev. hospitalizations average LOS (prior 12 mo.) 12471 Numeric
38 Patient prev. hospitalizations total LOS (prior 12 mo.) 12471 Numeric
39 Specialty prev. hospitalizations average LOS (prior 1 mo.) 12471 Numeric

metrics for classification encompassed accuracy, precision, recall, F1-score, and
area under the receiver operating characteristic curve (AUROC). The same ten
classifiers were also used to predict pLOS, defined as any hospitalization exceed-
ing eight days, corresponding to the 75th percentile.

To extract features from diagnoses, a text cleaning process was implemented,
involving the removal of stop words and irrelevant or non-domain-specific terms.
A pre-trained BERT base model was then employed to tokenize the text and
generate embeddings. Subsequently, a data preprocessing pipeline was applied
to normalize all numerical variables using a StandardScaler and to one-hot en-
code categorical features. This step ensured all features were on a comparable
scale and that categorical features were numerically represented. Furthermore,
principal component analysis (PCA) was applied to embeddings from dataset B
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to reduce the dimensionality of the data to 100 components, thereby mitigating
computational complexity.

Each dataset was randomly partitioned into a training set comprising 80% of
the admissions (9,976) and a holdout/validation set encompassing the remaining
20% (2,495 admissions), using stratified sampling. A five-fold cross-validation
approach was employed for each task to compare algorithms and isolate the top
performers. Hyperparameter tuning was then conducted for each selected model.
Finally, performance was assessed on the independent test set.

Moreover, Voting and Stacking ensemble methods were added in the final
evaluation. These methods aggregate predictions from multiple base models (us-
ing voting and stacking aggregation techniques, respectively) to improve overall
accuracy and reduce model bias.
Classification Models. According to the Italian Ministry of Health [18], the
national average LOS for acute care in 2020 was 7.5 days. In Emilia-Romagna,
the region in which the hospital subject of this study is located, the average LOS
for acute care in 2020 was 7.6 days, closely aligned with national data. Guided
by these benchmarks and the requirements of the hospital under investigation,
it was decided to split LOS into three distinct groups:
– Group 1: LOS ≤ 3 days (5,830 hospitalizations)
– Group 2: 4 ≤ LOS ≤ 10 days (4,445 hospitalizations)
– Group 3: LOS > 10 days (2,196 hospitalizations)

Furthermore, the chosen thresholds ensured a roughly even distribution of obser-
vations across groups. As a result, no data-balancing techniques were employed.

Binary Classification Models. Consistent with national trends, this study
adopted an 8-day threshold to classify hospitalizations as either “short” or “pro-
longed”. Instances of LOS falling within the range of 1 to 8 days accounted for
9,578 hospitalizations, while prolonged LOS (>8 days) represented 2,893 ad-
missions (23.2% of all hospitalizations). Elderly age groups (70-79 years, 80-89
years, and 90-99 years) experienced longer LOS compared to younger cohorts,
corresponding to 28%, 37%, and 12% of all prolonged stays, respectively. The
majority of cases were observed in general medicine wards (39%) and long-term
care (16%). Additionally, 67.3% of bed-blockers required medium-intensity care,
while 26.3% and 6.4% required low- and high-intensity care, respectively.

The prevalence of nearly three times more instances of class 0 (“short” LOS)
compared to class 1 (“prolonged” LOS) poses a potential challenge, as the model
might overfit to the majority class (class 0) and struggle to accurately identify the
minority class (class 1). To address this imbalance, we employed techniques like
SMOTE and ADASYN to generate synthetic minority class instances, aiming to
enhance model performance. However, these methods did not yield significant
performance improvements on our dataset. This suggests that ensemble methods,
which combine predictions from multiple learners, might be more effective for
handling class imbalance, particularly for metrics beyond accuracy.

To maintain methodological coherence, the pLOS prediction task leveraged
the same battery of classifiers and evaluation metrics employed for the multi-
class LOS task.
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Table 2. Results of tuned models on datasets A and B (regression task).

Dataset A Dataset B

Model MAE ↓ RMSE ↓ R2 ↑ Ad. R2 ↑ MAE ↓ RMSE ↓ R2 ↑ Ad. R2 ↑

Stacking Regressor 2.806 4.614 0.635 0.633 2.705 4.622 0.633 0.632
Voting Regressor 2.824 4.617 0.634 0.633 2.722 4.537 0.647 0.645
XGB Regressor 2.844 4.634 0.632 0.630 2.776 4.585 0.639 0.638
CatBoost Regressor 2.831 4.639 0.631 0.629 2.726 4.520 0.649 0.648
Linear Regression 2.976 4.692 0.622 0.621 2.911 4.622 0.633 0.632
Ridge 2.963 4.706 0.620 0.618 2.862 4.620 0.634 0.632
GB Regressor 2.946 4.723 0.617 0.616 2.923 4.739 0.615 0.613
LGBM Regressor 2.903 4.770 0.609 0.608 2.756 4.616 0.634 0.633
Elastic-net 2.995 4.776 0.609 0.607 2.887 4.679 0.624 0.623
SVR 2.883 4.784 0.607 0.606 2.792 4.694 0.622 0.620
Lasso 3.051 4.867 0.594 0.592 3.004 4.811 0.603 0.601
RF Regressor 2.968 4.903 0.588 0.586 2.843 4.787 0.607 0.605
KNN Regressor 2.989 5.012 0.569 0.567 2.868 4.957 0.578 0.577
AdaBoost Regressor 3.601 5.275 0.522 0.521 3.576 5.285 0.521 0.519
MLP Regressor 3.298 5.587 0.464 0.462 3.090 5.350 0.509 0.507
DT Regressor 3.882 6.617 0.249 0.246 3.757 6.604 0.252 0.249

5 Results

5.1 Regression Models

Among the sixteen regressors evaluated for predicting LOS as a continuous
variable on dataset A (Table 2), the ensemble StackingRegressor achieved the
strongest performance (MAE 2.81, R2 score 0.635), followed by VotingRegressor
and XGBRegressor. When considering dataset B, which incorporated unstruc-
tured data, CatBoostRegressor emerged as the superior model (MAE 2.73, R2
score 0.649), followed closely by VotingRegressor and XGBRegressor.

The integration of embedded representations derived from free-text diag-
noses resulted in a measurable, albeit slight, performance enhancement across
all models. This improvement can be ascribed, at least partially, to the ability
of embeddings to encapsulate the semantic meaning of diagnoses, a task that
is challenging to accomplish solely through conventional structured features. In
addition, embeddings offer the advantage of modeling the relationships among
diverse diagnoses, which becomes particularly valuable in the presence of co-
morbidities. Importantly, including the admitting diagnosis does not introduce
bias or confound the study endpoint (e.g., data leakage) as this information is
inherently available at the time of hospitalization.

5.2 Classification Models

Among the classifiers employed to forecast LOS on dataset A, VotingClassifier-
Soft exhibited superior performance (accuracy 73.55%, F1-score 73.25%, AU-
ROC 87.94%). The StackingClassifier and CatBoostClassifier trailed closely be-
hind. As for dataset B, VotingClassifierSoft again emerged as the top performer
(accuracy 76.27%, F1-score 75.96%, AUROC 89.60%), followed by CatBoost-
Classifier and StackingClassifier. Consistent with the findings from the regres-
sion analysis, the employment of embeddings derived from diagnoses yielded a
modest improvement in performance (Table 3).
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Table 3. Results of tuned models on datasets A and B (multi-class classification task).

Dataset A Dataset B

Model Acc. ↑ F1 ↑ A.ROC ↑ A.PRC ↑ Acc. ↑ F1 ↑ A.ROC ↑ A.PRC ↑

Voting Soft 0.735 0.732 0.879 0.777 0.763 0.760 0.896 0.794
Stacking 0.732 0.730 0.879 0.774 0.763 0.761 0.893 0.789
CatBoost 0.733 0.729 0.878 0.776 0.758 0.754 0.894 0.788
XGB 0.728 0.724 0.875 0.775 0.762 0.760 0.892 0.789
RF 0.730 0.728 0.873 0.767 0.750 0.745 0.886 0.778
GB 0.729 0.726 0.872 0.764 0.760 0.757 0.890 0.783
LGBM 0.724 0.722 0.870 0.760 0.748 0.745 0.887 0.778
Log. Regression 0.730 0.727 0.864 0.750 0.740 0.737 0.883 0.773
KNN 0.702 0.697 0.847 0.726 0.718 0.710 0.862 0.733
MLP 0.678 0.679 0.827 0.707 0.719 0.717 0.852 0.729
AdaBoost 0.710 0.707 0.787 0.651 0.738 0.737 0.817 0.677
DT 0.654 0.652 0.724 0.519 0.655 0.655 0.720 0.513

The feature importance analysis conducted using CatBoost on dataset A
(Figure 1) revealed several key factors affecting length of stay. Ranked in de-
scending order of importance, the most significant features include: the overall
average length of stay for same-service hospitalizations within the previous 30
days (ba_specialty_prev_hosp_avg_los); the number of recent transfers across
wards (ba_recent_transfers_count), possibly indicative of increasing medical
complexity (i.e. patients needing specialized units); the surgery hospitalization
area (b_hosp_area_G); the number of bed movements during hospitalization
(ba_movements_count), including those within the same ward; low-intensity
care level (ba_intenscare_L), suggesting the idea that stays associated with
critical conditions tend to be shorter due to a focus on stabilizing the patient’s
condition; age in range 80-89 years (p_age_range_80-89 ), implying a higher
risk of prolonged stays for elderly inpatients, possibly due to age-related vul-
nerabilities or comorbidities; the average LOS for same-patient hospitalizations
in the prior year (ba_patient_prev_hosp_avg_los); and the need for a multidi-
mensional geriatric assessment (cs_is_uvm_req), typically associated with frail
individuals and elderly.

Fig. 1. Feature Importance for CatBoostClassifier on dataset A (multi-class classifica-
tion task).
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Fig. 2. Feature Importance for CatBoostClassifier on dataset B (multi-class classifica-
tion task).

Interestingly, upon applying the same analysis to dataset B, PCA components
—derived from diagnosis text embeddings— started to emerge as significant fea-
tures (Figure 2). Although PCA offers a valuable tool for mitigating the curse
of dimensionality, it can also lead to a less interpretable model. This limitation
arises from the transformation of the original features into a new set of lin-
early combined variables, making it challenging to directly map the transformed
representation back to the original interpretable elements.

5.3 Binary Classification Models

In line with the multi-class classification task, AUROC and AUPRC (Area Un-
der the Precision-Recall Curve) served as the primary evaluation metrics for
the binary classification models. Ranging from 0 to 1, AUROC effectively cap-
tures the trade-off between true and false positives across all possible thresholds.
Conversely, AUPRC prioritizes the identification of positive samples, making it
particularly advantageous in scenarios involving imbalanced datasets.

LogisticRegression provided the most accurate predictions for prolonged length
of stay in dataset A (accuracy 86.61%, F1-score 64.62%, AUROC 90.54%), fol-
lowed by VotingClassifierSoft and CatBoostClassifier. On the other hand, when
analyzing dataset B, VotingClassifierSoft (accuracy 86.53%, F1-score 64.48%,
AUROC 91.67%), CatBoostClassifier, and StackingClassifier demonstrated su-
perior predictive capabilities for pLOS (Table 4).

Additionally, we assessed the alignment between predicted and actual pLOS
risks using calibration curves for the three best-performing models (Figure 3).

In binary classification with probabilistic outputs, calibration curves offer a
visual assessment of predicted probabilities compared to true class frequencies.
An ideal model would exhibit a diagonal calibration curve, signifying perfect
concordance between predicted and observed probabilities. This facilitates criti-
cal evaluation of model reliability, enabling selection of models with trustworthy
estimates for informed decision-making.



10 P. Perliti Scorzoni et al.

Table 4. Results of tuned models on datasets A and B (binary classification task).

Dataset A Dataset B

Model Acc. ↑ F1 ↑ A.ROC ↑ A.PRC ↑ Acc. ↑ F1 ↑ A.ROC ↑ A.PRC ↑

Log. Regression 0.866 0.646 0.905 0.794 0.866 0.654 0.911 0.798
Voting Soft 0.863 0.636 0.905 0.789 0.865 0.645 0.917 0.808
CatBoost 0.867 0.654 0.903 0.785 0.867 0.654 0.912 0.799
Stacking 0.867 0.654 0.903 0.785 0.867 0.654 0.912 0.799
GB 0.861 0.636 0.901 0.782 0.863 0.650 0.908 0.793
LGBM 0.861 0.642 0.898 0.777 0.862 0.642 0.907 0.791
AdaBoost 0.862 0.642 0.896 0.778 0.853 0.634 0.888 0.769
RF 0.863 0.635 0.893 0.777 0.857 0.584 0.904 0.788
XGB 0.842 0.606 0.884 0.751 0.862 0.655 0.901 0.785
KNN 0.848 0.545 0.884 0.743 0.862 0.516 0.874 0.726
MLP 0.827 0.618 0.867 0.733 0.862 0.625 0.874 0.745
DT 0.799 0.569 0.719 0.423 0.862 0.558 0.713 0.412

Fig. 3. AUROC and calibration plot for LogisticRegression, VotingClassifierSoft and
CatBoostClassifier on dataset A (binary classification task).

Fig. 4. AUROC and calibration plot for CatBoostClassifier on dataset B.
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In dataset A, both VotingClassifierSoft and CatBoostClassifier proved well-
calibrated, with points on their calibration plots clustering closely around the
ideal diagonal line. However, VotingClassifierSoft revealed a propensity to overes-
timate the probabilities of pLOS in high-risk patients, while CatBoost exhibited
a slight underestimation bias. When considering dataset B, CatBoost showed a
reduced tendency to underestimate the likelihood of pLOS in high-risk inpatients
(Figure 4).

6 Discussion

While prior research has demonstrated success in applying machine learning
to predict LOS for distinct patient cohorts, such heart failure treatments [37],
stroke interventions [6], and cesarean sections [29], this area remains relatively
unexplored for the broader, heterogeneous inpatient population. Fragmented,
problem-specific models necessitate intensive maintenance, hindering scalability
and sustainability, especially in resource-constrained public health systems where
patient focus is primary. The present work addresses this gap by targeting a wider
spectrum of diagnoses and conditions. By avoiding the limitations inherent in
single-ward studies (e.g., ICU [15, 24]), which may be constrained by internal
dynamics, our methodology achieved encouraging generalizability for real-world
implementation.

Our findings support existing evidence that ensemble models consistently
outperform individual algorithms in specific tasks [30]. Through the aggrega-
tion of multiple base learners, ensemble models effectively mitigate biases and
improve overall predictive capability. Specifically, tree-based ensemble models
allow for converting complex models into transparent decision rules. By em-
ploying tools such as SHAP Values, Partial Dependence Plots, and Individual
Conditional Expectation Plots, practitioners can gain a deeper understanding
of the model’s decision-making process, which is pivotal for the acceptance and
the adoption of ML-driven systems in clinical settings.

The comparative analysis of different variations of the same data source
proved the instrumental role of integrating text extracted from diagnoses in
capturing subtle nuances not represented in structured data alone. This is par-
ticularly relevant to leveraging the expertise of medical staff and the outcomes
derived from physical examinations. Our results align with prior investigations
[7, 22], which have demonstrated that text-derived features may enhance predic-
tive performance.

A further analysis identified factors significantly associated with prolonged
stays, including the average LOS for previous admissions in the same service
and the number of transfers within the current hospitalization. Additionally,
when incorporating text from diagnosis, the need for a multidimensional geriatric
assessment emerged as another key indicator for identifying patients at high risk
of pLOS. These findings underscore the potential of machine learning to identify
clinically relevant predictors of LOS and pLOS, potentially informing patient
management and resource allocation strategies.
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Lastly, our models leverage readily available data from institutional Elec-
tronic Health Records (EHRs), collected within the first 24 hours of hospitaliza-
tion, enabling bed managers to promptly utilize them as decision-making aids
upon patient admission.

Despite its strengths, our study is not without limitations. First, its ret-
rospective design using historical data, may introduce potential selection bias.
Second, a trade-off exists between model generalizability and potential accu-
racy gains due to the exclusion of vital signs and laboratory results in favor
of readily available data. While incorporating this information could improve
accuracy, its delayed availability and inconsistent collection across departments
(e.g., long-term care, rehabilitation) would also limit the model’s transferabil-
ity in healthcare settings with less comprehensive EHR data gathering. Addi-
tionally, although clinical parameters are essential for patient monitoring, their
direct influence on long-term outcomes like prolonged LOS (measured in days)
might be less pronounced. Our study intentionally opted for features available
at admission to enable early prediction and resource allocation, prioritizing real-
world applicability. Nonetheless, future efforts will focus on incorporating more
granular clinical data as they become available during a patient’s stay, to evalu-
ate their impact on model performance. Finally, the monocentric nature of the
study, relying on data from a single hospital, restricts external validation. In
future work, we plan to consider datasets from seven additional Italian hospi-
tals, enabling a more compelling assessment of generalizability across different
environments. However, we posit that striving for absolute generalizability may
not be the most effective strategy. Given documented influences of structural,
organizational, and administrative factors on LOS, a tailored approach might
prove more valuable, acknowledging healthcare system diversity while providing
an adaptable framework for LOS prediction within individual hospitals.

7 Conclusions

This study provides robust evidence that ensemble-based prediction models out-
perform traditional techniques in forecasting LOS and identifying general inpa-
tients at high risk of prolonged LOS across diverse services and wards. Our core
methodology’s reliance on readily available EHR data, coupled with algorithms
that do not necessitate resource-intensive procedures or specialized hardware,
promotes its potential integration into various healthcare settings and workflows,
serving as a second-opinion tool to support both medical staff and healthcare
management in their daily tasks.

A notable achievement was the preliminary embedding of our inference model
into the EBMS employed at Ospedale di Sassuolo. By leveraging a combination
of RESTful APIs and HL7 messaging, this integration significantly enhanced the
user experience for bed managers involved in the experimental phase. Beside pro-
viding a comprehensive visual representation of bed occupancy and availability
across departments, the augmented version of the system now delivers predic-
tive insights into expected LOS for each patient, particularly those at high risk
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of prolonged hospitalization. Early identification of such patients allows health-
care providers to proactively implement targeted interventions, including closer
monitoring and timely discharge planning, potentially mitigating the incidence
of protracted stays. This preemptive approach can contribute to smoother pa-
tient flow, increased bed availability, a lower rate of rescheduled interventions,
improved patient satisfaction, and, ultimately, reduced overall healthcare expen-
ditures. These results emphasize the priority for hospitals to embrace adaptation
and innovation to meet the demands of an aging population with chronic condi-
tions, while containing costs and optimizing resources to ensure the sustainability
of public healthcare for future generations.
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