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Abstract: Streptococcus agalactiae (group B streptococci, GBS) is responsible for severe infections in
both neonates and adults. Currently, empiric antimicrobial therapy for sepsis and meningitis is
the combined use of penicillin and gentamicin due to the enhanced bactericidal activity. However,
high-level gentamicin resistance (HLGR) abrogates the synergism. The rate of HLGR was investigated
within a dataset of 433 GBS strains collected from cases of invasive disease in both adults and neonates
as well as from pregnant carriers. GBS isolates (n = 20, 4.6%) presented with HLGR (gentamicin MIC
breakpoint >1024 mg/L) that was differently diffused between strains from adults or neonates (5.2%
vs. 2.8%). Notably, 70% of HLGR GBS strains (14 isolates) were serotype IV. Serotype IV HLGR-GBS
isolates were susceptible to all antibiotics tested, exhibited the alpha-C/HvgA/PI-2b virulence string,
and belonged to sequence type 1010 (clonal complex (CC) 452). The mobile element that harbored
the HLGR aac(6′)-aph(2)′′ gene is a novel integrative and conjugative element (ICE) about 45 kb long,
derived from GBS 515 ICE tRNALys. The clonal expansion of this HLGR hypervirulent serotype IV
GBS CC452 sublineage may pose a threat to the management of infections caused by this strain type.

Keywords: Streptococcus agalactiae; GBS; high-level gentamicin resistance (HLGR); ST1010; serotype
IV; CC452; mobile genetic element

1. Introduction

Streptococcus agalactiae, also named group B streptococcus (GBS), is a major bacterial
cause of neonatal infections causing early-onset disease (from birth to six days of age; EOD)
and late-onset disease (7–89 days; LOD), such as sepsis and meningitis [1,2]. Intrapartum
antibiotic prophylaxis (IAP) with beta lactam antibiotics in women colonized with GBS at
the vaginal/rectal site has dramatically reduced the burden of EOD [3]. GBS has also been
associated with increased rates of invasive and non-invasive infections in adults, especially
in elderly patients or in patients with underlying conditions [4].

Ten structurally and antigenically distinct capsular GBS polysaccharides (types Ia, Ib,
and II to IX) have been described [5]. All serotypes can cause invasive infections; however,
six serotypes (Ia, Ib, II, III, IV, and V) account for most of the disease in neonates, infants
and adults [1,6].
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Antimicrobial resistance in GBS has been reported mainly to tetracycline, erythromycin,
and clindamycin, with an increased rate of erythromycin and clindamycin resistance
described worldwide [4,7]. Indeed, GBS isolates with reduced or non-susceptibility to
β-lactams have also been occasionally reported from invasive and non-invasive infections,
associated with mutations in the pbp2x gene [8–12]. Penicillin-allergic patients are often
treated with clindamycin or vancomycin [13]. Multidrug resistance in GBS is increasingly
reported, mainly due to the emergence of a sublineage of clonal complex 17 (CC17) [14].
Emerging antimicrobial resistance, the need for more feasible prevention strategies for
low-income settings, and the potential for primary prevention among high-risk adults,
have encouraged studies into GBS vaccine development [1,4]. A hexavalent (Ia, Ib, II, III, IV,
and V) conjugate vaccine is currently in clinical trials [15,16]. A protein vaccine, constituted
by GBS surface adhesins, is also under development [17].

Currently, the empiric antimicrobial therapy for sepsis and meningitis is the com-
bined use of penicillin (or ampicillin) and gentamicin [18]. The bactericidal synergism
is ineffective in the case of high-level gentamicin resistance (HLGR), due to acquired
aminoglycoside-modifying enzymes. GBS is intrinsically resistant to low-level gentamicin,
and surveillance screening schemes usually do not include gentamicin or other aminoglyco-
side susceptibility testing because no recommendations or breakpoints for testing HLGR are
present in the guidelines issued by the Clinical and Laboratory Standards Institute [19] or
the European Committee on Antimicrobial Susceptibility Testing (http://www.eucast.org,
accessed on 6 May 2024). The prevalence of HLGR in GBS is, therefore, unknown.

Recently, we retrospectively analyzed GBS isolated from different sources over a 2-year
period (2019–2021) and found that 11 out of 89 GBS strains (12.3%) exhibited a gentamicin
MIC breakpoint ≥ 1000 mg/L [20]. These results were confirmed by verifying the presence
of an intact aac(6′)-Ie-aph(2′′)-Ia gene [20]. Then, HLGR among GBS may emerge as a
potential problem and threaten an effective therapy.

Many surface proteins contribute to GBS virulence and are used for virulence profiling,
such as the alpha-like protein (Alp) family (Alpha-C, Epsilon, Rib, Alp2/3, Alp4), pili
structures (different assemblies of pilus pathogenic islands 1, 2a, 2b), and the hypervirulent
adhesin HvgA, responsible for meningeal tropism [21–24].

The aim of this study was to estimate the frequency of high-level gentamicin resistance
as well as susceptibility to other antibiotics in a larger collection of GBS strains isolated both
from invasive infections in adults, newborns, and infants, and from colonized pregnant
women. HLGR GBS isolates were further analyzed both phenotypically and genotypi-
cally to evaluate their serotype, pili content, surface protein genes, hypervirulent adhesin
hvgA gene.

This investigation revealed the emergence of a serotype IV lineage in which HLGR is
contained in a new genetic element.

2. Results
2.1. Antibiotic Susceptibility

Twenty GBS strains (4.6%) presented HLGR with a gentamicin MIC breakpoint > 1024 mg/L.
The resistance was more diffused among adult than neonatal strains (adult invasive strains:
6 HLGR isolates (5.4%); pregnant carrier women: 11 HGLR isolates (5.1%); neonates: 3
HLGR isolates (2.9%)).

Notably, fourteen out of twenty HLGR GBS strains (70%) were serotype IV (four adult
invasive isolates, one neonatal invasive isolate, and nine from carriage). The remaining
HLGR-GBS were serotype V (three isolates, one from adult disease and two from carriage),
serotype III (two neonatal invasive isolates), and serotype Ib (one adult invasive isolate) as
shown in Table 1.

http://www.eucast.org
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Table 1. ID strain, strain type, year of isolation, serotype, antimicrobial susceptibility testing results, macrolide and tetracycline resistance genotype and phenotype
of 20 HLGR-GBS a isolates included in this study.

ID Strain Type Year st
CLI ERY TET CHL LZD LVX PEN G VAN TEC Macrolide R

Genotype/Phenotype
TET R

GenotypeMIC (mg/L), Category (S, I, R)

9543 A-invD 2016 Ib >0.5, R >0.5, R >4, R ≤2, S 1, S 1, I 0.06, S ≤0.5, S ≤1, S erm(B)/cMLSB tet(O)
9646 N-invD 2016 III 0.06, S ≤0.06, S >4, R ≤2, S 1, S ≤0.5, I ≤0.03, S ≤0.5, S ≤1, S - tet(M)
9716 N-invD 2016 III 0.125, S ≤0.06, S >4, R ≤2, S 1, S 1, I ≤0.03, S ≤0.5, S ≤1, S - tet(M)
9834 A-invD 2018 IV 0.06, S ≤0.06, S ≤0.5, S ≤2, S 1, S ≤0.5, I ≤0.03, S ≤0.5, S ≤1, S - -
9879 A-invD 2019 IV 0.06, S ≤0.06, S ≤0.5, S ≤2, S 1, S ≤0.5, I 0.06, S ≤0.5, S ≤1, S - -
9907 A-invD 2019 IV 0.06, S ≤0.06, S ≤0.5, S ≤2, S 1, S ≤0.5, I 0.06, S ≤0.5, S ≤1, S - -
9912 A-invD 2019 IV 0.06, S ≤0.06, S ≤0.5, S ≤2, S 1, S ≤0.5, I 0.06, S ≤0.5, S ≤1, S - -
9931 N-invD 2021 IV 0.06, S ≤0.06, S ≤0.5, S ≤2, S 1, S ≤0.5, I 0.06, S ≤0.5, S ≤1, S - -

10027 A-carr 2020 IV 0.06, S ≤0.06, S ≤0.5, S ≤2, S 1, S ≤0.5, I 0.06, S ≤0.5, S ≤1, S - -
10042 A-carr 2020 IV 0.06, S ≤0.06, S ≤0.5, S ≤2, S 1, S ≤0.5, I 0.06, S ≤0.5, S ≤1, S - -
10051 A-carr 2020 IV 0.06, S ≤0.06, S ≤0.5, S ≤2, S 1, S ≤0.5, I 0.06, S ≤0.5, S ≤1, S - -
10066 A-carr 2020 IV 0.06, S ≤0.06, S ≤0.5, S ≤2, S 1, S ≤0.5, I 0.06, S ≤0.5, S ≤1, S - -
10220 A-carr 2020 IV 0.06, S ≤0.06, S ≤0.5, S ≤2, S 1, S ≤0.5, I 0.06, S ≤0.5, S ≤1, S - -
10239 A-carr 2020 IV 0.06, S ≤0.06, S ≤0.5, S ≤2, S 1, S ≤0.5, I 0.06, S ≤0.5, S ≤1, S - -
10251 A-carr 2020 IV 0.06, S ≤0.06, S ≤0.5, S ≤2, S 1, S ≤0.5, I 0.06, S ≤0.5, S ≤1, S - -
10272 A-carr 2020 IV 0.06, S ≤0.06, S ≤0.5, S ≤2, S 1, S ≤0.5, I 0.06, S ≤0.5, S ≤1, S - -
10273 A-carr 2020 IV 0.06, S ≤0.06, S ≤0.5, S ≤2, S 1, S ≤0.5, I 0.06, S ≤0.5, S ≤1, S - -
9714 A-inv 2016 V 0.06, S 0.125, S >4, R ≤2, S 1, S >4, R ≤0.03, S ≤0.5, S ≤1, S - tet(M)
9976 A-carr 2020 V >0.5, R >0.5, R >4, R ≤2, S 1, S >4, R ≤0.03, S ≤0.5, S ≤1, S erm(A)/iMLSB tet(M)
10039 A-carr 2020 V 0.06, S >0.5, R >4, R ≤2, S 1, S >4, R ≤0.03, S ≤0.5, S ≤1, S erm(A)/iMLSB tet(M)

A-invD: adult invasive disease; N-invD: neonatal invasive disease; A-carr: pregnant women carriage; st: serotype; CLI: clindamycin; ERY: erythromycin; TET: tetracycline;
CHL: chloramphenicol; LZD: linezolid; LVX: levofloxacin; PEN G: penicillin G; VAN: vancomycin; TEC: teicoplanin. S: susceptible standard dose; I: susceptible, increased dose;
R: resistant (EUCAST recommendations). a Clinical isolates of GBS tested for susceptibility to gentamicin are considered HLGR-GBS with a gentamicin MIC value ≥ 512 mg/L, or
diameter size < 8 mm using 120 µg disk of gentamicin [20].
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A panel of nine antibiotic sensitivity tests revealed that all 20 HLGR isolates were
susceptible to benzylpenicillin, vancomycin, teicoplanin, chloramphenicol, and linezolid.
The serotype IV HLGR-GBS isolates also demonstrated susceptibility to the remaining an-
tibiotics tested; the other non-serotype IV HLGR-GBS strains exhibited multidrug resistance
(MDR). In particular, serotype V HGLR-GBS isolates were resistant to both levofloxacin
and tetracycline, with two of them also showing resistance to erythromycin and clin-
damycin. The only serotype Ib GBS strain was resistant to erythromycin, clindamycin, and
tetracycline. Additionally, the two serotype III strains showed resistance to tetracycline.

Tetracycline resistance was mediated by the tet(M) genetic determinant in all resistant
strains except in serotype Ib, which carried the tet(O) gene. Macrolide resistance was
conferred by the erm(B) gene in all three strains that exhibited it. Notably, in the Ib serotype,
the erm(B) gene was constitutively expressed, whereas in serotype V, it was inducible.

2.2. Virulence Factors and Clonality

PCR screening on the presence of GBS alpha-C (bca) and alpha-like (epsilon, rib, alp2/alp3)
surface protein genes, of the pili islands PI-1, PI-2a, and PI-2b, and of the presence of hvgA
gene in HLGR GBS isolates is reported in Table 2.

Table 2. Serotype, source and year of isolation, surface Alp proteins, hvgA, pili islands (PI), sequence
type (ST), and Clonal Complex (CC) of the 20 HLGR-GBS isolates.

Serotype Year (n) Surface Proteins Genes (n) hvgA Gene (n) PI (n) ST (n) CC

IV

2018 (1 A-invD); 2019
(3 A-invD); 2020 (9
A-carr); 2021
(N-invD)

alpha-C (14) Positive (14) PI-2b (14) 1010 (14) 452

V 2016 (1 A-invD), 2020
(2 A-carr) alp1 (3) Negative (3) PI-1 + 2a (3) 19 (3) 19

III 2016 (2 N-invD) rib (2) Positive (2) PI-1 + 2b (2) 17 (2) 17
Ib 2016 (1 A-invD) alpha-C Negative PI-2a 12 12

Each serotype exhibited distinct surface protein antigens and pilus island gene combi-
nations. Specifically, serotype IV isolates were characterized by the presence of alpha-C and
PI-2b genes; serotype V was associated with the combination of PI-1 + PI2a and alp1 genes;
serotype III strains exclusively harbored rib and PI-1 + 2b genes; serotype Ib presented PI-2a
and alpha-C genes. Additionally, the hvgA gene was detected in all HLGR serotype IV and
III isolates.

All 14 serotype IV isolates constituted a single CC, featuring sequence type (ST) 1010,
which falls under CC452. HLGR isolates of serotype V, III, and Ib belonged to CC19 (ST19),
CC17 (ST17), and CC12 (ST12), respectively (Table 2).

2.3. Transposon Structure of HLGR GBS Strains and New ICE

All HLGR isolates were further characterized to investigate the transposon structure
carrying the gentamicin resistance gene by PCR mapping. The PCR mapping results and
primers used are shown in Tables 3 and 4, respectively.

Table 3. PCR mapping of the transposons carrying the gentamicin resistance gene.

Serotype (n) Transposon Structure

aac(6′)-aph(2′′) Gene IS256L 3′-inter 5′-inter

Ib (1) + + + +
III (2) + + − +
IV (14) + + − +
V (3) + + − +

Transposon structure was determined by PCR mapping according to Zhang et al., 2018 [25]): ‘+’ represents
positive PCR result and ‘−’ represents negative PCR result. The primers and amplicon sizes (bp) are listed in
Table 4. IS256L: covering most of the IS256 gene; 3′-inter: intergenic region between IS256 and the 3′ portion of
aac(6′)-aph(2′′) gene; 5′-inter: intergenic region between IS256 and the 5′ portion of aac(6′)-aph(2′′) gene.
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Table 4. Primers used in this study to determine the structure of the transposon carrying the aac(6′)-
aph(2′′) gene in our HLGR-GBS isolates.

Fragment Name Primers Amplicon Size (bp)

aac(6′)-aph(2′′) F1: 5′-CAGAGCCTTGGGAAGATGAAG-3′ 348 (from Vakulenko et al. AAC 2003; 47:1423) [26]
R1: 5′-CCTCGTGTAATTCATGTTCTGGC-3′

3′-inter F3: 5′-GATATATTAAGAATGTATGG-3′ 371 (from Zhang et al. IJAA 2018; 52:799) [25]
R3: 5′-GAGCCGTTCTTATGGACCTAC-3′

5′-inter F2: 5′-GAGCCGTTCTTATGGACCTAC-3′ 628 (from Zhang et al. IJAA 2018; 52:799) [25]
R2: 5′-CCACCATAAAATTCTAATAC-3′

IS256L F5: 5′-TGAAAAGCGAAGAGATTCAAA GC-3′ 1103 (from Zhang et al. IJAA 2018; 52:799) [25]
R5: 5′-ATGTAGGTCCATAAGAACGGC-3′

IS256L: covering most of the IS256 gene; 3′-inter: intergenic region between IS256 and the 3′ portion of aac(6′)-
aph(2′′) gene; 5′-inter: intergenic region between IS256 and the 5′ portion of aac(6′)-aph(2′′) gene.

Only the serotype Ib HLGR-GBS strain exhibited the presence of a Tn3706 element,
which is a 4.5 kb fragment containing the aac(6′)-Ie-aph(2′′)-Ia gene flanked by the IS256
insertion sequences. This element bears resemblance to Tn4001 and Tn5281, which have
been identified in staphylococci and enterococci, respectively [27,28]. Tn3706 transposon
has been previously described in the GBS B128 strain [29] and the Japanese serotype III,
ST464 (CC23) MRY08-1422 GBS genome [12].

All other HLGR-GBS isolates presented the same structure, characterized by a trun-
cated transposon of 3262 bp consisting of an entire IS256 insertion sequence only, located
upstream of the gentamicin resistance gene (Figure 1). This truncated form of Tn3706 has
also been described in the Japanese serotype III, ST335 (CC19) HU-GB5823 genome [30].
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Figure 1. Schematic representations of the different transposon structures found in our HLGR-
GBS strains.

We focused on delineating the structure of the mobile genetic element containing the
truncated Tn3706 transposon of the serotype IV clonal cluster. Whole-genome sequence
analysis indicated that this is a ~45 kbp integrative and conjugative element (ICE) that was
named ICESag9931, never reported so far (Figure 2).
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Figure 2. Genomic structure of ICESag9931 and its comparison with ICE_515_tRNALys. The novel
ICESag9931 identified in serotype IV ST1010 isolate 9931 in this study was compared for nucleotide
similarity with a previously identified ICE_515_tRNALys located at positions 1836154–1878284 in the
NZ_CP051004 genome using EasyFig v2.2. In ICESag9931, the aac(6′)-aph(2′′) gene (highlighted in
green) with the upstream IS256 element is located at one end of the ICE element.



Antibiotics 2024, 13, 491 6 of 13

ICESag9931 is the result of the insertion of the truncated Tn3706 transposon on an ICE
already described in the GBS 515 strain (ICE_515_tRNALys) that carries different putative
virulence genes including one encoding a putative new CAMP factor [31]. A comparative
analysis between ICESag9931 and ICE_515_tRNALys revealed an 83% query coverage with
99% nucleotide identity, highlighting their considerable similarity (Figure 2). Additionally,
we examined the prevalence of ICESag9931 across the available whole-genome sequences
(WGS) of five additional serotype IV isolates, namely, (9834, 9879, 9931, 9976, and 10220).
Our investigation unveiled the presence of the aac(6′)-aph(2′′) gene carried by ICESag9931
in all these isolates, demonstrating substantial nucleotide homogeneity with a median of
99.7% (Figure 3).

Antibiotics 2024, 13, 491 7 of 14 
 

 
Figure 3. Comparison of ICESag9931 with five serotype IV (9834, 9879, 9931, 9976, and 10220) ST1010 
isolates from this study. BLASTn analysis was conducted using Easyfig v2.2.2. Various colors denote 
significant features, with red vertical lines representing 10 bp direct repeats, dark blue indicating 
site-specific integrase, red representing conjugal proteins, purple denoting replication initiator 
protein, black indicating insertion sequences, and green representing antibiotic resistance genes. 
Grey bars between sequences indicate areas with BLAST hits. The genomic size of ICESag9931 is 
approximately 45 kbp. 

3. Discussion 
Antimicrobial resistance represents a primary threat to public health globally. To 

fight this phenomenon, activities combining antimicrobial stewardship interventions with 
diagnostic stewardship are mandatory, mainly in hospital settings, to promote the optimal 
use of antibiotics [32]. Future antibacterial research and development aim to prioritize the 
discovery of new classes of antibiotics as well as alternative strategies with feasible 
pathways for market approval and clinical use [33]. 

Clonal expansion of a GBS lineage that is resistant to high levels of an antibiotic that 
is not routinely used for GBS infections such as gentamicin adds new concerns in the 
management and containment measures of the MDR issue. 

The mechanism of HLGR resistance in GBS is mediated by the chromosomally 
integrated transposon Tn3706 (a derivative of enterococcal Tn5281 or staphylococcal 
Tn4001) or plasmid pIP501 [12,14,29,30,34–37]. Nevertheless, the HLGR rate in GBS is 
rarely reported, although probably underestimated due to the absence of international 
guidelines on HLGR susceptibility testing for GBS. A survey of 6340 isolates recovered 
during the years 2015–2017 through the population-based Active Bacterial Core 
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isolates from this study. BLASTn analysis was conducted using Easyfig v2.2.2. Various colors denote
significant features, with red vertical lines representing 10 bp direct repeats, dark blue indicating site-
specific integrase, red representing conjugal proteins, purple denoting replication initiator protein,
black indicating insertion sequences, and green representing antibiotic resistance genes. Grey bars
between sequences indicate areas with BLAST hits. The genomic size of ICESag9931 is approximately
45 kbp.

3. Discussion

Antimicrobial resistance represents a primary threat to public health globally. To
fight this phenomenon, activities combining antimicrobial stewardship interventions with
diagnostic stewardship are mandatory, mainly in hospital settings, to promote the optimal
use of antibiotics [32]. Future antibacterial research and development aim to prioritize
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the discovery of new classes of antibiotics as well as alternative strategies with feasible
pathways for market approval and clinical use [33].

Clonal expansion of a GBS lineage that is resistant to high levels of an antibiotic that
is not routinely used for GBS infections such as gentamicin adds new concerns in the
management and containment measures of the MDR issue.

The mechanism of HLGR resistance in GBS is mediated by the chromosomally inte-
grated transposon Tn3706 (a derivative of enterococcal Tn5281 or staphylococcal Tn4001)
or plasmid pIP501 [12,14,29,30,34–37]. Nevertheless, the HLGR rate in GBS is rarely re-
ported, although probably underestimated due to the absence of international guidelines
on HLGR susceptibility testing for GBS. A survey of 6340 isolates recovered during the
years 2015–2017 through the population-based Active Bacterial Core surveillance (ABCs)
program in the United States demonstrated that the aac(6′)-aph(2′′) gene was present in
only 0.27% of GBS strains [22]. Similarly, among 1128 GBS isolates responsible for cases of
diseases or colonization and of different geographical origin, only two (0.17%) strains with
HLGR were identified [14].

GBS clinical isolates of serotype III, collected at Korea University Hospital (Seoul,
Republic of Korea)—not expressing srr1 or srr2 proteins, which are important in bacterial
infection—were genotyped. Overall, 11 isolates, all of which belonged to ST19, exhibited
higher resistance to gentamicin, kanamycin, and tobramycin (MIC values of 512 mg/mL).
One representative isolate analyzed by whole-genome sequencing revealed the presence of
four large novel cluster sites. Specifically, site 4 in the srr1 gene locus was replaced by an
lsa(E)-lnu(B)-aadK-aac-aph-aadE-carrying multidrug-resistant gene cluster flanked by two
IS1216 transposases with 99% homology to the enterococcal plasmid pKUB3007-1 [37].

A systematic investigation of antimicrobial resistance genomic content to charac-
terize mobile genetic elements was performed in 193 invasive and non-invasive GBS
isolates collected from infections of UK adult patients during the years 2014 and 2015. The
gentamicin-resistant aac(6′)-aph(2′′) gene was detected in only one CC19 serotype V isolate,
carried by the novel ICESag139 [38]. No barriers to ICE transfer between strains exist, also
from different hosts, making the acquisition of these resistance traits a threat for human
health [39].

The clinical significance of the emergence of HLGR in GBS is not clear either. High-
level aminoglycoside resistance abrogates the enhanced bactericidal activity of gentamicin
in combination with ampicillin, which is the initial therapy for neonatal sepsis and menin-
gitis [18]. The combination of systemic penicillin plus local gentamicin has also been
suggested as a potential application in orthopedic device-associated biofilm GBS infec-
tions [40]. We recently recommended that all clinical isolates of GBS should be tested for
susceptibility to gentamicin, considering a MIC value ≥ 512 mg/L as an indication for the
identification of HLGR GBS, with an alert for gentamicin MIC values between 128 mg/L
and 512 mg/L [20].

In this study, a total of 20 HLGR isolates were identified in a dataset of 433 GBS
isolates from adult invasive disease, neonatal invasive disease, and from carriage, with a
rate of 4.6%. HLGR GBS were more diffused among adults than neonates (5.3% vs. 2.9%).
All HLGR isolates were aac(6′)-aph(2′′) gene-positive and the majority were serotype IV
(70% of all HLGR GBS isolates). All 14 serotype IV HLGR-GBS isolates were susceptible
to all antibiotics tested while multidrug resistance was found in the other HLGR-GBS of
serotypes V, III, and Ib.

All serotype IV HLGR-GBS isolates showed the virulence string alpha-C/HvgA/PI-
2b. By MLST and WGS, they represented a single lineage (ST1010, a single-locus variant
of ST452), an emergent hypervirulent serotype IV clone [41]. The ST452 serotype IV
lineage originated from the recombination of GBS ST24 (Ia, CC23) with ST291 (serotype IV,
CC17) [41], acquiring a unique combination of virulence factors derived from the parent STs
as the alpha-C protein gene from ST24, pili island 2b gene only, and hvgA gene from ST291.
Interestingly, none of the ST452 strains reported so far presented any known antibiotic
resistance genes. So, the gentamicin resistance was specifically acquired by ST1010.
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The virulence string and clonal lineage of the other HLGR-GBS serotypes identified in
this study are in line with findings from previous studies, confirming the already observed
specific association between serotype, pili, alpha-like proteins, and clonal complexes [41–47].

The genetic element carrying the aac(6′)-aph(2′′) gene was identical in all our HLGR
serotype IV isolates and was part of a new integrative and conjugative element, named
ICESag9931. Indeed, ICESag9931 is identical to an already described ICE identified in the
serotype Ia GBS 515 strain, except for the insertion at one side of the truncated Tn3706
element that comprises the HLGR gene.

The increased prevalence of serotype IV, mainly in adult GBS, is an emerging data [48].
In the US, a notable emergence of and increase in serotype IV among non-pregnant adults
over time was reported [4,22]. Similarly, in the present study, the prevalence of serotype IV
was found to increase in Italy as well [49–52], mainly due to the clonal expansion of the
HLGR ST1010 lineage.

A PubMLST search for GBS ST1010 (26 April 2024) retrieved three strains that were
isolated in the US in the year 2016 and seventeen from carriers from the Dominican
Republic in the year 2021. All are reported as serotype IV GBS strains. An additional
search in Monocle Data Viewer (https://data-viewer.monocle.sanger.ac.uk/project/juno,
accessed on 26 April 2024) reported three serotype IV GBS ST1010 strains isolated from
vaginal carriage in the Netherlands in the year 2019 and five serotype GBS ST1010 strains
from the US, detected in the year 2017. Of notable importance, all GBS strains from the
Netherlands and only one from the US are reported as HLGR.

These findings indicate that HLGR GBS serotype IV/ST1010/CC452 may further
spread and disseminate, representing a potential threat for the treatment and management
of invasive GBS infections.

The clonal expansion of the HLGR serotype IV/CC452 hypervirulent GBS lineage
should be monitored over time and HLGR rates among GBS should be included in surveil-
lance screening programs.

4. Materials and Methods
4.1. GBS Strains Dataset

A total of 433 GBS strains from invasive GBS disease (112 isolates from adults and 104
isolates from newborns and infants up to three months of life) and from pregnant carrier
women (217 isolates) were analyzed. Adult and neonatal invasive GBS clinical isolates were
collected by the national passive surveillance coordinated by ISS-NRL (years 2016–2020).
Isolates from carriage (women antenatal screening) come from the PREPARE study (years
2021–2021). PREPARE is the acronym for the project “PREvention of invasive Group B
Streptococcus disease in young infants: a PAthway for the evaluation & licensuRE of an
investigational maternal GBS vaccine (PREPARE GBS)”.

Surveillance studies involving only the collection of bacterial samples (not human
biological material) are exempt from the authorization of the local/national ethics com-
mittee. The PREPARE study received ethical approval from the competent authority
(n. 1079/2019).

4.2. Bacterial Isolates Typing

Bacterial strains were plated in parallel on defibrinated sheep blood agar plates (Li-
ofilchem, Roseto degli Abbruzzi, Italy) and chromogenic strepto B agar (Biolife, Milan,
Italy) and incubated at 37 ◦C in 5% CO2. Identification was confirmed by the Dryspot Strep-
tococcal Grouping Kit (Oxoid SpA; Rodano, Milan, Italy) and/or by mass spectrometry
MALDI TOF analysis (Bruker Daltonics, Bremen, Germany) [52].

Antimicrobial susceptibility testing was performed by automated broth microdilution
method with a Phoenix M50 instrument (Becton Dickinson, Franklin Lakes, NJ, USA)
using panel SMIC-ID-11 and/or by E-test gradient strip and qualitative disk diffusion
methods. Procedures and results interpretation was carried out according to the EUCAST
guidelines (http://www.eucast.org). By automated Phoenix M50 system, the following

https://data-viewer.monocle.sanger.ac.uk/project/juno
http://www.eucast.org
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antimicrobial agents were tested: benzylpenicillin (PEN G), vancomycin (VAN), teicoplanin
(TEC), levofloxacin (LVX), linezolid (LZD), chloramphenicol (CHL), clindamycin (CLI),
erythromycin (ERY), tetracycline (TET), and high-level gentamicin resistance (HLGR) using
the recently proposed clinical cut-off [20].

Macrolide resistance phenotypes were classified as expressing the M phenotype
when they were resistant to macrolides only, or to the MLSB phenotype when showing
cross-resistance to macrolides and lincosamides, either constitutive (cMLSB) or inducible
(iMLSB) [51–53].

PCR screening of the HLGR bifunctional enzyme aac(6′)-aph(2′′) gene was performed
using primers and conditions already described [26].

HLGR GBS isolates were studied for the presence of the macrolide resistance genes
erm(A), erm(B), and mef, and tetracycline resistance genes tet(M) and tet(O) by PCR, as
already reported [51,52].

Serotyping was performed by using the latex agglutination test ImmuLexTM StrepB-Kit
(SSI Diagnostica, HillerØd, Denmark) according to the manufacturer’s instructions [54,55].
Molecular typing by multiplex PCR assay was used both in case of non-typeable strains
and for confirming the results of the agglutination test [56].

The presence of GBS alpha (bca) and alpha-like (epsilon, rib, alp2/3, alp4) surface protein
genes was investigated by a multiplex PCR assay [57,58]. PCR screening for pili islands
was performed by PCR according to [43].

Genetic element harboring the aac(6′)-aph(2′′) gene was investigated by PCR walking
using primers previously described [25,26,29] (Table 4) and following the established
process described in [39]. Bakta v1.5 was used to annotate putative MGEs (https://github.
com/oschwengers/bakta, accessed on 14 January 2024). Pairwise BLASTn alignment of
identified MGEs was performed and visualized using Easyfig v2.2.2 [59].

Identification of hypervirulent ST-17 lineage was performed using a PCR assay based
on the detection of the hvgA gene [60].

Sequence types (STs) and clonal complexes (CCs) of HLGR GBS isolates were obtained
by MLST protocol as previously described [50].

WGS of serotype IV ST1010 GBS strains was performed by the Nanopore MinIon
technology and high-quality reads were de novo assembled. [49,61]

5. Conclusions

The prevalence of serotype IV GBS among adults is increasing in Italy because of an
HLGR clonal lineage (ST1010, CC452).

The truncated Tn3706 element carrying the HLGR tract in this clonal lineage is inte-
grated in one side of an ICE already identified in the serotype Ia GBS 515 strain, leading to
the new 45 kb long ICESag9931.

The increase in HLGR in GBS could influence the effectiveness of antibiotic therapy in
GBS sepsis and meningitis. Therefore, HLGR testing should be included in routine clinical
microbiology for GBS.
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