0-1 LAWS FOR REGULAR CONDITIONAL DISTRIBUTIONS

By Patrizia Berti and Pietro Rigo
Universitá di Modena e Reggio Emilia and Universitá di Pavia
Let (Ω, \mathscr{B}, P) be a probability space, $\mathscr{A} \subset \mathscr{B}$ a sub- σ-field, and μ a regular conditional distribution for P given \mathcal{A}. Necessary and sufficient conditions for $\mu(\omega)(A)$ to be $0-1$, for all $A \in \mathscr{A}$ and $\omega \in A_{0}$, where $A_{0} \in \mathcal{A}$ and $P\left(A_{0}\right)=1$, are given. Such conditions apply, in particular, when \mathcal{A} is a tail sub- σ-field. Let $H(\omega)$ denote the \mathcal{A}-atom including the point $\omega \in \Omega$. Necessary and sufficient conditions for $\mu(\omega)(H(\omega))$ to be $0-1$, for all $\omega \in A_{0}$, are also given. If (Ω, \mathscr{B}) is a standard space, the latter $0-1$ law is true for various classically interesting sub- σ-fields \mathcal{A}, including tail, symmetric, invariant, as well as some sub- σ-fields connected with continuous time processes.

1. Introduction and motivations. Let (Ω, \mathscr{B}, P) be a probability space and $\mathcal{A} \subset \mathscr{B}$ a sub- σ-field. A regular conditional distribution (r.c.d.) for P given \mathcal{A} is a mapping $\mu: \Omega \rightarrow \mathbb{P}$, where \mathbb{P} denotes the set of probability measures on \mathcal{B}, such that $\mu(\cdot)(B)$ is a version of $E\left(I_{B} \mid \mathcal{A}\right)$ for all $B \in \mathscr{B}$. A σ-field is countably generated (c.g.) in case it is generated by one of its countable subclasses. In the sequel, it is assumed that P admits a r.c.d. given \mathcal{A} and
μ denotes a fixed r.c.d., for P given \mathcal{A}, and \mathscr{B} is c.g.
Moreover,

$$
H(\omega)=\bigcap_{\omega \in A \in \mathscr{A}} A
$$

is the atom of \mathcal{A} including the point $\omega \in \Omega$.
Heuristically, conditioning to \mathcal{A} should mean conditioning to the atom of \mathcal{A} which actually occurs, say $H(\omega)$, and the probability of $H(\omega)$ given $H(\omega)$ should be 1 . If this interpretation is agreed, μ should be everywhere proper, that is, $\mu(\omega)(A)=I_{A}(\omega)$ for all $A \in \mathcal{A}$ and $\omega \in \Omega$. Though $\mu(\cdot)(A)=I_{A}(\cdot)$ a.s. for fixed $A \in \mathcal{A}$, however, μ can behave quite inconsistently with properness.

Say that \mathcal{A} is c.g. under P in case the trace σ-field $\mathcal{A} \cap C=\{A \cap C: A \in \mathcal{A}\}$ is c.g. for some $C \in \mathscr{A}$ with $P(C)=1$. If \mathcal{A} is c.g. under P then

$$
\begin{equation*}
\mu(\omega)(A)=I_{A}(\omega) \quad \text { for all } A \in \mathcal{A} \text { and } \omega \in A_{0} \tag{2}
\end{equation*}
$$

where, here and in what follows, A_{0} designates some set of \mathcal{A} with $P\left(A_{0}\right)=1$. In general, the exceptional set A_{0}^{c} cannot be removed. Further, (2) implies that
$\mathcal{A} \cap A_{0}$ is c.g. See [2,3] and Theorem 1 of [4]. In other terms, not only everywhere properness is to be weakened into condition (2), but the latter holds if and only if \mathcal{A} is c.g. under P.

If \mathcal{A} fails to be c.g. under P, various weaker notions of r.c.d. have been investigated. Roughly speaking, in such notions, μ is asked to be everywhere proper but σ-additivity and/or measurability are relaxed. See [1] and references therein. However, not very much is known on r.c.d.'s, regarded in the usual sense, when \mathcal{A} is not c.g. under P (one exception is [11]). In particular, when (2) fails, one question is whether some of its consequences are still available.

In this paper, among these consequences, we focus on:

$$
\begin{align*}
\mu(\omega)(H(\omega)) \in\{0,1\} & \text { for all } \omega \in A_{0} \tag{3}\\
\mu(\omega)(A) \in\{0,1\} & \text { for all } A \in \mathcal{A} \text { and } \omega \in A_{0} \tag{4}
\end{align*}
$$

Note that (4) implies (3) in case $H(\omega) \in \mathcal{A}$ for all $\omega \in A_{0}$, and that, for (3) to make sense, one needs to assume $H(\omega) \in \mathscr{B}$ for all $\omega \in A_{0}$.

Both conditions (3) and (4) worth some attention.
Investigating (3) can be seen as a development of the seminal work of [4]. The conjecture that (3) holds (under mild conditions) is supported by those examples in the literature where \mathscr{B} is c.g. In these examples, in fact, either $\mu(\omega)(H(\omega))=1$ a.s. or $\mu(\omega)(H(\omega))=0$ a.s. See, for instance, [11].

Condition (4) seems to have been neglected so far, though it is implicit in some ideas of [7] and [5]. In any case, (4) holds in a number of real situations and can be attached a clear heuristic meaning. As to the latter, fix $\omega_{0} \in \Omega$. Since $\mu\left(\omega_{0}\right)$ comes out by conditioning on \mathcal{A}, one could expect that μ is a r.c.d. for $\mu\left(\omega_{0}\right)$ given \mathcal{A}, too. Condition (4) grants that this is true, provided $\omega_{0} \in A_{0}$. More precisely, letting $M=\{Q \in \mathbb{P}: \mu$ is a r.c.d. for Q given $\mathcal{A}\}$, condition (4) is equivalent to

$$
\mu(\omega) \in M \quad \text { for all } \omega \in A_{0}
$$

see Theorem 12.
Since \mathscr{B} is c.g., $P(\mu \neq v)=0$ for any other r.c.d. v, and this is basic for (3) and (4). For some time, we guessed that \mathscr{B} c.g. is enough for (3) and (4). Instead, as we now prove, some extra conditions are needed. Let

$$
\mathcal{N}=\{B \in \mathscr{B}: P(B)=0\} .
$$

Example 1 [A failure of condition (3)]. Let $\Omega=\mathbb{R}, \mathscr{B}$ the Borel σ-field, Q a probability measure on \mathscr{B} vanishing on singletons, and $P=\frac{1}{2}\left(Q+\delta_{0}\right)$. If $\mathcal{A}=\sigma(\mathcal{N})$, then $\mu=P$ a.s. and $H(\omega)=\{\omega\}$ for all ω, so that $H(0)=\{0\} \notin \mathcal{A}$ and $\mu(0)\{0\}=P\{0\}=\frac{1}{2}$.

Incidentally, Example 1 exhibits also a couple of (perhaps unexpected) facts. Unless $H(\omega) \in \mathscr{A}$ for all $\omega \in A_{0}$, (4) does not imply (3). Further, it may be that $\mu(\omega)(H(\omega))<1$, for a single point $\omega(\omega=0$ in Example 1), even though $H(\omega) \in \mathscr{B}$ and $\mu(\omega)(A)=I_{A}(\omega)$ for all $A \in \mathcal{A}$.

EXAmple 2 [A failure of condition (4)]. Let $\Omega=\mathbb{R}^{2}, \mathscr{B}$ the Borel σ-field, and $P=Q \times Q$ where Q is the $N(0,1)$ law on the real Borel sets. Denoting g the σ-field on Ω generated by $(x, y) \mapsto x$, a (natural) r.c.d. for P given g is $\mu((x, y))=\delta_{x} \times Q$. With such a μ, condition (4) fails if \mathcal{A} is taken to be $\mathcal{A}=\sigma(\mathscr{G} \cup \mathcal{N})$. In fact, μ is also a r.c.d. for P given \mathcal{A}, and for all (x, y) one has $\{x\} \times[0, \infty) \in \mathcal{A}$ while

$$
\mu((x, y))(\{x\} \times[0, \infty))=\frac{1}{2}
$$

Note also that (3) holds in this example, since $H(\omega)=\{\omega\}$ and $\mu(\omega)\{\omega\}=0$ for all $\omega \in \Omega$.

This paper provides necessary and sufficient conditions for (3) and (4). Special attention is devoted to the particular case where \mathcal{A} is a tail sub- σ-field, that is, \mathcal{A} is the intersection of a nonincreasing sequence of countably generated sub- σ fields. The main results are Theorems 3, 4, 8 and 15 . Theorem 15 states that (4) is always true whenever \mathcal{A} is a tail sub- σ-field. Theorems 3,4 and 8 deal with condition (3). One consequence of Theorem 4 is that, when (Ω, \mathscr{B}) is a standard space, (3) holds for various classically interesting sub- σ-fields \mathcal{A}, including tail, symmetric, invariant, as well as some sub- σ-fields connected with continuous time processes.
2. When regular conditional distributions are $0-1$ on the (appropriate) atoms of the conditioning σ-field. This section deals with condition (3). It is split into three subsections.
2.1. Basic results. For any map $v: \Omega \rightarrow \mathbb{P}$, we write $\sigma(v)$ for the σ-field generated by $\nu(B)$ for all $B \in \mathscr{B}$, where $\nu(B)$ stands for the real function $\omega \mapsto$ $\nu(\omega)(B)$. Since \mathscr{B} is c.g., $\sigma(v)$ is c.g., too. In particular, $\sigma(\mu)$ is c.g. Let

$$
\mathcal{A}_{P}=\left\{A \subset \Omega: \exists A_{1}, A_{2} \in \mathscr{A} \text { with } A_{1} \subset A \subset A_{2} \text { and } P\left(A_{2}-A_{1}\right)=0\right\}
$$

be the completion of \mathscr{A} with respect to $P \mid \mathcal{A}$. The only probability measure on \mathcal{A}_{P} agreeing with P on \mathcal{A} is still denoted by P. Further, in case $H(\omega) \in \mathscr{B}$ for all ω, we let

$$
\begin{gathered}
f_{B}(\omega)=\mu(\omega)(B \cap H(\omega)) \quad \text { for } \omega \in \Omega \text { and } B \in \mathscr{B}, \\
f=f_{\Omega}, \quad S=\{f>0\} .
\end{gathered}
$$

We are in a position to state our first characterization of (3).
Theorem 3. Suppose (1) holds and $H(\omega) \in \mathscr{B}$ for all ω. For each $U \in \mathcal{A}$ such that the trace σ-field $\mathcal{A} \cap U$ is c.g., there is $U_{0} \in \mathcal{A}$ with $U_{0} \subset U, P(U-$ $\left.U_{0}\right)=0$ and $f(\omega)=1$ for all $\omega \in U_{0}$. Moreover, if $S \in \mathcal{A}_{P}$, then condition (3) is equivalent to each of the following conditions (a)-(b):
(a) f_{B} is \mathscr{A}_{P}-measurable for all $B \in \mathscr{B}$;
(b) $\mathcal{A} \cap U$ is c.g. for some $U \in \mathscr{A}$ with $U \subset S$ and $P(S-U)=0$.

Proof. Suppose $\mathcal{A} \cap U$ is c.g. for some $U \in \mathcal{A}$ and define

$$
\mathcal{A}_{0}=\left\{(A \cap U) \cup F: A \in \mathcal{A}, F=\varnothing \text { or } F=U^{c}\right\} .
$$

Let $H_{0}(\omega)$ be the \mathcal{A}_{0}-atom including ω. Then, \mathcal{A}_{0} is c.g. and $H_{0}(\omega)=H(\omega)$ for $\omega \in U$. A r.c.d. for P given \mathcal{A}_{0} is $\mu_{0}(\omega)=I_{U}(\omega) \mu(\omega)+I_{U^{c}}(\omega) \alpha$, where $\alpha(\cdot)=P\left(\cdot \mid U^{c}\right)$ if $P(U)<1$ and α is any fixed element of \mathbb{P} if $P(U)=1$. Since \mathcal{A}_{0} is c.g., there is $K \in \mathcal{A}_{0}$ with $P(K)=1$ and $\mu_{0}(\omega)\left(H_{0}(\omega)\right)=1$ for all $\omega \in K$. Since $f(\omega)=\mu(\omega)(H(\omega))=\mu_{0}(\omega)\left(H_{0}(\omega)\right)=1$ for each $\omega \in K \cap U$, it suffices to let $U_{0}=K \cap U$.

Next, suppose $S \in \mathcal{A}_{P}$ and take $C, D \in \mathscr{A}$ such that $C \subset S, D \subset S^{c}$ and $P(C \cup$ D) $=1$.
" $(3) \Rightarrow\left(\right.$ a)." Let $A=A_{0} \cap C$, where $A_{0} \in \mathcal{A}$ is such that $P\left(A_{0}\right)=1$ and $f(\omega) \in$ $\{0,1\}$ for all $\omega \in A_{0}$. Fix $B \in \mathscr{B}$. Since $f_{B} \leq f=0$ on D and $f_{B}=\mu(B)$ on A, one obtains $I_{A \cup D} f_{B}=I_{A} f_{B}=I_{A} \mu(B)$. Thus, f_{B} is \mathscr{A}_{P}-measurable.
"(a) \Rightarrow (b)." Given any $\alpha \in \mathbb{P}$, define the map $v: \Omega \rightarrow \mathbb{P}$ by

$$
v(\omega)(B)=I_{S}(\omega) \frac{f_{B}(\omega)}{f(\omega)}+I_{S^{c}}(\omega) \alpha(B), \quad \omega \in \Omega, B \in \mathscr{B} .
$$

Then, (a) implies that $\sigma(v) \subset \mathcal{A}_{P}$. Fix a countable field \mathscr{B}_{0} generating \mathfrak{B}, and, for each $B \in \mathcal{B}_{0}$, take a set $A_{B} \in \mathscr{A}$ such that $P\left(A_{B}\right)=1$ and $I_{A_{B}} v(B)$ is A-measurable. Define $U=\left(\bigcap_{B \in \mathcal{B}_{0}} A_{B}\right) \cap C$ and note that $U \in \mathcal{A}, U \subset S$ and $P(S-U)=0$. Since $I_{U} v(B)$ is \mathcal{A}-measurable for each $B \in \mathscr{B}_{0}$, it follows that $\sigma(v) \cap U \subset \mathcal{A} \cap U$. Since $A \cap U=\{v(A)=1\} \cap U$ for all $A \in \mathcal{A}$, then $\mathcal{A} \cap U \subset \sigma(v) \cap U$. Hence, $\mathcal{A} \cap U=\sigma(v) \cap U$ is c.g.
"(b) \Rightarrow (3)." By the first assertion of the theorem, since $U \in \mathcal{A}$ and $\mathcal{A} \cap U$ is c.g., there is $U_{0} \in \mathcal{A}$ with $U_{0} \subset U, P\left(U-U_{0}\right)=0$ and $f=1$ on U_{0}. Define $A_{0}=U_{0} \cup D$ and note that $A_{0} \in \mathcal{A}$ and $f \in\{0,1\}$ on A_{0}. Since $U \subset S$ and $P(S-$ $U)=0$, one also obtains $P\left(A_{0}\right)=P\left(U_{0}\right)+P(D)=P(S)+P\left(S^{c}\right)=1$.

A basic condition for existence of disintegrations is that

$$
G=\{(x, y) \in \Omega \times \Omega: H(x)=H(y)\}
$$

belongs to $\mathscr{B} \otimes \mathscr{B}$; see [1]. Such a condition also plays a role in our main characterization of (3). Let

$$
\mathcal{A}^{*}=\{B \in \mathscr{B}: B \text { is a union of } \mathscr{A} \text {-atoms }\} .
$$

THEOREM 4. If (1) holds and $G \in \mathscr{B} \otimes \mathscr{B}$, then $H(\omega) \in \mathscr{B}$ for all $\omega \in \Omega$ and f_{B} is \mathcal{A}^{*}-measurable for all $B \in \mathscr{B}$. If in addition $S \in \mathscr{A}_{P}$, then each of conditions (3), (a) and (b) is equivalent to
(c) $\mathcal{A} \cap U=\mathcal{A}^{*} \cap U$ for some $U \in \mathscr{A}$ with $U \subset S$ and $P(S-U)=0$.

Proof. For $C \subset \Omega \times \Omega$, let $C_{\omega}=\{u \in \Omega:(\omega, u) \in C\}$ be the ω-section of C. Suppose (1) holds and $G \in \mathscr{B} \otimes \mathscr{B}$. Then, $H(\omega)=G_{\omega} \in \mathscr{B}$ for all ω. By a monotone class argument, the map $\omega \mapsto \mu(\omega)\left(C_{\omega}\right)$ is \mathscr{B}-measurable whenever $C \in \mathscr{B} \otimes \mathscr{B}$. Letting $C=G \cap(\Omega \times B)$, where $B \in \mathscr{B}$, implies that f_{B} is \mathscr{B}-measurable. Since f_{B} is constant on each \mathcal{A}-atom, it is in fact \mathscr{A}^{*}-measurable. (Note that \mathcal{A}^{*}-measurability of f_{B} does not require \mathscr{B} c.g.) Next, suppose also that $S \in \mathcal{A}_{P}$. By Theorem 3, conditions (3), (a) and (b) are equivalent. Suppose (c) holds, and fix $B \in \mathscr{B}$ and a Borel set $I \subset \mathbb{R}$. Since $\left\{f_{B} \in I\right\} \in \mathcal{A}^{*}$, condition (c) yields $\left\{f_{B} \in I\right\} \cap U \in \mathcal{A}$, and $\left\{f_{B} \in I\right\} \cap(S-U) \in \mathcal{A}_{P}$ due to $(S-U) \in \mathcal{A}_{P}$ and $P(S-U)=0$. Thus (assuming $0 \in I$ to fix ideas),

$$
\left\{f_{B} \in I\right\}=S^{c} \cup\left(\left\{f_{B} \in I\right\} \cap(S-U)\right) \cup\left(\left\{f_{B} \in I\right\} \cap U\right) \in \mathcal{A}_{P}
$$

so that (a) holds. Conversely, suppose (a) holds. For each $B \in \mathscr{B}$, there is $A_{B} \in \mathcal{A}$ such that $P\left(A_{B}\right)=1$ and $I_{A_{B}} f_{B}$ is \mathcal{A}-measurable. Letting $A=\bigcap_{B \in \mathcal{B}_{0}} A_{B}$, where \mathscr{B}_{0} is a countable field generating \mathfrak{B}, it follows that $A \in \mathcal{A}, P(A)=1$ and $I_{A} f_{B}$ is \mathcal{A}-measurable for all $B \in \mathscr{B}$. Since $S \in \mathcal{A}_{P}$ and $P(A)=1$, there is $U \in \mathcal{A}$ with $U \subset A \cap S$ and $P(S-U)=0$. Given $B \in \mathcal{A}^{*}$, on noting that $f_{B}=I_{B} f$, one obtains

$$
B \cap U=\left\{I_{B} f>0\right\} \cap U=\left\{f_{B}>0\right\} \cap U=\left(\left\{f_{B}>0\right\} \cap A\right) \cap U \in \mathcal{A}
$$

Hence $\mathcal{A} \cap U=\mathcal{A}^{*} \cap U$, that is, condition (c) holds.

We now state a couple of corollaries to Theorem 4. The first covers in particular the case where the \mathcal{A}-atoms are the singletons, while the second (and more important) applies to various real situations.

Corollary 5. Suppose (1) holds, $S \in \mathcal{A}_{P}$ and \mathcal{A}, \mathscr{B} have the same atoms. Then, (3) holds if and only if $\mathcal{A} \cap U=\mathscr{B} \cap U$ for some $U \in \mathscr{A}$ with $U \subset S$ and $P(S-U)=0$.

Proof. Since \mathcal{A}, \mathscr{B} have the same atoms and \mathscr{B} is c.g.,

$$
G=\{(x, y): x \text { and } y \text { are in the same } \mathscr{B} \text {-atom }\} \in \mathscr{B} \otimes \mathscr{B} .
$$

Therefore, it suffices applying Theorem 4 and noting that $\mathcal{A}^{*}=\mathscr{B}$.
Corollary 6. If (1) holds, $G \in \mathscr{B} \otimes \mathscr{B}$ and $\mathcal{A} \cap C=\mathcal{A}^{*} \cap C$, for some $C \in \mathscr{A}$ with $P(C)=1$, then condition (3) holds.

Proof. Since $C \in \mathscr{A}$ and $S \cap C \in \mathcal{A}^{*} \cap C=\mathscr{A} \cap C$, then $S \cap C \in \mathcal{A}$. Since $P(C)=1$, it follows that $S \in \mathcal{A}_{P}$ and (c) holds with $U=S \cap C$. Thus, (3) follows from Theorem 4.

As shown in [4], if (Ω, \mathcal{B}) is a standard space (Ω Borel subset of a Polish space and \mathscr{B} the Borel σ-field on Ω), then $G \in \mathscr{B} \otimes \mathscr{B}$ and $\mathcal{A}^{*}=\mathcal{A}$ for various classically interesting sub- σ-fields \mathcal{A}, including tail, symmetric, invariant, as well as some sub- σ-fields connected with continuous time processes. In view of Corollary 6 , condition (3) holds in case (Ω, \mathscr{B}) is a standard space and \mathcal{A} is any one of the above-mentioned sub- σ-fields.
2.2. Tail sub- σ-fields. When condition (3) holds, the next step is determining those ω 's satisfying $f(\omega)=1$. Suppose the assumptions of Corollary 6 are in force [so that (3) holds and f is \mathscr{A}_{p}-measurable] and define

$$
\mathcal{U}=\{U \in \mathcal{A}: \mathcal{A} \cap U \text { is c.g. }\} \cup\{\varnothing\} .
$$

Since \mathcal{U} is closed under countable unions, some $A \in \mathcal{U}$ meets $P(A)=\sup \{P(U)$: $U \in \mathcal{U}\}$. By the first assertion in Theorem 3, $P(A-\{f=1\})=0$. Taking U as in condition (b) and noting that $U \in \mathcal{U}$, one also obtains $P(\{f=1\}-A)=$ $P(U-A)=0$. Therefore, A is the set we are looking for, in the sense that

$$
P(\{f=1\} \Delta A)=0 .
$$

Incidentally, the above remarks provide also a criterion for deciding whether μ is maximally improper according to [11]. Under the assumptions of Corollary 6, in fact, μ is maximally improper precisely when $P(S)=0$. Hence,

$$
\mu \text { is maximally improper } \Leftrightarrow P(U)=0 \text { for all } U \in U .
$$

Some handy description of the members of \mathcal{U}, thus, would be useful. Unfortunately, such a description is generally hard to be found. We now discuss a particular case.

Let \mathcal{A} be a tail sub- σ-field, that is, $\mathcal{A}=\bigcap_{n \geq 1} \mathcal{A}_{n}$ where \mathcal{A}_{n} is a countably generated σ-field and $\mathscr{B} \supset \mathcal{A}_{n} \supset \mathcal{A}_{n+1}$ for all $n \geq 1$. As already noted, the assumptions of Corollary 6 hold for such an \mathscr{A} if (Ω, \mathscr{B}) is a standard space. More generally, it is enough that:

Lemma 7. If \mathfrak{A} is a tail sub- σ-field, (1) holds and

$$
\text { for each } n \text {, there is a r.c.d. } \mu_{n} \text { for } P \text { given } \mathcal{A}_{n},
$$

then $G \in \mathscr{B} \otimes \mathscr{B}$ and $\mathcal{A} \cap C=\mathcal{A}^{*} \cap C$ for some $C \in \mathcal{A}$ with $P(C)=1$.
Proof. Since $G_{n}:=\left\{(x, y) \in \Omega \times \Omega: x\right.$ and y are in the same \mathcal{A}_{n}-atom $\} \in$ $\mathcal{A}_{n} \otimes \mathcal{A}_{n}$, Proposition 1 of [4] implies $G=\bigcup_{n} G_{n} \in \mathscr{B} \otimes \mathscr{B}$. For each n, since \mathcal{A}_{n} is c.g., there is $C_{n} \in \mathcal{A}_{n}$ such that $P\left(C_{n}\right)=1$ and $\mu_{n}(\omega)(A)=I_{A}(\omega)$ whenever $A \in \mathcal{A}_{n}$ and $\omega \in C_{n}$. Define $C=\bigcup_{n \geq 1} \bigcap_{j \geq n} C_{j}$ and note that $C \in \mathcal{A}$ and $P(C)=1$. Fix $B \in \mathcal{A}^{*}$. Since B is a union of \mathscr{A}_{n}-atoms whatever n is,

$$
\lim _{n} \mu_{n}(\omega)(B)=I_{B}(\omega) \quad \text { for all } \omega \in C
$$

Thus, $B \cap C=\left\{\lim _{n} \mu_{n}(B)=1\right\} \cap C \in \mathcal{A} \cap C$.
Each \mathcal{A}_{n}, being c.g., can be written as $\mathcal{A}_{n}=\sigma\left(X_{n}\right)$ for some $X_{n}: \Omega \rightarrow \mathbb{R}$. Since $\mathcal{A}_{n} \supset \mathcal{A}_{j}$ for $j \geq n$, it follows that $\mathcal{A}_{n}=\sigma\left(X_{n}, X_{n+1}, \ldots\right)$. Thus, \mathcal{A} admits the usual representation

$$
\mathcal{A}=\bigcap_{n} \sigma\left(X_{n}, X_{n+1}, \ldots\right)
$$

for some sequence $\left(X_{n}\right)$ of real random variables. In particular,

$$
H(\omega)=\left\{\exists n \geq 1 \text { such that } X_{j}=X_{j}(\omega) \text { for all } j \geq n\right\} \in \mathscr{A}
$$

so that \mathcal{A} includes its atoms. Note also that a c.g. sub- σ-field is tail while the converse need not be true. In fact, for a σ-field \mathcal{F} to be not c.g., it is enough that \mathcal{F} supports a $0-1$ valued probability measure Q such that $Q(F)=0$ whenever $F \in \mathcal{F}$ and F is an \mathcal{F}-atom; see Theorem 1 of [4]. Thus, for instance, $\mathcal{A}=\bigcap_{n} \sigma\left(X_{n}, X_{n+1}, \ldots\right)$ is not c.g. in case $\left(X_{n}\right)$ is i.i.d. and X_{1} has a nondegenerate distribution.

To find usable characterizations of U is not an easy task. Countable unions of \mathcal{A}-atoms belong to \mathcal{U}, but generally they are not all the elements of \mathcal{U}. For instance, if $\Omega=\mathbb{R}^{\infty}$ and X_{n} is the nth coordinate projection, then

$$
U=\left\{\exists n \geq 1 \text { such that } X_{j}=X_{n} \text { for all } j \geq n\right\}
$$

is an uncountable union of \mathcal{A}-atoms. However, $\mathcal{A} \cap U$ is c.g. since $\mathcal{A} \cap U=$ $\sigma(L) \cap U$ where $L=\lim \sup _{n} X_{n}$.

Another possibility could be selecting a subclass $\mathbb{Q} \subset \mathbb{P}$ and showing that $U \in \mathcal{U}$ if and only if $U \in \mathcal{A}$ and $Q(U)=0$ for each $Q \in \mathbb{Q}$. We do not know whether some (nontrivial) characterization of this type is available. Here, we just note that

$$
\mathbb{Q}_{0}=\left\{Q \in \mathbb{P}:\left(X_{n}\right) \text { is i.i.d. and } X_{1} \text { has a nondegenerate distribution, under } Q\right\}
$$

does not work (though the "only if" implication is true, in view of Theorem 1 of [4]). As an example, $U:=\left\{X_{n} \rightarrow 0\right\} \notin \mathcal{U}$ even though $U \in \mathcal{A}$ and $Q(U)=0$ for all $Q \in \mathbb{Q}_{0}$. To see that $U \notin \mathcal{U}$, let X_{n} be the nth coordinate projection on $\Omega=\mathbb{R}^{\infty}$, and let P_{U} be a probability measure on the Borel sets of Ω which makes $\left(X_{n}\right)$ independent and each X_{n} uniformly distributed on $\left(0, \frac{1}{n}\right)$. Then $P_{U}(U)=1$ and, when restricted to $\mathcal{A} \cap U, P_{U}$ is a $0-1$ probability measure such that $P_{U}(H(\omega))=0$ for each $\omega \in U$. Hence, Theorem 1 of [4] implies that $\mathcal{A} \cap U$ is not c.g.

A last note is that $P(S)$ can assume any value between 0 and 1. For instance, take $U \in \mathcal{U}$ and $P_{1}, P_{2} \in \mathbb{P}$ such that: (i) $P_{1}(U)=P_{2}\left(U^{c}\right)=1$; (ii) P_{2} is $0-1$ on A with $P_{2}(H(\omega))=0$ for all ω. Define $P=u P_{1}+(1-u) P_{2}$ where $u \in(0,1)$. A r.c.d. for P given \mathcal{A} is $\mu(\omega)=I_{U}(\omega) \mu_{1}(\omega)+I_{U^{c}}(\omega) P_{2}$, where μ_{1} denotes a r.c.d. for P_{1} given \mathcal{A}. Since $U \in \mathcal{U}$, Theorem 3 implies $\mu_{1}(\omega)(H(\omega))=1$ for P_{1}-almost all $\omega \in U$. Thus, $P(S)=P(U)=u$.
2.3. Miscellaneous results. A weaker version of (3) lies in asking $\mu(\cdot)(H(\cdot))$ to be $0-1$ over a set of \mathcal{A}^{*}, but not necessarily of \mathcal{A}, that is
$\left(3^{*}\right)$ There is $B_{0} \in \mathcal{A}^{*}$ with $P\left(B_{0}\right)=1$ and $\mu(\omega)(H(\omega)) \in\{0,1\}$ for all $\omega \in B_{0}$. Suitably adapted, the proofs of Theorems 3 and 4 yield a characterization of (3*) as well. Recall $\mathcal{N}=\{B \in \mathscr{B}: P(B)=0\}$ and note that

$$
\sigma(\mathscr{A} \cup \mathcal{N})=\left\{B \in \mathscr{B}: \mu(B)=I_{B} \text { a.s. }\right\} .
$$

THEOREM 8. Suppose (1) holds and $G \in \mathscr{B} \otimes \mathscr{B}$. Then, condition (3*) implies $S \in \sigma(\mathcal{A} \cup \mathcal{N})$. Moreover, if $S \in \sigma(\mathcal{A} \cup \mathcal{N})$, then

$$
(3 *) \quad \Leftrightarrow \quad(\mathrm{b} *) \quad \Leftrightarrow \quad(\mathrm{c} *)
$$

where:
(b*) $\mathcal{A} \cap V$ is c.g. for some $V \in \mathcal{A}^{*}$ with $V \subset S$ and $P(S-V)=0$;
(c*) $\mathcal{A} \cap V=\mathcal{A}^{*} \cap V$ for some $V \in \mathcal{A}^{*}$ with $V \subset S$ and $P(S-V)=0$.
Proof. If $\left(3^{*}\right)$ holds, then $\mu(S)=1$ on $B_{0} \cap S$, and since $P\left(B_{0}\right)=1$ one obtains

$$
E\left(\mu(S) I_{S^{c}}\right)=P(S)-E\left(\mu(S) I_{B_{0}} I_{S}\right)=P(S)-E\left(I_{B_{0}} I_{S}\right)=0 .
$$

Thus, $\mu(S)=I_{S}$ a.s., that is, $S \in \sigma(\mathcal{A} \cup \mathcal{N})$. Next, suppose that $S \in \sigma(\mathcal{A} \cup \mathcal{N})$.
" $\left(3^{*}\right) \Rightarrow\left(\mathrm{c}^{*}\right)$." Define $V=B_{0} \cap S$ and note that $B \cap V=\{\mu(B)=1\} \cap V \in$ $\mathcal{A} \cap V$ for all $B \in \mathcal{A}^{*}$.
$"\left(\mathrm{c}^{*}\right) \Rightarrow\left(\mathrm{b}^{*}\right) . "$ Fix $\alpha \in \mathbb{P}$ and define $\nu(\omega)(B)=I_{V}(\omega) \frac{f_{B}(\omega)}{f(\omega)}+I_{V^{c}}(\omega) \alpha(B)$ for all $\omega \in \Omega$ and $B \in \mathscr{B}$. Then, $\sigma(v) \subset \mathcal{A}^{*}$. Further, $v(\omega)(H(\omega))=1$ for all $\omega \in V$, so that $B \cap V=\{v(B)=1\} \cap V$ for all $B \in \mathcal{A}^{*}$. Hence, (c*) implies that $\mathcal{A} \cap V=\mathcal{A}^{*} \cap V=\sigma(v) \cap V$ is c.g.
$"\left(b^{*}\right) \Rightarrow\left(3^{*}\right) . "$ Let $\mathcal{A}_{0}=\left\{(A \cap V) \cup F: A \in \mathcal{A}, F=\varnothing\right.$ or $\left.F=V^{c}\right\}$. Since $\mu(V)=\mu(S)=I_{S}=I_{V}$ a.s., for all $A \in \mathscr{A}$ and $B \in \mathscr{B}$ one obtains

$$
E\left(I_{A} I_{V} \mu(B)\right)=E\left(I_{A} \mu(B \cap V)\right)=P((A \cap V) \cap B) .
$$

So, $\mu_{0}(\omega)=I_{V}(\omega) \mu(\omega)+I_{V^{c}}(\omega) \alpha$ is a r.c.d. for P given \mathcal{A}_{0}, where $\alpha(\cdot)=$ $P\left(\cdot \mid V^{c}\right)$ if $P(V)<1$ and α is any fixed element of \mathbb{P} if $P(V)=1$. Since \mathcal{A}_{0} is c.g., there is $K \in \mathcal{A}_{0}$ with $P(K)=1$ and $\mu_{0}(\omega)\left(H_{0}(\omega)\right)=1$ for all $\omega \in K$, where $H_{0}(\omega)$ denotes the \mathcal{A}_{0}-atom including ω. Hence, it suffices to let $B_{0}=(K \cap V) \cup S^{c}$ and noting that $H_{0}(\omega)=H(\omega)$ and $\mu_{0}(\omega)=\mu(\omega)$ for all $\omega \in V$.

One consequence of Theorem 8 is that, if (1) holds and $G \in \mathscr{B} \otimes \mathscr{B}$, then condition (3^{*}) is equivalent to $\mu(S)=I_{S}$ a.s. and $P\left(0<f \leq \frac{1}{2}\right)=0$. In fact,

$$
A \cap\left\{f>\frac{1}{2}\right\}=\left\{\mu(A)>\frac{1}{2}\right\} \cap\left\{f>\frac{1}{2}\right\} \quad \text { for all } A \in \mathcal{A}
$$

so that $\mathcal{A} \cap\left\{f>\frac{1}{2}\right\}=\sigma(\mu) \cap\left\{f>\frac{1}{2}\right\}$ is c.g. Hence, if $P\left(0<f \leq \frac{1}{2}\right)=0$, condition (b*) holds with $V=\left\{f>\frac{1}{2}\right\}$.

Finally, we give one more condition for (3). Though seemingly simple, it is hard to be tested in real problems.

Proposition 9. If (1) holds and $H(\omega) \in \mathscr{B}$ for all ω, a sufficient condition for (3) is

$$
\begin{equation*}
\mu(x)(H(y))=0 \quad \text { whenever } H(x) \neq H(y) \tag{5}
\end{equation*}
$$

Proof. As stated in the forthcoming Lemma 10, since $\sigma(\mu)$ is c.g. and μ is also a r.c.d. for P given $\sigma(\mu)$, there is a set $T \in \sigma(\mu)$ such that $P(T)=1$ and $\mu(\omega)(\mu=\mu(\omega))=1$ for each $\omega \in T$. Let $A_{0}=T$ and fix $\omega \in S$. Then, $\mu(\omega)=$ $\mu(x)$ if $x \in H(\omega)$ [since $\sigma(\mu) \subset \mathcal{A}$] and $\mu(\omega) \neq \mu(x)$ if $x \notin H(\omega)$ since in the latter case (5) yields

$$
\mu(x)(H(\omega))=0<f(\omega)=\mu(\omega)(H(\omega))
$$

Thus, $H(\omega)=\{\mu=\mu(\omega)\}$. If $\omega \in T \cap S=A_{0} \cap S$, this implies

$$
\mu(\omega)(H(\omega))=\mu(\omega)(\mu=\mu(\omega))=1
$$

3. When regular conditional distributions are $0-1$ on the conditioning σ-field. In this section, condition (4) is shown to be true whenever \mathcal{A} is a tail sub- σ-field. Moreover, two characterizations of (4) and a result in the negative [i.e., a condition for (4) to be false] are given.

We begin by recalling a few simple facts about $\sigma(\mu)$.
Lemma 10. If (1) holds, then $\sigma(\mu)$ is c.g., μ is a r.c.d.for P given $\sigma(\mu)$, and there is a set $T \in \sigma(\mu)$ with $P(T)=1$ and

$$
\mu(\omega)(\mu=\mu(\omega))=1 \quad \text { for all } \omega \in T
$$

Moreover,

$$
\mathcal{A}=\sigma(\sigma(\mu) \cup(\mathcal{A} \cap \mathcal{N})) .
$$

Proof. Since $\sigma(\mu) \subset \mathcal{A}, \mu$ is a r.c.d. given $\sigma(\mu)$. Since \mathscr{B} is c.g., $\sigma(\mu)$ is c.g. with atoms of the form $\{\mu=\mu(\omega)\}$. Hence, there is $T \in \sigma(\mu)$ with $P(T)=1$ and $\mu(\omega)(\mu=\mu(\omega))=1$ for all $\omega \in T$. Finally, since

$$
A=\left(\{\mu(A)=1\} \cap\left\{\mu(A)=I_{A}\right\}\right) \cup\left(A \cap\left\{\mu(A) \neq I_{A}\right\}\right)
$$

for all $A \in \mathcal{A}$, it follows that $\mathcal{A} \subset \sigma(\sigma(\mu) \cup(\mathcal{A} \cap \mathcal{N})) \subset \mathcal{A}$.
By Lemma $10, \mu(\omega)$ is $0-1$ on $\sigma(\mu)$ for each $\omega \in T$. Since $\mathcal{A}=\sigma(\sigma(\mu) \cup$ $(\mathcal{A} \cap \mathcal{N})$), condition (4) can be written as

$$
\mu(\omega)(A) \in\{0,1\} \quad \text { for all } \omega \in A_{0} \text { and } A \in \mathscr{A} \text { with } P(A)=0
$$

In particular, (4) holds whenever P is atomic on \mathcal{A}, in the sense that there is a countable partition $\left\{A_{1}, A_{2}, \ldots\right\}$ of Ω satisfying $A_{j} \in \mathcal{A}$ and $P\left(A \cap A_{j}\right) \in$ $\left\{0, P\left(A_{j}\right)\right\}$ for all $j \geq 1$ and $A \in \mathcal{A}$. In this case, in fact, $\mu(\omega) \ll P$ for each ω in some set $C \in \mathscr{A}$ with $P(C)=1$.

Slightly developing the idea underlying Example 2, we next give a sufficient condition for (4) to be false.

Proposition 11. Suppose (1) holds and $P(\mu=\mu(\omega))=0$ for all ω. Then, $F=\{\omega: \mu(\omega)$ is not $0-1$ on $\mathscr{B}\} \quad$ and $\quad F_{0}=\{\omega: \mu(\omega)$ is nonatomic on $\mathscr{B}\}$
belong to $\sigma(\mu)$. Moreover, if $\mathcal{N} \subset \mathcal{A}$, then

$$
\begin{aligned}
& \mu(\omega) \text { is not } 0-1 \text { on } \mathcal{A} \text { for each } \omega \in F \cap T \text {, and } \\
& \mu(\omega) \text { is nonatomic on } \mathcal{A} \text { for each } \omega \in F_{0} \cap T
\end{aligned}
$$

with T as in Lemma 10. In particular, condition (4) fails if $P(F)>0$.
Proof. Since \mathscr{B} is c.g., it is clear that $F \in \sigma(\mu)$, while $F_{0} \in \sigma(\mu)$ is from [6] (see Corollary 2.13, page 1214). Suppose now that $\mathcal{N} \subset \mathcal{A}$. Let $\omega \in F \cap T$. Since $\omega \in F$, there is $B_{\omega} \in \mathscr{B}$ with $\mu(\omega)\left(B_{\omega}\right) \in(0,1)$. Define $A_{\omega}=B_{\omega} \cap\{\mu=\mu(\omega)\}$. Since $\mathcal{N} \subset \mathcal{A}$ and $P\left(A_{\omega}\right) \leq P(\mu=\mu(\omega))=0$, then $A_{\omega} \in \mathcal{A}$. Since $\omega \in T$,

$$
\mu(\omega)\left(A_{\omega}\right)=\mu(\omega)\left(B_{\omega}\right) \in(0,1)
$$

so that $\mu(\omega)$ is not $0-1$ on \mathcal{A}. Finally, fix $\omega \in F_{0} \cap T$ and $\varepsilon>0$. Since $\omega \in F_{0}$, there is a finite partition $\left\{B_{1, \omega}, \ldots, B_{n, \omega}\right\}$ of Ω such that $B_{i, \omega} \in \mathscr{B}$ and $\mu(\omega)\left(B_{i, \omega}\right)<\varepsilon$ for all i. As above, letting $A_{i, \omega}=B_{i, \omega} \cap\{\mu=\mu(\omega)\}$, one obtains $A_{i, \omega} \in \mathcal{A}$ and $\mu(\omega)\left(A_{i, \omega}\right)=\mu(\omega)\left(B_{i, \omega}\right)<\varepsilon$. Hence, $\mu(\omega)$ is nonatomic on \mathcal{A} since $\mu(\omega)(\mu \neq$ $\mu(\omega))=0$.

Even if \mathcal{N} is not contained in \mathcal{A}, Proposition 11 applies at least to $\mathcal{A}^{\prime}=$ $\sigma(\mathcal{A} \cup \mathcal{N})$. Under mild conditions, μ is even nonatomic on \mathcal{A}^{\prime} with probability $P\left(F_{0}\right)$. Thus, a lot of r.c.d.'s give rise to a failure of (4) on some sub- σ-field \mathcal{A}^{\prime}. Since we are conditioning to \mathcal{A} (and not to \mathcal{A}^{\prime}), this fact is not essential. On the other hand, it suggests that (4) is a rather delicate condition.

If P is invariant under a countable collection of measurable transformations and \mathscr{A} is the corresponding invariant sub- σ-field, then (4) holds; see [9]. This well-known fact is generalized by our first characterization of (4).

ThEOREM 12. Suppose (1) holds and let $M=\{Q \in \mathbb{P}: \mu$ is a r.c.d. for Q given A\}. Then, Q is an extreme point of M if and only if $Q \in M$ and Q is $0-1$ on \mathcal{A}, and in that case $Q=\mu(\omega)$ for some $\omega \in \Omega$. Moreover, for each $\omega \in T$ (with T as in Lemma 10), the following statements are equivalent:
(i) $\mu(\omega)(A) \in\{0,1\}$ for all $A \in \mathcal{A}$;
(ii) $\mu(\omega)$ is an extreme point of M;
(iii) $\mu(\omega) \in M$.

In particular, condition (4) holds if and only if, for some $A_{0} \in \mathcal{A}$ with $P\left(A_{0}\right)=1$,

$$
\mu(\omega) \in M \quad \text { for all } \omega \in A_{0}
$$

Proof. Fix $Q \in M$. If $Q(A) \in(0,1)$ for some $A \in \mathcal{A}$, then

$$
Q(\cdot)=Q(A) Q(\cdot \mid A)+(1-Q(A)) Q\left(\cdot \mid A^{c}\right)
$$

and Q is not extreme since $Q(\cdot \mid A)$ and $Q\left(\cdot \mid A^{c}\right)$ are distinct elements of M. Suppose now that $Q=u Q_{1}+(1-u) Q_{2}$, where $u \in(0,1)$ and $Q_{1} \neq Q_{2}$ are in M. Since two elements of M coincide if and only if they coincide on \mathcal{A}, there is $A \in \mathcal{A}$ with $Q_{1}(A) \neq Q_{2}(A)$, and this implies $Q(A) \in(0,1)$. Hence, $Q \in M$ is extreme if and only if it is $0-1$ on \mathcal{A}. In particular, if Q is extreme then it is $0-1$ on the c.g. σ-field $\sigma(\mu)$, so that $Q(\mu=\mu(\omega))=1$ for some $\omega \in \Omega$; see Theorem 1 of [4]. Thus,

$$
Q(B)=\int \mu(x)(B) Q(d x)=\mu(\omega)(B) \quad \text { for all } B \in \mathscr{B}
$$

This concludes the proof of the first part. As to the second one, fix $\omega \in T$, and let A and B denote arbitrary elements of \mathcal{A} and \mathscr{B}, respectively. Since $\omega \in T$,

$$
\int_{A} \mu(x)(B) \mu(\omega)(d x)=\int_{A \cap\{\mu=\mu(\omega)\}} \mu(x)(B) \mu(\omega)(d x)=\mu(\omega)(A) \mu(\omega)(B)
$$

"(i) \Rightarrow (ii)." By what already proved, it is enough showing that $\mu(\omega) \in M$, and this depends on $\mu(\omega)(A \cap B)=\mu(\omega)(A) \mu(\omega)(B)=\int_{A} \mu(x)(B) \mu(\omega)(d x)$.
"(ii) \Rightarrow (iii)." Obvious.
"(iii) \Rightarrow (i)." Under (iii), $\mu(\omega)(A \cap B)=\int_{A} \mu(x)(B) \mu(\omega)(d x)=\mu(\omega) \times$ $(A) \mu(\omega)(B)$, and letting $B=A$ yields $\mu(\omega)(A)=\mu(\omega)(A)^{2}$.

Next characterization of (4) stems from a result of [8], Lemma 2A, page 391.
THEOREM 13 (Fremlin). Let X be an Hausdorff topological space, \mathcal{F} a σ-field on X including the open sets, Q a complete Radon probability measure on \mathcal{F}, and \mathcal{C}_{0} a class of pairwise disjoint Q-null elements of \mathcal{F}. Then,

$$
\bigcup_{C \in \mathcal{C}} C \in \mathcal{F} \text { for all } \mathcal{C} \subset \mathcal{C}_{0} \quad \Longleftrightarrow \quad Q\left(\bigcup_{C \in \mathcal{C}_{0}} C\right)=0
$$

Say that P is perfect in case each \mathscr{B}-measurable function $h: \Omega \rightarrow \mathbb{R}$ meets $P(h \in I)=1$ for some real Borel set $I \subset h(\Omega)$. For P to be perfect, it is enough that Ω is an universally measurable subset of a Polish space and \mathscr{B} the Borel σ-field on Ω. In the present framework, since \mathscr{B} is c.g., Theorem 13 applies precisely when P is perfect. We are now able to state our second characterization of (4). It is of possible theoretical interest even if of little practical use.

Theorem 14. Suppose (1) holds and P is perfect, define

$$
\mathcal{A}(\omega)=\{A \in \mathcal{A}: \mu(\omega)(A) \in\{0,1\}\} \quad \omega \in \Omega
$$

and let Γ_{0} denote the class of those σ-fields $\mathcal{G} \subset \mathcal{A}$ with $\mathcal{G} \neq \mathcal{A}$. Then, condition (4) holds if and only if

$$
\begin{equation*}
\bigcup_{\mathcal{G} \in \Gamma}\{\omega: \mathcal{A}(\omega)=\mathcal{G}\} \in \mathcal{A}_{P} \quad \text { for all } \Gamma \subset \Gamma_{0} \tag{6}
\end{equation*}
$$

Proof. If $\mu(\omega)$ is $0-1$ on \mathcal{A} for all $\omega \in A_{0}$, where $A_{0} \in \mathcal{A}$ and $P\left(A_{0}\right)=1$, then (6) follows from

$$
\{\omega: \mathcal{A}(\omega)=\mathcal{G}\} \subset A_{0}^{c} \quad \text { for all } \mathcal{G} \in \Gamma_{0}
$$

Conversely, suppose (6) holds. Let X be the partition of Ω in the atoms of \mathscr{B}. The elements of \mathscr{B} are unions of elements of X, so that \mathscr{B} can be regarded as a σ-field on X. Let (X, \mathcal{F}, Q) be the completion of (X, \mathcal{B}, P). Since \mathscr{B} is c.g., under a suitable distance, X is separable metric and \mathscr{B} the corresponding Borel σ-field; see [2]. Since P is perfect, P is Radon by a result of Sazonov (Theorem 12 of [10]), so that Q is Radon, too. Next, define $C_{\mathcal{G}}=\{\omega: \mathcal{A}(\omega)=\mathcal{G}\}$ for $\mathcal{G} \in \Gamma_{0}$, $U_{A}=\{\omega: \mu(\omega)(A) \in(0,1)\}$ for $A \in \mathcal{A}$, and $U=\{\omega: \mathcal{A}(\omega) \neq \mathcal{A}\}$ (all regarded as subsets of X). For each $\mathcal{G} \in \Gamma_{0}$ there is $A \in \mathcal{A}$ with $C_{\mathcal{G}} \subset U_{A}$. Since $U_{A} \in \mathcal{A}$ and $P\left(U_{A}\right)=0$, then $C_{\mathcal{q}} \in \mathcal{F}$ and $Q\left(C_{\mathcal{q}}\right)=0$. Hence, $\mathcal{C}_{0}=\left\{C_{\mathcal{g}}: \mathscr{g} \in \Gamma_{0}\right\}$ is a collection of pairwise disjoint Q-null elements of \mathcal{F} satisfying $U=\bigcup_{g \in \Gamma_{0}} C g$. By (6), Theorem 13 yields $Q(U)=0$. Finally, since $U \in \mathcal{A}_{P}, Q(U)=0$ implies $U \subset A$ for some $A \in \mathscr{A}$ with $P(A)=0$. Thus, to get (4), it suffices to let $A_{0}=A^{c}$.

Finally, by a martingale argument, we prove that (4) holds when \mathcal{A} is a tail sub- σ-field. This is true, in addition, even though \mathscr{B} fails to be c.g.

THEOREM 15. Let $\mathcal{A}=\bigcap_{n \geq 1} \mathcal{A}_{n}$, where $\mathscr{B} \supset \mathcal{A}_{1} \supset \mathcal{A}_{2} \supset \cdots$ and \mathcal{A}_{n} is a c.g. σ-field for each n. Given a r.c.d. μ, for P given \mathcal{A}, there is a set $A_{0} \in \mathcal{A}$ such that $P\left(A_{0}\right)=1$ and $\mu(\omega)(A) \in\{0,1\}$ for all $A \in \mathscr{A}$ and $\omega \in A_{0}$.

Proof. First recall that a probability measure $Q \in \mathbb{P}$ is $0-1$ on \mathcal{A} if (and only if) $\sup _{A \in \mathcal{A}_{n}}|Q(A \cap B)-Q(A) Q(B)| \rightarrow 0$, as $n \rightarrow \infty$, for all $B \in \mathcal{A}_{1}$. Also, given any field \mathscr{F}_{n} such that $\mathcal{A}_{n}=\sigma\left(\mathcal{F}_{n}\right)$, the "sup" can be taken over \mathcal{F}_{n}, that is,

$$
\sup _{A \in \mathcal{A}_{n}}|Q(A \cap B)-Q(A) Q(B)|=\sup _{A \in \mathcal{F}_{n}}|Q(A \cap B)-Q(A) Q(B)| .
$$

Now, since the \mathcal{A}_{n} are c.g., there are countable fields \mathcal{F}_{n} satisfying $\mathcal{A}_{n}=\sigma\left(\mathcal{F}_{n}\right)$ for all n. Let

$$
V_{n}^{B}(\omega)=\sup _{A \in \mathscr{F}_{n}}|\mu(\omega)(A \cap B)-\mu(\omega)(A) \mu(\omega)(B)|, \quad n \geq 1, B \in \mathcal{A}_{1}, \omega \in \Omega
$$

Since \mathcal{F}_{n} is countable, V_{n}^{B} is an \mathcal{A}-measurable random variable for all n and B. It is enough proving that

$$
\begin{equation*}
V_{n}^{B} \rightarrow 0 \quad \text { a.s., as } n \rightarrow \infty, \text { for all } B \in \mathcal{A}_{1} \tag{7}
\end{equation*}
$$

Suppose in fact (7) holds and define

$$
A_{0}=\left\{\omega: \lim _{n} V_{n}^{B}(\omega)=0 \text { for each } B \in \mathcal{F}_{1}\right\}
$$

Since \mathcal{F}_{1} is countable, $A_{0} \in \mathcal{A}$ and (7) implies $P\left(A_{0}\right)=1$. Fix $\omega \in A_{0}$. Since $\mathcal{A}_{1}=\sigma\left(\mathcal{F}_{1}\right)$, given $B \in \mathcal{A}_{1}$ and $\varepsilon>0$, there is $C \in \mathcal{F}_{1}$ such that $\mu(\omega)(B \Delta C)<\varepsilon$. Hence,

$$
\begin{aligned}
V_{n}^{B}(\omega) \leq & \sup _{A \in \mathscr{F}_{n}}|\mu(\omega)(A \cap B)-\mu(\omega)(A \cap C)| \\
& +\sup _{A \in \mathscr{F}_{n}}|\mu(\omega)(A \cap C)-\mu(\omega)(A) \mu(\omega)(C)| \\
& +\sup _{A \in \mathscr{F}_{n}}|\mu(\omega)(A) \mu(\omega)(C)-\mu(\omega)(A) \mu(\omega)(B)| \\
\leq & V_{n}^{C}(\omega)+2 \mu(\omega)(B \Delta C)<V_{n}^{C}(\omega)+2 \varepsilon \quad \text { for all } n .
\end{aligned}
$$

Since $\omega \in A_{0}$ and $C \in \mathcal{F}_{1}$, it follows that

$$
\underset{n}{\limsup } V_{n}^{B}(\omega) \leq 2 \varepsilon+\limsup _{n} V_{n}^{C}(\omega)=2 \varepsilon \quad \text { for all } B \in \mathcal{A}_{1} \text { and } \varepsilon>0
$$

Therefore, $\mu(\omega)$ is $0-1$ on \mathcal{A}. It remains to check condition (7). Fix $B \in \mathcal{A}_{1}$, take any version of $E\left(I_{B} \mid \mathcal{A}_{n}\right)$ and define $Z_{n}=E\left(I_{B} \mid \mathcal{A}_{n}\right)-\mu(B)$. Then, $\left|Z_{n}\right| \leq 2$ a.s. for all n, and the martingale convergence theorem yields $Z_{n} \rightarrow 0$ a.s. Further, for fixed $n \geq 1$ and $A \in \mathcal{F}_{n}$, one obtains

$$
\begin{aligned}
& \left|E\left(I_{A} I_{B} \mid \mathcal{A}\right)-E\left(I_{A} \mid \mathcal{A}\right) E\left(I_{B} \mid \mathcal{A}\right)\right| \\
& \quad=\left|E\left(I_{A} E\left(I_{B} \mid \mathcal{A}_{n}\right) \mid \mathcal{A}\right)-E\left(I_{A} E\left(I_{B} \mid \mathcal{A}\right) \mid \mathcal{A}\right)\right| \\
& \quad=\left|E\left(I_{A} Z_{n} \mid \mathscr{A}\right)\right| \leq E\left(\left|Z_{n}\right| \mid \mathcal{A}\right) \quad \text { a.s. }
\end{aligned}
$$

Since \mathcal{F}_{n} is countable, it follows that

$$
V_{n}^{B}=\sup _{A \in \mathcal{F}_{n}}\left|E\left(I_{A} I_{B} \mid \mathscr{A}\right)-E\left(I_{A} \mid \mathcal{A}\right) E\left(I_{B} \mid \mathcal{A}\right)\right| \leq E\left(\left|Z_{n}\right| \mid \mathcal{A}\right) \rightarrow 0 \quad \text { a.s. } \square
$$

As noted in Section 2.2, a tail sub- σ-field includes its atoms so that (4) implies (3). Thus, by Theorem 15, condition (3) holds provided \mathcal{A} is a tail sub- σ-field and P admits a r.c.d. μ given \mathcal{A}, even if the other assumptions of Lemma 7 fail. [In fact, such assumptions grant something more than (3)].

Acknowledgment. We are indebted to Michael Wichura for various helpful suggestions and for having improved Theorems 3 and 8.

REFERENCES

[1] Berti, P. and Rigo, P. (1999). Sufficient conditions for the existence of disintegrations. J. Theoret. Probab. 12 75-86. MR1674968
[2] Blackwell, D. (1956). On a class of probability spaces. In Proc. Third Berkeley Symp. Math. Statist. Probab. 1-6. Univ. California Press, Berkeley. MR0084882
[3] Blackwell, D. and Ryll-Nardzewski, C. (1963). Non-existence of everywhere proper conditional distributions. Ann. Math. Statist. 34 223-225. MR0148097
[4] Blackwell, D. and Dubins, L. E. (1975). On existence and non-existence of proper, regular, conditional distributions. Ann. Probab. 3 741-752. MR0400320
[5] Diaconis, P. and Freedman, D. (1984). Partial exchangeability and sufficiency. In Proc. of the Indian Statistical Institute Golden Jubilee International Conference on Statistics: Applications and New Directions 205-236. Indian Statist. Inst., Calcutta. MR0786142
[6] Dubins, L. E. and Freedman, D. (1964). Measurable sets of measures. Pacific J. Math. 14 1211-1222. MR0174687
[7] Dynkin, E. B. (1978). Sufficient statistics and extreme points. Ann. Probab. 6 705-730. MR0518321
[8] Fremlin, D. H. (1981). Measurable functions and almost continuous functions. Manuscripta Math. 33 387-405. MR0612620
[9] Maitra, A. (1977). Integral representations of invariant measures. Trans. Amer. Math. Soc. 229 209-225. MR0442197
[10] Sazonov, V. V. (1965). On perfect measures. Amer. Math. Soc. Transl. Ser. (2) 48 229-254. MR0181729
[11] Seidenfeld, T., Schervish, M. J. and Kadane, J. (2001). Improper regular conditional distributions. Ann. Probab. 29 1612-1624. MR1880234

Dipartimento di Matematica
Pura ed Applicata "G. Vitali"
Universita' di Modena e Reggio-Emilia
VIA CAMPI 213/B
41100 Modena
ITALY
E-MAIL: berti.patrizia@unimore.it

Dipartimento di Economia Politica e Metodi Quantitativi
Universita' di Pavia
VIA S. FELICE 5
27100 PaVIA
ITALY
E-MAIL: prigo@eco.unipv.it

