0-1 LAWS FOR REGULAR CONDITIONAL DISTRIBUTIONS

BY PATRIZIA BERTI AND PIETRO RIGO

Universitá di Modena e Reggio Emilia and Universitá di Pavia

Let (Ω, \mathcal{B}, P) be a probability space, $\mathcal{A} \subset \mathcal{B}$ a sub- σ -field, and μ a regular conditional distribution for P given \mathcal{A} . Necessary and sufficient conditions for $\mu(\omega)(A)$ to be 0–1, for all $A \in \mathcal{A}$ and $\omega \in A_0$, where $A_0 \in \mathcal{A}$ and $P(A_0) = 1$, are given. Such conditions apply, in particular, when \mathcal{A} is a tail sub- σ -field. Let $H(\omega)$ denote the \mathcal{A} -atom including the point $\omega \in \Omega$. Necessary and sufficient conditions for $\mu(\omega)(H(\omega))$ to be 0–1, for all $\omega \in A_0$, are also given. If (Ω, \mathcal{B}) is a standard space, the latter 0–1 law is true for various classically interesting sub- σ -fields \mathcal{A} , including tail, symmetric, invariant, as well as some sub- σ -fields connected with continuous time processes.

1. Introduction and motivations. Let (Ω, \mathcal{B}, P) be a probability space and $\mathcal{A} \subset \mathcal{B}$ a sub- σ -field. A *regular conditional distribution* (r.c.d.) for P given \mathcal{A} is a mapping $\mu : \Omega \to \mathbb{P}$, where \mathbb{P} denotes the set of probability measures on \mathcal{B} , such that $\mu(\cdot)(B)$ is a version of $E(I_B | \mathcal{A})$ for all $B \in \mathcal{B}$. A σ -field is *countably generated* (c.g.) in case it is generated by one of its countable subclasses. In the sequel, it is assumed that P admits a r.c.d. given \mathcal{A} and

(1)
$$\mu$$
 denotes a *fixed* r.c.d., for *P* given *A*, and *B* is c.g.

Moreover,

$$H(\omega) = \bigcap_{\omega \in A \in \mathcal{A}} A$$

is the atom of A including the point $\omega \in \Omega$.

Heuristically, conditioning to \mathcal{A} should mean conditioning to the atom of \mathcal{A} which actually occurs, say $H(\omega)$, and the probability of $H(\omega)$ given $H(\omega)$ should be 1. If this interpretation is agreed, μ should be everywhere *proper*, that is, $\mu(\omega)(A) = I_A(\omega)$ for all $A \in \mathcal{A}$ and $\omega \in \Omega$. Though $\mu(\cdot)(A) = I_A(\cdot)$ a.s. for *fixed* $A \in \mathcal{A}$, however, μ can behave quite inconsistently with properness.

Say that \mathcal{A} is c.g. under P in case the trace σ -field $\mathcal{A} \cap C = \{A \cap C : A \in \mathcal{A}\}$ is c.g. for some $C \in \mathcal{A}$ with P(C) = 1. If \mathcal{A} is c.g. under P then

(2)
$$\mu(\omega)(A) = I_A(\omega)$$
 for all $A \in \mathcal{A}$ and $\omega \in A_0$,

where, here and in what follows, A_0 designates some set of A with $P(A_0) = 1$. In general, the exceptional set A_0^c cannot be removed. Further, (2) implies that

Received August 2005; revised June 2006.

AMS 2000 subject classifications. 60A05, 60A10, 60F20.

Key words and phrases. 0–1 law, measurability, regular conditional distribution, tail σ -field.

 $\mathcal{A} \cap A_0$ is c.g. See [2, 3] and Theorem 1 of [4]. In other terms, not only everywhere properness is to be weakened into condition (2), but the latter holds if and only if \mathcal{A} is c.g. under *P*.

If \mathcal{A} fails to be c.g. under P, various weaker notions of r.c.d. have been investigated. Roughly speaking, in such notions, μ is asked to be everywhere proper but σ -additivity and/or measurability are relaxed. See [1] and references therein. However, not very much is known on r.c.d.'s, regarded in the usual sense, when \mathcal{A} is not c.g. under P (one exception is [11]). In particular, when (2) fails, one question is whether some of its consequences are still available.

In this paper, among these consequences, we focus on:

- (3) $\mu(\omega)(H(\omega)) \in \{0, 1\}$ for all $\omega \in A_0$,
- (4) $\mu(\omega)(A) \in \{0, 1\}$ for all $A \in \mathcal{A}$ and $\omega \in A_0$.

Note that (4) implies (3) in case $H(\omega) \in \mathcal{A}$ for all $\omega \in A_0$, and that, for (3) to make sense, one needs to assume $H(\omega) \in \mathcal{B}$ for all $\omega \in A_0$.

Both conditions (3) and (4) worth some attention.

Investigating (3) can be seen as a development of the seminal work of [4]. The conjecture that (3) holds (under mild conditions) is supported by those examples in the literature where \mathcal{B} is c.g. In these examples, in fact, either $\mu(\omega)(H(\omega)) = 1$ a.s. or $\mu(\omega)(H(\omega)) = 0$ a.s. See, for instance, [11].

Condition (4) seems to have been neglected so far, though it is implicit in some ideas of [7] and [5]. In any case, (4) holds in a number of real situations and can be attached a clear heuristic meaning. As to the latter, fix $\omega_0 \in \Omega$. Since $\mu(\omega_0)$ comes out by conditioning on \mathcal{A} , one could expect that μ is a r.c.d. for $\mu(\omega_0)$ given \mathcal{A} , too. Condition (4) grants that this is true, provided $\omega_0 \in A_0$. More precisely, letting $M = \{Q \in \mathbb{P} : \mu \text{ is a r.c.d. for } Q \text{ given } \mathcal{A}\}$, condition (4) is equivalent to

$$\mu(\omega) \in M$$
 for all $\omega \in A_0$;

see Theorem 12.

Since \mathcal{B} is c.g., $P(\mu \neq \nu) = 0$ for any other r.c.d. ν , and this is basic for (3) and (4). For some time, we guessed that \mathcal{B} c.g. is enough for (3) and (4). Instead, as we now prove, some extra conditions are needed. Let

$$\mathcal{N} = \{ B \in \mathcal{B} : P(B) = 0 \}.$$

EXAMPLE 1 [A failure of condition (3)]. Let $\Omega = \mathbb{R}$, \mathcal{B} the Borel σ -field, Q a probability measure on \mathcal{B} vanishing on singletons, and $P = \frac{1}{2}(Q + \delta_0)$. If $\mathcal{A} = \sigma(\mathcal{N})$, then $\mu = P$ a.s. and $H(\omega) = \{\omega\}$ for all ω , so that $H(0) = \{0\} \notin \mathcal{A}$ and $\mu(0)\{0\} = P\{0\} = \frac{1}{2}$.

Incidentally, Example 1 exhibits also a couple of (perhaps unexpected) facts. Unless $H(\omega) \in \mathcal{A}$ for all $\omega \in A_0$, (4) does not imply (3). Further, it may be that $\mu(\omega)(H(\omega)) < 1$, for a single point ω ($\omega = 0$ in Example 1), even though $H(\omega) \in \mathcal{B}$ and $\mu(\omega)(A) = I_A(\omega)$ for all $A \in \mathcal{A}$. EXAMPLE 2 [A failure of condition (4)]. Let $\Omega = \mathbb{R}^2$, \mathcal{B} the Borel σ -field, and $P = Q \times Q$ where Q is the N(0, 1) law on the real Borel sets. Denoting \mathcal{G} the σ -field on Ω generated by $(x, y) \mapsto x$, a (natural) r.c.d. for P given \mathcal{G} is $\mu((x, y)) = \delta_x \times Q$. With such a μ , condition (4) fails if \mathcal{A} is taken to be $\mathcal{A} = \sigma(\mathcal{G} \cup \mathcal{N})$. In fact, μ is also a r.c.d. for P given \mathcal{A} , and for all (x, y) one has $\{x\} \times [0, \infty) \in \mathcal{A}$ while

$$\mu((x, y))(\{x\} \times [0, \infty)) = \frac{1}{2}.$$

Note also that (3) holds in this example, since $H(\omega) = \{\omega\}$ and $\mu(\omega)\{\omega\} = 0$ for all $\omega \in \Omega$.

This paper provides necessary and sufficient conditions for (3) and (4). Special attention is devoted to the particular case where \mathcal{A} is a *tail sub-\sigma-field*, that is, \mathcal{A} is the intersection of a nonincreasing sequence of *countably generated* sub- σ -fields. The main results are Theorems 3, 4, 8 and 15. Theorem 15 states that (4) is always true whenever \mathcal{A} is a tail sub- σ -field. Theorems 3, 4 and 8 deal with condition (3). One consequence of Theorem 4 is that, when (Ω, \mathcal{B}) is a standard space, (3) holds for various classically interesting sub- σ -fields \mathcal{A} , including tail, symmetric, invariant, as well as some sub- σ -fields connected with continuous time processes.

2. When regular conditional distributions are 0–1 on the (appropriate) atoms of the conditioning σ -field. This section deals with condition (3). It is split into three subsections.

2.1. *Basic results.* For any map $\nu : \Omega \to \mathbb{P}$, we write $\sigma(\nu)$ for the σ -field generated by $\nu(B)$ for all $B \in \mathcal{B}$, where $\nu(B)$ stands for the real function $\omega \mapsto \nu(\omega)(B)$. Since \mathcal{B} is c.g., $\sigma(\nu)$ is c.g., too. In particular, $\sigma(\mu)$ is c.g. Let

$$\mathcal{A}_P = \{A \subset \Omega : \exists A_1, A_2 \in \mathcal{A} \text{ with } A_1 \subset A \subset A_2 \text{ and } P(A_2 - A_1) = 0\}$$

be the completion of \mathcal{A} with respect to $P|\mathcal{A}$. The only probability measure on \mathcal{A}_P agreeing with P on \mathcal{A} is still denoted by P. Further, in case $H(\omega) \in \mathcal{B}$ for all ω , we let

$$f_B(\omega) = \mu(\omega) (B \cap H(\omega))$$
 for $\omega \in \Omega$ and $B \in \mathcal{B}$,
 $f = f_\Omega$, $S = \{f > 0\}.$

We are in a position to state our first characterization of (3).

THEOREM 3. Suppose (1) holds and $H(\omega) \in \mathcal{B}$ for all ω . For each $U \in \mathcal{A}$ such that the trace σ -field $\mathcal{A} \cap U$ is c.g., there is $U_0 \in \mathcal{A}$ with $U_0 \subset U$, $P(U - U_0) = 0$ and $f(\omega) = 1$ for all $\omega \in U_0$. Moreover, if $S \in \mathcal{A}_P$, then condition (3) is equivalent to each of the following conditions (a)–(b):

(a) f_B is \mathcal{A}_P -measurable for all $B \in \mathcal{B}$;

(b) $\mathcal{A} \cap U$ is c.g. for some $U \in \mathcal{A}$ with $U \subset S$ and P(S - U) = 0.

PROOF. Suppose $\mathcal{A} \cap U$ is c.g. for some $U \in \mathcal{A}$ and define

$$\mathcal{A}_0 = \{ (A \cap U) \cup F : A \in \mathcal{A}, F = \emptyset \text{ or } F = U^c \}.$$

Let $H_0(\omega)$ be the A_0 -atom including ω . Then, A_0 is c.g. and $H_0(\omega) = H(\omega)$ for $\omega \in U$. A r.c.d. for P given A_0 is $\mu_0(\omega) = I_U(\omega)\mu(\omega) + I_{U^c}(\omega)\alpha$, where $\alpha(\cdot) = P(\cdot | U^c)$ if P(U) < 1 and α is any fixed element of \mathbb{P} if P(U) = 1. Since A_0 is c.g., there is $K \in A_0$ with P(K) = 1 and $\mu_0(\omega)(H_0(\omega)) = 1$ for all $\omega \in K$. Since $f(\omega) = \mu(\omega)(H(\omega)) = \mu_0(\omega)(H_0(\omega)) = 1$ for each $\omega \in K \cap U$, it suffices to let $U_0 = K \cap U$.

Next, suppose $S \in A_P$ and take $C, D \in A$ such that $C \subset S, D \subset S^c$ and $P(C \cup D) = 1$.

"(3) \Rightarrow (a)." Let $A = A_0 \cap C$, where $A_0 \in A$ is such that $P(A_0) = 1$ and $f(\omega) \in \{0, 1\}$ for all $\omega \in A_0$. Fix $B \in \mathcal{B}$. Since $f_B \leq f = 0$ on D and $f_B = \mu(B)$ on A, one obtains $I_{A \cup D} f_B = I_A f_B = I_A \mu(B)$. Thus, f_B is A_P -measurable.

"(a) \Rightarrow (b)." Given any $\alpha \in \mathbb{P}$, define the map $\nu : \Omega \rightarrow \mathbb{P}$ by

$$\nu(\omega)(B) = I_{S}(\omega) \frac{f_{B}(\omega)}{f(\omega)} + I_{S^{c}}(\omega)\alpha(B), \qquad \omega \in \Omega, B \in \mathcal{B}.$$

Then, (a) implies that $\sigma(v) \subset A_P$. Fix a countable field \mathcal{B}_0 generating \mathcal{B} , and, for each $B \in \mathcal{B}_0$, take a set $A_B \in \mathcal{A}$ such that $P(A_B) = 1$ and $I_{A_B}v(B)$ is \mathcal{A} -measurable. Define $U = (\bigcap_{B \in \mathcal{B}_0} A_B) \cap C$ and note that $U \in \mathcal{A}, U \subset S$ and P(S - U) = 0. Since $I_Uv(B)$ is \mathcal{A} -measurable for each $B \in \mathcal{B}_0$, it follows that $\sigma(v) \cap U \subset \mathcal{A} \cap U$. Since $A \cap U = \{v(A) = 1\} \cap U$ for all $A \in \mathcal{A}$, then $\mathcal{A} \cap U \subset \sigma(v) \cap U$. Hence, $\mathcal{A} \cap U = \sigma(v) \cap U$ is c.g.

"(b) \Rightarrow (3)." By the first assertion of the theorem, since $U \in A$ and $A \cap U$ is c.g., there is $U_0 \in A$ with $U_0 \subset U$, $P(U - U_0) = 0$ and f = 1 on U_0 . Define $A_0 = U_0 \cup D$ and note that $A_0 \in A$ and $f \in \{0, 1\}$ on A_0 . Since $U \subset S$ and P(S - U) = 0, one also obtains $P(A_0) = P(U_0) + P(D) = P(S) + P(S^c) = 1$. \Box

A basic condition for existence of disintegrations is that

$$G = \{(x, y) \in \Omega \times \Omega : H(x) = H(y)\}$$

belongs to $\mathcal{B} \otimes \mathcal{B}$; see [1]. Such a condition also plays a role in our main characterization of (3). Let

$$\mathcal{A}^* = \{B \in \mathcal{B} : B \text{ is a union of } \mathcal{A}\text{-atoms}\}.$$

THEOREM 4. If (1) holds and $G \in \mathcal{B} \otimes \mathcal{B}$, then $H(\omega) \in \mathcal{B}$ for all $\omega \in \Omega$ and f_B is \mathcal{A}^* -measurable for all $B \in \mathcal{B}$. If in addition $S \in \mathcal{A}_P$, then each of conditions (3), (a) and (b) is equivalent to

(c) $A \cap U = A^* \cap U$ for some $U \in A$ with $U \subset S$ and P(S - U) = 0.

652

PROOF. For $C \subset \Omega \times \Omega$, let $C_{\omega} = \{u \in \Omega : (\omega, u) \in C\}$ be the ω -section of *C*. Suppose (1) holds and $G \in \mathcal{B} \otimes \mathcal{B}$. Then, $H(\omega) = G_{\omega} \in \mathcal{B}$ for all ω . By a monotone class argument, the map $\omega \mapsto \mu(\omega)(C_{\omega})$ is \mathcal{B} -measurable whenever $C \in \mathcal{B} \otimes \mathcal{B}$. Letting $C = G \cap (\Omega \times B)$, where $B \in \mathcal{B}$, implies that f_B is \mathcal{B} -measurable. Since f_B is constant on each \mathcal{A} -atom, it is in fact \mathcal{A}^* -measurable. (Note that \mathcal{A}^* -measurability of f_B does not require \mathcal{B} c.g.) Next, suppose also that $S \in \mathcal{A}_P$. By Theorem 3, conditions (3), (a) and (b) are equivalent. Suppose (c) holds, and fix $B \in \mathcal{B}$ and a Borel set $I \subset \mathbb{R}$. Since $\{f_B \in I\} \in \mathcal{A}^*$, condition (c) yields $\{f_B \in I\} \cap U \in \mathcal{A}$, and $\{f_B \in I\} \cap (S - U) \in \mathcal{A}_P$ due to $(S - U) \in \mathcal{A}_P$ and P(S - U) = 0. Thus (assuming $0 \in I$ to fix ideas),

$$\{f_B \in I\} = S^c \cup (\{f_B \in I\} \cap (S - U)) \cup (\{f_B \in I\} \cap U) \in \mathcal{A}_P,$$

so that (a) holds. Conversely, suppose (a) holds. For each $B \in \mathcal{B}$, there is $A_B \in \mathcal{A}$ such that $P(A_B) = 1$ and $I_{A_B} f_B$ is \mathcal{A} -measurable. Letting $A = \bigcap_{B \in \mathcal{B}_0} A_B$, where \mathcal{B}_0 is a countable field generating \mathcal{B} , it follows that $A \in \mathcal{A}$, P(A) = 1 and $I_A f_B$ is \mathcal{A} -measurable for all $B \in \mathcal{B}$. Since $S \in \mathcal{A}_P$ and P(A) = 1, there is $U \in \mathcal{A}$ with $U \subset A \cap S$ and P(S - U) = 0. Given $B \in \mathcal{A}^*$, on noting that $f_B = I_B f$, one obtains

$$B \cap U = \{I_B f > 0\} \cap U = \{f_B > 0\} \cap U = (\{f_B > 0\} \cap A) \cap U \in \mathcal{A}.$$

Hence $\mathcal{A} \cap U = \mathcal{A}^* \cap U$, that is, condition (c) holds. \Box

We now state a couple of corollaries to Theorem 4. The first covers in particular the case where the *A*-atoms are the singletons, while the second (and more important) applies to various real situations.

COROLLARY 5. Suppose (1) holds, $S \in A_P$ and A, B have the same atoms. Then, (3) holds if and only if $A \cap U = B \cap U$ for some $U \in A$ with $U \subset S$ and P(S - U) = 0.

PROOF. Since \mathcal{A} , \mathcal{B} have the same atoms and \mathcal{B} is c.g.,

 $G = \{(x, y) : x \text{ and } y \text{ are in the same } \mathcal{B}\text{-atom}\} \in \mathcal{B} \otimes \mathcal{B}.$

Therefore, it suffices applying Theorem 4 and noting that $A^* = B$. \Box

COROLLARY 6. If (1) holds, $G \in \mathcal{B} \otimes \mathcal{B}$ and $\mathcal{A} \cap C = \mathcal{A}^* \cap C$, for some $C \in \mathcal{A}$ with P(C) = 1, then condition (3) holds.

PROOF. Since $C \in A$ and $S \cap C \in A^* \cap C = A \cap C$, then $S \cap C \in A$. Since P(C) = 1, it follows that $S \in A_P$ and (c) holds with $U = S \cap C$. Thus, (3) follows from Theorem 4. \Box

P. BERTI AND P. RIGO

As shown in [4], if (Ω, \mathcal{B}) is a standard space (Ω Borel subset of a Polish space and \mathcal{B} the Borel σ -field on Ω), then $G \in \mathcal{B} \otimes \mathcal{B}$ and $\mathcal{A}^* = \mathcal{A}$ for various classically interesting sub- σ -fields \mathcal{A} , including tail, symmetric, invariant, as well as some sub- σ -fields connected with continuous time processes. In view of Corollary 6, condition (3) holds in case (Ω, \mathcal{B}) is a standard space and \mathcal{A} is any one of the above-mentioned sub- σ -fields.

2.2. Tail sub- σ -fields. When condition (3) holds, the next step is determining those ω 's satisfying $f(\omega) = 1$. Suppose the assumptions of Corollary 6 are in force [so that (3) holds and f is A_P -measurable] and define

$$\mathcal{U} = \{ U \in \mathcal{A} : \mathcal{A} \cap U \text{ is c.g.} \} \cup \{ \emptyset \}.$$

Since \mathcal{U} is closed under countable unions, some $A \in \mathcal{U}$ meets $P(A) = \sup\{P(U): U \in \mathcal{U}\}$. By the first assertion in Theorem 3, $P(A - \{f = 1\}) = 0$. Taking U as in condition (b) and noting that $U \in \mathcal{U}$, one also obtains $P(\{f = 1\} - A) = P(U - A) = 0$. Therefore, A is the set we are looking for, in the sense that

$$P(\{f=1\}\Delta A) = 0.$$

Incidentally, the above remarks provide also a criterion for deciding whether μ is *maximally improper* according to [11]. Under the assumptions of Corollary 6, in fact, μ is maximally improper precisely when P(S) = 0. Hence,

 μ is maximally improper \Leftrightarrow P(U) = 0 for all $U \in \mathcal{U}$.

Some handy description of the members of \mathcal{U} , thus, would be useful. Unfortunately, such a description is generally hard to be found. We now discuss a particular case.

Let \mathcal{A} be a *tail sub-\sigma-field*, that is, $\mathcal{A} = \bigcap_{n \ge 1} \mathcal{A}_n$ where \mathcal{A}_n is a *countably* generated σ -field and $\mathcal{B} \supset \mathcal{A}_n \supset \mathcal{A}_{n+1}$ for all $n \ge 1$. As already noted, the assumptions of Corollary 6 hold for such an \mathcal{A} if (Ω, \mathcal{B}) is a standard space. More generally, it is enough that:

LEMMA 7. If A is a tail sub- σ -field, (1) holds and

for each n, there is a r.c.d. μ_n for P given A_n ,

then $G \in \mathcal{B} \otimes \mathcal{B}$ and $\mathcal{A} \cap C = \mathcal{A}^* \cap C$ for some $C \in \mathcal{A}$ with P(C) = 1.

PROOF. Since $G_n := \{(x, y) \in \Omega \times \Omega : x \text{ and } y \text{ are in the same } A_n \text{-atom}\} \in A_n \otimes A_n$, Proposition 1 of [4] implies $G = \bigcup_n G_n \in \mathcal{B} \otimes \mathcal{B}$. For each *n*, since A_n is c.g., there is $C_n \in A_n$ such that $P(C_n) = 1$ and $\mu_n(\omega)(A) = I_A(\omega)$ whenever $A \in A_n$ and $\omega \in C_n$. Define $C = \bigcup_{n \ge 1} \bigcap_{j \ge n} C_j$ and note that $C \in A$ and P(C) = 1. Fix $B \in A^*$. Since *B* is a union of A_n -atoms whatever *n* is,

$$\lim_{n} \mu_n(\omega)(B) = I_B(\omega) \quad \text{for all } \omega \in C.$$

654

Thus, $B \cap C = \{\lim_{n \to \infty} \mu_n(B) = 1\} \cap C \in \mathcal{A} \cap C$. \Box

Each A_n , being c.g., can be written as $A_n = \sigma(X_n)$ for some $X_n : \Omega \to \mathbb{R}$. Since $A_n \supset A_j$ for $j \ge n$, it follows that $A_n = \sigma(X_n, X_{n+1}, ...)$. Thus, A admits the usual representation

$$\mathcal{A} = \bigcap_{n} \sigma(X_n, X_{n+1}, \ldots)$$

for some sequence (X_n) of real random variables. In particular,

 $H(\omega) = \{\exists n \ge 1 \text{ such that } X_j = X_j(\omega) \text{ for all } j \ge n\} \in \mathcal{A}$

so that \mathcal{A} includes its atoms. Note also that a c.g. sub- σ -field is tail while the converse need not be true. In fact, for a σ -field \mathcal{F} to be not c.g., it is enough that \mathcal{F} supports a 0–1 valued probability measure Q such that Q(F) = 0 whenever $F \in \mathcal{F}$ and F is an \mathcal{F} -atom; see Theorem 1 of [4]. Thus, for instance, $\mathcal{A} = \bigcap_n \sigma(X_n, X_{n+1}, \ldots)$ is not c.g. in case (X_n) is i.i.d. and X_1 has a nondegenerate distribution.

To find usable characterizations of \mathcal{U} is not an easy task. Countable unions of \mathcal{A} -atoms belong to \mathcal{U} , but generally they are not all the elements of \mathcal{U} . For instance, if $\Omega = \mathbb{R}^{\infty}$ and X_n is the *n*th coordinate projection, then

$$U = \{\exists n \ge 1 \text{ such that } X_j = X_n \text{ for all } j \ge n\}$$

is an uncountable union of A-atoms. However, $A \cap U$ is c.g. since $A \cap U = \sigma(L) \cap U$ where $L = \limsup_n X_n$.

Another possibility could be selecting a subclass $\mathbb{Q} \subset \mathbb{P}$ and showing that $U \in \mathcal{U}$ if and only if $U \in \mathcal{A}$ and Q(U) = 0 for each $Q \in \mathbb{Q}$. We do not know whether some (nontrivial) characterization of this type is available. Here, we just note that

 $\mathbb{Q}_0 = \{Q \in \mathbb{P} : (X_n) \text{ is i.i.d. and } X_1 \text{ has a nondegenerate distribution, under } Q\}$

does not work (though the "only if" implication is true, in view of Theorem 1 of [4]). As an example, $U := \{X_n \to 0\} \notin \mathcal{U}$ even though $U \in \mathcal{A}$ and Q(U) = 0 for all $Q \in \mathbb{Q}_0$. To see that $U \notin \mathcal{U}$, let X_n be the *n*th coordinate projection on $\Omega = \mathbb{R}^{\infty}$, and let P_U be a probability measure on the Borel sets of Ω which makes (X_n) independent and each X_n uniformly distributed on $(0, \frac{1}{n})$. Then $P_U(U) = 1$ and, when restricted to $\mathcal{A} \cap U$, P_U is a 0–1 probability measure such that $P_U(H(\omega)) = 0$ for each $\omega \in U$. Hence, Theorem 1 of [4] implies that $\mathcal{A} \cap U$ is not c.g.

A last note is that P(S) can assume any value between 0 and 1. For instance, take $U \in \mathcal{U}$ and $P_1, P_2 \in \mathbb{P}$ such that: (i) $P_1(U) = P_2(U^c) = 1$; (ii) P_2 is 0–1 on \mathcal{A} with $P_2(H(\omega)) = 0$ for all ω . Define $P = uP_1 + (1 - u)P_2$ where $u \in (0, 1)$. A r.c.d. for P given \mathcal{A} is $\mu(\omega) = I_U(\omega)\mu_1(\omega) + I_{U^c}(\omega)P_2$, where μ_1 denotes a r.c.d. for P_1 given \mathcal{A} . Since $U \in \mathcal{U}$, Theorem 3 implies $\mu_1(\omega)(H(\omega)) = 1$ for P_1 -almost all $\omega \in U$. Thus, P(S) = P(U) = u. 2.3. *Miscellaneous results*. A weaker version of (3) lies in asking $\mu(\cdot)(H(\cdot))$ to be 0–1 over a set of \mathcal{A}^* , but not necessarily of \mathcal{A} , that is

(3*) There is $B_0 \in \mathcal{A}^*$ with $P(B_0) = 1$ and $\mu(\omega)(H(\omega)) \in \{0, 1\}$ for all $\omega \in B_0$. Suitably adapted, the proofs of Theorems 3 and 4 yield a characterization of (3*) as well. Recall $\mathcal{N} = \{B \in \mathcal{B} : P(B) = 0\}$ and note that

$$\sigma(\mathcal{A} \cup \mathcal{N}) = \{B \in \mathcal{B} : \mu(B) = I_B \text{ a.s.}\}.$$

THEOREM 8. Suppose (1) holds and $G \in \mathcal{B} \otimes \mathcal{B}$. Then, condition (3*) implies $S \in \sigma(\mathcal{A} \cup \mathcal{N})$. Moreover, if $S \in \sigma(\mathcal{A} \cup \mathcal{N})$, then

$$(3*) \Leftrightarrow (b*) \Leftrightarrow (c*)$$

where:

(b*) $\mathcal{A} \cap V$ is c.g. for some $V \in \mathcal{A}^*$ with $V \subset S$ and P(S - V) = 0;

(c*) $\mathcal{A} \cap V = \mathcal{A}^* \cap V$ for some $V \in \mathcal{A}^*$ with $V \subset S$ and P(S - V) = 0.

PROOF. If (3*) holds, then $\mu(S) = 1$ on $B_0 \cap S$, and since $P(B_0) = 1$ one obtains

$$E(\mu(S)I_{S^c}) = P(S) - E(\mu(S)I_{B_0}I_S) = P(S) - E(I_{B_0}I_S) = 0.$$

Thus, $\mu(S) = I_S$ a.s., that is, $S \in \sigma(\mathcal{A} \cup \mathcal{N})$. Next, suppose that $S \in \sigma(\mathcal{A} \cup \mathcal{N})$.

"(3*) ⇒ (c*)." Define $V = B_0 \cap S$ and note that $B \cap V = \{\mu(B) = 1\} \cap V \in A \cap V$ for all $B \in A^*$.

"(c*) \Rightarrow (b*)." Fix $\alpha \in \mathbb{P}$ and define $\nu(\omega)(B) = I_V(\omega) \frac{f_B(\omega)}{f(\omega)} + I_{V^c}(\omega)\alpha(B)$ for all $\omega \in \Omega$ and $B \in \mathcal{B}$. Then, $\sigma(\nu) \subset \mathcal{A}^*$. Further, $\nu(\omega)(H(\omega)) = 1$ for all $\omega \in V$, so that $B \cap V = \{\nu(B) = 1\} \cap V$ for all $B \in \mathcal{A}^*$. Hence, (c*) implies that $\mathcal{A} \cap V = \mathcal{A}^* \cap V = \sigma(\nu) \cap V$ is c.g.

"(b*) \Rightarrow (3*)." Let $\mathcal{A}_0 = \{(A \cap V) \cup F : A \in \mathcal{A}, F = \emptyset \text{ or } F = V^c\}$. Since $\mu(V) = \mu(S) = I_S = I_V$ a.s., for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$ one obtains

$$E(I_A I_V \mu(B)) = E(I_A \mu(B \cap V)) = P((A \cap V) \cap B).$$

So, $\mu_0(\omega) = I_V(\omega)\mu(\omega) + I_{V^c}(\omega)\alpha$ is a r.c.d. for *P* given \mathcal{A}_0 , where $\alpha(\cdot) = P(\cdot | V^c)$ if P(V) < 1 and α is any fixed element of \mathbb{P} if P(V) = 1. Since \mathcal{A}_0 is c.g., there is $K \in \mathcal{A}_0$ with P(K) = 1 and $\mu_0(\omega)(H_0(\omega)) = 1$ for all $\omega \in K$, where $H_0(\omega)$ denotes the \mathcal{A}_0 -atom including ω . Hence, it suffices to let $B_0 = (K \cap V) \cup S^c$ and noting that $H_0(\omega) = H(\omega)$ and $\mu_0(\omega) = \mu(\omega)$ for all $\omega \in V$. \Box

One consequence of Theorem 8 is that, if (1) holds and $G \in \mathcal{B} \otimes \mathcal{B}$, then condition (3*) is equivalent to $\mu(S) = I_S$ a.s. and $P(0 < f \le \frac{1}{2}) = 0$. In fact,

$$A \cap \{f > \frac{1}{2}\} = \{\mu(A) > \frac{1}{2}\} \cap \{f > \frac{1}{2}\}$$
 for all $A \in \mathcal{A}$,

656

so that $\mathcal{A} \cap \{f > \frac{1}{2}\} = \sigma(\mu) \cap \{f > \frac{1}{2}\}$ is c.g. Hence, if $P(0 < f \le \frac{1}{2}) = 0$, condition (b*) holds with $V = \{f > \frac{1}{2}\}$.

Finally, we give one more condition for (3). Though seemingly simple, it is hard to be tested in real problems.

PROPOSITION 9. If (1) holds and $H(\omega) \in \mathcal{B}$ for all ω , a sufficient condition for (3) is

(5)
$$\mu(x)(H(y)) = 0$$
 whenever $H(x) \neq H(y)$.

PROOF. As stated in the forthcoming Lemma 10, since $\sigma(\mu)$ is c.g. and μ is also a r.c.d. for *P* given $\sigma(\mu)$, there is a set $T \in \sigma(\mu)$ such that P(T) = 1 and $\mu(\omega)(\mu = \mu(\omega)) = 1$ for each $\omega \in T$. Let $A_0 = T$ and fix $\omega \in S$. Then, $\mu(\omega) = \mu(x)$ if $x \in H(\omega)$ [since $\sigma(\mu) \subset A$] and $\mu(\omega) \neq \mu(x)$ if $x \notin H(\omega)$ since in the latter case (5) yields

$$\mu(x)(H(\omega)) = 0 < f(\omega) = \mu(\omega)(H(\omega)).$$

Thus, $H(\omega) = \{\mu = \mu(\omega)\}$. If $\omega \in T \cap S = A_0 \cap S$, this implies

$$\mu(\omega)(H(\omega)) = \mu(\omega)(\mu = \mu(\omega)) = 1.$$

3. When regular conditional distributions are 0–1 on the conditioning σ -field. In this section, condition (4) is shown to be true whenever A is a tail sub- σ -field. Moreover, two characterizations of (4) and a result in the negative [i.e., a condition for (4) to be false] are given.

We begin by recalling a few simple facts about $\sigma(\mu)$.

LEMMA 10. If (1) holds, then $\sigma(\mu)$ is c.g., μ is a r.c.d. for P given $\sigma(\mu)$, and there is a set $T \in \sigma(\mu)$ with P(T) = 1 and

$$\mu(\omega)(\mu = \mu(\omega)) = 1 \quad \text{for all } \omega \in T.$$

Moreover,

$$\mathcal{A} = \sigma(\sigma(\mu) \cup (\mathcal{A} \cap \mathcal{N})).$$

PROOF. Since $\sigma(\mu) \subset A$, μ is a r.c.d. given $\sigma(\mu)$. Since \mathcal{B} is c.g., $\sigma(\mu)$ is c.g. with atoms of the form $\{\mu = \mu(\omega)\}$. Hence, there is $T \in \sigma(\mu)$ with P(T) = 1 and $\mu(\omega)(\mu = \mu(\omega)) = 1$ for all $\omega \in T$. Finally, since

$$A = (\{\mu(A) = 1\} \cap \{\mu(A) = I_A\}) \cup (A \cap \{\mu(A) \neq I_A\})$$

for all $A \in \mathcal{A}$, it follows that $\mathcal{A} \subset \sigma(\sigma(\mu) \cup (\mathcal{A} \cap \mathcal{N})) \subset \mathcal{A}$. \Box

By Lemma 10, $\mu(\omega)$ is 0–1 on $\sigma(\mu)$ for each $\omega \in T$. Since $\mathcal{A} = \sigma(\sigma(\mu) \cup (\mathcal{A} \cap \mathcal{N}))$, condition (4) can be written as

$$\mu(\omega)(A) \in \{0, 1\}$$
 for all $\omega \in A_0$ and $A \in \mathcal{A}$ with $P(A) = 0$.

In particular, (4) holds whenever P is atomic on A, in the sense that there is a countable partition $\{A_1, A_2, \ldots\}$ of Ω satisfying $A_j \in A$ and $P(A \cap A_j) \in \{0, P(A_j)\}$ for all $j \ge 1$ and $A \in A$. In this case, in fact, $\mu(\omega) \ll P$ for each ω in some set $C \in A$ with P(C) = 1.

Slightly developing the idea underlying Example 2, we next give a sufficient condition for (4) to be false.

PROPOSITION 11. Suppose (1) holds and $P(\mu = \mu(\omega)) = 0$ for all ω . Then,

 $F = \{\omega : \mu(\omega) \text{ is not } 0 - 1 \text{ on } \mathcal{B}\}$ and $F_0 = \{\omega : \mu(\omega) \text{ is nonatomic on } \mathcal{B}\}$

belong to $\sigma(\mu)$. Moreover, if $\mathcal{N} \subset \mathcal{A}$, then

 $\mu(\omega)$ is not 0–1 on A for each $\omega \in F \cap T$, and

 $\mu(\omega)$ is nonatomic on \mathcal{A} for each $\omega \in F_0 \cap T$

with T as in Lemma 10. In particular, condition (4) fails if P(F) > 0.

PROOF. Since \mathscr{B} is c.g., it is clear that $F \in \sigma(\mu)$, while $F_0 \in \sigma(\mu)$ is from [6] (see Corollary 2.13, page 1214). Suppose now that $\mathscr{N} \subset \mathscr{A}$. Let $\omega \in F \cap T$. Since $\omega \in F$, there is $B_\omega \in \mathscr{B}$ with $\mu(\omega)(B_\omega) \in (0, 1)$. Define $A_\omega = B_\omega \cap \{\mu = \mu(\omega)\}$. Since $\mathscr{N} \subset \mathscr{A}$ and $P(A_\omega) \leq P(\mu = \mu(\omega)) = 0$, then $A_\omega \in \mathscr{A}$. Since $\omega \in T$,

$$\mu(\omega)(A_{\omega}) = \mu(\omega)(B_{\omega}) \in (0, 1)$$

so that $\mu(\omega)$ is not 0–1 on \mathcal{A} . Finally, fix $\omega \in F_0 \cap T$ and $\varepsilon > 0$. Since $\omega \in F_0$, there is a finite partition $\{B_{1,\omega}, \ldots, B_{n,\omega}\}$ of Ω such that $B_{i,\omega} \in \mathcal{B}$ and $\mu(\omega)(B_{i,\omega}) < \varepsilon$ for all *i*. As above, letting $A_{i,\omega} = B_{i,\omega} \cap \{\mu = \mu(\omega)\}$, one obtains $A_{i,\omega} \in \mathcal{A}$ and $\mu(\omega)(A_{i,\omega}) = \mu(\omega)(B_{i,\omega}) < \varepsilon$. Hence, $\mu(\omega)$ is nonatomic on \mathcal{A} since $\mu(\omega)(\mu \neq \mu(\omega)) = 0$. \Box

Even if \mathcal{N} is not contained in \mathcal{A} , Proposition 11 applies at least to $\mathcal{A}' = \sigma(\mathcal{A} \cup \mathcal{N})$. Under mild conditions, μ is even nonatomic on \mathcal{A}' with probability $P(F_0)$. Thus, a lot of r.c.d.'s give rise to a failure of (4) on some sub- σ -field \mathcal{A}' . Since we are conditioning to \mathcal{A} (and not to \mathcal{A}'), this fact is not essential. On the other hand, it suggests that (4) is a rather delicate condition.

If *P* is invariant under a countable collection of measurable transformations and *A* is the corresponding invariant sub- σ -field, then (4) holds; see [9]. This well-known fact is generalized by our first characterization of (4).

THEOREM 12. Suppose (1) holds and let $M = \{Q \in \mathbb{P} : \mu \text{ is a r.c.d. for } Q \text{ given } A\}$. Then, Q is an extreme point of M if and only if $Q \in M$ and Q is 0–1 on A, and in that case $Q = \mu(\omega)$ for some $\omega \in \Omega$. Moreover, for each $\omega \in T$ (with T as in Lemma 10), the following statements are equivalent:

(i) $\mu(\omega)(A) \in \{0, 1\}$ for all $A \in \mathcal{A}$;

(ii) $\mu(\omega)$ is an extreme point of M; (iii) $\mu(\omega) \in M$.

In particular, condition (4) holds if and only if, for some $A_0 \in \mathcal{A}$ with $P(A_0) = 1$, $\mu(\omega) \in M$ for all $\omega \in A_0$.

PROOF. Fix $Q \in M$. If $Q(A) \in (0, 1)$ for some $A \in A$, then $Q(\cdot) = Q(A)Q(\cdot | A) + (1 - Q(A))Q(\cdot | A^{c}),$

and *Q* is not extreme since $Q(\cdot | A)$ and $Q(\cdot | A^c)$ are distinct elements of *M*. Suppose now that $Q = uQ_1 + (1 - u)Q_2$, where $u \in (0, 1)$ and $Q_1 \neq Q_2$ are in *M*. Since two elements of *M* coincide if and only if they coincide on *A*, there is $A \in A$ with $Q_1(A) \neq Q_2(A)$, and this implies $Q(A) \in (0, 1)$. Hence, $Q \in M$ is extreme if and only if it is 0–1 on *A*. In particular, if *Q* is extreme then it is 0–1 on the c.g. σ -field $\sigma(\mu)$, so that $Q(\mu = \mu(\omega)) = 1$ for some $\omega \in \Omega$; see Theorem 1 of [4]. Thus,

$$Q(B) = \int \mu(x)(B) Q(dx) = \mu(\omega)(B)$$
 for all $B \in \mathcal{B}$.

This concludes the proof of the first part. As to the second one, fix $\omega \in T$, and let *A* and *B* denote arbitrary elements of *A* and *B*, respectively. Since $\omega \in T$,

$$\int_{A} \mu(x)(B)\mu(\omega)(dx) = \int_{A \cap \{\mu = \mu(\omega)\}} \mu(x)(B)\mu(\omega)(dx) = \mu(\omega)(A)\mu(\omega)(B).$$

"(i) \Rightarrow (ii)." By what already proved, it is enough showing that $\mu(\omega) \in M$, and this depends on $\mu(\omega)(A \cap B) = \mu(\omega)(A)\mu(\omega)(B) = \int_A \mu(x)(B)\mu(\omega)(dx)$.

"(ii) \Rightarrow (iii)." Obvious.

"(iii) \Rightarrow (i)." Under (iii), $\mu(\omega)(A \cap B) = \int_A \mu(x)(B) \mu(\omega)(dx) = \mu(\omega) \times (A)\mu(\omega)(B)$, and letting B = A yields $\mu(\omega)(A) = \mu(\omega)(A)^2$. \Box

Next characterization of (4) stems from a result of [8], Lemma 2A, page 391.

THEOREM 13 (Fremlin). Let X be an Hausdorff topological space, \mathcal{F} a σ -field on X including the open sets, Q a complete Radon probability measure on \mathcal{F} , and \mathcal{C}_0 a class of pairwise disjoint Q-null elements of \mathcal{F} . Then,

$$\bigcup_{C \in \mathcal{C}} C \in \mathcal{F} \text{ for all } \mathcal{C} \subset \mathcal{C}_0 \quad \Longleftrightarrow \quad \mathcal{Q}\left(\bigcup_{C \in \mathcal{C}_0} C\right) = 0.$$

Say that *P* is *perfect* in case each \mathcal{B} -measurable function $h: \Omega \to \mathbb{R}$ meets $P(h \in I) = 1$ for some real Borel set $I \subset h(\Omega)$. For *P* to be perfect, it is enough that Ω is an universally measurable subset of a Polish space and \mathcal{B} the Borel σ -field on Ω . In the present framework, since \mathcal{B} is c.g., Theorem 13 applies precisely when *P* is perfect. We are now able to state our second characterization of (4). It is of possible theoretical interest even if of little practical use.

THEOREM 14. Suppose (1) holds and P is perfect, define

$$\mathcal{A}(\omega) = \left\{ A \in \mathcal{A} : \mu(\omega)(A) \in \{0, 1\} \right\} \qquad \omega \in \Omega,$$

and let Γ_0 denote the class of those σ -fields $\mathcal{G} \subset \mathcal{A}$ with $\mathcal{G} \neq \mathcal{A}$. Then, condition (4) holds if and only if

(6)
$$\bigcup_{g \in \Gamma} \{ \omega : \mathcal{A}(\omega) = g \} \in \mathcal{A}_P \quad for all \ \Gamma \subset \Gamma_0.$$

PROOF. If $\mu(\omega)$ is 0–1 on \mathcal{A} for all $\omega \in A_0$, where $A_0 \in \mathcal{A}$ and $P(A_0) = 1$, then (6) follows from

$$\{\omega : \mathcal{A}(\omega) = \mathcal{G}\} \subset A_0^c$$
 for all $\mathcal{G} \in \Gamma_0$.

Conversely, suppose (6) holds. Let X be the partition of Ω in the atoms of \mathcal{B} . The elements of \mathcal{B} are unions of elements of X, so that \mathcal{B} can be regarded as a σ -field on X. Let (X, \mathcal{F}, Q) be the completion of (X, \mathcal{B}, P) . Since \mathcal{B} is c.g., under a suitable distance, X is separable metric and \mathcal{B} the corresponding Borel σ -field; see [2]. Since P is perfect, P is Radon by a result of Sazonov (Theorem 12 of [10]), so that Q is Radon, too. Next, define $C_{\mathfrak{G}} = \{\omega : \mathcal{A}(\omega) = \mathfrak{G}\}$ for $\mathfrak{G} \in \Gamma_0$, $U_A = \{\omega : \mu(\omega)(A) \in (0, 1)\}$ for $A \in \mathcal{A}$, and $U = \{\omega : \mathcal{A}(\omega) \neq \mathcal{A}\}$ (all regarded as subsets of X). For each $\mathfrak{G} \in \Gamma_0$ there is $A \in \mathcal{A}$ with $C_{\mathfrak{G}} \subset U_A$. Since $U_A \in \mathcal{A}$ and $P(U_A) = 0$, then $C_{\mathfrak{G}} \in \mathcal{F}$ and $Q(C_{\mathfrak{G}}) = 0$. Hence, $C_0 = \{C_{\mathfrak{G}} : \mathfrak{G} \in \Gamma_0\}$ is a collection of pairwise disjoint Q-null elements of \mathcal{F} satisfying $U = \bigcup_{\mathfrak{G} \in \Gamma_0} C_{\mathfrak{G}}$. By (6), Theorem 13 yields Q(U) = 0. Finally, since $U \in \mathcal{A}_P$, Q(U) = 0 implies $U \subset A$ for some $A \in \mathcal{A}$ with P(A) = 0. Thus, to get (4), it suffices to let $A_0 = A^c$.

Finally, by a martingale argument, we prove that (4) holds when \mathcal{A} is a tail sub- σ -field. This is true, in addition, even though \mathcal{B} fails to be c.g.

THEOREM 15. Let $\mathcal{A} = \bigcap_{n \ge 1} \mathcal{A}_n$, where $\mathcal{B} \supset \mathcal{A}_1 \supset \mathcal{A}_2 \supset \cdots$ and \mathcal{A}_n is a c.g. σ -field for each n. Given a r.c.d. μ , for P given \mathcal{A} , there is a set $A_0 \in \mathcal{A}$ such that $P(A_0) = 1$ and $\mu(\omega)(A) \in \{0, 1\}$ for all $A \in \mathcal{A}$ and $\omega \in A_0$.

PROOF. First recall that a probability measure $Q \in \mathbb{P}$ is 0–1 on \mathcal{A} if (and only if) $\sup_{A \in \mathcal{A}_n} |Q(A \cap B) - Q(A)Q(B)| \to 0$, as $n \to \infty$, for all $B \in \mathcal{A}_1$. Also, given any field \mathcal{F}_n such that $\mathcal{A}_n = \sigma(\mathcal{F}_n)$, the "sup" can be taken over \mathcal{F}_n , that is,

$$\sup_{A\in\mathcal{A}_n}|Q(A\cap B)-Q(A)Q(B)|=\sup_{A\in\mathcal{F}_n}|Q(A\cap B)-Q(A)Q(B)|.$$

Now, since the A_n are c.g., there are countable fields \mathcal{F}_n satisfying $A_n = \sigma(\mathcal{F}_n)$ for all *n*. Let

$$V_n^B(\omega) = \sup_{A \in \mathcal{F}_n} |\mu(\omega)(A \cap B) - \mu(\omega)(A)\mu(\omega)(B)|, \qquad n \ge 1, B \in \mathcal{A}_1, \omega \in \Omega.$$

Since \mathcal{F}_n is countable, V_n^B is an \mathcal{A} -measurable random variable for all n and B. It is enough proving that

(7)
$$V_n^B \to 0$$
 a.s., as $n \to \infty$, for all $B \in \mathcal{A}_1$

Suppose in fact (7) holds and define

$$A_0 = \left\{ \omega : \lim_n V_n^B(\omega) = 0 \text{ for each } B \in \mathcal{F}_1 \right\}.$$

Since \mathcal{F}_1 is countable, $A_0 \in \mathcal{A}$ and (7) implies $P(A_0) = 1$. Fix $\omega \in A_0$. Since $\mathcal{A}_1 = \sigma(\mathcal{F}_1)$, given $B \in \mathcal{A}_1$ and $\varepsilon > 0$, there is $C \in \mathcal{F}_1$ such that $\mu(\omega)(B\Delta C) < \varepsilon$. Hence,

$$\begin{split} V_n^B(\omega) &\leq \sup_{A \in \mathcal{F}_n} |\mu(\omega)(A \cap B) - \mu(\omega)(A \cap C)| \\ &+ \sup_{A \in \mathcal{F}_n} |\mu(\omega)(A \cap C) - \mu(\omega)(A)\mu(\omega)(C)| \\ &+ \sup_{A \in \mathcal{F}_n} |\mu(\omega)(A)\mu(\omega)(C) - \mu(\omega)(A)\mu(\omega)(B)| \\ &\leq V_n^C(\omega) + 2\mu(\omega)(B\Delta C) < V_n^C(\omega) + 2\varepsilon \quad \text{ for all } n. \end{split}$$

Since $\omega \in A_0$ and $C \in \mathcal{F}_1$, it follows that

$$\limsup_{n} V_{n}^{B}(\omega) \leq 2\varepsilon + \limsup_{n} V_{n}^{C}(\omega) = 2\varepsilon \quad \text{for all } B \in \mathcal{A}_{1} \text{ and } \varepsilon > 0.$$

Therefore, $\mu(\omega)$ is 0–1 on \mathcal{A} . It remains to check condition (7). Fix $B \in \mathcal{A}_1$, take any version of $E(I_B | \mathcal{A}_n)$ and define $Z_n = E(I_B | \mathcal{A}_n) - \mu(B)$. Then, $|Z_n| \le 2$ a.s. for all n, and the martingale convergence theorem yields $Z_n \to 0$ a.s. Further, for fixed $n \ge 1$ and $A \in \mathcal{F}_n$, one obtains

$$\begin{aligned} \left| E(I_A I_B \mid \mathcal{A}) - E(I_A \mid \mathcal{A}) E(I_B \mid \mathcal{A}) \right| \\ &= \left| E(I_A E(I_B \mid \mathcal{A}_n) \mid \mathcal{A}) - E(I_A E(I_B \mid \mathcal{A}) \mid \mathcal{A}) \right| \\ &= \left| E(I_A Z_n \mid \mathcal{A}) \right| \le E(|Z_n| \mid \mathcal{A}) \quad \text{a.s.} \end{aligned}$$

Since \mathcal{F}_n is countable, it follows that

$$V_n^B = \sup_{A \in \mathcal{F}_n} \left| E(I_A I_B \mid \mathcal{A}) - E(I_A \mid \mathcal{A}) E(I_B \mid \mathcal{A}) \right| \le E(|Z_n| \mid \mathcal{A}) \to 0 \qquad \text{a.s.}$$

As noted in Section 2.2, a tail sub- σ -field includes its atoms so that (4) implies (3). Thus, by Theorem 15, condition (3) holds provided A is a tail sub- σ -field and P admits a r.c.d. μ given A, even if the other assumptions of Lemma 7 fail. [In fact, such assumptions grant something more than (3)].

Acknowledgment. We are indebted to Michael Wichura for various helpful suggestions and for having improved Theorems 3 and 8.

P. BERTI AND P. RIGO

REFERENCES

- BERTI, P. and RIGO, P. (1999). Sufficient conditions for the existence of disintegrations. J. Theoret. Probab. 12 75–86. MR1674968
- BLACKWELL, D. (1956). On a class of probability spaces. In Proc. Third Berkeley Symp. Math. Statist. Probab. 1–6. Univ. California Press, Berkeley. MR0084882
- [3] BLACKWELL, D. and RYLL-NARDZEWSKI, C. (1963). Non-existence of everywhere proper conditional distributions. Ann. Math. Statist. 34 223–225. MR0148097
- [4] BLACKWELL, D. and DUBINS, L. E. (1975). On existence and non-existence of proper, regular, conditional distributions. *Ann. Probab.* 3 741–752. MR0400320
- [5] DIACONIS, P. and FREEDMAN, D. (1984). Partial exchangeability and sufficiency. In Proc. of the Indian Statistical Institute Golden Jubilee International Conference on Statistics: Applications and New Directions 205–236. Indian Statist. Inst., Calcutta. MR0786142
- [6] DUBINS, L. E. and FREEDMAN, D. (1964). Measurable sets of measures. *Pacific J. Math.* 14 1211–1222. MR0174687
- [7] DYNKIN, E. B. (1978). Sufficient statistics and extreme points. Ann. Probab. 6 705–730. MR0518321
- [8] FREMLIN, D. H. (1981). Measurable functions and almost continuous functions. *Manuscripta* Math. 33 387–405. MR0612620
- [9] MAITRA, A. (1977). Integral representations of invariant measures. *Trans. Amer. Math. Soc.* 229 209–225. MR0442197
- [10] SAZONOV, V. V. (1965). On perfect measures. Amer. Math. Soc. Transl. Ser. (2) 48 229–254. MR0181729
- [11] SEIDENFELD, T., SCHERVISH, M. J. and KADANE, J. (2001). Improper regular conditional distributions. Ann. Probab. 29 1612–1624. MR1880234

DIPARTIMENTO DI MATEMATICA PURA ED APPLICATA "G. VITALI" UNIVERSITA' DI MODENA E REGGIO-EMILIA VIA CAMPI 213/B 41100 MODENA ITALY E-MAIL: berti.patrizia@unimore.it DIPARTIMENTO DI ECONOMIA POLITICA E METODI QUANTITATIVI UNIVERSITA' DI PAVIA VIA S. FELICE 5 27100 PAVIA ITALY E-MAIL: prigo@eco.unipv.it