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ABSTRACT
Explainable classification systems generate predictions along
with a weight for each term in the input record measuring its
contribution to the prediction. In the entity matching (EM) sce-
nario, inputs are pairs of entity descriptions and the resulting
explanations can be difficult to understand for the users. They
can be very long and assign different impacts to similar terms
located in different descriptions. To address these issues, we in-
troduce the concept of decision units, i.e., basic information units
formed either by pairs of (similar) terms, each one belonging to
a different entity description, or unique terms, existing in one of
the descriptions only. Decision units form a new feature space,
able to represent, in a compact and meaningful way, pairs of en-
tity descriptions. An explainable model trained on such features
generates effective explanations customized for EM datasets.

In this paper, we propose this idea via a three-component
architecture template, which consists of a decision unit generator,
a decision unit scorer, and an explainable matcher. Then, we
introduceWYM (Why do You Match?), an implementation of the
architecture oriented to textual EM databases. The experiments
show that our approach has accuracy comparable to other state-
of-the-art Deep Learning based EM models, but, differently from
them, its predictions are highly interpretable.

1 INTRODUCTION
Understanding if entries in a dataset refer to the same real-world
entity (i.e., entity matching – EM) is a challenging task even
for human experts. State-of-the-art approaches based on Ma-
chine Learning (ML) and Deep Learning (DL) models are highly
accurate but suffer from low interpretability. From the user’s
perspective, these models act as oracles. This is a critical problem
in many operational scenarios where traceability, scrutiny, and
users’ confidence in the model are fundamental requirements as
well as the model accuracy.

Local explainability techniques have been introduced for al-
lowing humans to understand the causes determining the model
predictions for dataset records given as input. Typically, explain-
ability can be achieved through intrinsic and post-hoc techniques
[22, 23]. Intrinsic interpretability is obtained by restricting the
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complexity, hence using self-explanatory learning models. Post-
hoc interpretability is obtained by applying interpretable meth-
ods to the model of interest [24]. The main difference between
these two groups lies in the trade-off between model accuracy
and explanation fidelity. Inherently interpretable models could
provide accurate and undistorted explanations but may sacrifice
prediction performance to some extent [12].

Regardless of the technique, an explanation consists of weights
associated with the input of the model. The weights measure the
impacts of the features in the decision made by the model [24].
A feature-based representation of the explanations can lead to
usability problems in the case of textual databases where records
can be composed of dozens of features1. The scenario is even
worse if we consider the case of textual databases used for per-
forming EM tasks. Here, records describe pairs of entities. They
can be composed of a large number of features, thus generating
very large, difficult tomanage and understand explanations[5, 33].
Moreover, records can contain a large number of duplicated ele-
ments. This happens especially in records representing matching
entities, which consist of pairs of similar entity descriptions. Such
a duplication leads to explanations that are difficult to read (it
is necessary to specify which is the entity description to which
they belong– the first in the record, a.k.a., the left entity, or the
second, a.k.a., the right entity) and to be interpreted (the same
features may have different weights depending on the descrip-
tion to which they belong, and this can generate confusion and
uncertainty).

Example 1. Table 1 shows two records extracted from an EM
dataset. Each record represents two entities, each one describing
an object with the same attributes (Name, Manufacturer, and
Price). A label is added to the record to indicate that the entity
descriptions match (i.e., they refer to the same real-world en-
tity) or do not match (i.e., they refer to different entities). An
explanation assigns a score to each feature (i.e., to each tokenized
word) in the descriptions, e.g., the approach assigns a score to
the feature external belonging to the attribute Name in the first
entity description that can be different from the score assigned
to the same feature used in the second entity description.

It is therefore evident that the feature-based granularity of
the explanations does not allow users to effectively interpret the
results of the EM models. More intuitive information units that
consider records as composed of a pair of entity descriptions
are needed. We call these information units “decision units". We

1We adopt the term feature to refer to the tokenized words extracted from the entity
descriptions.
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Table 1: A fragment of an EM dataset

Entity 1 Entity 2
Name Manufac. Price Name Manufac. Price

exch srvr ex-
ternal sa eng
39400416

microsoft
licenses

42166 39400416 exch
svr external
l/sa

microsoft
licenses

22575

digital camera
with lens kit
dslra200w

sony 37.63 digital camera
leather case
5811

nikon 36.11

conceive them either as pairs of semantically similar features
found in the descriptions of different entities (i.e., the paired
decision units) or isolated features (i.e., the unpaired decision units),
which do not have a correspondence in the second entity.

Example 2. The feature external from the description of the
first entity in Table 1 can be associated with the same feature
from the second description to form a paired decision unit. For
the feature lens from the description of the first entity in the
second row, we cannot find any correspondence in the second
entity. Lens will be then considered as an unpaired decision unit.

In this paper, we propose an architecture template for intrinsi-
cally explainable EM models based on decision units. The idea is
that they can constitute the feature space where to train an intrin-
sically explainable EM model. The architecture template includes
three main components (see Section 3.1): the decision unit gener-
ator, in charge of computing the decision units from the dataset
records; the decision unit relevance scorer and the explainable
matcher. The Decision unit relevance scorer is in charge of the
computation of weights (the relevance scores) to assign to the
decision units. For example, in the case of entities representing
people, the decision units associated with the attribute Name can
have more importance than the ones associated to the attribute
home or work addresses in deciding if they are referring to
the same person. In general, the weights lead paired decision
units to push toward match decisions, unpaired decision units
toward non-match decisions. Nevertheless, we can find paired
decision units in descriptions of non-matching entities and vice-
versa. For instance, the description of two different people can
share the same address. The specific contribution for each fea-
ture has to be therefore computed by taking into account the
context for each unit provided by the other units in the record
and the other records in the dataset. The Explainable Matcher is
the architectural component in charge of computing predictions
and explanations. It consists of an intrinsically explainable bi-
nary classifier trained with the scored decision units. As usual
for these kinds of explainers, an impact score can be computed
for each feature by multiplying its score with the corresponding
weight in the trained classifier. The impact score measures the
importance of the feature in the prediction. To improve the accu-
racy, our approach does not directly use the relevant scores to
train the model, but applies further feature engineering to inject
some structural knowledge in the training set, i.e., the different
importance that the dataset attributes assume in the matching
decision.

WYM (Why do You Match?)2 is the implementation of the
architecture template for EM textual datasets we propose in the

2WYM implementation is available in the project github at https://github.com/
softlab-unimore/WYM.

paper (see Section 4). In WYM, the entity descriptions are en-
coded with word embeddings generated through the BERT lan-
guage model [11]. We addressed the assignment problem [40]
concerning the generation of the decision units with a special
implementation of the stable marriage (SM) algorithm [17] maxi-
mizing the cosine similarity of the embeddings. Then, we used
a deep fully connected layer to infer the relevance scores given
the word embeddings. The prediction and the impact scores are
computed through an explainable binary classifier. The model is
trained on features generated by specific transformations of the
relevance scores that allow it to learn structural and pragmatic
knowledge.

The application of inverse transformation functions on the
coefficients from the trained model generates a set of scores for
each decision unit providing an overall weight of its importance
for the model. The impact scores are then computed by aggregat-
ing the scores per unit and combining them with the relevance
scores previously assigned. The impact scores allow the users
to interpret the predictions, by identifying the crucial decision
units in the evaluation of an EM record. In particular, decision
units with positive impact scores are the ones pushing toward an
entity matching decision; the ones with negative scores provide
evidence of no match. The experimental evaluation shows that
not only WYM reaches high accuracy performance, but also a
high interpretability level.

The main contributions of the paper are:
• the use of decision units to represent the basic, atomic
information content of a record of an EM dataset;
• the introduction of a novel interpretable architecture tem-
plate for EM able to compute the terms that mainly con-
tribute to taking the matching / non-matching decision;
• an implementation of the architecture relying on the in-
novative use of embeddings, for finding correspondences
between terms in the entity descriptions and for scoring
the importance of these correspondences. These scores
help both the interpretability and the achievement of high
performance, thus making our proposal an effective yet
interpretable approach;
• a deep evaluation of the effectiveness of our approach in
finding EMs and providing useful explanations.

The rest of the paper is organized as follows. In Section 2 we
describe the related work. Section 3 introduces the main features
of the architecture template; Section 4 describes its implemen-
tation inWYM; Section 5 includes the experimental evaluation;
Finally, in Section 6, we sketch out some conclusions and future
work.

2 RELATEDWORK
In this section, we review the state-of-the-art literature on Entity
Matching by analyzing the main DL-based models proposed in
the literature, and introducing the main approaches for their
interpretation.

2.1 Deep Learning for EM
Deep Learning (DL) models can effectively address EM. Prelim-
inary evidence of this fact was provided by DeepER [14] and
DeepMatcher [25], pioneering DL-based systems for EM. Subse-
quently, significant advances in the EM domain were achieved
thanks to the integration of transformer architectures [37] into
EM systems. Some examples of such systems are [7, 21, 27]. In [7]
the most recent transformer-based models are fine-tuned on the
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EM task, empirically demonstrating their high efficacy in solv-
ing the task even in dirty or textual datasets and without the
need for a task-specific architecture. [27] exploits the ability of
transformer-based models to capture highly contextualized se-
mantic relationships between entity tokens to implement EM
adapter for AutoML systems. [21] proposes DITTO, the currently
best performing EM model in the literature, which combines
advanced encoding and augmentation techniques of EM data
with the BERT architecture [11]. Another recent DL-based frame-
work for EM is CorDEL [35], which exploits a novel contrastive
approach to derive a matching decision. Its main intuition is to
identify in pairs of entities components of similarity and dis-
similarity deriving respectively from shared terms and unique
terms. We have adopted a similar concept for the generation of
decision units by distinguishing between paired and unpaired
ones. The scores assigned to the units provide evidence of match-
ing and non-matching entities. Despite the performance of these
approaches, their main limitation is the poor interpretability, i.e.
it is hard to understand the rationality they employ in generating
predictions [9].

2.2 EM interpretability
The interpretation of EM models is approached in two ways: 1)
by exploiting post-hoc analysis [39] or 2) by designing intrinsi-
cally explainable systems. LIME [29], SHAP [16], ExplainER [13],
Mojito [10], LEMON [5], Landmark Explanation [4], and CERTA
[31] are approaches that belong to the first category of systems
and can be employed for the explanation of any black-box model.
Even if most of the approaches (e.g., LIME, SHAP, ExplainER,
Mojito and Landmark) compute feature-based explanations, there
is no consensus about the best way to explain EM results [33].
Only a few approaches provide explanations with different, larger
granularity. CERTA introduces attribute-level explanations that
typically align well with the way input data is structured and
understood by users of structured relational databases. LEMON
can aggregate tokens from the same entity description in sin-
gle features. To the best of our knowledge, no other approach
exploits the concept of decision unit.

The main problem in post-hoc interpretability is that there is
no guarantee that the explanations they generate faithfully rep-
resent the behavior of the analyzed model. This is because these
systems roughly reconstruct the boundaries of the real model be-
havior [38]. An alternative approach is the design of intrinsically
explainable systems, which build predictions based on human
interpretable data structures thus making the attribution of their
decisions univocal with respect to human-understandable rea-
sons [24]. This represents a very controversial aspect especially
in modern DL architectures, for which the presence of some form
of attention mechanism [2] is typically considered as evidence of
their interpretability. Although this fact can be considered gener-
ically true, the complexity of modern transformer architectures
makes the veracity of this consideration more uncertain [30, 34].
Since these attention modules are typically followed by several
non-linear transformations, it seems that a univocal and direct
association between the attention weights and the output of the
model cannot be derived [19, 26, 30].

In this paper, we explore the design of interpretable EMmodels
that are also capable of achieving good performance. Following
this direction, we have drawn inspiration from the paradigm
explain-then-predict [38] and adapted it for the EM domain. Ac-
cording to this paradigm, a set of features is first extracted from

Decision unit
generator

Decision unit
relevance

scorer

Explainable
matcher

d1: (t11, t24)

d2: (t12, t21)

dk-1: t14

dk: t22

...

(d1, r1)

(d2, r2)

(dk-1, rk-1)

(dk, rk)

...

Paired decision unit Unpaired decision unit

d1: (t11, t24)d1: (t11, t24)

d2: (t12, t21)
...

dk-1: t14

dk: t22

(d1, r1)

...
(d2, r2)

d1: (t11, t24)

d2: (t12, t21)
...

dk-1: t14

dk: t22

Explanation

0/1

Prediction
Entity 1

t11 t12 t13 t14

t21 t22 t23 t24 t25 

Entity 2

Figure 1: EM Architecture Template

the input and then the prediction is created. In this way, there is
a direct attribution between the choices of the system and the
reasons that determined this output.WYM is compliant with this
paradigm since it first extracts match and non-match evidence
from the entity descriptions and then builds the prediction.

3 THE DESIGN OF AN INTERPRETABLE
ENTITY MATCHING SYSTEM

EM is a complex task even for people. It requires analyzing the
meaning of a pair of textual entity descriptions to evaluate if they
refer to the same real-world entity. Recent approaches consider
EM as a binary classification problem and exploit DL techniques
to deal with it. Nevertheless, the design of an approach to be
deployed in real business scenarios cannot only consist of a clas-
sifier with the associated probability score. It has to provide the
reasons for that decision. The usual interpretable ML techniques
assign a weight to each feature, i.e. in textual datasets to each
token in the record. Our approach introduces the concept of de-
cision unit, that can provide more compact explanations to EM
records.

3.1 A Reference Architecture Template for
Interpretable EM

From the user perspective, an interpretable EM system is a black-
box application that receives a pair of textual descriptions as
input, infers if they refer to the same real-world entity, and ex-
plains the prediction.

More formally, let us consider a bag of features 𝑒 = {𝑡1, 𝑡2, ..., 𝑡𝑁 },
where 𝑡𝑖 , 𝑖 = 1, 2, ..., 𝑁 , obtained by the application of a featuriza-
tion technique to an entity description, Given a pair of entities
𝑟 = (𝑒𝑥 , 𝑒𝑦), an interpretable EM model returns (1) a predic-
tion 𝑃 (𝑟 ) ∈ {0, 1}, where 1 means that the entities are matching
and 0 non-matching, (2) an explanation 𝐸𝑋 (𝑟 ) = {(𝑑𝑟 , 𝑖𝑟 ) ∀𝑑𝑟 ∈
𝐷𝑟 , 𝑖𝑟 ∈ R}, where 𝐷𝑟 represents the set of decision units ex-
tracted from 𝑟 . A decision unit can be a single feature from the
entity description (an unpaired decision unit) or it can be a pair
of features, one for each description (a paired decision unit). The
score 𝑖𝑟 represents the impact of 𝑑𝑟 in the decision. We recall that
the decision units with positive 𝑖𝑟 push the prediction towards
the match, negative 𝑖𝑟 towards no-match.

We design an architecture template composed of three com-
ponents to generate interpretable EM predictions, as shown in
Figure 1: 1) The Decision unit generator, responsible for the extrac-
tion of the decision units 𝐷𝑟 from each pair of entity descriptions
𝑟 , 2) The Decision unit relevance scorer, to determine the relevance
of the decision units for the matching task, and 3) The Explain-
able Matcher which composes the final match prediction and
generates the explanations 𝐸𝑋 (𝑟 ) by attributing an impact score
𝑖𝑟 to each decision union 𝑑𝑟 .
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3.1.1 Decision unit generator. Given an EM record 𝑟 , this com-
ponent extracts both the paired and the unpaired decision units.
We callM𝑟 and N𝑟 the sets of the paired and unpaired decision
units extracted by the component. Note that 𝐷𝑟 =M𝑟 ∪N𝑟 . A
decision unit 𝑑 ∈ 𝐷𝑟 can be formalized as:

𝑑 =

{
(𝑡𝑖 , 𝑡 𝑗 ), 𝑡𝑖 ∈ 𝑒𝑥 , 𝑡 𝑗 ∈ 𝑒𝑦 paired unit
𝑡𝑖 ∨ 𝑡 𝑗 , 𝑡𝑖 ∈ 𝑒𝑥 , 𝑡 𝑗 ∈ 𝑒𝑦 unpaired unit

(1)

Decision units have to respect the following constraints: 1)
each feature of an entity description belongs at least to a decision
unit, and 2) a feature belonging to an unpaired decision unit
cannot belong to a paired decision unit.

The search of the paired decision units can be conceived as a
relaxed Stable Marriage (SM) assignment problem [18], where
each feature 𝑡 ∈ 𝑒𝑥 (or 𝑒𝑦 ) is associated with a preference list
of features of the other entity of the record 𝑟 based on their
syntactic/semantic similarities. The goal of this task is to assign
to each token 𝑡 ∈ 𝑒𝑥 one or more tokens 𝑡 ∈ 𝑒𝑦 such that the
syntactic/semantic preferences are maximized. Note that the
formulation of the SM problem in the EM domain needs to relax
some constraints of the original formulation, by allowing each
term to participate in multiple assignments, and the definition of
preference lists of variable length. The set of paired and unpaired
(i.e. the remaining terms after the assignment) decision units
constitute the decision units 𝐷𝑟 of the EM explanation related to
the record 𝑟 .

3.1.2 Decision unit relevance scorer. Decision units contribute
in determining if the descriptions they belong to refer to the same
real-world entity. In general, paired decision units push towards
the decision of entity match and the unpaired towards entity
non-match, but each decision unit contributes with a different
level of importance. The relevance score provides a measure
for this importance, by evaluating the strength with which a
decision unit pushes in isolation the decision towards a match or
a non-match prediction. The relevance scores are not related to
the semantic similarity that we used to form the paired decision
units (see the experimental evaluation in Section 5.1.3).

The component responsible for assigning a relevance score
to each unit is the Decision unit relevance scorer. The component
uses a relevance scorer function 𝑟𝑠 : 𝐷𝑟 → [−1, 1] to compute a
score for each decision unit 𝑑 ∈ 𝐷𝑟 . A score close to -1 implies
that the decision unit pushes the prediction towards a non-match
decision, while a value close to 1 mainly contributes to a match
decision. Furthermore, we impose that this function is symmetric
for paired decision units, i.e. given a decision unit (𝑡𝑥 , 𝑡𝑦) ∈ M𝑟 ,
𝑟𝑠 ((𝑡𝑥 , 𝑡𝑦)) = 𝑟𝑠 ((𝑡𝑦, 𝑡𝑥 )). In this way, the assignment of the
relevance score is invariant with the provenance of the term (i.e.,
whether it is part of the left or of the right entity).

The output of the component is, therefore, a set of relevance
scores associated with the decision units of the record 𝑟 : 𝑅𝑟 =

{(𝑑, 𝑟𝑠 (𝑑)),∀𝑑 ∈ 𝐷𝑟 }.

3.1.3 Explainable Matcher. The decision units and the rele-
vance scores of a pair of entities are the input of the Explain-
able Matcher that establishes if they refer to matching or non-
matching entity descriptions. The component aims at integrating
the “local” knowledge provided by the relevance scores of the iso-
lated decision units with a “contextualized” knowledge provided
by the other units in the entity descriptions. This knowledge
includes structural knowledge provided by the attributes in the

dataset schema 𝑆 to which the decision units belong to, and prag-
matic knowledge through the evaluation of the context of the
decision units in the same record.

Our idea is to encode this knowledge through a feature engi-
neering process in a new dataset built upon the relevance scores.
The dataset is then used to train a binary interpretable classifier
to solve the EM task. The impact scores are then computed by
applying inverse transformation functions on the trained coef-
ficients of the model and combining the results obtained with
the relevance scores. Formally, given the set of decision units 𝐷𝑟 ,
their relevance scores 𝑅𝑟 and the dataset schema 𝑆 , the Explain-
able Matcher generates a set of features 𝐹𝑟 = 𝑓 (𝐷𝑟 , 𝑅𝑟 , 𝑆) using
a featurization function 𝑓 . These features are then used as input
to an interpretable (linear) binary classifier 𝐶 , defined over a set
of parameters𝑊 , which returns the matching prediction 𝑝 , i.e.,
𝑝 = 𝐶𝑊 (𝐹𝑟 ). Given the inherently explainable nature of such a
classifier, its fitted parameters𝑊 can be used to derive an im-
portance score for each decision unit by applying the expression
𝐼𝑟 = 𝐹𝑟𝑊 .

3.2 Challenges
We list some challenges that an implementation of the architec-
ture template has to address. In Section 4, we show how these
challenges are addressed by our implementationWYM.
(R1) Mismatch in labels. This happens when paired deci-

sion units, treated as evidence for the match, are found
in entries labeled as no-match entity (e.g., the entities
are different products, but they share the same brand).
An automatic approach could learn that those decision
units lead to a non-matching prediction, thus introducing
possible mistakes in other inferences. The same happens
symmetrically for unpaired decision units in matching
entities.

(R2) Matching search space size andmultiplicity. Although
in structured datasets, the attributes define boundaries
within which to preferably search for the definition of
paired decision units, they should not be considered hard
boundaries. Real datasets are frequently “dirty” and con-
tain misaligned data. Moreover, terms describing similar
concepts can occur multiple times within an entity de-
scription, thus leading to the definition of possible one-to-
many and many-to-many relationships between tokens
from two entity descriptions.

(R3) Permutation invariance. The relevance measure com-
puted for decision units composed of paired tokens has to
be symmetric, i.e. the score does not have to change when
reversing the order of the tokens.

(R4) Context-awareness. The same decision unit can generate
a differentiated impact depending on the descriptions and
the attribute where it appears.

(R5) Cardinality invariance. The relevance measure has to
be defined and normalized to manage uniformly decision
units composed of paired and unpaired tokens.

3.3 Running example
Figures 3c and 3d show two examples of explanations (i.e. the
impact scores) obtained by the application of our implementation
of the architecture to the data in Table 1. Figure 3c refers to
matching descriptions: a number of paired decision units are
found and the green bars show their impact on the decision taken
by the EM system. The product code is the decision unit that
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provides the largest contribution towards the matching. Figure
3d refers to non-matching entity descriptions. Red bars show the
impact towards the non-matching decision, mostly supported
by unpaired decision units. We observe that as usual for non-
matching descriptions, the decision units supporting the decision
have a similar impact.

4 THE WYM EXPLAINABLE MATCHER
WYM is an implementation of the architecture template for tex-
tual databases. The main components are represented in Figure
2 and described in Section 4.1 (the Decision unit generator), Sec-
tion 4.2 (the Relevance scorer), and Section 4.3 (the Explainable
matcher). In the following, we suppose that entity descriptions
have the same schema, and we call matching attribute the at-
tribute in the second entity description corresponding to one
selected in the first description.

4.1 Decision unit generator
This component implements three main functionalities. Firstly, a
tokenizer is applied to transform the textual values into tokens.
Then a word embedding technique allows us to assign semantic
encodings to the tokens. Finally, tokens from an entity description
are possibly paired with the ones of the second description, thus
forming paired decision units. For this last operation, we leverage
the schema of the dataset, if any, to reduce the alignment space.

4.1.1 Text tokenization and encoding. We apply the BERT
language model [11] to encode the meaning of the entity descrip-
tions into contextualized embeddings. The attribute values of the
dataset records are concatenated and word-piece tokenization
with stop word removal is applied. In Section 5.1.3, the approach
is experimented with the pre-trained model and different fine-
tuning techniques. In the simplest approach, the embeddings are
generated by averaging the hidden states (from the second to
the last layer) of the BERT network. Averaging the values of the
hidden states of more layers allows our implementation to have
a good trade-off in representing in the embeddings the target
feature and its context, which is provided by the other features
in the same entity description. Among the fine-tuning technique,
the one which obtains the best performance on average on all
datasets in the experiments is Sentence BERT [28], obtained by a
modification of the pre-trained BERT network that uses siamese
and triplet network structures.

4.1.2 Pairing. We exploit the contextualized and semantically
rich embedding space provided by BERT to discover the paired
decision units. To foster the creation of strong units and to man-
age the heterogeneity of the real datasets (challenge R2 in Section
3.1), we define three search spaces where to evaluate the possible
correspondences: (1) The reduced search space formed by the
matching attributes only: the dataset structure guarantees that
the found intra-attribute correspondences describe the same en-
tity property. (2) The larger search space formed by all attribute
values: inter-attributes correspondences allows us to manage
dirty and misaligned dataset content. The features paired in the
first search space are not considered in this one. (3) The search
space formed by the remaining unpaired features of one entity
description with the already paired features of the other: this
fosters the creation of one-to-many relationships for managing
repetitions, periphrasis, and other forms of heterogeneity existing
in real datasets.

WYM relies on the cosine similarity to identify close embed-
dings. As usual for this kind of approach, an experimentally de-
termined threshold is established, beyond which two embeddings
are considered similar. To make the approach flexible,WYM al-
lows the users to select three thresholds: 𝜃 is the threshold used
for computing the intra-attribute correspondences in the first
search space; 𝜂 for the inter-attribute correspondences in the
second search space; 𝜖 for the evaluation of the possible cor-
respondences involving unpaired features with already paired
features. Even if the optimal choice for the threshold depends
on the dataset and can only be experimentally determined, the
best results are obtained with increasing values for the thresh-
olds from 𝜃 to 𝜖 . The reason is that 𝜃 is used to evaluate pairs
of embeddings that belong to the specific and related context
provided by the matching attribute. The narrow context supplies
the selection of a less selective threshold. Conversely, the value
for 𝜖 should be the highest, since the search space where this
threshold is used is the broadest.

Algorithm 1 provides a detailed description of the process
for discovering the decision units. It takes as input a pair of
entity descriptions (𝑒𝑥 , 𝑒𝑦) that are part of the same record 𝑟

and are defined over the common schema 𝑆 = {𝐴1, 𝐴2, ..., 𝐴𝑀 },
and the thresholds 𝜃, 𝜂, 𝜖 to evaluate the similarity of the token
embeddings in the search spaces. It returns the pairedM and
unpaired N decision units found. Firstly, the sets of paired and
unpaired decision units are initialized (lines 1-3) and separated
according to their provenance (i.e., the description of the left
(𝑥 ) or right (𝑦) entity). We then apply the first phase of decision
unit discovery, where the embeddings of the tokens belonging to
the matching attributes are pair-wise evaluated (lines 4-8). We
denote with 𝑒𝑥 [𝐴] (or 𝑒𝑦 [𝐴]) the tokens of the attribute 𝐴 in a
target entity. The function GetSMPairs computes pairs of token
embeddings and the ones with a cosine similarity higher than the
threshold 𝜃 are selected as (intra-attribute) paired decision units
and are stored inM. The remaining ones are temporarily labeled
as unpaired decision units (lines 7,8) and evaluated as part of
inter-attribute correspondences. This test is performed in lines 9-
12, where the unpaired tokens from an entity are evaluated with
the ones of the other entity. The second threshold 𝜂 is applied
to evaluate the similarity of the embeddings. Finally, the last
step (lines 13-18) used threshold 𝜖 to find matches between the
remaining tokens with already formed decision units. This allows
us to generate chains of decision units logically representing
one-to-many relationships among the terms in the descriptions
(challenge R2).

The operation for pairing the embeddings is provided by the
GetSMPairs function, which relies on the Gale–Shapley imple-
mentation of the Stable Marriage (SM) algorithm3 [18]. SM is
the problem to find one-to-one matches between two equally
sized sets of elements, considering preference lists in which each
element in a set expresses its preference over the members of
the opposite set. The goal is to guarantee that for each element
the best connection in its preference list has been selected We
re-adapt the algorithm to identify embeddings referring to seman-
tically related terms. In more detail, each embedding is associated
with a preference list defined by the closest embeddings in the
BERT embedding space (according to a threshold applied to their
cosine similarity). With respect to the original problem, in this
case, we refer to preference lists of variable length and in which

3The Gale-Shapley algorithm finds a stable matching in time𝑂 (𝑛2 ) . The algorithm
is executed three times per dataset as shown in Algorithm 1.
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Figure 2: The Functional Architecture Template implemented inWYM.

Algorithm 1: DecisionUnitDiscovery
Input : (𝑒𝑥 , 𝑒𝑦 ) , a pair of entity descriptions in the record 𝑟 having the

same set of aligned attributes 𝑆 = {𝐴1, 𝐴2, ..., 𝐴𝑀 };
𝜃 , threshold similarity intra-attribute;
𝜂, threshold similarity inter-attribute;
𝜖 , threshold similarity for one-to-many relations.

Output :M𝑟 , a list of paired decision units for the record 𝑟 ;
N𝑟 , a list of unpaired decision units for the record 𝑟 .

1 M𝑟 ← ∅;
2 N𝑥 ← ∅;
3 N𝑦 ← ∅;

# Intra-attribute correspondences

4 foreach𝐴 ∈ 𝑆 do
5 𝑀𝐴 ← GetSMPairs(𝑒𝑥 [𝐴], 𝑒𝑦 [𝐴], 𝜃);
6 M𝑟 ← M𝑟 ∪𝑀𝐴 ;
7 N𝑥 ← N𝑥 ∪ (𝑒𝑥 [𝐴] \ {𝑡𝑥 | (𝑡𝑥 , 𝑡𝑦 ) ∈ 𝑀𝐴 }) ;
8 N𝑦 ← N𝑦 ∪ (𝑒𝑦 [𝐴] \ {𝑡𝑦 | (𝑡𝑥 , 𝑡𝑦 ) ∈ 𝑀𝐴 }) ;
# Inter-attribute correspondences

9 𝑀⌜ ← GetSMPairs(N𝑥 ,N𝑦 , 𝜂);
10 M𝑟 ← M𝑟 ∪𝑀⌜ ;
11 N𝑥 ← N𝑥 \ {𝑡𝑥 | (𝑡𝑥 , 𝑡𝑦 ) ∈ 𝑀⌜ };
12 N𝑦 ← N𝑦 \ {𝑡𝑦 | (𝑡𝑥 , 𝑡𝑦 ) ∈ 𝑀⌜ };

# One-to-many correspondences

13 𝑀𝑥
⌜ ← GetSMPairs(N𝑥 , {𝑡𝑦 | (𝑡𝑥 , 𝑡𝑦 ) ∈ M𝑟 }, 𝜖);

14 𝑀
𝑦

⌜ ← GetSMPairs(N𝑦 , {𝑡𝑥 | (𝑡𝑥 , 𝑡𝑦 ) ∈ M𝑟 }, 𝜖);
15 M𝑟 ← M𝑟 ∪ (𝑀𝑥

⌜ ∪𝑀
𝑦

⌜ ) ;
16 N𝑥 ← N𝑥 \ {𝑡𝑥 | (𝑡𝑥 , 𝑡𝑦 ) ∈ 𝑀𝑥

⌜ };
17 N𝑦 ← N𝑦 \ {𝑡𝑦 | (𝑡𝑥 , 𝑡𝑦 ) ∈ 𝑀𝑦

⌜ };
18 N𝑟 ← N𝑥 ∪ N𝑦 ;
19 returnM𝑟 ,N𝑟 ;

the preference is expressed in continuous (and not boolean) val-
ues. The application of this algorithm allows us tomore efficiently
examine the search space composed of all the possible embedding
pairs and to generate correspondences between embeddings in a
holistic perspective. In addition, the algorithm creates decision
units that respect the required constraints.

Finally, we observe that basing the approach on fine-tuned
BERT embeddings allows us to address challenge R4 of Section
3.2, since the encodings rely on the contextualized knowledge
provided by the other decision units in the entity descriptions.

4.2 Decision unit relevance scorer
The relevance scores are assigned to the decision units to provide
a measure of their importance in the matching decision.WYM
assigns the score via a supervised regression model (a dense fully
connected neural network in the experimented implementation),

built over a dataset where each entry represents a decision unit.
The dataset items and the target scores are built according to
heuristic rules that take into account the challenges introduced
in Section 3.1. In particular, we consider unpaired decision units
as paired with the special element [UNP]. This null element is
associated with a zero embedding (challenge R5). Moreover, the
dataset describes paired units with two main features: the mean
and the absolute difference of the embeddings associated with
the pairs. This representation is symmetric (challenge R3) and
manages small differences in the embeddings (challenge R4). A
special procedure has been designed to correctly address the
mismatch of the labels (challenge R1) in the computation of the
target score for each entry. The values 1 and -1 are assigned to
decision units with a similarity "consistent" with the target label
𝑦, i.e., the value 1 when the paired decision units are similar (i.e.,
the cosine similarity of their embeddings is greater than a pre-
defined threshold 𝛼) and the label represents matching entities;
when the label represents non-matching entity descriptions we
assign the value -1 to unpaired decision units and to dissimilar
paired decision units (i.e., their cosine similarity is lower than
a predefined threshold 𝛽). We associate the neutral value 0 to
decision units that definitely represent the same concepts (the
ones with high cosine similarity) when they are associated with
non-matching entities (this moves their target label before the
average computation from -1 to 0). Similarly, the labels of tokens
with unmatched concepts in records representing matching en-
tities are moved from 1 to 0. Equations 2 summarizes the rules
introduced for paired decision units (𝑙 and 𝑟 are the tokens com-
posing the unit); a similar formula allows the management of
unpaired units.

�̂� (𝑙, 𝑟 , 𝑦) =


0 if y = 1

∧
𝑠𝑖𝑚 (𝑙, 𝑟 ) < 𝛼

1 if y = 1
∧
𝑠𝑖𝑚 (𝑙, 𝑟 ) >= 𝛼

−1 if y = 0
∧
𝑠𝑖𝑚 (𝑙, 𝑟 ) < 𝛽

0 if y = 0
∧
𝑠𝑖𝑚 (𝑙, 𝑟 ) >= 𝛽

(2)

Then, for each decision unit, a unique value𝑦∗
𝑙𝑟
is computed by

averaging the values associated to all its occurrences, as shown
in Equation 3, where |𝐸𝑙𝑟 | is the number of entities in the dataset
containing the decision units.

𝑦∗
𝑙𝑟

=
1
|𝐸𝑙𝑟 |

∑︁
𝑦 (𝑙, 𝑟 , 𝑦) (3)
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(a) Entity Matching (relevance). (b) Entity Non-matching (rele-
vance).

(c) Entity Matching (impact). (d) Entity Non-matching (impact).

Figure 3: Explanations with relevance and impact scores

The dataset created through this procedure is used to train
a fully connected feed-forward neural network that infers the
score for each decision unit. The network is composed of 3 hidden
layers with 300, 64, and 32 nodes, using the relu as activation
functions. The network was trained with 40 epochs, 256 elements
per batch, and a learning rate equal to 3 · 10−5.

4.2.1 Running Example. Figures 3a and 3b show the relevance
scores computed by WYM on the running example in Section
3.3. Figure 3a reports the scores for the decision units in the
matching entity descriptions. We note that not all the paired
units contributed to the matching decisions. To some of them,
a negative value is assigned by WYM that pushes the decision
towards a no-match. The highest contribution towards the match
is provided by the unit (exch,exch), i.e. the abbreviation of
the name of the software described and to the product code
(39400416,39400416). The highest contribution towards the
non-match is provided by the term (eng), available only in the
description of the first entity, which forms an unpaired decision
unit. Recall that relevance scores represent the contribution of
the decision units in isolation, with the contextual knowledge
provided by the embeddings. Figure 3b shows the actual relevance
scores for non-matching descriptions. We count a small number
of paired decision units pushing towards the match decision, and
a large number of unpaired units pushing towards the non-match
decision.

4.3 Explainable matcher
The relevance scores provide an indication of the contribution of
each decision unit to the prediction, which we improved by intro-
ducing structural and contextual knowledge. The idea is to apply
specific featurization functions that introduce such knowledge to
the decision units and relevance scores of the entity descriptions.
There are three types of contextual and structural knowledge
that we can introduce, by aggregating features and scores per
attribute, entity description and record. The functions we apply
include simple statistical operators (such as max, min, count, sum,
mean, median, and the difference between max and min), and are

applied to the decision units aggregated for the selected scopes.
For example, we introduce a featurization function that aggre-
gates the relevance scores of the paired and unpaired decision
units belonging to the same attribute.

The new dataset is used to train a binary classifier that infers
if pairs of entity descriptions refer to the same real-world entity.
Actually, WYM relies on a pool of ten interpretable classifiers
(Logistic Regression - LR, Linear Discriminant Analysis - LDA,
KNN, CART, Naive Bayes - NB, Support Vector Machine - SVM,
AdaBoost - AB, Gradient Boosting - GBM, Random Forest - RF,
and Extra Tree –ET), and the one obtaining the best F1 score
is selected. Finally, we exploit the interpretable nature of the
selected models to estimate the impact that each decision unit
generates on the prediction. Firstly, we extract from the classi-
fiers the coefficients learned. They provide an indication of the
importance of each generated feature. Then, we apply an inverse
feature engineering transformation to identify the decision units
that contribute to each feature and associate them with the im-
pact score. For example, the coefficient of the model associated
with the average of the relevance scores of the decision units
belonging to a specified attribute, contribute to each decision
unit with a weight equal to 1 / N, where N represents the total
number of decision units in the attribute. The impact scores are
then obtained by splitting the contributions provided by the coef-
ficients of the classification model to the decision units involved.
For each decision unit, the related coefficients are then multiplied
by the relevance score, and the results averaged.

4.3.1 Running Example. Figures 3c and 3d show the actual
impact scores computed byWYM on the examples in Section 3.3.
Figure 3c shows that the decision units describing the product
code (39400416,39400416) and the type of product (licenses,
licenses) are the onesmainly supporting thematching decision.
We observe as the score highly changes for these two units with
reference to the relevance score in Figure 3a. We observe also
as the last unit, the price of the product, (42166.22,22575.14)
changes polarization from supporting the match as relevance
score (in isolation, the model understands that these are semanti-
cally related terms) to supporting the non-match as impact score
(the price is important in establishing if we are referring to the
same entity). Figure 3d shows a example of a non-match entity.
As it frequently happens for this kind of descriptions, there is not
a single unit that supports the decision, but there are many units
that contribute in predicting the descriptions as different. We
note that with reference to the relevance score in Figure 3b, the
importance of the paired units increased. Both the products are re-
lated to digital cameras, but the codes are unpaired (dsira200w),
(5811), as well as many other product features. Moreover, we
observe that the unpaired unit (sony) pushes towards a match.
This is probably due to the dirty dataset, where the brand is not
usually part of both entity descriptions.

5 EXPERIMENTS
The experimental evaluation aims at answering four main ques-
tions: 1) How effective isWYM in solving EM tasks (Section 5.1);
2) If the impact scores provide a reliable interpretation of the EM
predictions (Section 5.2); 3) If the time required to train the system
and to compute the explanations makes it usable in real-world
scenarios (Section 5.3); 4) If the decision-based explanations are
effective for the users (Section 5.4). For questions 3 and 4 we
report the results of the experiments only. Interested readers can
refer to our technical report published in the project github.
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Table 2: TheMagellan Benchmark used in the experiments.

Dataset Type Datasets Size % Match

S-DG

Structured

DBLP-GoogleScholar 28,707 18.63
S-DA DBLP-ACM 12,363 17.96
S-AG Amazon-Google 11,460 10.18
S-WA Walmart-Amazon 10,242 9.39
S-BR BeerAdvo-RateBeer 450 15.11
S-IA iTunes-Amazon 539 24.49
S-FZ Fodors-Zagats 946 11.63

T-AB Textual Abt-Buy 9,575 10.74

D-IA

Dirty

iTunes-Amazon 539 24.49
D-DA DBLP-ACM 12,363 17.96
D-DG DBLP-GoogleScholar 28,707 18.63
D-WA Walmart-Amazon 10,242 9.39

Figure 4: Average distribution of the decision units in the
datasets.

Datasets. The experiments are performed against 12 datasets pro-
vided by the Magellan library4 which are usually considered the
reference benchmark for the evaluation of EM tasks. In Table 2,
we show some of their descriptive statistics: the total number of
records representing matching entities in the fourth column and
the percentage of records associated with a matching label in the
last column. Figure 4 shows the average distribution of paired and
unpaired decision units in the datasets. As expected, the overall
number of units associated with non-matching descriptions is
greater than the one of matching descriptions. Among the for-
mer, we see more unpaired than paired decision units. The T-AB
dataset shows a different distribution, with a large number of un-
paired units. The reason is that this is a database of large textual
descriptions where the presence of periphrasis makes difficult
the creation of paired units. For the purposes of the experimen-
tal evaluation, each dataset is divided into training, validation,
and test set which were created with 60-20-20 proportions. The
implementation of WYM used in the experiments is available in
the project github at https://github.com/softlab-unimore/WYM.

Settings. We run the experiments on a machine with 16 GB

of RAM, Tesla T4, and 24 Intel(R) Xeon(R) Silver 4116 CPU @
2.10GHz. We adopted the following thresholds for the generation
of the decision units: 𝜃 = 0.6, 𝜂 = 0.65 and 𝜖 = 0.7.

5.1 Effectiveness of the EM Model
The effectiveness ofWYM is evaluated according to three main
perspectives: in Section 5.1.1, the performance is compared with
competing systems; in Section 5.1.2, we evaluate how WYM
behaves by varying the size of training sets, and in Section 5.1.3
we introduce a study of the components of theWYM architecture,
evaluating different settings and implementation choices.

4https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md

5.1.1 Comparison with competing approaches. The effective-
ness of WYM against the datasets in the benchmark in terms
of F1 score is computed. The results are compared with the re-
sults achieved by DeepMatcher+5 (DM+) , one of the pioneering
EM systems based on deep learning, AutoML6 [27], an approach
that provides the automatic application of ML models to the EM
problem by pipelining AutoML systems with transformer-based
encoders, CorDEL [35] and DITTO [21], a contrastive DL ap-
proach and a BERT-based approach currently representing the
state-of-the-art systems for solving the EM tasks. The results are
shown in Table 3.
Discussion. The overallWYM performance is slightly better than
DM+, similar to AutoML and CorDEL, and worse than DITTO.
The average F1 score measured on the overall benchmark is
0.852 (WYM), 0.83 (DM+), 0.843 (AutoML), 0.861 (CorDEL) and
0.927 (DITTO). If we consider a threshold of ± 3% from the result
achieved by our approach, where we consider the results to be
similar, we observe that WYM performs better than DM+ in 4
datasets, worst in 1 dataset, and within the threshold in the re-
maining 7 datasets; it performs better than AutoML in 4 datasets,
worst in 3 datasets, and within the threshold in the remaining 5
datasets; better than CorDEL in 2 datasets, worst in 3 and within
the threshold in the remaining 7 datasets; finally, it performs
worse than DITTO in 7 datasets, and within the threshold in the
remaining 5 datasets. The detailed error analysis showed that
WYM makes a large number of errors in recognizing product
codes in the entity descriptions. In many cases, they form a de-
cision unit even if they are not the same. This is mainly due to
the tokenization mechanism introduced by BERT. Heuristics can
be applied to address the problem. In particular, we verified an
improvement of the F1 score in the T-AB dataset (from 0.645 to
0.754) after the insertion of domain knowledge that allows only
equal product codes to belong to the same paired decision units.
The table shows in brackets the rank of each model for each
dataset. The analysis of the average rank shows that DITTO can
obtain outstanding results and the other approaches are close to
each other.

Take away. As already pointed out in the literature [12], pro-

viding interpretability to the predictions comes with the price of
decreasing the effectiveness of the approach. We consider WYM
as a good compromise between the quality of the predictions
and the capability of interpreting them. DITTO, which definitely
achieves the best performance, acts for the users as an oracle that
does not provide any support for understanding the reasons for
its decisions. WYM obtains high quality results and provides the
decision units with the impact scores that explain the predictions.

5.1.2 Learning Curves. The learning curves provide insight
into the dependence of the EM model on the size of the training
set. We select samples of increasing size from the training set
and we evaluate the F1 score of the predictions. The dimensions
of the experimented samples are 500, 1K, 2K records, and the
entire dataset. Figure 5 shows the learning curves obtained. For
sake of simplicity, the experiments were performed by using the
encodings obtained with a pre-trained version of the BERTmodel,
but the shape of the curve does not change by using fine-tuning.
The curves for the datasets S-BR, S-IA, S-FZ, D-IA are not shown:

5DM+ is the combination of experiments / implementations as defined in [21]
6We average the results related to the best configuration (Hybrid-EM-Adapter) for
AutoSklearn, AutoGluon and H20AutoML
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Table 3: Effectiveness measured with the F1 score, and, in brackets, the rank of each model for each dataset. The comparison
between WYM and the other approaches is shown in the right part of the table. Values are in bold (underlined) when they
differ from WYMmore than 3% (less than -3%).

Dataset WYM DM+ AutoML CorDEL DITTO
Δ

DM+
(%)

Δ
AutoML

(%)

Δ
CorDEL

(%)

Δ
DITTO
(%)

S-DG 0.936 (5) 0.947 (2) 0.940 (3) 0.940 (3) 0.956 (1) -0.8 -0.1 -0.1 -1.7
S-DA 0.990 (3) 0.985 (4) 0.970 (5) 0.992 (2) 0.99 (1) 0.5 2 -0.02 0
S-AG 0.625 (5) 0.707 (3) 0.673 (4) 0.700 (2) 0.756 (1) -8.2 -4.8 -7.5 -13.
S-WA 0.726 (4) 0.736 (3) 0.649 (5) 0.940 (1) 0.857 (2) -0.1 7.7 -21.4 -12.0
S-BR 0.839 (3) 0.788 (5) 0.805 (4) 0.889 (2) 0.944 (1) 5.1 3.4 -5.0 -10 .5
S-IA 1 (1) 0.912 (5) 0.922 (4) 1 (1) 0.971 (3) 8.8 7.8 0. 0 2.9
S-FZ 1 (1) 1 (1) 0.969 (5) 1 (1) 1 (1) 0.0 3.1 0.0 0.0
T-AB 0.645 (4) 0.628 (5) 0.769 (2) 0.649 (3) 0.893 (1) 1.7 -12.4 -0.4 -24.8
D-IA 0.963 (1) 0.794 (5) 0.870 (3) 0.824 (4) 0.957 (2) 16.9 9.3 13.9 0.6
D-DA 0.972 (3) 0.981 (2) 0.969 (5) 0.970 (4) 0.99 (1) -0.9 0.3 0.2 -1.8
D-DG 0.923 (4) 0.938 (2) 0.934 (3) 0.915 (5) 0.958 (1) -1.5 -1.1 0.8 -3.5
D-WA 0.603 (3) 0.538 (4) 0.652 (2) 0.512 (5) 0.857 (1) 6.5 -4.9 9.1 -25.4

AVG 0.852 (3.1) 0.830 (3.4) 0.843 (3.8) 0.861 (2.8) 0.927 (1.1)

Figure 5: Learning Curves. The training set size is shown in the x-axes, the accuracy of the model (F1 score) in the y-axes.

the size of the training (270 records in S-BR) and test sets (90
elements in S-BR) are too small for a reliable evaluation.
Discussion. The experiment shows thatWYM is not sensitive to
the size of the training set. Only in three datasets (S-AG, S-WA,
and T-AB) the score increases more than 10% as the dimension
of the training set increases.
Take away. The results show that WYM provides good results in
scenarios affected by limited availability of data. The experiments
show good results even with 500 records. The creation of labels
for such an amount of data is feasible in a small amount of time
for a human.

5.1.3 Analysis of theWYM components. In this Section, we
aim to understand the contribution of each WYM component to
the overall performance of the system.
The Decision Unit Generator. The experiment shows the contri-
bution of the word embeddings on the creation of the decision
units measured through the overall performance of the approach.
The current implementation relies on the SBERT embeddings
[28]. We show the performance obtained with two other kinds of
embeddings: the pre-trained BERT model, and the BERT model
fine-tuned on the EM task. Finally, the performance obtainedwith
decision units computed on the basis of the Jaro-Winkler distance
[36], i.e., an edit distance-based similarity measure, offers a sim-
ple baseline for the problem. The results of the experiment are
shown in Section “Decision Unit Generator” of Table 4.

Table 4: Effectiveness (F1 score) varying the component
implementations. In brackets the rank of the model for
each datataset.

WYM
Decision Unit Generator Scorer Matcher

j-w
dist. BERT-pt BERT-ft bin.

scr.
cos.
sim.

bin
j-w

smp.
feat.

S-DG 0.936 (1) 0.923 (6) 0.930 (4) 0.930 (4) 0.932 (3) 0.936 (1) 0.834 (8) 0.904 (7)
S-DA 0.990 (1) 0.980 (5) 0.989 (2) 0.986 (3) 0.976 (6) 0.983 (4) 0.965 (7) 0.952 (8)
S-AG 0.625 (2) 0.542 (6) 0.647 (1) 0.624 (3) 0.532 (7) 0.550 (5) 0.312 (8) 0.607 (4)
S-WA 0.726 (2) 0.710 (3) 0.670 (4) 0.592 (6) 0.458 (7) 0.748 (1) 0.281 (8) 0.611 (5)
S-BR 0.839 (8) 0.848 (7) 0.903 (3) 0.963 (1) 0.933 (2) 0.903 (3) 0.875 (6) 0.848 (5)
S-IA 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (1) 0.981 (7) 0.982 (6) 0.898 (5) 0.836 (8)
S-FZ 1.000 (1) 1.000 (1) 0.977 (4) 0.955 (8) 0.977 (4) 1.000 (1) 0.957 (3) 0.977 (4)
T-AB 0.645 (1) 0.546 (4) 0.599 (2) 0.527 (5) 0.396 (7) 0.515 (6) 0.272 (8) 0.581 (3)
D-IA 0.963 (2) 0.653 (7) 0.982 (1) 0.929 (3) 0.828 (4) 0.821 (5) 0.513 (7) 0.755 (8)
D-DA 0.972 (1) 0.913 (7) 0.960 (2) 0.940 (6) 0.958 (5) 0.957 (4) 0.752 (8) 0.953 (5)
D-DG 0.923 (3) 0.850 (7) 0.925 (1) 0.924 (2) 0.897 (6) 0.911 (4) 0.585 (8) 0.907 (5)
D-WA 0.603 (1) 0.505 (6) 0.554 (4) 0.557 (3) 0.356 (7) 0.545 (5) 0.269 (8) 0.578 (2)

AVG 0.85 (2) 0.79 (5) 0.85 (2.4) 0.82 (3.8) 0.77 (5.4) 0.82 (3.8) 0.63 (7) 0.79 (5.3)

Discussion. The effectiveness does not largely vary if we consider
the SBERT fine-tuning adopted in WYM and the other BERT
based architectures experimented, as confirmed by the average F1
score and the average rank computed by considering all datasets.
In many datasets, fine-tuning was not able to improve the results.
Since the goal of the paper is to demonstrate that we can obtain
explainability with limited reduction of the performance, we did
not evaluate advanced fine-tuning techniques and we limited
ourselves to using a model fine-tuned on the EM task for the
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Table 5: Classifiers used as Explainable Matchers (F1 score).
In bold, the best performance per dataset.

Dataset LR LDA KNN DT NB SVM AB GBM RF ET Avg. S.D.

S-DG 0.925 0.927 0.927 0.894 0.890 0.936 0.912 0.921 0.918 0.936 0.919 0.015
S-DA 0.982 0.971 0.984 0.949 0.963 0.990 0.977 0.968 0.977 0.985 0.975 0.012
S-AG 0.578 0.622 0.625 0.554 0.597 0.583 0.595 0.604 0.602 0.621 0.598 0.021
S-WA 0.721 0.709 0.632 0.639 0.572 0.720 0.686 0.726 0.716 0.719 0.684 0.050
S-BR 0.788 0.690 0.788 0.828 0.718 0.788 0.839 0.765 0.765 0.765 0.773 0.041
S-IA 1.000 0.852 0.906 0.912 0.787 1.000 0.947 0.947 1.000 0.982 0.933 0.067
S-FZ 0.977 0.977 0.977 0.977 0.977 0.977 1.000 0.955 1.000 1.000 0.982 0.014
T-AB 0.631 0.645 0.560 0.564 0.533 0.627 0.609 0.622 0.580 0.607 0.598 0.035
D-IA 0.909 0.760 0.760 0.871 0.696 0.830 0.963 0.931 0.881 0.877 0.848 0.077
D-DA 0.972 0.963 0.962 0.955 0.948 0.972 0.955 0.955 0.961 0.968 0.961 0.008
D-DG 0.923 0.922 0.902 0.893 0.887 0.918 0.898 0.913 0.919 0.921 0.910 0.013
D-WA 0.570 0.603 0.424 0.497 0.524 0.556 0.566 0.567 0.559 0.584 0.545 0.049
Avg. 0.831 0.803 0.787 0.794 0.758 0.825 0.829 0.823 0.823 0.830 – –
S.D. 0.159 0.141 0.180 0.170 0.166 0.160 0.159 0.149 0.163 0.155 – –

computation, which is a different task from the computation on
the relevance scores. We are therefore convinced, and in this, we
are supported by the literature (see for example the experiments
in [32]), that there is room for improvement by perfecting the
fine-tuning technique. The comparison with the results obtained
with the Jaro-Winkler7 syntactic similarity measure [36] shows
the strength of the architecture: using a syntactic approach the
performance decreases, but it does not happen as dramatically
as you might expect.
The Decision Unit Scorer. This component is based on a fully con-
nected neural network to provide a relevance score to the decision
units. We calculate the effectiveness of the overall model after the
substitution of the neural network with (1) a binary score that as-
signs 1 to the paired decision units and 0 to the unpaired; and (2)
a simple scorer based on the cosine similarity of the embeddings
of the tokens. The binary approach is also applied to the decision
units created with the Jaro-Winkler distance, providing a baseline
for the approach. The results are reported in the “Scorer” Section
of Table 4.
Discussion.We observe that theWYM relevance scores computed
with the DL model perform better than the ones generated via
the binary score. The same happens if we compare the results
obtained with the DL model and the binary score of the Jaro-
Winkler decision units. This suggests that a DL-based technique
can effectively support the EM process. Moreover, the compari-
son between the results achieved with the Jaro-Winkler measure
shows that the syntactic similarity does not convey enough se-
mantics to assure a high level of effectiveness. Finally, we note
that the results obtained in small datasets are not consistent with
the ones in the other datasets. One of the reasons is the size of
the training set, which is not enough large for training the model
(e.g., the dataset S-BR contains 270 tuples in the training set).
The Explainable Matcher. This component generates the datasets
to which the interpretable binary classifiers are applied. The
datasets are created via feature engineering processes on the rele-
vance scores. To evaluate the effectiveness of feature engineering,
we perform an experiment with datasets composed of a limited
number of features. In particular, the datasets contain 6 features,
obtained by applying the count and the average operators on
all the relevance scores, on the positive (the one pushing the
decision toward the match), and on the negative scores (the one
7Similar results are obtained with other syntactic string similarity measures. We
selected to show the results obtained with the Jaro-Winkler measure since this is a
well known measure, performing well on many benchmark problems [6] and not
so simple as the edit distance.

Figure 6: Conciseness of the explanations.

pushing towards the non-match). The F1 score achieved is shown
in the “simplified feature” column of the “Matcher” Section of
Table 4. Moreover, we perform a second experiment to compare
the F1 scores achieved by all classifiers evaluated. The results of
this experiment are reported in Table 5 (the last two rows and
columns represent the average and the standard deviations on
the datasets and classifier, respectively).
Discussion. The first experiment shows the effectiveness of the
WYM feature engineering process. Only in the dataset S-BR,
the performance of the simplified is better than the one of the
implemented component. The motivation is the same as in the
previous experiment: when the dataset is small, the results suffer
from variance. The second experiment shows that all classifiers
obtain similar results (the standard deviation is generally low)
and that the winner classifier depends on the dataset.
Take away. The overall ablation and robustness study presented
in the Section shows that the components synergistically con-
tribute to the generation of accurate results.

5.2 Interpretability of the EM Model
In this second set of experiments we investigate the interpretabil-
ity ofWYM by analyzing whether the impact scores can reveal
the rationale behind the decisions. We evaluate this aspect in
quantitative terms by analyzing the conciseness (Section 5.2.1),
the faithfulless (Section 5.2.2), the contribution (Section 5.2.3) of
the explanations and by comparing theWYM impacts with the
explanations generated by a different tool (the Landmark EM
explanation system – Section 5.2.4).

5.2.1 Conciseness. The conciseness can make the explana-
tions consumable for humans, who cannot analyze the dozens of
decision units part of a dataset record. Therefore, an explanation
is usable if it can describe the prediction with few elements. In
Figure 6, we show the results of the Pareto analysis performed for
each record in every dataset by ordering the decision units per
impact in descending order and plotting the cumulative values.
Discussion. The Figure clearly shows the conciseness of the expla-
nations. Even if we limit the analysis to a few decision units we
can understand the behavior of the model. If the user analyzes 3%
of the decision units, s/he get typically insight into the elements
providing between 18% and 40% of the impact. 20% of the decision
units provide between 50 and 83% of the impact.
Take away. The impact is concentrated in a limited number of
tokens, making it easy for the user to discern among the decision
units those that are most significant for prediction.
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Figure 7: Sufficiency evaluated with the post-hoc accuracy. To high values correspond accurate explanations.

5.2.2 Faithfulness. We evaluate the faithfulness of the expla-
nation to the EM Model via the notion of sufficiency, i.e., the abil-
ity of the top-impact elements to model a prediction [1, 12, 15, 20].
We adopt the post-hoc accuracy [8] as sufficiency measure. For
each test data, we select the top 𝑣 important units based on the
impact attributions for the model to make a prediction and com-
pare it with the original prediction made on the whole input text.
We compute the post-hoc accuracy on𝑀 examples,

𝑝𝑜𝑠𝑡 − ℎ𝑜𝑐 − 𝑎𝑐𝑐 (𝑣) = 1
𝑀

𝑀∑︁
𝑚=1

1[𝑦 (𝑚)𝑣 = 𝑦 (𝑚) ] (4)

where 𝑦 (𝑚) is the predicted label on the m-th test data, and
𝑦
(𝑚)
𝑣 is the predicted label based on the top 𝑣 important words.
Higher post-hoc accuracy indicates better explanations. Figure
7 shows the results of the experiments by using up to the top
5 decision units. We compared the values obtained in four set-
tings: we considerWYM evaluated as EM model and explainer,
WYM evaluated as EM model and explained with LIME, DITTO
explained with LIME and DITTO explained with LEMON using
the single token granularity.

Discussion. The experiment shows that WYM used as an ex-
plainer provides more accurate results than the post-hoc LIME
and LEMON systems in almost all evaluations. In the dataset
S-BR, WYM performs significantly worse than DITTO8; in S-FZ
WYM performs as DITTO , apart from some configurations.

Take away. The overall analysis of the sufficiency shows that

the post-hoc explainer LIME cannot accurately explain WYM
andDITTO, As a consequence, we observe that even ifDITTO can
generate more accurate predictions thanWYM, the quality of the
explanations generated by LIME is lower than the ones generated
byWYM. Similar results are obtained by coupling DITTO with
LEMON. Despite the accuracy obtained, in scenarios where the
explanation is crucial, DITTO seems not to be the best solution.

5.2.3 Contribution of the decision units to the overall accuracy.
To evaluate the contribution of the impact scores assigned to the
decision units to the overall accuracy ofWYM, this experiment
perturbs the dataset records by removing selected decision units
and analyzing the performance variations on these synthetic
datasets. This is an extension of the post-hoc evaluation presented
in the previous Section.

We experiment with three techniques for the removal of the
decision units applied to the datasets: 1) MoRF, where we elim-
inate for each record the k decision units that contribute most
to the prediction (i.e. units with high positive impact in records
describing matching entities and units with high negative im-
pact for non-matching), 2) LeRF, where the k decision units that
8This is the smallest dataset, with a test set containing 91 records.

contribute less to the prediction are removed (i.e. high negative
impact in case of entity matches and high positive impact / in
case of non-matches), and 3) Random, where k random decision
units are removed. We expect that when we remove the most
relevant decision units (MoRF) from records describing matching
entities, the effectiveness (F1 score) will decrease; on the other
hand, the model should not be affected by the removal of the
least relevant units first (LeRF). The results of the experiment are
shown in Figure 8, where, for each dataset, the F1 score generated
by WYM as the removal technique varies, is reported.

Discussion.Analyzing the results we observe how impact scores
assigned byWYM reflect the real importance of each token on
the prediction. By perturbing the data with the MoRF strategy,
WYM performance drops drastically (up to 60% in some datasets).
The phenomenon is mostly marked as the number of removed
units increases, however, in some datasets (such as Abt-Buy,
Amazon-Google, and the two versions of Walmart-Amazon) the
performance drops after the removal of a single unit. Moreover,
the LeRF perturbation does not produce substantial variations in
the performance, which in most of the datasets slightly improves.

Take away. The experiment confirms the high quality of the

explanations generated. The MoRF removal strategy confirms
that decision units with a high impact score are crucial for model
accuracy. The LeRF removal strategy shows that units with a low
impact score do not contribute to generating accurate results.

5.2.4 Correlation with Landmark. The WYM explanations
are compared with the ones generated by Landmark Explana-
tion[3, 4], a framework that extends the capabilities of a post-hoc
perturbation-based explainer to the EM scenario. The experiment
is performed by selecting a balanced sample of 100 elements from
each benchmark dataset and using Landmark to compute the ex-
planations9. Since it provides scores to tokens (and not to decision
units), the explanations are post-processed by merging seman-
tically similar tokens and averaging their scores. The outputs
are then compared with the ones ofWYM through the Pearson
correlation measure. Figure 9 shows the results of the experi-
ment, where the distribution of the correlation scores across all
the records of each dataset is reported.
Discussion. The results show that concerning the descriptions
of matching entities there is a moderate positive correlation
between the scores provided by the approaches (the average
Pearson correlation on all datasets is 0.577). The correlation is
less marked if we consider the non-matching entities, where the
average correlation is 0.348.

9We configure Landmark Explanation to generate 100 perturbations for each entity
of an EM record
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Figure 8: F1 score obtained in EM Models after the removal of the most relevant decision units (MoRF), less relevant
decision units (LeRF) and random units.

(a) Impact score match records

(b) Impact score non-match records

Figure 9: Pearson correlation between the explanations
generated byWYM and Landmark.

Take away. The low correlation in the case of non-matching

predictions confirms that if two entity descriptions have many
elements of diversity it is difficult to determine which ones mostly
contribute to the decision. This is because we can find many
subsets of them which could suffice for the model to determine a
non-match prediction.

5.3 Time performance
We evaluated the time performance through two experiments.
In the first experiment, we compute the overall time required to
train the system and to compute the explanations. In the second
experiment, we analyze the pipeline time breakdown to evaluate
the components where most of the time is spent.

Take away. The experiments show that the training time is

similar to the one of DITTO (the average throughput is around 9
records per second). The average throughput in the generation of
the explanations is around 20 records per second. This time is one
order of magnitude lower than DITTO (around 130 records per
second). Nevertheless, DITTO does not compute the explanations.
The analysis of the pipeline breakdown shows that the time spent

on making the explanations is around 40% of the overall time.
The overall analysis shows thatWYM can be used for computing
the predictions and explanations in typical real-world scenarios
(on average it can generate 70k+ explanations per hour).

5.4 Users evaluation
A small scale users evaluation is performed to understand the
quality of the decision unit-based explanations and to assess if
this type of explanation is useful to understand the behavior
of the EM system. A questionnaire is administered to 15 users
(colleagues and students from the ICT doctorate course at the
University of Modena and Reggio Emilia). The participants are
required to evaluate the feature-based explanations generated
with DITTO and LIME and the decision unit-based explanations
generated with WYM. Three pairs of entity descriptions were
shown. The first pair of entity descriptions is referring to the
same real entity; the second pair refers to different entities; the
third pair is composed of the same description copied twice.

Take away. The experiment shows that the users usually prefer

decision unit-based explanations. Only when the entity descrip-
tions are really close (as in the third pair proposed in the question-
naire) users were satisfied also by the feature-based explanations.
Even the small scale of users involved, the Fleiss’ kappa was
0.787, thus showing good agreement among the participants.

6 CONCLUSION
In the paper, we presented an architecture template for perform-
ing interpretable entity matches. The architecture is based on
three components, predicts if a pair of entity descriptions refer
to the same real-world entity, and provides the terms (i.e., the
decision units) that mainly led to the decision. We described our
implementationWYMwhich has experimented with the datasets
usually adopted for evaluating EM approaches. The results show
that WYM has performance similar to the ones of other state-of-
the-art techniques, but the predictions can be explained.

We have identified twomain directions towards which to focus
our future work. From one side, we will investigate the intro-
duction of external knowledge in the approach (in the form of
synthetic sentences automatically generated and rules on deci-
sion units) to improve the effectiveness and the quality of the
explanations. From the other side, we will experiment if deci-
sion units can be effectively used to train DL-based EM systems
coupled with post-hoc explainers.
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