
27/05/2024 19:58

Highly scalable parallel processing of extracellular recordings of Multielectrode Arrays / Gehring, T. V.;
Vasilaki, E.; Giugliano, M.. - 2015:(2015), pp. 4178-4181. (Intervento presentato al convegno 37th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 tenutosi a
Milan, Italy nel 25-29 August, 2015) [10.1109/EMBC.2015.7319315].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

IEEE

This is the peer reviewd version of the followng article:

Highly Scalable Parallel Processing of Extracellular Recordings of

Multielectrode Arrays

Tiago V. Gehring1, Eleni Vasilaki1,2,3, Michele Giugliano1,2,4

Abstract— Technological advances of Multielectrode Arrays
(MEAs) used for multi- site, parallel electrophysiological
recordings, lead to an ever increasing amount of raw data
being generated. Arrays with hundreds up to a few thousands of
electrodes are slowly seeing widespread use and the expectation
is that more sophisticated arrays will become available in the
near future.

In order to process the large data volumes resulting from
MEA recordings there is a pressing need for new software tools
able to process many data channels in parallel. Here we present
a new tool for processing MEA data recordings that makes
use of new programming paradigms and recent technology
developments to unleash the power of modern highly parallel
hardware, such as multi-core CPUs or GPUs.

Our tool builds on and complements existing MEA data
analysis packages. It can be used to speed up some performance
critical pre-processing steps such as data filtering and spike
detection, helping to make the analysis of larger data sets
tractable.

I. INTRODUCTION

Technological advances in the construction of MEAs lead

to collections of an increasing amount of data which has

to be analysed. For example, a simple calculation shows

that recordings employing new large-scale MEAs with 4096

electrodes [1] with a sampling frequency of 7.7 kHz gen-

erate about 63MiB/sec, (2 × 4096 × 7700 - assuming a

16 bit analog-digital converter), or almost 230GiB of raw

(uncompressed) data per recorded hour. It is expected that

future technology advances will lead to even larger amount

of data being generated which has then to be processed.

Typical processing pipelines of MEA data recordings

usually involve a filtering step followed by a spike detection

and artefact removal algorithm [2]. These pre-processing

steps are then typically followed by a spike sorting algorithm

and/or other post-processing steps, such as burst-detection

in the case of cultured cells [3]. In order to simplify and

automatise these processing steps different software packages

were proposed over the years [4], [5], [2]. These pioneering

tools, however, were designed primarily with ease of use

and not performance in mind, or were designed during a

time were parallel hardware was not so prevalent as it is

today. They therefore cannot make efficient use or do not

1Department of Computer Science, University of Sheffield, Sheffield, UK
t.gehring@sheffield.ac.uk

2Theoretical Neurobiology and Neuroengineering Lab, Department of
Biomedical Sciences, University of Antwerp, Wilrijk, Belgium

3INSIGNEO Institute for in Silico Medicine, University of Sheffield,
Sheffield, UK

4Laboratory of Neural Microcircuitry, Brain Mind Institute, Swiss Federal
Institute of Technology of Lausanne, cole Polytechnique Fdrale de Lau-
sanne, Switzerland

scale well on modern hardware architectures (e.g. multi-core

CPUs with vector instruction sets or GPUs).

Here we present a new MEA data processing tool, PSpike,

that offers high scalability and performance on single ma-

chine parallel hardware architectures. The new tool is based

on OpenCL (Open Computing Language), an industry stan-

dard for programming multi-core CPUs, GPUs, and dedi-

cated accelerators.

The focus of the new tool is to optimise the performance-

critical, pre-processing steps of the data processing flow

which dealing with large amounts of data. The objective

of the new tool is not to re-create completely new analysis

frameworks but rather to complement and speed-up exist-

ing ones. For this reason the processing steps performed

here match closely the ones from the QSpike tools [2], a

previously released and freely available software package.

The results from the pre-processing stages of both tools

are interchangeable, so that the available report generating

facilities provided by the QSpike tools can be used without

major modifications with the output data from the new tool.

II. METHODS

A. Code

The software tool presented here, PSpike, was developed

in C++ and is platform agnostic (the code was tested on

Linux, Windows, and OSX systems). Both a command line

tool for manual processing of offline recordings (Mutichan-

nel Systems’ MCD files are currently supported) and a

daemon that continuously checks for new files and processes

them are provided.

1) OpenCL: Modern CPUs consist of multiple cores

and rely increasingly on SIMD (single instruction multiple

data) extensions, such as SSE (Streaming SIMD Extensions)

and more recently AVX (Advanced Vector Extensions), to

increase throughput. Other dedicated highly parallel hard-

ware, such as GPUs or Intel’s MIC (Many Integrate Core),

available in the form of the Xeon Phi line of dedicated

accelerators, are becoming increasingly widespread.

OpenCL is a widely used and supported framework for

writing programs that target modern parallel hardware archi-

tectures (see [7] for a short introduction, [8] for a detailed

treatment). The main advantages of using OpenCL, besides

being an industry standard, is that it vastly simplifies and

abstracts the programming of parallel code that has to run in

multiple hardware configurations. This is achieved by means

of OpenCL kernels, or code which is compiled at runtime.

The kernels are just special functions written in a subset of

the C programming language. Because they are compiled at

runtime, the code can be highly optimised for the specific

hardware that will run it (e.g. a 4-core CPU or a GPU

with thousands of simplified cores). Fig. 1 shows the general

architecture of an OpenCL application.

Host program

OpenCL kernel

OpenCL runtime

CPU / GPU / Co-processor

(generates)

(compiles code)

Fig. 1. Overview of the OpenCL programming and runtime architecture.
The host application generates the OpenCL kernels, or special functions,
which are then compiled at runtime targeting the specific hardware on which
the code is to be run (e.g. a multi-core CPU or a GPU). Because of the
runtime compilation highly optimised code can be generated.

The performance critical functions of our tool, such as the

data filtering and spike detection, were written in the form of

OpenCL kernels in order to extract maximum performance

from the available hardware.

2) Block processing, MCD files: Our tool has currently

built in support for processing Multichannel Systems’ MCD

files. However, other file formats or data sources such as

online recorded data, can be easily supported by adding a

new data source type to the code (any source which provided

a stream of continuous data can be used).

The core algorithms the code works on data blocks, which

can be read an processed in parallel. This can speed up the

processing considerably as, for example, large MCD files

can be broken down into smaller blocks and the reading and

processing of data can progress concurrently. It is to be noted,

however, that using different block sizes can have an impact

on the results as the results of the backward filtering step

(see below) and the estimate of the spike detection threshold

will vary slightly. Block processing is therefore optional (as

long as there is enough system memory available MCD files

can be processed as one block); the block size can also be

specified manually.

B. Processing workflow

Fig. 2 shows the different data processing steps performed

by the tool. Except by the generalised concept of input and

output streams and block processing (described above), these

steps are exactly the same as the ones performed by the

original QSpike tools implementation in Matlab [2]. When a

single data block is used the results of both tools is exactly

the same.

1) Filtering: The first step of the processing performs an

(optional but active by default) band pass filter of the data

using an IIR (Infinite Impulse Response) filter. By default

a bi-directional (non-casual) 2nd order elliptic filter with a

Filtering

Spike detection

Burst-detection

Raw data stream

Events stream

Samples (16 bit ADC levels)

Filtered data (32/64 bit FP)

Spike times

Spike processing

Spike times/waveforms

Spikes + bursts

Fig. 2. Overview of the data processing steps. Wider arrows symbolise
steps where larger amounts of data have to be processed.

400−3000Hz pass band is used. This can however easily be

changed by providing custom filter coefficients or a custom

filter coefficient file with multiple filter coefficients (one set

for each sampling frequency). A non-casual (or zero-phase)

filter (which requires a forward and a backward pass over the

data) is chosen by default in order to minimise spike shape

distortion and time lags [9]. This can, however, be easily

changed by a casual (single pass) filter with a single line

code change.

It is to be noted that the filtering step also expands the

input data from discrete ADC (Analog Digital Converter)

values (usually 16 bit integers) to 32 or 64 bit floating point

values (depending on the compile time flags) in the first pass.

The data conversion and filtering operations are combined to

avoid an extra time consuming data copy operation.

2) Spike detection: The spike detection algorithm is based

on a fixed threshold with is estimated from the background

noise of the data. The noise is computed from the median

of the signal, as this was shown to be a better estimator

than the standard deviation [6]. For the median computation

a recursive binning algorithm is used [10].

3) Burst detection: The burst detection uses the method

described in Van Pelt et al. [11], which first bins the spikes

for discrete time windows and then calculates the number

of active electrodes (ones in which a spike was detected) at

each time step. A burst is detected if the number of active

electrodes cross a fixed threshold.

4) Post processing: Our new code does not provide any

new post-processing code, such as report generation, but

rather makes use of the already available QSpike tools

software stack. Only minor modifications had to be made

for the QSpike post-processing code to be compatible with

the output generated by our new PSpike tool. As an example

of post-processing output, Fig. 3 shows a raster plot produced

by QSpike tools.

Fig. 3. Example raster plot generated by the QSpike tools framework

III. RESULTS

A. Performance scaling

Fig. 4 shows how the main pre-processing operations, data

filtering and spike detection, scale with different number of

channels being processed in parallel. As the graph shows

filtering scales almost linearly when processing up to 8

channels in parallel. This can be explained by the fact that

vectorization of the filter is simple since it consists only of

arithmetic operations. These operations can then be replaced

by their SIMD counterpart (SSE or AVX instructions) and

therefore process multiple channels at a time on a single

hardware thread (4 for the CPU used in the tests which

supported 256 bit AVX instructions). Peak performance of

the bi-directional filter used in the tests is close to 1.2GiB/s
even on the relatively modest hardware used here, showing

that it does not represent a performance bottleneck.

Scaling of the spike detector, however, does not scale as

well as the data filter (Fig. 4). This is due to the fact that

vectorization of the spike detector is much harder because of

the code branching involved. The branching arises from the

conditional check for a threshold crossing, which signals that

a spike was found. The only part of the spike detection code

that was vectorized is the standard deviation (SD) computa-

tion; the SD is used for the median computation which in

turn is used to estimate the background noise and the spike

threshold for each channel. The performance gains here,

however, are overshadowed by the more computationally

intense parts of the spike detection algorithm that are not

vectorized, so that the code scales poorly and performance

peaks when the number of hardware threads is reached (4 in

this case).

B. Processing of offline data

Fig. 5 compares the overall time to process a MCD file

(Multichannel Systems) when using different numbers of

parallel channels in the processing. The results show that

performance scales up to 8 parallel channels, due to the

Filtering

Spike detection

0 2 4 6 8

200

300

600

1100

Parallel channels

M
iB
/s

Fig. 4. Performance scaling of filtering and spike-detection operations.
Hardware: Intel Core i7-4600U 2.1GHz, 2 cores, 4 threads. OpenCL
implementation: Intel OpenCL runtime. Filtering shows close to linear
scaling with the number of parallel channels; performance starts to flatten
only when saturating all hardware lanes (2 physical cores with 256 bit

SIMD instructions). In the case of spike detection the code cannot make
full use of vector instructions due to branching in the code; the performance
peak is therefore reached at 4 parallel channels, or the number of hardware
threads.

hardware limitations of the test setup (2 physical cores,

4 thread Intel Core i7 CPU). The figure compares also

results using different OpenCL implementations: the Intel

OpenCL runtime, which comes as binary, closed-source

libraries and pocl (portable-computing language) [12], an

open-source OpenCL implementation that aims to be easily

portable to different architectures. As the results show, the

pocl implementation offers a major improvement over Intel’s

libraries. This because the former was compiled from the

sources and is highly optimised to the underlying hardware

during its installation.

2 4 6 8

10

15

20

25

30

35

40

45

Parallel channels

t
[s
]

Fig. 5. Time to process a 1.8GiB MCD file with 60 data channels
sampled at 25 kHz (10 s recording) using the Intel OpenCL runtime (solid
line) and the pocl OpenCL implementation (dashed line). Hardware: Intel
Core i7-4600U, 2 cores, 4 threads (see Appendix for details of the system
used). Performance is again seen to scale well until the maximum number
of hardware lanes is reached. The pocl OpenCL implementation, which is
compiled from the sources and highly optimised to the hardware at hand,
offers a major performance advantage over the Intel libraries (binary only).

Fig. 6 shows performance results of the new and original

code of QSpike tools. The performance of the new code is

measured for different block sizes. As can be seen perfor-

mance improves with decreasing block size. This is due to

the fact that smaller blocks lead to increased levels of reading

and processing parallelism. The rightmost point, with a block

size as large as the file, means that reading and processing

operations are sequential, as is the case in the original Matlab

implementation. As described in the Methods Section, the

block size does have an impact on the results as the spike

threshold with varying block sizes will vary slightly.

The results show that the new implementation of the pre-

processing stages can outperform the original one even when

the former is running in a much more modest machine

(a 2013 Ultrabook class Laptop compared to a 12 core

workstation with 72GB of RAM).

500 1000 1500

50

100

150

Block size [s]

t
[s
]

Fig. 6. Time to process a 5.4GiB MCD file with 60 data channels
for different block sizes. Sampling frequency: 25 kHz (30 s recording).
Hardware and software configurations are given in the Appendix. Continu-
ous and dashed lines show results using Intel’s OpenCL runtime and pocl
OpenCL implementation respectively. Dotted line shows the performance of
the original QSpike tools pre-processing stage running on a dual-socket, 12
core, 24 thread Intel Xeon system with 72GB of RAM. As the results show
the highly optimised pocl OpenCL implementation offers again a large (over
3 times in this case) performance advantage over Intel’s libraries. In both
cases the performance of processing improves when using smaller block
sizes because this allows for data extraction and processing to run in parallel
(the rightmost point is the point where both operations are sequential - first
all data is read and then processed, as is done in the original implementation
in Matlab). In all the cases the new pre-processing code is able to outperform
the original even when running on the much more modest hardware setup.

IV. CONCLUSIONS

Our results show that by employing modern programming

technologies, such as OpenCL, highly efficient software that

can target modern parallel hardware architectures can be

developed. This is especially well suited for processing the

large data sets generated by multi-electrode array recordings.

Parallelization does not pose major difficulties because data

generated from multi-electrode recordings is inherently par-

allel because the individual data channels are independent

from one another.

As technology advances the tendency is for multi-site

recordings with an increasingly large number of recording

channels to become commonplace. At the same time mod-

ern hardware architectures are also becoming increasingly

parallel. This means that software tools that can extract the

maximum performance from state-of-the-art hardware will

become increasingly important as well.

In the present work, we focus on improving the perfor-

mance of the pre-processing stages of MEA data analysis

frameworks, such as QSpike. Our results demonstrate sub-

stantial performance improvements of data analysis com-

pared to the original pre-processing stages of the QSpike

tools. This leaves space for future improvements, such as

parallelization of the spike sorting algorithm. We expect

that moving to an all parallel implementation of the QSpike

framework will result in further performance improvements,

reducing the requirements of dedicated high specs comput-

ers.

APPENDIX

A. System setup

All benchmarks were conducted on an Intel i7-4600U

(Haswell) @ 2.1GHz laptop with 8GiB RAM and a Sam-

sung 830 SSD. The operating system was Gentoo Linux

64 bit, Kernel version 3.17.4. For the OpenCL runtime Intel

OpenCL runtime version 4.4.0.117 and pocl library version

0.11 were used.

ACKNOWLEDGEMENT

This work was supported by the EC-FP7-PEOPLE spon-

sored NAMASEN Marie-Curie Initial Training Network

(grant n. 264872).

REFERENCES

[1] Ferrea, E., Maccione, a, Medrihan, L., Nieus, T., Ghezzi, D., Baldelli,
P., Berdondini, L. (2012). Large-scale, high-resolution electrophysio-
logical imaging of field potentials in brain slices with microelectronic
multielectrode arrays. Frontiers in Neural Circuits, 6(November), 80.
doi:10.3389/fncir.2012.00080

[2] Mahmud, M., Pulizzi, R., Vasilaki, E., Giugliano, M. (2014). QSpike
tools: a generic framework for parallel batch preprocessing of extra-
cellular neuronal signals recorded by substrate microelectrode arrays.
Frontiers in Neuroinformatics, 8(March), 1-14.

[3] Van Pelt, J., Wolters, P. S., Corner, M. a, Rutten, W. L. C., Ramakers,
G. J. a. (2004). Long-term characterization of firing dynamics of
spontaneous bursts in cultured neural networks. IEEE Transactions
on Bio-Medical Engineering, 51(11), 20516

[4] Egert, U., Knott, T., Schwarz, C., Nawrot, M., Brandt, a., Rotter, S.,
Diesmann, M. (2002). MEA-Tools: An open source toolbox for the
analysis of multi-electrode data with MATLAB. Journal of Neuro-
science Methods, 117(1), 3342.

[5] Wagenaar, D., Demarse, T. B., Potter, S. M. (2005). MeaBench: A
toolset for multi-electrode data acquisition and on-line analysis. 2nd
International IEEE EMBS Conference on Neural Engineering, 2005,
518521.

[6] Quiroga, R. Q., Nadasdy, Z., Ben-Shaul, Y. (2004). Unsupervised spike
detection and sorting with wavelets and superparamagnetic clustering.
Neural Computation, 16(8), 166187.

[7] Tompson, Jonathan, and Kristofer Schlachter. An Introduction to the
OpenCL Programming Model. Digital version (2012).

[8] Munshi, Aaftab, et al. OpenCL programming guide. Pearson Educa-
tion, 2011.

[9] Quian Quiroga, R. (2009). What is the real shape of extracellular
spikes? Journal of Neuroscience Methods, 177(1), 1948.

[10] Tibshirani, Ryan J. (2008) Fast computation of the
median by successive binning. Unpublished manuscript,
http://stat.stanford.edu/ryantibs/median.

[11] Van Pelt, J., Vajda, I., Wolters, P. S., Corner, M. a, Ramakers, G. J. a.
(2005). Dynamics and plasticity in developing neuronal networks in
vitro. Progress in Brain Research, 147, 17388.

[12] Jskelinen, P, de La Lama, C. S., Schnetter, E, Raiskila, K., Takala, J.,
Berg, H. (2014). pocl: A Performance-Portable OpenCL Implementa-
tion. International Journal of Parallel Programming, 1-34

