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Simple Summary: Using our Lymnaea stagnalis model systems and combining that with a Garcia
effect training procedure, we studied novel aspects of this complex and highly conserved conditioned
behavior and its pharmacological regulation. Injecting snails with lipopolysaccharide (LPS) 25 µg 1 h
after snails experienced a novel taste caused snails to form a long-lasting Garcia-effect memory to
avoid that specific taste. This effect was prevented by the pre-exposure of snails to acetylsalicylic acid
(ASA) for 1 h before the LPS injection. Here, we researched the transcriptional effects of ASA and LPS
in the snails’ central nervous system alone and in combination with naive snails. In a similar manner,
the behavioral and molecular mechanisms causing the LPS-induced Garcia effect and its mitigation by
ASA were studied. The LPS injections enhanced the expression levels of immune and stress response
targets and enhancement was prevented by pre-exposure to ASA. Regarding genes associated with
neuroplasticity, LPS by itself did not affect their expression levels. However, when combined with
the Garcia-effect training procedure they were upregulated consistent with LTM formation. These
findings suggest a conserved crosstalk between the immune and central nervous systems.

Abstract: Lymnaea stagnalis learns and remembers to avoid certain foods when their ingestion is
followed by sickness. This rapid, taste-specific, and long-lasting aversion—known as the Garcia
effect—can be formed by exposing snails to a novel taste and 1 h later injecting them with lipopolysac-
charide (LPS). However, the exposure of snails to acetylsalicylic acid (ASA) for 1 h before the LPS
injection, prevents both the LPS-induced sickness state and the Garcia effect. Here, we investigated
novel aspects of this unique form of conditioned taste aversion and its pharmacological regulation.
We first explored the transcriptional effects in the snails’ central nervous system induced by the
injection with LPS (25 mg), the exposure to ASA (900 nM), as well as their combined presentation in
untrained snails. Then, we investigated the behavioral and molecular mechanisms underlying the
LPS-induced Garcia effect and its pharmacological regulation by ASA. LPS injection, both alone and
during the Garcia effect procedure, upregulated the expression levels of immune- and stress-related
targets. This upregulation was prevented by pre-exposure to ASA. While LPS alone did not affect the
expression levels of neuroplasticity genes, its combination with the conditioning procedure resulted
in their significant upregulation and memory formation for the Garcia effect.

Keywords: inflammation; learning; memory; glutamate receptors; HSP70; TRL4; CREB1

Biology 2023, 12, 1100. https://doi.org/10.3390/biology12081100 https://www.mdpi.com/journal/biology

https://doi.org/10.3390/biology12081100
https://doi.org/10.3390/biology12081100
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0002-8413-4510
https://orcid.org/0000-0001-9028-1931
https://orcid.org/0000-0003-0236-9525
https://orcid.org/0000-0002-8853-4431
https://orcid.org/0000-0002-3422-004X
https://orcid.org/0000-0002-4974-1964
https://doi.org/10.3390/biology12081100
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology12081100?type=check_update&version=1


Biology 2023, 12, 1100 2 of 17

1. Introduction

Using our model system, the pond snail Lymnaea stagnalis, we have been able to
begin to uncover aspects of the causal neuronal mechanisms underlying learning and its
subsequent consolidation into long-term memory (LTM) [1–20].

We recently demonstrated—for the first time in an invertebrate model organism—that
Lymnaea is capable of forming a unique type of conditioned taste aversion known as the
“Garcia effect” [21–26]. To induce a Garcia effect, a single pairing of a novel appetitive
stimulus followed by nausea or sickness even hours later is sufficient to establish an LTM
that causes a long-lasting avoidance of that food [24,25,27].

In our previous studies, we found that an injection of lipopolysaccharide (LPS), an
activator of the immune system, can be used as a sickness-inducing stimulus to cause a
Garcia effect lasting for at least 24 h [27]. Interestingly, we also demonstrated that the
administration of a non-steroidal anti-inflammatory drug, acetylsalicylic acid (ASA), prior
to the LPS injection, prevented both the induction of the sickness state caused by LPS [28]
and the occurrence of the Garcia effect [27]. These findings have opened new avenues for
research, seeking to elucidate the molecular mechanisms that underlie the Garcia effect and
provide a comprehensive understanding of the intricate interplay between the immune
and central nervous systems.

In this study, we aimed to investigate the transcriptional effects of ASA and LPS
exposure alone and their combined presentation in the central ring ganglia of untrained
snails. Additionally, we aimed to unravel the behavioral and molecular mechanisms
involved in the LPS-induced Garcia effect and how ASA mediates its pharmacological
regulation.

To achieve this, we examined the transcriptional changes of specific targets associated
with the regulation of immune and stress responses:

- the Toll-like Receptor 4 (LymTLR4), a key component for the innate immunity of inverte-
brates [29,30] and in mammals, mediates LPS-induced immune response [31];

- the Molluscan Defense Molecule (LymMDM), an Ig-superfamily member, which allows
mollusks to mount an effective immune response and ensure their survival [32],

- the Heat Shock Protein 70 (LymHSP70), which plays a key conserved role in stress
response [33–35].

We hypothesized that (1) the injection of LPS would lead to an immune and stress
response in snails, characterized by an upregulation of LymTLR4, LymMDM, and LymHSP70
mRNA levels, and (2) this upregulation would be prevented by exposure to ASA. Moreover,
we hypothesized that the formation of the Garcia effect would also affect the mRNA levels
of ionotropic glutamatergic receptors and the transcription factor cAMP response element-
binding protein 1 (LymCREB1), known to be involved in memory consolidation [36–39].

Thus, we paid particular attention to the glutamate ionotropic receptor NMDA type
subunit 1 (LymGRIN1), 2A (LymGRIN2A), and 2B (LymGRIN2B), the glutamate ionotropic
receptor AMPA type subunit 1 (LymGRIA1), as well as LymCREB1, because of their involve-
ment in mediating neuroplasticity, including learning and memory [36,37,40–44].

Thus, to test our overall hypothesis, this study was organized as follows:
In Experiment 1, we centered our attention on the transcriptional effects on the above-

mentioned targets induced by (1) LPS, the sickness-inducing stimulus used in the Garcia
effect training procedure, (2) ASA, the anti-inflammatory drug used to prevent the LPS
effect, and (3) the ASA exposure before the LPS injection, in untrained snails.

In our second experiment, we studied the effects induced by LPS injection, ASA expo-
sure, and ASA exposure before LPS injection on the ability of snails to form a Garcia effect.

In Experiment 3, we studied the transcriptional effects elicited by the Garcia effect
training and its prevention mediated by ASA on the expression levels of target genes.
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2. Materials and Methods
2.1. Animals

The freshly collected ‘Margo snails’ used in this study, were collected from Margo
Lake in Saskatoon, Saskatchewan, with coordinates of 51◦49′ N and 103◦21′1.8′′ W, and
an elevation of 526 m. Adult snails, measuring 2.5–3.0 cm in shell length, were housed
in well-oxygenated artificial pond water at a density of one snail per liter of water. The
artificial pond water was prepared by mixing deionized water with 26 g/L of Instant Ocean
(Spectrum Brands, Madison, WI, USA). To maintain a standard calcium level of 80 mg/L,
calcium sulfate dihydrate was added to the water.

The snails were kept in a room with a temperature ranging from 20 to 22 ◦C, following
a 16 h light and 8 h dark cycle. They were provided with unrestricted access to romaine
lettuce for feeding purposes.

2.2. LPS Treatment

Margo snails were injected with 25 µg of Escherichia coli-derived lipopolysaccharide
(LPS) serotype O127:B8 (L3129), which is approximately equivalent to 8 mg/kg. The
LPS solution was prepared by dissolving 625 µg of LPS in 1 mL of snail saline solution,
composed of 51.3 mM NaCl, 1.7 mM KCl, 5.0 mM MgCl2, 1.5 mM CaCl2, and 5.0 mM
HEPES, with a pH of 7.9–8. A volume of 40 µL of the LPS solution was injected into
the abdominal body cavity of each snail. Snails in the control group were sham-injected
with 40 µL of snail saline. Following the injection, the snails were kept in an upside-
down position without being immersed in artificial pond water for 10 min, as described in
previous studies [27,45].

2.3. Acetylsalicylic Acid (ASA) Treatment

In this study, we bought locally grocery store-purchased acetylsalicylic acid (Bayer,
Leverkusen, Germany) tablets with a purity of at least 99.0%. Through pilot experiments,
we determined that a concentration of 900 nM of ASA would not affect important homeo-
static behaviors such as aerial respiration and feeding [28]. To prepare the ASA solution,
we dissolved one tablet (81 mg, molecular weight: 180.158 g/mol) in 500 mL of artificial
pond water. In this study, snails assigned to the ASA treatment group were placed in a 1 L
beaker containing 500 mL of ASA-artificial pond water and kept there for 1 h.

2.4. Behavioral Procedure to Induce a Garcia Effect

Rasping behavior in Lymnaea refers to a rhythmic motor activity where the snails
repeatedly scrape their radulae against a substrate, allowing them to consume food [46–48].
After being acclimated in the carrot slurry for 3 min, the number of rasps elicited by the
carrot slurry was recorded over a period of 2 min. Following this initial observation, the
snails were returned to their aquaria for 1 h before being injected with either LPS or snail
saline solution. After 3 h from the injection, the rasping behavior elicited by the carrot
slurry was again recorded for 2 min, preceded by a 3 min acclimation period. To prepare
the carrot slurry, we blended two organic carrots and strained them together with 500 mL
of artificial pond water. The snails were placed in a Petri dish with a diameter of 14 cm,
and the dish was filled with enough carrot slurry to partially submerge the snails. For
better visibility of the rasping behavior, the Petri dishes were positioned on a clear Plexiglas
stand elevated 10 cm above a mirror. The average number of rasps per minute induced by
carrot slurry was determined to be 19.47 ± 3.2 (mean ± SEM) based on sample size (N) of
15 Margo snails.

2.5. Experimental Design
2.5.1. Experiment 1: Transcriptional Effects of ASA, LPS, and Their Paired Exposure

In this experiment, we used 4 naïve cohorts of snails (N = 8 for each cohort): (1) Snails
of the ‘Saline group’ were injected with snail saline; (2) snails of the ‘LPS group’ were
injected with LPS; (3) snails of the ‘ASA group’ experienced ASA for 1 h; and (4) snails of
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the ‘ASA_LPS group’ experienced ASA for 1 h before being injected with LPS. Three hours
after the treatments, snails were euthanized in ice for 10 min, and the central ring ganglia
were dissected. These doses of LPS (25 mg) and ASA (900 nM) have been successfully
adopted in previous studies [27,28]. The central ring ganglia were stored at −80◦ before
before analysis.

2.5.2. Experiment 2: LPS-Induced Garcia Effect Procedure and Its Pharmacological
Regulation Mediated by ASA (Behavioral Data)

In This Study, 8 Groups of Naïve Pond-Collected Snails (N = 8, Each Group) Were
Used.

1. Snails of the ‘Saline_C group’ were first injected with snail saline, and 3 h later, were
exposed to the novel food (carrot slurry) for 2 min, and the number of rasps was
recorded. Thus, these snails were not exposed to the novel taste (i.e., carrot slurry)
before the injection.

2. Snails of the ‘Saline group’ were exposed to carrot slurry for 2 min and the number of
rasps was counted. One hour later, snails were injected with snail saline. After 3 h,
snails were re-exposed to carrot slurry for 2 min and the number of rasps elicited by
the carrot slurry was again recorded.

3. Snails of the ‘LPS-C group’ were injected with LPS and 3 h later were exposed to the
carrot slurry for the first time. The number of rasps elicited by the carrot slurry was
again recorded for 2 min.

4. Snails of the ‘LPS group’ were exposed to carrot slurry for 2 min, during which the
number of rasps was counted. One hour later, snails were injected with LPS and, 3 h
later, were re-exposed to carrot slurry for 2 min, and the number of rasps elicited by
the carrot slurry was again recorded.

5. Snails of the ‘ASA group’ were exposed to carrot slurry for 2 min and the number of
rasps elicited by the carrot slurry was counted. One hour later, snails were exposed to
ASA for 1 h. Three hours later, snails were re-exposed to carrot slurry for 2 min and
the number of rasps elicited by the carrot slurry was again recorded.

6. Snails of the ‘ASA_Sal group’ were exposed to carrot slurry for 2 min and the number
of rasps was counted. One hour later, snails were exposed to ASA for 1 h and
immediately after were injected with snail saline. After 3 h, snails were re-exposed to
carrot slurry for 2 min and the number of rasps elicited by the carrot slurry was again
recorded.

7. Snails of the ‘Garcia effect group’ were exposed to carrot slurry for 2 min and the
number of rasps elicited by the carrot slurry was counted. One hour later, snails were
injected with LPS. Three hours later, snails were re-exposed to carrot slurry for 2 min
and the number of rasps elicited by the carrot slurry was again recorded.

8. Snails of the ‘ASA_LPS group’ were exposed to carrot slurry for 2 min and the number
of rasps elicited by the carrot slurry was counted. One hour later, snails were exposed
to ASA for 1 h and immediately after were injected with LPS. Three hours later, snails
were re-exposed to carrot slurry for 2 min and the number of rasps elicited by the
carrot slurry was again recorded.

2.5.3. Experiment 3: Transcriptional Effects Induced by the LPS-Induced Garcia Effect and
Its Pharmacological Regulation Mediated by ASA

Immediately after the memory test (Experiment 2), snails were euthanized in ice for
10 min, and the central ring ganglia were dissected. First, we performed control experiments
to compare the mRNA levels of the selected targets between (1) snails of the ‘Saline group’
and those of the ‘Saline_C group’, and between (2) snails of the ‘ASA group’ and those
of the ‘ASA_Saline group’. Then, we investigated the transcriptional effects induced by
the LPS-induced Garcia effect and its pharmacological regulation mediated by ASA by
comparing the mRNA levels of the selected targets between snails of the ‘Saline group’,
‘ASA_Saline group’, ‘LPS group’, ‘Garcia effect group’, and ‘ASA_LPS group’.



Biology 2023, 12, 1100 5 of 17

2.6. Total RNA Extraction, Reverse Transcription, and Real-Time Quantitative PCR

Total RNA extraction and DNAse treatment were conducted following previously
described protocols [15]. Real-time quantitative PCR (RT-qPCR) was performed using
20 ng of mRNA, as previously described [15]. Specific forward and reverse primers were
used at the final concentration of 300 nM (Table 1). As this is the first time in which the
mRNA levels of GRIN2A, GRIN2B, and GRIA1 have been measured and compared in a
Lymnaea study, interested readers can find the detailed description of the identification
and characterization of the transcripts of LymGRIN2A, LymGRIN2B, and LymGRIA in
Supplementary Material (Figure S3 and Tables S1–S5). The mRNA levels of each target
gene were normalized to the arithmetic mean between two housekeeping genes, elongation
factor 1α (EF1α) and b-tubulin (βTUB).

Table 1. The nucleotide sequences of the forward and reverse primers utilized for RT-qPCR are
provided. Additionally, the accession number and size (in base pairs) of the PCR product obtained
through cDNA (mRNA) amplification for each target are also specified.

Gene Bank
Accession Target Product Length

(bp) Type Sequence

X15542.1
Snail, beta-tubulin

LymbTUB
100 bp

(92–192)

FW: GAAATAGCACCGCCATCC

RV: CGCCTCTGTGAACTCCATCT

DQ278441.1
Lymnaea stagnalis elongation factor 1-alpha,

LymEF1α
150 bp
(7–157)

FW: GTGTAAGCAGCCCTCGAACT

RV: TTCGCTCATCAATACCACCA

AY577328.1 Lymnaea stagnalis Toll-like receptor 4
LymTLR4

100 bp
(74–174)

FW: GGAGGGTCAAGCATAAAGTGT

RV: CATCAAGGTCAACGCCAAT

U58769.1
Lymnaea stagnalis molluscan defense molecule

precursor
LymMDM

104 bp
(1614–1718)

FW: CGGGTACACACACAGATGGA

RV: TGACTGAACATTGGGCACAC

DQ206432.1 Lymnaea stagnalis heat-shock protein 70
LymHSP70

199 bp
(134–333)

FW: AGGCAGAGATTGGCAGGAT

RV: CCATTTCATTGTGTCGTTGC

AY571900.1
Lymnaea stagnalis NMDA-type glutamate

receptor subunit 1
LymGRIN1

140 bp
(831–917)

FW: AGAGGATGCATCTACAATTT

RV: CCATTTACTAGGTGAACTCC

FX180835
Lymnaea stagnalis NMDA-type glutamate

receptor subunit 2A
LymGRIN2A

129 bp
(3454–3583)

FW: GATCACCAAGGATGATTACT

RV: CTTGGCTATATTCAAGTCTGT

FX180839
Lymnaea stagnalis NMDA-type glutamate

receptor subunit 2B
LymGRIN2B

126 bp
(4147–4273)

FW: GACTCCTCTGTTTTGGAATA

RV: GGTTCCTTGATGGTTTATTA

FX183516.1
Lymnaea stagnalis AMPA-type glutamate

receptor subunit 1
LymGRIA1

111 bp
(1205–1316)

FW: AGACTGTTGTAGCTGTCCTT

RV: ATAGCTATTGGATTTCTTGC

AB041522.1
Lymnaea stagnalis cAMP responsive element

binding protein
LymCREB1

180 bp
(49–229)

FW: GTCAGCAGGGAATGGTCCTG

RV: ACCGCAGCAACCCTAACAA

No significant alterations were observed in the mRNA levels of the reference genes
across the experimental procedures (one-way analysis of variance [ANOVA]), and the
amplification efficiency of both the target genes and the reference genes was similar. For the
quantitative evaluation of changes, the comparative 2−∆∆Ct method was performed using
as a calibrator the average levels of expression of control animals (i.e., saline-injected snails
in Experiment 1 and snails exposed to carrot 1 h before e 3 h after the saline injection).
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2.7. Data Analysis

In the molecular experiments, we assessed the normality of our data using the
Kolmogorov–Smirnov one-sample test for normality, considering the K-S distance and
associated p-values. The analysis revealed that all targets exhibited a normal distribution.
To compare the expression levels of each target between Experiments 1 and 3, we employed
one-way ANOVA. To identify significant differences, Tukey’s post hoc test was applied.
For the behavioral data analysis (Experiment 2), a paired Student’s t-test was used to
compare the number of rasps elicited by carrot slurry before and 3 h after the treatment.
The number of rasps elicited by carrot slurry between snails of the Saline_C group and
control naïve snails as well as the number of rasps elicited by carrot slurry between snails
of the LPS group and control naïve snails was compared using an unpaired t-test. All tests
were defined as significant at p < 0.05. Data were presented as mean ± standard error
(SEM). Statistical analyses were conducted using IBM SPSS Statistics version 26.0 (IBM
Corp., Armonk, NY, USA). Graphs were created using GraphPad Prism version 9.5.1e for
Microsoft® (GraphPad Software, Inc., La Jolla, CA, USA).

3. Results
3.1. Experiment 1: Transcriptional Effects of ASA, LPS, and Their Paired Exposure

The aim of Experiment 1 was to answer the following question: what are the tran-
scriptional effects induced by ASA, LPS, and their paired presentation in the central ring
ganglia of Lymnaea? To answer this question, we investigated whether the different ASA
exposure for 1 h, the LPS injection, and the exposure to ASA for 1 h before the LPS injection
would affect the expression levels of selected target genes involved in immune and stress
response, or neuroplasticity. A main effect of the treatments was observed for LymTLR4
[F (3, 28) = 14.74, R2 = 0.61, p < 0.001], LymMDM [F (3, 28) = 6.85, R2 = 0.42, p = 0.0013],
and LymHSP70 [F (3, 28) = 6.26, R2 = 0.41, p = 0.002] (Figure 1A–C). Tukey’s multiple
comparisons tests showed significant upregulation of the expression levels of these targets
in LPS-injected snails compared to the other groups (LymTLR4: LPS vs. Sal: p = 0.006,
q = 6.4; vs. ASA: p < 0.0001, q = 8.87; vs. ASA_LPS: p = 0.002, q = 6.82; LymMDM: LPS vs.
Sal: p = 0.002, q = 5.6; vs. ASA: p = 0.01, q = 4.7; vs. ASA_LPS: p = 0.005, q = 5.2; LymHSP70:
LPS vs. Sal: p = 0.01, q = 5.6; vs. ASA: p = 0.003, q = 5.4; vs. ASA_LPS: p = 0.01, q = 4.8).
No main effects of the treatment were observed for neuroplasticity targets: LymGRIN1
[F (3, 28) = 0.97, R2 = 0.09, p = 0.42], LymGRIN2A [F (3, 28) = 0.65, R2 = 0.05, p = 0.55],
LymGRIN2B [F (3, 28) = 1.83, R2 = 0.16, p = 0.16], LymGRIA1 [F (3, 28) = 0.79, R2 = 0.07,
p = 0.51], and LymCREB1 [F (3, 28) = 0.18, R2 = 0.02, p = 0.91] (Figure 1D–H).
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Figure 1. Transcriptional effects induced by ASA treatment, LPS injection, and their paired presen-
tation. The expression of LymTLR4 (A), LymMDM (B), LymHSP70 (C), LymGRIN1 (D), LymGRIN2A
(E), LymGRIN2B (F), LymGRIA1 (G), and LymCREB1 (H) were measured in the central ring ganglia
of snails injected with snail saline (full black bars), snails exposed to ASA for 1 h (full grey bars),
snails injected with LPS (diagonal red bars), and snails exposed to ASA for 1 h and then injected with
LPS (diagonal grey bars). Three hours after the treatment, snails were sacrificed, and the central ring
ganglia were extracted. The mRNA levels were assessed using RT-qPCR. The sample size (N) for
each group was 8. The data are presented as means ± SEM and were subjected to statistical analysis
using One-way ANOVA, followed by Tukey post hoc analyses. Statistical significance was indicated
as **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05.

3.2. Experiment 2: LPS-Induced Garcia Effect Procedure and Its Pharmacological Regulation
Mediated by ASA

Previously, we showed that the administration of the anti-inflammatory drug ASA
before LPS injection can prevent the LPS-induced Garcia effect in Margo snails [27]. To
further investigate this phenomenon at both the behavioral and molecular levels, we
conducted Experiment 2, which involved various experimental conditions.

First, we confirmed that injecting snails with snail saline (i.e., Saline_C control group)
did not affect feeding behavior elicited by carrot slurry, a novel appetitive stimulus. The
number of rasps elicited by the carrot slurry in the Saline_C group was not significantly
different from that in control Margo snails (unpaired t-test: t = 0.62, df = 21, p = 0.54)
(Figure 2A). Next, a sham-injected control group (i.e., Snail saline group) was exposed
to carrot slurry, and the feeding response was recorded. These snails were injected with
snail saline 1 h later, and feeding behavior in response to carrot was evaluated again 3 h
post-injection. Feeding behavior before and after the saline injection was not significantly
different (paired t-test: t = 0.52, df = 6, p = 0.62). This confirms previous findings that
the combination of a novel taste and the injection itself does not induce a Garcia effect
(Figure 2B). Moreover, we injected LPS into a group of naïve snails (i.e., LPS group) who had
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not been exposed to the carrot slurry before. The rasping activity in response to the carrot
slurry was recorded 3 h after the LPS injection. Comparing the LPS group to control naïve
Margo snails, we found no significant differences in the response to the taste (unpaired
t-test: t = 0.82, df = 21, p = 0.42) (Figure 2C). To assess the formation of the Garcia effect, a
naive group of snails (i.e., Garcia effect group) was exposed to the novel carrot slurry and,
one hour later, injected with LPS. As shown in Figure 2D, at 3 h post-injection, the rasping
behavior in response to the carrot slurry was significantly decreased compared to the initial
exposure (t = 7.54, df = 7, p = 0.0001), indicating the formation of the Garcia effect.
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Figure 2. LPS-induced Garcia effect and its pharmacological regulation by ASA. The experimental
timeline and results are summarized as follows: (A) The Saline_C group, consisting of 8 naïve Margo
snails, was injected with snail saline. After 3 h, snails were exposed to carrot slurry for the first time
(closed circles). The injection of snail saline did not affect the feeding behavior elicited by carrot slurry,
as the number of rasps per minute was not significantly different from that observed in non-injected
snails. (B) A control group of 8 freshly collected Margo snails was exposed to carrot slurry 1 h
before (closed circles) and 3 h after (open circles) the snail saline injection. There were no significant
differences in the number of rasps elicited by carrot slurry between the two-time points. (C) A naïve
cohort of snails (LPS group, N = 8) was first injected with LPS, and after 3 h, the rasping behavior in
response to the carrot slurry was counted. The injection of LPS before the snails ever experienced
the carrot slurry did not alter the response to the taste when compared to control non-injected snails.
(D) The Garcia effect was observed in snails (Garcia effect group, N = 8) exposed to carrot slurry 1 h
before (closed circles) and 3 h after (open circles) the LPS injection. The exposure to the novel taste
(carrot slurry) followed by an LPS injection resulted in a significant taste-specific reduction in the
number of rasps, indicating the formation of the Garcia effect. (E) In a new cohort of 8 naïve snails
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(ASA group), the number of rasps elicited by carrot slurry was counted 1 h before (closed circles) and
3 h after (open circles) a 1 h exposure to ASA. There were no significant differences in the number of
rasps, indicating that ASA did not significantly alter the positive hedonic effect of carrot slurry (F) The
ASA_Saline group (N = 8) was exposed to carrot slurry for 2 min (closed circles). One hour later, they
were exposed to ASA for 1 h, immediately followed by an injection of snail saline. Three hours later,
the number of rasps in the carrot slurry was re-counted (open circles). The paired treatment of ASA
and saline injection did not significantly affect the feeding behavior elicited by carrot slurry. (G) The
ASA_LPS group, comprising naïve snails (N = 8), was exposed to carrot slurry, and immersed in ASA
for 1 h before being injected with LPS. The number of rasps was counted at 3 h post-injection (open
circles). No significant differences in the number of rasps elicited by carrot slurry were observed.
The data are presented as means ± SEM and were analyzed using paired t-tests (B,E–G) or unpaired
t-tests (A,C). The statistical significance level was represented as *** for p < 0.001, and ns indicated no
significance with p > 0.05.

In a naïve group of snails (i.e., ASA group), the number of rasps elicited by the
carrot slurry was recorded 1 h before and 3 h after a 1 h exposure to ASA. As reported in
Figure 2E, there were no significant differences in the feeding response before and after
the ASA exposure (t = 0.57, df = 6, p = 0.58), indicating that ASA did not significantly alter
the positive hedonic effect of the carrot slurry. Consistent with our previous studies [27],
we found that the combined exposure to ASA and saline injection did not result in a
reduced carrot-induced feeding response. Indeed, snails of the ASA-Saline group were
exposed to the carrot slurry for 2 min, and their feeding response was recorded. They
experienced ASA for 1 h and then immediately injected with snail saline. Their feeding
response elicited by carrot 3 h post-injection was not significantly altered by the combined
treatment (t = 0.12, df = 7, p = 0.12) (Figure 2F). Finally, we investigated the prophylactic
effect of ASA on the LPS-induced Garcia effect. Thus, snails in the ASA_LPS group were
exposed to the novel carrot slurry and, one hour later, exposed to ASA for 1 h immediately
before being injected with LPS. The number of rasps was then counted at 3 h post-injection.
No significant differences were observed between the number of rasps in the carrot slurry
before injection and at 3 h post-injection (t = 1.37, df = 7, p = 0.22). That is, the ASA exposure
effectively prevented the LPS-induced Garcia effect (Figure 2G). It is important to note that
this experimental procedure introduced a 2 h time gap between LPS injection and the initial
exposure to the carrot slurry, whereas previous experiments had a 1 h gap. However, we
have already shown that an LPS injection 2 h after the initial carrot slurry exposure also
leads to feeding suppression and the formation of a Garcia effect in snails [27,28].

3.3. Experiment 3: Transcriptional Effects Induced by the LPS-Induced Garcia Effect and Its
Pharmacological Regulation Mediated by ASA

The aim of Experiment 3 was to investigate the transcriptional effects induced by the
LPS-induced Garcia effect and its pharmacological regulation mediated by ASA on the
expression levels of selected targets involved in immune and stress response, or neuroplas-
ticity. Therefore, immediately after the behavioral procedures, the central ring ganglia of
the snails were dissected, and the RNA was extracted and reverse-transcribed to assess
mRNA expression levels of LymTLR4, LymMDM, LymHSP70, LymGRIN1, LymGRIN2A,
LymGRIN2B, LymGRIA1, and LymCREB1 (Figure 3). First, we performed control experi-
ments to compare the mRNA levels of the selected targets between snails of the ‘Saline
group’ and those of the ‘Saline_C group’ and Snails of the ‘ASA group’ and those of the
‘ASA_Saline group’. No significant differences were found in the expression levels of
LymTLR4, LymMDM, LymHSP70, LymGRIN1, LymGRIN2A, LymGRIN2B, LymGRIA1, and
LymCREB1 between snails of the ‘Saline group’ and those of the ‘Saline_C group’ (unpaired
t-test: LymTLR4: t = 0.33, df = 14, p = 0.75; LymMDM: t = 0.94, df = 14, p = 0.36; LymHSP70:
t = 0.094, df = 14, p = 0.96; LymGRIN1: t = 0.016, df = 14, p = 0.99; LymGRIN2A: t = 0.29,
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df = 14, p = 0.97; LymGRIN2B: t = 0.28, df = 14, p = 0.78; LymGRIA1: t = 0.48, df = 14, p = 0.64;
LymCREB1: t = 0.24, df = 14, p = 0.81) (Figure S1).
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Figure 3. Transcriptional effects induced by the LPS-induced Garcia effect and its pharmacological
regulation mediated by ASA. The expression of LymTLR4 (A), LymMDM (B), LymHSP70 (C), Lym-
GRIN1 (D), LymGRIN2A (E), LymGRIN2B (F), LymGRIA1 (G), and LymCREB1 (H) was measured in
the central ring ganglia of (1) snail of the ‘Saline group’ (full black bars) were exposed to carrot slurry
1 h before and 3 h after being injected with snail saline; (2) snails of the ‘ASA_Sal group’ (full grey
bars), which were first exposed to the carrot slurry 1 h before and 3 h after being exposed to ASA
for 1 h and immediately later injected with snail saline; (3) snails of the ‘LPS group (full red bars)’,
which were first injected with LPS and three hours later, and were exposed for the first time to carrot
slurry; (4) snails of the ‘Garcia effect group’ (diagonal red bars), which were exposed to carrot slurry
1 h before and 3 h after being injected with LPS; and (5) snails of the ‘ASA_LPS group’ (diagonal grey
bars), which were exposed to carrot slurry 1 h before and 3 h after being exposed to ASA for 1 h and
immediately after were injected with LPS. Snails that learned and formed the Garcia effect memory
are indicated with a ‘+’ below each bar, whereas those which did not form the Garcia effect were
marked with a ‘-’ below the bars. After the exposure to the carrot slurry, snails were sacrificed, the
central ring ganglia were dissected, and the RNA was extracted. RT-qPCR was employed to analyze
the mRNA levels in the study, with a sample size of 8 for each group. The data were presented
as means ± SEM and statistically analyzed using One-way ANOVA, followed by Tukey post hoc
analyses. Statistical significance was denoted as **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05.
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Similarly, no significant differences were found in the expression levels of LymTLR4,
LymMDM, LymHSP70, LymGRIN1, LymGRIN2A, LymGRIN2B, LymGRIA1, and LymCREB1
between snails of the ‘ASA group’ and those of the ‘ASA_Sal group’ (unpaired t-test:
LymTLR4: t = 0.59, df = 14, p = 0.56; LymMDM: t = 0.49, df = 14, p = 0.63; LymHSP70: t = 0.68,
df = 14, p = 0.51; LymGRIN1: t = 1.13, df = 14, p = 0.28; LymGRIN2A: t = 1.59, df = 14, p = 0.14;
LymGRIN2B: t = 0.76, df = 14, p = 0.46; LymGRIA1: t = 0.08, df = 14, p = 0.93; LymCREB1:
t = 0.28, df = 14, p = 0.79) (Figure S2). Then, we investigated the transcriptional effects
induced by the LPS-induced Garcia effect and its pharmacological regulation mediated by
ASA by comparing the mRNA levels of the selected targets between snails of the ‘Saline
group’, ‘ASA_Saline group’, ‘LPS group’, ‘Garcia effect group’, and ‘ASA_LPS group’.

A one-way ANOVA followed by Tukey’s post hoc test showed a main effect of the
behavioral procedure on the expression levels of LymTLR4 [F (4, 35) = 8.71, R2 = 0.49,
p < 0.001] and LymMDM [F (4, 35) = 17.83, R2 = 0.67, p < 0.001] (Figure 3A,B). As observed
in untrained animals, the LPS exposure (either in snails of the Garcia effect group or those
of the LPS group) induced a significant upregulation of the mRNA levels of these targets
compared to the non-LPS-injected counterparts (LymTLR4: LPS_C vs. Saline: p = 0.01,
q = 4.86; LPS_C vs. ASA_Saline: p = 0.0005, q = 6.62; LPS_C vs. ASA_LPS group: p = 0.006,
q = 5.28; Garcia effect vs. Saline: p = 0.03, q = 4.26; Garcia effect vs. ASA_Saline: p = 0.002,
q = 5.26; Garcia effect vs. ASA_LPS group: p = 0.02, q = 4.68; LymMDM: LPS_C vs. Saline:
p = 0.0001, q = 7.19; LPS_C vs. ASA_Saline: p < 0.0001, q = 7.69; LPS_C vs. ASA_LPS
group: p = 0.0001, q = 7.65; Garcia effect vs. Saline: p < 0.0001, q = 7.49; Garcia effect vs.
ASA_Saline: p < 0.0001, q = 8.09; Garcia effect vs. ASA_LPS group: p < 0.0001, q = 7.95).

Similarly, the expression levels of LymHSP70 were upregulated [F (4, 35) = 13.03,
R2 = 0.59, p < 0.001] in snails injected to LPS (i.e., snails the Garcia effect group and those of
the LPS group) compared the other groups following the Garcia effect procedure (LPS_C vs.
Saline: p = 0.0009, q = 6.19; LPS_C vs. ASA_Saline: p = 0.011, q = 4.91; LPS_C vs. ASA_LPS
group: p = 0.004, q = 5.4; Garcia effect vs. Saline: p < 0.0001, q = 8.04; Garcia effect vs.
ASA_Saline: p = 0.0003, q = 6.76; Garcia effect vs. ASA_LPS group: p < 0.0001, q = 7.26)
(Figure 3C). No differences were found in the expression levels of LymTLR4, LymMDM, and
LymHSP70 between snails of the Garcia effect group and those of the LPS group (LymTLR4:
p = 0.99, q = 0.59; LymMDM: p = 0.99, q = 0.29; LymHSP70: p = 0.68, q = 1.85).

Interestingly, a main effect of the Garcia effect formation was found on the expres-
sion levels of LymGRIN1 [F (4, 35) = 16.38, R2 = 0.65, p < 0.001; Figure 3D], LymGRIN2A
[F (4, 35) = 14.59, R2 = 0.62, p < 0.001; Figure 3E], LymGRIN2B [F (4, 35) = 7.69, R2 = 0.46,
p < 0.001; Figure 3F] LymGRIA1 [F (4, 35) = 15.57, R2 = 0.49, p < 0.001; Figure 3G], and
LymCREB1 [F (4, 35) = 14.27, R2 = 0.62, p < 0.001; Figure 3H].

In particular, Tukey’s multiple comparisons tests showed significant upregulation of
the expression levels of these targets only in snails of the Garcia effect group compared
to the other ones (LymGRIN1: vs. Saline: p < 0.0001, q = 7.05; vs. ASA_Sal: p < 0.0001,
q = 9.08; vs. LPS_C: p < 0.0001, q = 7.27; vs. ASA_LPS: p < 0.0001, q = 10.46; LymGRIN2A:
vs. Saline: p < 0.0001, q = 9.13; vs. ASA_Sal: p < 0.0001, q = 7.49; vs. LPS_C: p < 0.0001,
q = 9.36; vs. ASA_LPS: p = 0.0006, q = 6.42; LymGRIN2B: vs. Saline: p = 0.003, q = 5.42;
vs. ASA_Sal: p = 0004, q = 6.69; vs. LPS_C: p = 0.0007, q = 6.42; vs. ASA_LPS: p = 0.0013,
q = 6.03; LymGRIA1: vs. Saline: p = 0.0002, q = 7.02; vs. ASA_Sal: p < 0.0001, q = 9.91;
vs. LPS_C: p < 0.0001, q = 8.67; vs. ASA_LPS: p < 0.0001, q = 8.49; LymCREB1: vs. Saline:
p < 0.0001, q = 7.37; vs. ASA_Sal: p < 0.0001, q = 9.60; vs. LPS_C: p < 0.0001, q = 6.81; vs.
ASA_LPS: p < 0.0001, q = 8.59).

4. Discussion

Using Lymnaea as a model system, we examined using the Garcia effect procedure to
explore novel aspects of this complex conditioned behavior and its transcriptional regula-
tion. Building upon our previous findings, we successfully replicated the observation that
exposure to a novel appetitive taste coupled with the LPS inducement of sickness followed
by an LPS injection induces a specific feeding suppression known as the Garcia effect in
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freshly collected Margo snails. Interestingly, the dose of LPS used did not independently
affect the snails’ feeding behavior or induce neophobia, yet it effectively triggered the
Garcia effect. Moreover, our data confirmed previous studies demonstrating that ASA
alone does not impact feeding behavior, but it efficiently prevents the effects mediated by
LPS [27].

Given these promising results, we further investigated the transcriptional effects in-
duced by the injection of 25 µg of LPS, which served as the sickness-inducing stimulus
necessary for the formation of the Garcia effect. Our findings revealed that the LPS in-
jection, both alone and in combination with the appetitive stimulus during the Garcia
effect procedure, significantly increased the expression levels of LymTLR4 and LymMDM.
These genes are key mediators of the immune response [29,49]. Previous studies conducted
in mammals, including humans, have demonstrated that LPS—through the stimulation
of TLR4—induces the release of critical proinflammatory cytokines that are necessary to
activate potent immune responses [31,50]. This immune activation, then, triggers sick-
ness behavior [51,52], a well-characterized state that encompasses neuro vegetative and
behavioral alterations.

Here, we also found that pre-exposure to ASA—an anti-inflammatory drug—before
LPS injection, prevented this upregulation in Lymnaea. These findings suggest that inhibit-
ing the activation of TLR4 by LPS prevents subsequent immune signaling in the CNS,
suppressing the inflammatory cascade, the sickness state, and ultimately at the behavioral
level, inhibiting the formation of the Garcia effect. Additionally, we observed a significant
increase in LymHSP70 expression when LPS was injected alone, before the presentation
of carrot slurry, and when used as the sickness-inducing stimulus in the Garcia effect
procedure. Heat shock proteins (HSPs), initially identified for their response to thermal
stress, have been implicated in preventing protein misfolding, and recent evidence suggests
their involvement in synaptic plasticity and memory formation [53,54]. In a previous study,
we demonstrated that the upregulation of HSP70 induced by heat shock (i.e., used as
nausea/sickness-inducing stimulus) is essential for Garcia effect memory formation when
employing the carrot slurry-heat shock procedure [24]. The results presented in this study
suggest that—similarly to the heath shock—the LPS-induced upregulation of HSP70 may
play a key role in mediating the Garcia effect. Moreover, Porto et al. (2018) reported that
in rats HSP70 is rapidly induced and modulates the MAPK-signaling pathway during
memory consolidation in hippocampal neurons [55].

Interestingly, the orthologous gene of MAPK in Lymnaea (LymMAPK) and its related
pathway are involved in connecting glutamate receptors to LymCREB1 [37].

LymCREB-dependent genes are essential for modulating synaptic plasticity processes,
including LTM [1,11]. Thus, our results show that an injection of LPS alone does not directly
impact the expression levels of neuroplasticity genes such as LymGRIN1, LymGRIN2A,
LymGRIN2B, LymGRIA1, and LymCREB1. However, when combined with the conditioning
procedure for the Garcia effect, LPS leads to a significant upregulation of these genes which
is associated with the formation of memory for the Garcia effect. These findings suggest
that a molecular link between HSP70 and GRIN, GRIA, and CREB1 may exist in the nervous
system of Lymnaea, which may play a role in mediating the Garcia effect. To our knowledge,
this is the first evidence for the upregulation of the expression levels of GRIA and GRIN 2A
and 2B subunits in the central ring ganglia of pond snails, which formed LTM following a
behavioral procedure.

Moreover, the results of this study suggest that there is a connection between targets
involved in immune and stress responses and those that mediate learning and memory
formation. The regulation of these targets, along with other signaling molecules, appears to
be a coordinated effort that determines the memory phenotype. This synergistic regulation
is essential for immune homeostasis, learning, and memory formation in Lymnaea, similar
to what has been observed in mammals. The integration of immunological, neuronal, and
stressful inputs in the central nervous system plays a crucial role in this regulation [49,56].
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The ability to remember past experiences associated with aversive stimuli is important
for survival and is conserved across different species, including humans [57,58]. Therefore,
the results of this study open up possibilities for future research into the molecular cascades
that underlie the complex interaction between immune stimulation and neuroplasticity.
Understanding these conserved mechanisms could provide valuable insights into how
organisms integrate immune responses and memory processes. The results of this study
raise several questions. Firstly, the impact of higher doses of LPS on snails’ learning and
memory formation remains unknown. It is unclear whether higher doses would completely
hinder their ability to learn and form memories or if they would still associate the appetitive
taste with the sickness induced by LPS. Further experiments will be conducted to address
this question. Secondly, since Lymnaea has an open circulatory system, an injection of LPS
can potentially affect not only the central nervous system but also the peripheral nervous
system and other organs. In future experiments, we plan to compare the expression
levels of selected targets across different tissues to gain a comprehensive understanding
of their regulation. Thirdly, based on the findings of this study, we will investigate the
involvement of other pathways in mediating immune responses and neuroplasticity in
Lymnaea. Specifically, we will explore the roles of the endocannabinoid system and the
kynurenine pathway, as they have been implicated in crosstalk between the immune and
central nervous systems in mammals. Previous studies have highlighted their regulatory
functions [59]. Finally, proteomic and metabolomic analyses will be conducted to examine
the effects of the LPS-induced Garcia effect and its pharmacological regulation by ASA
on homeostatic functions in Lymnaea, as well as their impact on neuroplasticity. These
comprehensive analyses will provide insights into the broader physiological and molecular
changes associated with the Garcia effect and its modulation by ASA.

5. Conclusions

In conclusion, our findings further validate the LPS-induced Garcia effect as a valuable
learning paradigm for investigating the conserved molecular mechanisms underlying this
form of learning and memory. Additionally, our study highlights the suitability of Lymnaea
as an excellent model organism for studying both Neuroscience and Immunology. The
ability of LPS to induce a Garcia effect in snails suggests the existence of a conserved
communication network between the immune and central nervous systems. Furthermore,
blocking LPS-induced sickness by ASA, a widely used anti-inflammatory drug, underscores
the pivotal role of LPS in triggering an inflammatory response that alters behavioral
adaptive responses. Here, we demonstrated that ASA, possibly the most popular drug of
the modern era, is effective in preventing LPS-induced behavioral and molecular effects
also in Lymnaea. ASA acts by inhibiting the synthesis of prostaglandins through acetylation
of cyclooxygenases (COX) to reduce the inflammatory effect in the recipient, but also
through COX-independent mechanisms, like the inhibition of nuclear factor (NF)-κB and
the extracellular signal-regulated kinase (ERK) signaling. Our results support the prominent
role of Lymnaea as a unique translational model and pave the way for its employment in
the study of the molecular mechanism involved in neuro-immune pharmacology. Also, the
results of this study may pave the way for future studies in mammals aimed at investigating
the complex crosstalk between the immune and the central nervous system, as well as the
conserved mechanisms underlying the Garcia effect.

By utilizing snail models, we can significantly reduce the reliance on mammalian
models, limiting their involvement to result in validation and greatly reducing the costs
associated with numerous studies. Finally, L. stagnalis as a model system provides an
important experimental tool and offers a translational approach that contributes significant
insights and understanding in the field of Neuroscience, Immunology, and Pharmacology.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology12081100/s1. Figure S1: LymTLR4, LymMDM, LymHSP70,
LymGRIN1, LymGRIN2A, LymGRIN2B, LymGRIA1, and LymCREB1 expression levels showed no
significant difference in snails exposed to carrot slurry 1 h before and 3 h after the snail saline injection
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(Saline group) and those of them exposed to carrot slurry only after the snail saline injection (Saline_C
group). The expression of LymTLR4 (A), LymMDM (B), LymHSP70 (C), LymGRIN1 (D), LymGRIN2A
(E), LymGRIN2B (F), LymGRIA1 (G), and LymCREB1 (H) were measured in the central ring ganglia of
snails injected with snail saline and then exposed for the first time to carrot slurry 3 h later (checkered
bars) and those exposed to carrot slurry 1 h before and 3 h after being injected with snail saline
(full dark grey bars). Immediately after the re-exposure to the carrot slurry for 2 min, snails of the
Saline and Saline_C groups were sacrificed, the central ring ganglia were dissected, and the RNA was
extracted and reverse-transcribed. No significant differences were found in the expression levels of
these targets between the groups. The mRNA levels were analyzed by RT-qPCR. N = 8 for each group.
Data are represented as means ± SEM and were analyzed with unpaired t-test. Figure S2: LymTLR4,
LymMDM, LymHSP70, LymGRIN1, LymGRIN2A, LymGRIN2B, LymGRIA1, and LymCREB1 expression
levels showed no significant difference in snails of the ASA group and those of the ASA_Saline group.
Snails of the ‘ASA group’ (white bars) were exposed to carrot slurry for 2 min and the number of
rasps elicited by the carrot slurry was counted. One hour later, snails were exposed to ASA for
1 h. Three hours later, snails were re-exposed to carrot slurry for 2 min and the number of rasps
elicited by the carrot slurry was again recorded. Snails of the ‘ASA_Saline group’ (full grey bars)
were exposed to carrot slurry for 2 min and the number of rasps elicited by the carrot slurry was
counted. One hour later, snails were exposed to ASA for 1 h and immediately after were injected with
snail saline. Three hours later, snails were re-exposed to carrot slurry for 2 min and the number of
rasps elicited by the carrot slurry was again recorded. Immediately after the re-exposure to the carrot
slurry for 2 min, snails of the ASA and ASA_Saline groups were sacrificed, the central ring ganglia
were dissected, and the RNA was extracted and reverse-transcribed. The expression of LymTLR4
(A), LymMDM (B), LymHSP70 (C), LymGRIN1 (D), LymGRIN2A (E), LymGRIN2B (F), LymGRIA1 (G),
and LymCREB1 (H) were measured and compared. No significant differences were found in the
expression levels of these targets between the groups. The mRNA levels were analyzed by RT-qPCR.
N = 8 for each group. Data are represented as means ± SEM and were analyzed with unpaired t-test.
Figure S3: Melting curves analysis. For each target, a single sharp peak with no primer-dimer was
observed. Table S1: Contig annotation table. For each contig, the ID, the contig length (bp), and the
RefSeq protein ID identified in Biomphalaris glabrata (a gastropod whose genome and transcriptome
have been characterized and annotated) are reported with the corresponding gene definition. When
available, the RefSeq protein ID identified in Mus musculus and Homo sapiens is also reported, together
with the gene symbol [60]. Table S2: Validated primers for sequencing. For each predicted target are
reported the relative transcript FX_, the forward (FW), and reverse (RV) primers’ sequences, with
the corresponding position on the transcript. Table S3: ORFs of the putative glutamatergic receptors
in L. stagnalis. For each contig, the ID, the FX_ value corresponding to L. stagnalis Transcriptome
Shotgun Assembly, the ORFs, and the predicted amino acid size (aa) are reported. Table S4: ORF
homology table. Homology between the ORF of the putative glutamatergic receptors in L. stagnalis
with orthologues from different organisms. For each contig, the ID, the amino acid (aa) size (bp), the
FX_ value corresponding to L. stagnalis Transcriptome Shotgun Assembly, and the RefSeq protein ID
identified in B.glabrata, A. californica, M. musculus, and H. sapiens, along with the corresponding gene
definition and aa size, are reported. Table S5: Validated primers for gene expression analysis. For each
enzyme of the KP, the relative transcript FX_, the forward (FW) and reverse (RV) primers’ sequences,
with the corresponding size (bp), efficiency, R2 score resulting from the validation experiments, and
the Ct value obtained with 20 ng of cDNA are reported.
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