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A B S T R A C T

Driven by the urgent necessity for accurate environmental data in urban settings, this research leverages the 
Adaptive Neuro-Fuzzy Inference System (ANFIS) as a machine learning-based approach to refine SPS30 low-cost 
sensor data influenced by hygroscopicity in Turin, Italy. Employing ANFIS offers several advantages: it enhances 
clarity regarding the correspondence between output and input values and rules, improves system interpret-
ability, and facilitates the representation of linguistic variables and rules, thereby encouraging domain experts’ 
involvement in enhancing the system’s performance as needed. This paper illustrates the utility of ANFIS in 
adjusting the detected particulate matter (PM) concentration and compares its effectiveness with other estab-
lished machine-learning techniques, including linear regression, decision trees, random forest, SVR and a 
multilayer perceptron (MLP). These methods are chosen as benchmarks owing to their established effectiveness 
in calibration procedures.

We propose certain preprocessing steps for detecting and rectifying anomalies, alongside introducing two 
distinct data-splitting methodologies. Additionally, a discussion about feature selection is presented to elucidate 
the impact of specific features on performance enhancement. The efficacy of ANFIS in refining PM data is 
demonstrated through a comparative assessment, where it outperforms all the established machine-learning 
techniques. Notably, incorporating only PM2.5, relative humidity and temperature as features yields optimal 
performance while mitigating overfitting issues. The paper also explores various ANFIS configurations, including 
two distinct optimization algorithms, and investigates the impact of the number and type of membership 
functions on the fuzzy system’s performance. Our study highlights the potential of the Adaptive Neuro-Fuzzy 
Inference System as a versatile and effective tool for addressing real-world challenges in environmental sensing.

1. Introduction

In environmental science, accurate pollution measurement has 
emerged as a critical concern, especially when employing low-cost 
monitoring stations (Bachechi et al., 2024; Brilli et al., 2021; deSouza, 
2022; Gerboles et al., 2017). Such a situation arises because the 
increasing impact of human activities on air quality necessitates precise 
and reliable data in order to formulate effective mitigation strategies 
and safeguard public health. This article delves into the pivotal issue of 
obtaining accurate pollution measurements from low-cost stations, 
highlighting the significance of addressing this challenge to advance our 
understanding of environmental dynamics and enhance monitoring 
capabilities.

As technology continues to evolve, the integration of artificial in-
telligence (AI) has revolutionized the way we approach complex tasks, 
including environmental monitoring (Karthika, 2023; Kusy et al., 2022; 
Mahdavinejad et al., 2018; Neo et al., 2023). Neural networks, fuzzy 
logic, swarm intelligence and other AI methodologies have proven 
instrumental in handling vast and intricate datasets, offering novel in-
sights into pollution patterns and trends. Developments in AI technol-
ogies and their application to environmental science shed light on their 
potential to transform our ability to monitor, measure and predict air 
pollution with unprecedented accuracy (Chianese et al., 2019; Dun 
et al., 2022; Gokul et al., 2023; Kowalski et al., 2020, 2022; Navares and 
Aznarte, 2020).

Contemporary investigations on intelligent methods applied to air 
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pollution monitoring, measurement and prediction present very prom-
ising results (Mitreska Jovanovska et al., 2023). Leveraging advanced 
algorithms and computational models, these methods go beyond tradi-
tional approaches, offering a more nuanced and adaptive approach to 
environmental data analysis. By combining the power of AI with 
ecological science practices, researchers can unlock new dimensions of 
understanding, enabling real-time monitoring and timely interventions 
to mitigate the adverse effects of pollution on both ecosystems and 
human health (Bak et al., 2012; Mueller et al., 2023; Saeed et al., 2024; 
Tran et al., 2023; Wang et al., 2024).

Fuzzy logic, a computational paradigm that mimics human decision- 
making under uncertainty, has found diverse and impactful applications 
across various facets of environmental sciences (Do et al., 2022; Pham 
et al., 2024; Pouw and Kwiatkowska, 2013; Sheehan and Gough, 2016). 
Its adaptability to handle imprecise and vague information makes it a 
valuable tool in addressing the inherent complexity and uncertainty 
prevalent in environmental systems (Borri et al., 1998; Khatua et al., 
2020).

One of the applications of fuzzy logic lies in environmental model-
ling, where it serves as a bridge between traditional deterministic 
models and the unpredictable nature of ecological processes. By incor-
porating fuzzy logic, researchers can capture the nuances of environ-
mental variables that resist precise quantification, providing a more 
realistic representation of the intricate relationships within ecosystems. 
This approach enhances the accuracy of predictive models, contributing 
to more effective decision-making in areas such as climate change pro-
jections, land-use planning and biodiversity conservation (Biber et al., 
2021; Caniani et al., 2016; D’Aniello, 2023; Rahman, 2020).

Furthermore, fuzzy logic plays a crucial role in the field of air and 
water quality monitoring (Barzegar et al., 2023; Güler Dincer and 
Akkuş, 2018; Manzar et al., 2022; Trach et al., 2022). Environmental 
data, often characterized by inherent uncertainties and variations, can 
be challenging to interpret accurately. Fuzzy logic-based systems excel 
in processing and analyzing this data, offering a robust framework to 
account for imprecision in pollutant measurements. This methodology 
proves particularly beneficial in discerning pollution levels near regu-
latory thresholds, aiding in timely interventions and ensuring compli-
ance with environmental standards (WHO et al., 2021).

In environmental risk assessment, fuzzy logic provides a nuanced 
approach to evaluating the potential impacts of contaminants 
(Shwetank et al., 2019). Traditional risk assessment methods often rely 
on deterministic assumptions, neglecting the variability in exposure 
scenarios and ecological response values, promoting sustainable envi-
ronmental management. In the field of air monitoring, fuzzy logic has 
been successfully applied to predict Air Quality Index (AQI) levels, 
focusing on gases and particulate matter pollutants, particularly PM10, 
or encompassing gases alone (for a detailed exploration of the literature 
on the air quality topic, please refer to Section 2).

In addition to Fuzzy logic, extensive research has been dedicated to 
calibrating and adjusting particulate matter (PM) data obtained from 
low-cost sensors. The burgeoning use of these sensors in environmental 
monitoring has prompted the development of techniques aimed at 
enhancing the accuracy and reliability of collected data (Okafor et al., 
2020; Popescu et al., 2024; Rivera-Muñoz et al., 2022). Researchers 
have explored a spectrum of approaches, ranging from conventional 
methods like simple linear regression to cutting-edge technologies such 
as complex deep neural networks. These calibration and adjustment 
techniques are crucial for mitigating the inherent limitations of low-cost 
sensors, among others, sensitivity to environmental conditions and po-
tential measurement inaccuracies). As the demand for cost-effective 
monitoring solutions grows, refining the methodologies for calibrating 
and adjusting data from low-cost sensors becomes paramount, ensuring 
the credibility of environmental measurements and bolstering the 
effectiveness of pollution assessment efforts.

The motivation behind this study stems from the growing impor-
tance of ensuring accurate pollution measurement in environmental 

science, particularly with regard to data derived from low-cost moni-
toring stations. As human activities continue to exert increasing pressure 
on air quality, there is a pressing need for precise and reliable data to 
inform effective mitigation strategies and protect public health (Nakhjiri 
and Kakroodi, 2024). The inadequacies of traditional monitoring 
methods and the proliferation of low-cost sensor technology underscore 
the significance of addressing this challenge. Using advanced method-
ologies such as the Adaptive Neuro-Fuzzy Inference System to adjust 
sensor data at low-cost, this study aims to deepen understanding of 
environmental dynamics and improve monitoring capabilities. This, in 
turn, will facilitate more informed decision-making in environmental 
management.

This research offers a novel approach by integrating fuzzy logic 
principles with neural network structures to address the complexities of 
low-cost sensor data adjustment. While previous studies have explored 
various machine learning techniques for pollution measurement and 
prediction, applying ANFIS to adjust low-cost sensor data represents a 
unique contribution to the field. By harnessing the interpretability and 
adaptability of fuzzy logic, coupled with the learning capabilities of 
neural networks, this research seeks to overcome the limitations of 
existing methods and provide a more robust framework for environ-
mental data analysis. Integrating fuzzy logic with advanced machine 
learning methodologies exemplifies a forward-thinking approach to-
wards environmental monitoring and underscores the potential of 
interdisciplinary research in addressing pressing environmental chal-
lenges. The novelty of this research lies in several key aspects: the uti-
lization of low-cost PM2.5 data gathered from six SPS30 Sensirion 
sensors co-located with a reference station, providing a comprehensive 
dataset for analysis; the innovative methodology combining fuzzy logic 
with neural networks for air quality adjustment, offering a unique 
approach to calibrating low-cost sensor data; a comparative analysis 
between machine learning techniques and ANFIS, which sheds light on 
the effectiveness and advantages of the proposed methodology; an 
exploration into data and model optimisation that contributes to 
improved accuracy and reliability in ANFIS applied to air quality PM 
data, advancing the state-of-the-art in environmental data analysis and 
monitoring techniques.

The manuscript is structured as follows: The exploration of literature 
within the domain is meticulously detailed in Section 2. Section 3
elaborates on the utilized sensors, procedures for data collection, in-
tricacies of the study site, and the methodological framework employed. 
Delving into the nuances of model configuration, data preprocessing, 
and dataset partitioning, Section 4 offers a discourse. In Section 5, a 
discerning comparative analysis is presented, contrasting the efficacy of 
Machine Learning against that of the Fuzzy Inference System ap-
proaches. Additionally, this section provides into an in-depth examina-
tion of the findings concerning ANFIS configuration, particularly in the 
realms of feature selection and model optimisation. Finally, Section 6
draws the manuscript to a close, encapsulating the principal findings 
and ramifications of the study.

2. Related work

Fuzzy logic has been widely applied in the domain of air quality 
assessment, as demonstrated by several exemplary studies. In Nihalani 
et al. (2020) the authors investigate air quality indices (AQI), crucial 
indicators of local air quality, which consider key pollutants such as 
sulphur dioxide, nitrogen dioxide, ground-level ozone, carbon monoxide 
and particulates. The study proposes a consistent method for deter-
mining AQI using a fuzzy logic system, enhancing the accuracy of air 
quality evaluation. Similarly, Ángel Olvera-García et al. (2016) in-
troduces a novel evaluation model integrating fuzzy inferences with an 
Analytic Hierarchy Process, resulting in a new air quality index. By 
assessing environmental parameters and assigning individual weights to 
pollutants, this model offers improved air quality assessments, as evi-
denced by experiments conducted in Mexico City (Mexico). The 
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published work Debnath et al. (2018) presents an integrated model 
based on interval type-2 fuzzy reasoning and analytic hierarchy process 
for air quality assessment in urban areas. This approach effectively 
models uncertainties involved in air quality classification, as demon-
strated by its application in the Kolkata Metropolitan area (West Bengal, 
India). Moreover, fuzzy logic application extends to predictive model-
ling and forecasting of air pollution levels. The publication of Suganya 
and Meyyappan (2023) explores the development of a hybrid Adaptive 
Neuro-Fuzzy Inference System (ANFIS) combined with a recurrent 
neural network (RNN) for accurate air pollution prediction. This 
approach considers multiple climatic factors and pollutant concentra-
tions, providing valuable insights for daily health monitoring and 
governmental decision-making. By leveraging the ability of fuzzy logic 
to handle complex and uncertain data, such predictive models offer 
invaluable tools for anticipating future air quality trends and imple-
menting proactive mitigation measures. ANFIS is also employed in 
another study (Prasad et al., 2016), focusing on forecasting daily air 
pollution concentrations of five major air pollutants (sulphur dioxide 
(SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3) and 
particulate matters (PM10)) in the atmosphere of a megacity (Howrah, 
West Bengal, India).

Furthermore, fuzzy logic plays a crucial role in the development of 
air quality monitoring systems, particularly those integrated with 
Internet of Things (IoT) technologies. The paper of Fahim et al. (2023)
presents a novel IoT-based weather station device capable of measuring 
air quality parameters in real-time. Utilizing fuzzy inference systems to 
categorise parameter data and generate an air quality index (AQI), this 
system provides accessible and actionable environmental information 
for various stakeholders, including farmers, urban planners and the 
general public. Combining fuzzy logic with IoT technology, such 
monitoring systems offer scalable and cost-effective solutions for 
continuous environmental monitoring and management. Fuzzy logic 
also finds application in comparative studies aiming to assess the 
effectiveness of different air quality indices and evaluation methodolo-
gies. Hamedian et al. (2016) exemplifies this by comparing traditional 
air quality indices with those generated using fuzzy inference systems 
and clustering techniques. The research “Fuzzy Inference of Air Quality 
– A case study of Vadodara City” (West Bengal, India) compares con-
ventional AQI with fuzzy AQI, demonstrating the capability of fuzzy 
inference systems to manage data ambiguity and interpret complex 
conditions. Such comparative analyses contribute to refining existing air 
quality assessment frameworks and identifying areas for improvement, 
ultimately enhancing the accuracy and reliability of environmental 
monitoring efforts. Additionally, through these exemplary articles, fuzzy 
logic emerges as a powerful tool for improving air quality assessment, 
offering more consistent and reliable methods for evaluating environ-
mental parameters and safeguarding public health.

Fuzzy logic’s versatility and robustness make it an indispensable tool 
in various aspects of air quality assessment, ranging from predictive 
modelling and real-time monitoring to comparative analyses and eval-
uation methodologies. As environmental challenges continue to evolve, 
integrating fuzzy logic with advanced technologies and methodologies 
promises to enhance further our ability to monitor, manage and mitigate 
the impacts of air pollution on human health and the environment.

Continuing the exploration of techniques for enhancing particulate 
matter data accuracy from low-cost sensors, a comprehensive overview 
of such research endeavours has been compiled and is presented in 
Table 1. This extensive compilation encapsulates the diverse method-
ologies for calibrating and adjusting data obtained from these sensors. 
The table is a valuable resource for researchers and practitioners seeking 
insights into the spectrum of techniques, ranging from traditional sta-
tistical methods to sophisticated artificial intelligence approaches. By 
presenting a synthesis of the findings from various studies, the contents 
of Table 1 facilitate a holistic understanding of the evolving landscape of 
methodologies employed to refine and optimise the precision of low-cost 
sensor data in environmental monitoring applications.

Table 1 
State of the art of machine learning calibration algorithms for low-cost air 
quality sensors.

Study Title Methodology and 
Approach

R2 Values RMSE 
Values (μg/ 
m3)

Machine learning 
techniques to improve 
the field performance 
of low-cost air quality 
sensors (Bush et al., 
2022)

RF regression during 
7 months

0.91 –

Performance 
Assessment of a Low- 
Cost PM2.5 Sensor for 
a near Four-Month 
Period in Oslo, 
Norway (Liu et al., 
2019)

Statistical 
corrections for RH 
and T using MLR and 
RF models.

Site 1: 0.80 
Site 2: 0.79 
Site 3: 0.76

Site 1: 0.80 
Site 2: 0.79 
Site 3: 0.76

Evaluation of nine 
machine learning 
regression algorithms 
for calibration of low- 
cost PM2.5 sensor (
Kumar and Sahu, 
2021)

Best performances 
using kNN, RF and 
GB among MLR, 
Lasso regression, 
Ridge regression, 
SVR, MLP and 
Regression Tree.

Train: 0.99 
Test: 0.97 
(kNN) 
0.96 (RF) 0.95 
(GB)

–

Improving accuracy of 
air pollution exposure 
measurements: 
Statistical correction 
of a municipal low- 
cost airborne 
particulate matter 
sensor network (
Considine et al., 
2021)

Long-term dataset: 
RF model 
considering time- 
varying covariates 
and arterial road 
length. On-the-fly 
correction: MLR.

Long-term: 
0.75 
On-the-fly: 
0.78

Long-term: 
2.9 
On-the-fly: 
3.1

Calibration of low-cost 
particulate matter 
sensors: Model 
development for a 
multi-city 
epidemiological study 
(Zusman et al., 2020)

Region-specific 
multivariate linear 
regression 
calibration models 
for diverse particle 
sources and 
meteorological 
conditions.

Site 1: 0.74 
Site 2: 0.95

Site 1:2.46 
Site 2: 0.84

Mapping urban air 
quality using mobile 
sampling with low- 
cost sensors and 
machine learning in 
Seoul, South Korea (
Lim et al., 2019)

Land Use Regression 
(LUR) models using 
LR, RF and a stacked 
ensemble (SE).

LR: 0.63 
RF: 0.73 
SE: 0.80

–

Evaluation and 
calibration of low-cost 
particulate matter 
sensors for respirable 
coal mine dust 
monitoring (Feng 
et al., 2023)

A two-layer 
correction model was 
introduced, 
incorporating top- 
performing models 
(KNN, RF, ET, 
XGBoost) and 
temperature/ 
humidity data.

Sensor 1: 0.97 
Sensor 2: 0.98

Sensor 1: 80 
Sensor 2: 91

AirMLP: A Multilayer 
Perceptron Neural 
Network for Temporal 
Correction of PM2.5 
Values in Turin (Italy) 
(Casari et al., 2023a)

MLP 0.932

Calibration of Low-Cost 
Particle Sensors by 
Using Machine- 
Learning Method (
Chen et al., 2018)

LR, SVR and 
Feedforward NN.

Uncalibrated: 
0.618 
LR: 0.728 
SVR: 0.85 
FNN: 0.905

–

Assessment and 
Calibration of a Low- 
Cost PM2.5 Sensor 
Using Machine 
Learning 
(HybridLSTM Neural 

HybridLSTM model 
combining a deep 
neural network and 
an LSTM

Raw data 0.59 
MLR: 0.80 
DNN: 0.90 
HybridLSTM: 
0.93

–

(continued on next page)
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3. Materials and data acquisition

3.1. SPS30 sensor

The sensors utilized in this study are SPS30 sensors developed by 
Sensirion, a leading manufacturer of environmental sensing solutions. 
Each sensor is housed within a device called Arianna, which is deployed 
by Wiseair S.r.l., a Milan-based startup dedicated to fostering awareness 
and understanding of air quality issues across Italy and beyond (Wiseair, 
n.d.). The Arianna device incorporates an SPS30 laser-scattering sensor 
for detecting particulate matter, as well as relative humidity and tem-
perature sensors, also developed by Sensirion.

This sensor is frequently used in literature (Jaafar et al., 2024; Koziel 
et al., 2024a; Koziel et al., 2024b) because it is MCERTS-certified, it has 
an affordable price, has good electrical parameters, reduced physical 
dimensions and uses contamination-resistance technology exploiting 
Sensirion technology. Furthermore, the SPS30 sensor demonstrated high 
linearity for PM2.5 (R2 = 0.95) (Nguyen et al., 2021). The accuracy of 
the SPS30 sensor was over 95% for PM1.0 mass concentrations below 
100 μg/m3, but this accuracy decreased to approximately 77% for 
PM1.0 mass concentrations above 100 μg/m3. For PM2.5 mass con-
centrations, the accuracy remained relatively stable, ranging from 81% 
to 96%. In laboratory experiments conducted at 20 ◦C and 40% relative 
humidity, the SPS30 sensors generally overestimated PM1.0 and PM2.5 
measurements compared to GRIMM reference instruments (AQ-SPEC, n. 
d.). The given specifications have been reported in Table 2 and the 
recommended operation condition in Table 3. Furthermore, the SPS30 
has a lifetime of ten years in continuous operation, with a start-up time 
of 30 s. It has a built-in fan to facilitate air transportation. SPS30 sensors 
operate based on optical particle counting (OPC) principles utilizing 
laser scattering. Ambient particles are directed to a measurement cell 
containing a light source and a photodetector. When particles interact 
with light, some of it scatters to the photodetector. The collected signal 
is processed to obtain real-time particle count and mass concentration 
values, which are expressed in units of particles per cubic centimetre 

(#/cm3) and micrograms per cubic meter (μg/m3), respectively. It is 
worth noting that the PM4.0 and PM10 outputs of Sensirion’s PM sen-
sors are estimated from measurements of PM0.5, PM1.0 and PM2.5. 
These estimates take into account typical aerosol profiles rather than 
being solely based on real raw data events from larger particles.

Even if the sensor itself has a sampling frequency of 1 ± 0.04 seconds 
the data collected are transmitted to the Wiseair server at intervals of 
every 15 min. Nevertheless, the frequency of data transmission may vary 
depending on the battery life of the device, which is charged by a small 
solar panel located on the device’s surface. The air enters the device 
without the aid of a pump, passing through a grid designed to prevent 
the entry of insects and larger particles.

3.2. Data collection

The data utilized for this study were collected in Turin, Italy, span-
ning from June 2022 to September 2023 (the dataset is accessible 
through Zenodo Casari et al. (2023b)). This dataset comprises infor-
mation gathered by six SPS30 low-cost sensors strategically positioned 
alongside a Tecora reference station located at an altitude of 4 m along 
the station fence (Arpa-Piemonte, n.d.).

In the experimental setup, it is important to note that all six low-cost 
sensors were not operational simultaneously. Instead, they were 
deployed over different periods. Table 4 provides a detailed description 

Table 1 (continued )

Study Title Methodology and 
Approach

R2 Values RMSE 
Values (μg/ 
m3)

Network) (Park et al., 
2021)

GAMMA: A universal 
model for calibrating 
sensory data of 
multiple low-cost air 
monitoring devices (
Nguyen et al., 2024)

Deep learning 
approach based on 
the GAN structure.

0.928 3.51

Applying machine 
learning for large- 
scale field calibration 
of low-cost PM2.5 and 
PM10 air pollution 
sensors (Adong et al., 
2022)

kNN, SVR, 
multivariate linear 
regression, ridge 
regression, lasso, 
elastic net regression, 
XGBoost, MLP, RF 
and gradient 
boosting.

Factory 
calibrated: 
0.52 
SVM: 0.84 
Lasso: 0.86 
Elastic net: 
0.86 
Ridge: 0.87 
MLR: 0.87 
KNN: 0.89 
XGBoost: 0.92 
GB: 0.92 
MLP: 0.92 
RF: 0.92

Factory 
calibrated: 
18.6 
SVM: 10.4 
Lasso: 9.7 
Elastic net: 
9.7 
Ridge: 9.5 
MLR: 9.5 
KNN: 8.9 
XGBoost: 
7.6 
GB: 7.2 
MLP: 7.2 
RF: 7.2

Evaluation and 
calibration of a low- 
cost particle sensor in 
ambient conditions 
using machine- 
learning methods (Si 
et al., 2020)

Calibration methods 
including SLR, MLR, 
NN and XGBoost.

– SLR: 4.91 
MLR: 4.65 
XGBoost: 
4.19 
NN: 3.91

Table 2 
SPS30 specifications.

Parameter Conditions Value Units

Mass concentration range – 0 to 
1000

μg/m3

Mass concentration size range PM1.0 0.3 to 
1.0

μm

PM2.5 0.3 to 
2.5

μm

PM4 0.3 to 
4.0

μm

PM10 0.3 to 
10.0

μm

Mass concentration precision for 
PM1 and PM2.5

0 to 100 μg/m3 ±10 μg/m3

100 to 1000 
μg/m3

±10 %m.v.

Number concentration precision for 
PM0.5, PM1 and PM2.5

0 to 1000 
#/cm3

±100 #/cm3

1000 to 3000 
#/cm3

±10 %m.v.

Lifetime 24 h/day 
operation

>10 years

Maximum long-term mass 
concentration precision limit drift

0 to 100 μg/m3 ±1.25 μg/m3/year
100 to 1000 
μg/m3

±1.25 %m.v. / 
year

Table 3 
SPS30 recommended operating conditions.

Parameter Recommended Operating Conditions

Temperature 10 to 40 ◦C
Relative humidity 20 to 80 %

Table 4 
SPS30 Turin sensors validity periods.

sensor_id min_valid_at max_valid_at

ari-1727 2021-06-30 23:00:00 2022-07-05 10:00:00
ari-1952 2022-02-07 08:00:00 2023-02-01 11:00:00
ari-1953 2022-02-07 09:00:00 2022-09-16 12:00:00
ari-2049 2022-07-25 13:00:00 2023-09-25 22:00:00
ari-1885 2022-09-26 08:00:00 2023-09-25 22:00:00
ari-2074 2022-12-16 13:00:00 2023-09-25 22:00:00
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of the running period for each sensor.
The information directly collected from the Arianna devices, includes 

measurements of four different particulate matter, relative humidity and 
temperature. These primary measurements are then supplemented with 
additional meteorological features by linking them to online available 
data sources. The features encompass:

• PM1, PM2.5, PM4, and PM10 mass concentrations (μg/m3): these 
represent different size fractions of particulate matter suspended in 
the air. It is worth noting that the classification of particulate matter 
into different-size fractions follows a hierarchical structure. In this 
hierarchy, larger diameter categories, such as PM10, encompass the 
masses of smaller ones, including PM4, PM2.5 and PM1, and so forth.

• Relative humidity (%): RH measures the amount of moisture in the 
air, for instance, a relative humidity of 80% indicates that the air is 
holding 80% of the maximum water vapour it could hold at that 
particular temperature.

• Temperature (◦C): temperature reflects the thermal conditions of the 
environment.

• Wind speed (m/s): Wind speed denotes the rate at which air is 
moving.

• Atmospheric pressure (hPA): Atmospheric pressure represents the 
weight of the air above the sensor.

3.2.1. Hygroscopicity effect
When it comes to low-cost sensors for measuring particulate matter 

concentration, it is crucial to take into account the impact of hygro-
scopicity. Hygroscopicity refers to particles’ ability to attract and retain 
water molecules from the surrounding air. In the context of low-cost 
laser scattering sensors, this phenomenon can affect the accuracy of 
particle concentration measurements, as the particles’ mass increases 
with absorbed water.

In Fig. 1, it is observable that with varying RH ranges, the difference 
between the concentrations detected by the low-cost sensor and the 
reference station increases with higher RH. Hygroscopicity depends on 
the location of interest and the device used for PM concentration. A prior 
investigation is necessary when dealing with the air quality PM con-
centration dataset, due to the possibility of correcting the hygroscopicity 
problem (Casari and Po, 2024; Patel et al., 2023).

In the current study, the dataset exhibits the effects of hygroscopicity 
due to the temporal and spatial context. According to official climate 

data, the average annual relative humidity in Turin is 73.8%, with a 
minimum of 67% in March and a maximum of 78% in October, 
November, and December. Given the study’s objective to adjust inac-
curate PM concentration detection, ANFIS appears to be a successful 
method due to its capability of fuzzifying variables into ranges. The 
hygroscopicity effect varies by particle type, but a threshold of 70% is 
generally considered a starting point where particle sizes begin to in-
crease, as shown in Fig. 1 (Won et al., 2021).

As demonstrated in Section 5.3.2 of the Results, ANFIS effectively 
addresses the issue of hygroscopicity affecting the dataset in this case 
study.

4. Methodology and model configuration

4.1. ML methods and fuzzy inference systems

To provide insights about the Adaptive Neuro-Fuzzy Inference Sys-
tem applied to the problem of air quality, the objective is to juxtapose 
established models such as linear regression (Weisberg, 2005), decision 
trees (Loh, 2011), random forests (Johansson et al., 2014), SVR 
(Cherkassky and Ma, 2004), and MLP neural networks (Ivakhnenko and 
Lapa, 1967) employed as baseline models. The neural network includes 
an input layer, a batch normalization layer, seven subsequent dense 
layers of 1500 neurons each (all with ReLU activations), and a final 
output layer (Casari et al., 2023a). The ANFIS model represents a novel 
approach for adjusting low-cost PM data; in this way, these machine- 
learning techniques were selected as benchmarks due to their proven 
efficacy in calibration procedures.

Understanding the operation of the ANFIS model requires exploring 
the principles of fuzzy logic and Fuzzy Inference Systems (FIS). These 
concepts are explored in more detail in the next subsections.

4.1.1. Fuzzy inference system
Fuzzy logic introduced by Lotfi A Zadeh in 1965 (Zadeh, 1978; Zadeh 

et al., 1996) differs from conventional logic, which operates in binary 
terms (TRUE or FALSE), through offering a paradigm shift by repre-
senting truth not as a binary state but rather as a continuum of truth-
fulness, ranging in a limited space. This approach allows for a more 
nuanced representation of real-world phenomena that may not have 
clear-cut boundaries and do not strictly adhere to Boolean truth. Instead 
of absolute certainty, fuzzy logic implements degrees of certainty, often 
represented as linguistic terms (e.g., low, fair, high or certainly yes, 
possibly yes, possibly no, certainly no).

A Fuzzy Inference System (Mamdani and Assilian, 1975) consists of 
several essential components. An illustration is included in Fig. 2 to 
enhance the explanation of the subsequent stages:

1. Fuzzification module: This initial stage involves the transformation 
of crisp (numeric) input values into fuzzy variables, often repre-
sented linguistically, through assigned membership functions (MFs) 
(Fig. 2a). The resulting output is represented as a vector from the 
fuzzification process, which is subsequently used during the infer-
ence step (Fig. 2b). Generally, given a universe X in which the var-
iable x is defined, the fuzzy set A in X comprises ordered pairs, as 
expressed by:

A = {(x,MF)|x ∈ X}

Here, the MF represents the membership function that maps each 
element of X to a membership value between 0 and 1. The MF can as-
sume various shapes, depending on which best describes the universe 
under consideration, including linear, Gaussian, sigmoid, quadratic and 
cubic polynomials, or simpler forms composed of straight lines like 
triangular, trapezoidal, linear ascending or linear descending.

2. Knowledge Base: The knowledge base of a FIS comprises a set of 
expert-provided rules in the form of IF-THEN statements (Fig. 2c). 

Fig. 1. Difference between PM2.5 mass concentrations detected by the refer-
ence station (RS) and the low-cost (LC) SPS30 sensor, categorized by relative 
humidity (RH) ranges.
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Each rule specifies conditions (antecedents) based on input variables 
and corresponding actions (consequents) based on output variables. 
Each rule can comprise logical operators (AND, OR, and NOT) when 
combining multiple states regarding different variables. The Boolean 

logic operators AND, OR, and NOT are typically defined within the 
scope of fuzzy logic, as operators of minimum, maximum and com-
plement; in this case, they are also called Zadeh operators (Zadeh, 
1965) and are defined as follows:

Fig. 2. The subfigures illustrate the sequential steps and components involved in the fuzzy inference process.
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NOTx = 1 − MF(x) xANDy = min(MF(x) ,MF(y) ) xORy

= max(MF(x) ,MF(y) )

It is worth noting that as the number of input fuzzy variables in-
creases, the number of rules typically grows, often showing exponential 
expansion. While the sheer number of rules might suggest the system’s 
complexity, it is crucial to recognize that a system with fewer mem-
bership functions per variable could be more complex, especially when 
incorporating more variables (Gegov et al., 2017).

3. Inference engine: The inference engine simulates the human 
reasoning process by performing fuzzy inferences based on the inputs 
and IF-THEN rules. Each rule may carry a weight, typically ranging 
from 0 to 1, to increase or decrease its effect, or all rules can be 
assigned a weight of 1 to have equal importance. Each involved 
variable is assigned a degree derived from its membership function 
(Fig. 2d), and the resulting rule output is inferred.

4. Aggregation of inference outputs: In an FIS, decisions are made by 
testing all the rules, and the outputs of these rules need to be com-
bined. This aggregation process merges the fuzzy sets representing 
the output of each rule into a single fuzzy set (Fig. 2e).

5. Defuzzification module: The fuzzy set obtained from the inference 
engine is converted into a crisp value through defuzzification. 
Defuzzification is necessary to derive a single output value from the 
set, one common method is centroid calculation, which determines 
the centre of the area under the aggregate fuzzy set (Fig. 2e).

Fuzzy Logic has been used in different fields and it has been proved 
to deal with the uncertainty and subjectivity of environmental problems 
adequately, as in Ocampo-Duque et al. (2006). Breaking down the Fuzzy 
Inference System into systematic steps enhances user understanding, 
providing clarity on how the output corresponds to input values and 
rules. This improves the system’s interpretability, building trust in its 
decision-making process. Additionally, the utilization of linguistic var-
iables and rules facilitates domain expert involvement, empowering 
them to refine the system’s performance as necessary.

4.1.2. Adaptive neuro-fuzzy inference system
The Adaptive Neuro-Fuzzy Inference System integrates fuzzy 

reasoning principles with the structural characteristics of neural net-
works, enabling it to learn and adapt from data dynamically (Chanal 
et al., 2022; Sayyaadi, 2021).

Initially, ANFIS constructs a FIS with a basic framework, lacking a 
comprehensive understanding of membership functions or rules. How-
ever, it iteratively refines and optimises these rules and functions to 
minimise output error or to enhance the explanation of complex system 
behaviours. This optimisation is achieved through the adjustment or 
tuning of membership function parameters using hybrid learning algo-
rithms or backpropagation techniques applied to specific input-output 
data patterns (Karaboga and Kaya, 2019). Through this integration, 
ANFIS effectively constructs fuzzy IF-THEN rules and membership 
functions, enabling accurate modelling of input-output relationships.

The resulting model remains highly interpretable, with easily un-
derstandable rules. This characteristic is particularly beneficial for sys-
tems where verification and certification play a crucial role.

4.2. Data preprocessing

The dataset employed in this study underwent meticulous pre-
processing to enhance data quality and consistency. Key preprocessing 
steps include the following:

1. Standardizing data frequency to 1 h: The granularity of the data 
obtained from the reference station is at one-hour intervals. To 
ensure consistency, the data derived from the SPS30 sensors has been 
resampled hourly using the nearest approximation method. In the 

context of Python resampling, the nearest approximation involves 
assigning each new timestamp the value of the existing data point 
closest to it in time, ensuring a synchronized temporal alignment 
between the low-cost sensor and the reference station data.

2. Outlier reduction beyond 3 standard deviations: Data points 
exceeding 3 standard deviations from the mean were deemed out-
liers and subsequently set as null. This step aids in eliminating data 
stemming from potentially malfunctioning instrumentation.

3. Interpolation utilizing kNN technique: Missing data points were 
imputed using the k-nearest neighbours (kNN) interpolation tech-
nique. This method leverages the entire feature vector to estimate 
null values, with the parameter k set to 5, ensuring a robust estima-
tion of missing data points.

4. Left-side median cleaning smoothing technique: To further refine the 
dataset, a left-side median cleaning technique was applied for 
smoothing purposes. This involves using a window of preceding 
hours to the current data point. If the data point deviates above or 
below the median by a specified threshold, it is adjusted to the me-
dian value of the window, promoting data consistency and reducing 
noise.

5. Normalization: The final step involved normalizing the dataset 
across all features. This normalization process was carried out after 
splitting the dataset into training and test sets as required.

4.3. Dataset splitting

In order to ensure the integrity of the data separation and avoid 
overfitting issues, a specific approach was adopted. Instead of randomly 
splitting the data into training and test sets, each day’s data was treated 
as a separate batch. This approach was chosen due to the temporal na-
ture of the data, which exhibited daily variations in PM values. By 
grouping the data into daily batches, the risk of including overly similar 
data points in both sets was mitigated.

Two distinct strategies were employed to handle the data batches:

• Sequential approach: the first 75% of days from each month were 
allocated to the training set, while the remaining 25% were assigned 
to the test set.

• Random approach: 75% of random days from each month were 
allocated to the training set, the remaining to the test set.

Both strategies were evaluated to determine their effectiveness in 
training the model and their ability to accurately generalize to unseen 
data. This comparison provided insights into the optimal data separation 
method for the fuzzy system, informing its subsequent implementation 
and evaluation.

5. Results and discussion

The overall performance of the different models tested is detailed 
first, highlighting their performance using metrics such as R2 (Eq. 1) and 
RMSE (Eq. 2). 

R2 = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (1) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − ŷi)
2

n

√

(2) 

This is followed by an exploration of the preprocessing and dataset- 
splitting outcomes. Subsequently, the exploration shifts to the ANFIS 
fuzzy system configuration, encompassing aspects such as the type of 
membership functions utilized, the number of membership functions 
allocated to each feature, and the optimisation algorithm employed for 
ANFIS training.
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5.1. Overall methods results

The study results showcase the effectiveness of various methods in 
adjusting PM2.5 data acquired from low-cost sensors, compared to the 
reference station data. These methods include linear regression, decision 
trees, random forests, support vector machines regression, the Fuzzy 
Adaptive Neuro-Fuzzy Inference System and an MLP neural network.

Fig. 3 displays the R2 and RMSE scores of the models trained on the 

preprocessed data, with both train and test values shown. The ANFIS 
system demonstrated promising results, particularly concerning the in-
clusion of PM2.5, PM10, RH, and temperature, with no notable perfor-
mance improvements observed when additional features were included 
in the model. Additionally, a tendency for overfitting was observed in 
the fuzzy system with increased features.

In contrast, linear regression consistently lagged, never surpassing an 
R2 of 0.5. Among the models, random forest performed relatively better 

(a) R2

(b) RMSE
2

Fig. 3. Comparative R2 and RMSE scores for various models (including the Fuzzy Inference System) across different features (pm1, pm2.5, pm4, pm10, RH for relative 
humidity, temp for temperature, p for pressure, and ws for wind speed).

M. Casari et al.                                                                                                                                                                                                                                  Ecological Informatics 83 (2024) 102781 

8 



apart from the fuzzy ANFIS system.
The MLP neural network exhibits comparable performance in terms 

of test results, surpassing the R2 of the ANFIS method only when uti-
lizing the full set of features. Furthermore, the RMSE tends to be slightly 
higher compared to ANFIS. Nevertheless, ANFIS was chosen for its 
interpretability and explainability, which can be advantageous in 
certain scenarios. Even if the NN had higher performance, there would 
still be cases where ANFIS is preferable due to its transparency and ease 
of understanding.

In general, compared to the studies proposed in Table 1, classical 
machine learning methods performed worse in this study, possibly due 
to the greater complexity of the data. The SPS30 sensor’s significant 
hygroscopicity effect necessitates consideration when working with this 
data. Models trained on data without this effect may have an advantage.

The results obtained in our study when compared to the findings of 
Prasad et al. (2016), exhibit consistency, with a decrease in performance 
observed when using fewer features. It is worth noting that the com-
parison is drawn between hourly data in our analysis and daily data in 
theirs. Additionally, the variation in performance may be influenced by 
factors such as the types of sensors utilized and the specific context of 
sensor deployment. Furthermore, it is important to highlight that while 
their work focuses on forecasting, ours is centred on data adjustment. 
These factors collectively contribute to a nuanced understanding of the 
comparative results and underscore the importance of contextual con-
siderations in interpreting research findings. Nevertheless, the fact that 
the results are comparable despite these variations is a promising 
outcome, suggesting the robustness and generalizability of the ANFIS 
method across different contexts and methodologies.

5.2. Preprocessing and dataset splitting

As discussed in Section 4.2, this study went under a meticulous 
preprocessing phase, which included the removal of 3 standard de-
viations to eliminate gross anomalies and the application of interpola-
tion using k-nearest neighbours to fill in the missing data. Subsequently, 
a one-sided median cleaning procedure has been employed with a 
window size of 4 h to smooth the data.

The choice of the window size was crucial, as it influenced the 
smoothing process. After experimenting with different window sizes 
(see Table 5), a window size of 4 h was identified as yielding the highest 
R2 score on the test set, indicating a superior fit to the data. This opti-
mized window size was then used for all subsequent analyses.

As elaborated in Section 4.3, a critical consideration was the dataset- 
splitting methodology. Fig. 4 illustrates that the sequential method 
appeared to yield better results compared to the random method, 
particularly concerning the test set. Therefore. the sequential method 
was selected as the preferred splitting approach for all subsequent 
analyses.

5.3. Exploration of the ANFIS configuration

Following the dataset preprocessing and splitting phases, the ANFIS 
was trained and tested using different configurations of the membership 
functions shape, and number. In addition, the optimisation algorithm 
was tested between GridSearch and SubtractiveClustering.

5.3.1. Membership functions
One of the key aspects of the ANFIS system is the type and number of 

membership functions used for each feature. Different types of mem-
bership functions, such as Gaussian, triangular, and trapezoidal, were 
experimented with to determine their impact on the adjustment process. 
Additionally, the number of membership functions for each feature was 
systematically varied to assess its impact on the performance of the 
ANFIS fuzzy system. The features considered were PM1, PM2.5, PM4, 
PM10, RH, temperature, pressure, and wind speed, which were kept in 
the same order throughout the trials. The number of membership 
functions tried were:

• Run 1: [3,3,3,3,2,3,3,3], where only RH was set to 2.
• Run 2: [2, 6, 2, 2, 2, 3, 3, 3], with the number of PM features reduced 

apart from PM2.5, which was set to 6.
• Run 3: [2, 6, 2, 2, 2, 2, 3, 3], with the number of temperature-related 

features reduced.
• Run 4: [2, 6, 2, 2, 2, 2, 2, 2], with the number of membership 

functions reduced to 2 for all features except PM2.5.

Each configuration was tested, and the performance of the ANFIS 
was evaluated to determine the optimal number of membership func-
tions for each feature, as shown in Fig. 5.

In general, reducing the number of membership functions helped to 
avoid overfitting. Consequently, in the final ANFIS configuration, the 
Run 4 setup is retained.

The results, depicted in Fig. 6a, reveal that the triangular member-
ship function consistently yielded the most stable performance, with an 
R2 score never dropping below 0.3. This robust performance is further 
illustrated in the zoomed-in view provided in Fig. 6b. It is worth noting 
that Prasad et al. (2016) also found triangular functions to be optimal for 
air quality data, where they restricted the number of membership 
functions to 3, thus reducing computational costs, suggesting a consis-
tent pattern across studies.

5.3.2. Optimisation algorithms
During the training of ANFIS, optimisation algorithms play a crucial 

role in efficiently handling the numerous combinations required for 
optimisation. Rather than exhaustively attempting every combination, 
these algorithms aim to identify the optimal solution by intelligently 
sampling only a small subset of the entire solution space. In this study, 
two distinct optimization algorithms have been explored: GridSearch 
(Pontes et al., 2016) and SubtractiveClustering (Chen, 2013).

While GridSearch rigorously explores the entire parameter space to 
find the best solution, SubtractiveClustering dynamically adjusts to the 
data distribution, providing a more flexible and potentially stable opti-
misation approach.

It was found that the GridSearch algorithm generally exhibited better 
performance in terms of optimizing the fuzzy system. However, when 
dealing with a larger number of selected features, the Sub-
tractiveClustering algorithm demonstrated greater stability, see Fig. 7.

5.3.3. Illustrative result
An illustrative example is presented in Fig. 8 using three variables: 

PM2.5, relative humidity and temperature, with membership functions. 

Table 5 
Performance metrics on training and test sets changing one-sided median cleaning window.

Time Interval Training Set Test Set

R2 MAE MSE RMSE R2 MAE MSE RMSE

2 h 0.5590 6.7183 90.1888 9.4317 − 0.0988 6.7124 238.1817 12.7064
3 h 0.5581 6.7391 90.4346 9.4403 0.4080 6.5927 113.9166 10.0674
4 h 0.5556 6.7721 90.9021 9.4618 0.5074 6.5321 88.3200 9.2406
5 h 0.5519 6.8135 91.7828 9.5046 0.5002 6.5818 89.9019 9.3091
12 h 0.5234 7.0669 97.2473 9.7971 0.4661 6.8248 94.4673 9.5959
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Triangular membership functions are chosen for each variable. It is 
noted that the number of membership functions retained is crucial to 
avoid overfitting. In this case, 6 membership functions are selected for 
PM2.5 to accurately capture various behaviours across different PM 
ranges, while relative humidity and temperature each employ 2 mem-
bership functions.

Fig. 9 illustrates time series data obtained from a low-cost sensor, 
showcasing PM2.5 readings from the low-cost sensor itself, the reference 
station, and predictions generated by the ANFIS model for both the 
training and test sets. This comparison provides significant insights into 
the performance and accuracy of the ANFIS model in predicting PM2.5 
levels. Notably, both figures demonstrate that ANFIS can mitigate the 
hygroscopic effect and replicate the behaviour of the reference station in 
both training and test sets. These results are satisfactory and provide 
insights into the effectiveness of ANFIS when applied to PM2.5 hourly 
data in a high RH context.

5.3.4. Advantages and disadvantages of fuzzy logic
Fuzzy logic modelling, while highly versatile and adaptable, presents 

limitations that are crucial to consider. One of the primary drawbacks is 
its inherent subjectivity; defining fuzzy sets and rules relies on human 

judgment, which can introduce bias and inconsistency. This subjectivity 
can lead to ambiguity and a lack of precision, particularly in complex 
systems where clear, objective data might be preferable. Additionally, as 
the number of rules and variables increases, fuzzy logic systems can 
become quite complex, making them difficult to manage and optimise 
effectively.

On the other hand, fuzzy logic offers significant advantages that 
make it a powerful tool in many applications. Its ability to handle un-
certainty and imprecise information allows it to mimic human reasoning 
more closely than traditional binary logic systems. This makes fuzzy 
logic particularly useful in situations requiring human-like decision- 
making, such as in control systems, robotics, and consumer electronics. 
The flexibility of fuzzy logic enables it to adapt to new data and 
changing conditions without requiring extensive reprogramming, saving 
time and resources in dynamic environments. Furthermore, its inter-
pretability and ease of integration with other AI techniques, such as 
neural networks, enhance its potential for creating robust, adaptive 
systems.

Applying the Adaptive Neuro-Fuzzy Inference System (ANFIS) to 
adjust low-cost sensor PM concentrations highlights both the strengths 
and limitations of AI methods in environmental monitoring. Unlike 

Fig. 4. R2 scores for training and test sets obtained by the fuzzy method using sequential and random splits.

Fig. 5. The obtained R2 scores for both the training and test sets across varying numbers of membership functions.

M. Casari et al.                                                                                                                                                                                                                                  Ecological Informatics 83 (2024) 102781 

10 



deterministic approaches that offer rigorous proof of correctness, AI 
methods, including ANFIS, rely on test procedures involving random 
selection and repeated validation using various datasets. This introduces 
an inherent uncertainty, as the lack of formal proof means that the 
reliability of the results is heavily dependent on the quality and repre-
sentativeness of the test data. However, fuzzy logic, central to ANFIS, 
provides a bridge between AI’s complex computations and human 

interpretability by mimicking the way humans perceive and process 
information. This human-like reasoning capability allows for greater 
transparency and understanding of how decisions are made within the 
system.

Despite these advantages, relying on fuzzy logic can also be seen as a 
drawback, as its interpretability can lead to subjective conclusions that 
may not always align with objective accuracy. Moreover, the scalability 

(a) No y-axis limitation

(b) y-axis limited between 0 and 0.7

Fig. 6. In (a), a boxplot displays the training and test set R2 scores for different membership function types. No y-axis limit is imposed in this subfigure. In (b), a 
similar boxplot is shown, but with the y-axis lower limit set to 0 to provide a clearer representation of R2 scores above 0.

Fig. 7. Training and test set R2 scores obtained using the GridSearch and SubtractiveClustering optimisation algorithms.
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Fig. 8. Membership functions for the variables PM2.5, relative Humidity and temperature within the Fuzzy Inference System (FIS).

(a) Training set

(b) Test set

Fig. 9. Comparison of time series data depicting PM2.5 levels obtained from a low-cost sensor (blue line), a reference station (black line), and predictions generated 
by the Fuzzy Inference System (yellow line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)
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of the ANFIS algorithm is a notable advantage, allowing for two primary 
approaches: repeating the entire optimisation process or expanding the 
rule base with new, interesting cases specific to different locations or 
devices. This flexibility is beneficial for adapting to diverse environ-
mental conditions and sensor characteristics, but it also necessitates 
careful management to avoid overfitting and maintain generalizability. 
While ANFIS and fuzzy logic introduce complexity and potential for 
subjective bias, their adaptability and interpretability make them 
valuable tools for fine-tuning sensor data for improved monitoring of air 
quality.

6. Conclusion

This study underscores the effectiveness of the Adaptive Neuro- 
Fuzzy Inference System in ameliorating low-cost sensor data. The 
Fuzzy system’s rules provide valuable insights into the adjustment 
process, making it a promising approach for addressing real-world 
challenges in environmental sensing, without forgetting to discuss the 
problems associated with this method used in such a context.

The comparison with other ML and artificial neural networks 
methods gives a more precise insight into how much ANFIS applies to 
the problem in use, in particular, it is possible to observe that in terms of 
R2 and RMSE, the performance are intriguing, having the ANFIS method 
surpassing the other methods for almost all features sets.

With respect to the ANFIS method parameters, the exploration of the 
various membership function types revealed that the triangular mem-
bership function exhibited the most stable performance in the system. 
Furthermore, reducing the number of membership functions resulted in 
a reduction in overfitting.

Our investigation into two optimisation algorithms, GridSearch and 
SubtractiveClustering, for training the ANFIS fuzzy system unveiled that 
while GridSearch generally outperformed in terms of R2 score, Sub-
tractiveClustering demonstrated greater stability. This emphasises the 
importance of selecting an appropriate optimisation algorithm tailored 
to the specific dataset’s characteristics.

Moving forward, further research could focus on refining the ANFIS 
model by exploring different membership function types for different 
features and unequal range distributions. Additionally, integrating 
domain knowledge and expert insights into the adjustment process 
could enhance the fuzzy system’s interpretability and robustness.

Overall, this study underscores the potential of the ANFIS fuzzy 
system as a versatile tool for adjusting low-cost sensor data in envi-
ronmental monitoring applications. By harnessing its interpretability 
and adaptability, researchers and practitioners can gain deeper insights 
into complex environmental phenomena, enabling informed decision- 
making to tackle environmental challenges effectively.
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