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Featured Application: Natural compound extracts from lichens were able to decrease and/or in-
hibit the growth of microorganisms of interest in human health, thus providing a good alternative
alone or in combination with drugs for therapy.

Abstract: The antimicrobial properties of two lichen extracts (LC1 and LC2 solutions extracted in
acetone and cyclohexane, respectively) were investigated against both Gram-positive and Gram-
negative microorganisms through the agar well diffusion assay. Results displayed that both samples
were similarly effective against all the indicator strains. The antimicrobial activity was maintained up
to 30 days against Candida albicans ATCC 10231 with an inhibition zone of 38 mm and 37 mm for the
LC1 and LC2 solutions extracted, respectively. In order to separate the single chemical components
and to associate them with the biological activity, the two extracts were subjected to an activity-
guided fractionation followed by a liquid chromatography mass spectrometry (LC-MS) Ion Trap
6310A for the chemical characterization. Chromatogram analysis of each sample that maintained an
antimicrobial activity revealed the presence of a significant peak, at a retention time (tg) of 10.8 min,
corresponding to a scabrosin derivative that could likely be associated with the antimicrobial activity.
Results obtained in the present investigation, especially against the opportunistic pathogen C. albicans,
are encouraging and could represent a preliminary step to a future solution toward a microorganism
responsible for fungal infections, mainly occurring in immunocompromised patients and recently

caused by drug-resistant strains.
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1. Introduction

In recent years, a strong interest has been observed in achieving the characterization
of biologically active compounds from natural sources especially for their potential ther-
apeutic use in infectious diseases, including fungal infections that can have important
consequences in immunocompromised patients [1]. Some sources of biodiversity that may
be largely explored are lichens [2]. Lichens can grow on a wide variety of substrates, and
they are adapted to survive at any latitude and longitude, in various extreme and adverse
environments. Lichens are a well-known symbiotic association of two organisms function-
ing as a single entity, derived from the close partnership between fungi and algae and/or
cyanobacteria [3,4]. This association allows the lichen to obtain simple sugars, which the al-
gae and/or cyanobacteria transfer to the fungus through photosynthesis, thereby becoming
able to biosynthesize complex and specific metabolites [5]. The production of a wide range
of primary (intracellular) and secondary (extracellular) compounds gives the lichen much
of its intrinsic resistance [6]. Furthermore, lichens produce a wide variety of secondary
metabolites that belong to low molecular weight aliphatic and aromatic chemicals that
accumulate mainly in the outer cortex or medullary layer [7,8]. Various compounds have
been identified, such as monoaromatics, depsides, depsidones, pulvinates, dibenzofurans,
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anthraquinones, and xanthones [9,10]. Lichens are still poorly understood as a source of
biological compounds, and their potential needs to be fully explored and utilized as they
could represent a promising source of bioactive natural products capable of sustaining
human life. Some of these substances, similarly to other plants or plant derivatives, exhibit
various biological activities to potentially use them in the pharmaceutical field [11-14].
Antimicrobial activity is frequently found in lichens that produce compounds such as
atranorin, salazinic acid, lecanoric acid, and usnic acid, with both antibacterial and antifun-
gal properties against microorganisms of interest in human health [15]. The antibacterial
activity of four ethanolic extracts of lichens was reported toward Gram-negative and Gram-
positive pathogens [16,17], and lichen active compounds were found to be also effective
against ARB (antibiotic-resistant bacteria) strains, such as Enterococcus faecalis and Staphylo-
coccus aureus [18-21]. Among these lichen active compounds, usnic acid is the most studied
for its strong biological activities (e.g., antibacterial, antiviral, and antioxidant properties).
The antiviral activity of usnic acid is due to the inhibition of transcription, just as the
antibacterial activity is given by the inhibition of DNA and RNA synthesis in sensitive
bacteria cells. Thus, the antimicrobial activity is expressed mainly by the interference with
RNA synthesis and secondarily by the impairment of bacterial DNA replication, especially
for Gram-positive bacteria [22]. Considering the growing interest in the antibiotic resis-
tance phenomenon, the reduced sensitivity of pathogens to different antimicrobials, and
the lack of new antimicrobial drugs, the research and identification of alternative natural
products active alone [23-25] or in combination with synthetic drugs [26-28] might be a
significant step in the discovery of new antimicrobial compounds. The field of medicine
was revolutionized by the discovery of antibiotics, but the increase in their production and
their excessive and improper use have caused a constantly increasing selective pressure
on bacterial populations, with consequent widespread genes responsible for antibiotic
resistance. The massive use of antibiotics is a problem not only in the field of medicine,
but also in agriculture, animal husbandry, and aquaculture, and it is increasingly linked to
the presence of resistant bacteria in these fields. Most of the antibiotics consumed are ex-
creted unchanged and are then introduced into the environment either directly or through
waste streams [29]. The effects of these wrong behaviors on microbial communities are
wide-ranging, as resistance to antibiotics disseminates rapidly not only in the clinic but
also across different ecosystems around the world. For these reasons, many Gram-positive
and Gram-negative antimicrobial-resistant (AMR) pathogens represent a great concern
not only in the nosocomial field, but also in the community. The use of antimicrobials, for
the treatment and control of infections in humans and for the promotion of growth in the
livestock field, can cause the selection of both Gram-positive and Gram-negative resistant
strains [30].

In recent years, many nosocomial and community-acquired pathogens have developed
high-level resistance to antimicrobial drugs. Of particular importance are vancomycin-
resistant enterococci (VRE) [31], methicillin-resistant Staphylococcus aureus (MRSA) [32],
third- and fourth-generation cephalosporin-resistant Enterobacteriaceae (ESBL) [33], and
multidrug-resistant Pseudomonas aeruginosa (MDRPA), which severely limit available an-
timicrobial alternatives [34].

With regard to antifungal activity, there are several studies on the activity of lichen
derivatives alone [35,36] or in combination with antifungal agents [37,38], particularly
toward Candida albicans, a most common human opportunistic pathogen. Candida albicans is
often associated with severe fungal infections treated with a limited number of antifungal
agents, especially azole compounds. The massive use of these antifungal agents has led to
the expansion of drug resistance in the treatment of this pathogen, a problem of increasing
importance [39]. The increase in bacterial and fungal resistance to existing drugs, associated
with the difficulty of finding new ones, is leading researchers to seek alternative agents to
prevent the evolution of drug resistance.
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This preliminary study was designed to explore the antimicrobial activity of extracts
obtained from the lichen Physconia grisea collected from waste made of branches in the
Bologna area (Emilia-Romagna, Italy) against different human pathogens.

2. Materials and Methods
2.1. Human Pathogens Strains and Culture Conditions

Both classified ATCC (American Type Culture Collection) microorganisms (Staphy-
lococcus aureus ATCC 6538, Enterococcus faecalis ATCC 29212, Bacillus subtilis ATCC 6633,
Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC
10231) and bacteria isolated in our laboratory (labeled with the acronym MM—Modena
Microbiology) (Burkholderia cepacia MM 08, Klebsiella pneumoniae MM 01) were used as
microbial indicators in this study. All strains from —80 °C glycerol stocks were revitalized
and grown in both Tryptic Soy Broth (TSB, Oxoid S.p.A, Milan, Italy), Tryptic Soy Agar
(TSA, Oxoid S.p.A, Milan, Italy), Sabouraud Dextrose Broth (SDB, Oxoid S.p.A, Milan,
Italy), and Sabouraud Dextrose Agar (SDA, Oxoid S.p.A, Milan, Italy) for 18-24 or 48 h (for
Candida albicans ATCC 10231) at 37 °C or 30 °C, depending on the target microorganism’s
optimal growth condition.

2.2. Extraction of Lichen Samples

The investigated lichen was collected in the cold season (March) in the Bologna area
(Emilia-Romagna, Italy) from waste made of branches. After harvesting, the lichens were
air-dried at room temperature for 48 h, and then placed in a desiccator for 2 days at
20 °C. Then, the samples were placed in a sterile Petri dish whose bottom contained a
filter paper moistened with distilled water and left at room temperature until use. At
the moment of employment, 5 g of finely cut thalli were put into a Soxhlet extractor and
underwent consecutive cycles of extraction, using cyclohexane and acetone [40]. Then,
300 mL of solvent was submitted to the extraction procedure, and two different extraction
procedures were carried out, one for cyclohexane and the other one for acetone. The
extracts were filtered and then concentrated under reduced pressure in a rotary evaporator.
The obtained extracts were stored at room temperature until they were used to test their
antimicrobial activity.

The yield of the extraction process was calculated as follows:

(g final extracted compound/g initial compound) x 100.
Yields of 1.0% (w/w) for solution LC1 and 2.4% (w/w) for solution LC2 were obtained.

2.3. Screening of the Antimicrobial Activity of Lichen Extracts

The sensitivity of microorganisms to lichen extracts was analyzed by the agar well
diffusion assay [41]. In detail, the dried extracts obtained from cyclohexane and acetone
solvents were named LC1 and LC2, respectively, dissolved in 5 mL of dimethyl sulfoxide
(DMSO, Sigma Aldrich St. Louis, MO, USA). Then, 100 puL of each solution in the concen-
tration of 1000 pg/mL was tested on wells of about 6 mm in diameter hollowed out in
TSA plates. All plates were placed under a biosafety cabinet to allow a correct diffusion of
the solution. On each plate, 6 mL of soft agar containing 10° CFU/mL of each indicator
strain was inoculated, and plates were incubated for 24 h at 37 °C or 30 °C. A clear zone
of inhibition around wells quantified the antimicrobial activity. The assay was repeated
at exact time intervals (7, 15, and 30 days) to determine the stability of the antibacterial
activity over time of lichen extracts stored at room temperature. All experiments were
performed in triplicate, and a DMSO solution (diluted 1:10 in sterile distilled water) was
used as a negative control.

2.4. Fractionation of Lichen Extracts

Since both LC1 and LC2 showed some antimicrobial activity (see below), in order
to identify the components linked with this biological characteristic, they were subjected
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to an activity-guided fractionation on a silica gel column (10 mm x 50 cm). The column
was developed with petroleum ether, ethyl acetate, and methanol in a ratio of 6:4:0.5. The
fractions were collected, diluted in a DMSO solution (1:10 in sterile distilled water), and
tested through the agar well diffusion assay. All the solvents (cyclohexane, acetone, and
DMSO) were used as a negative control.

2.5. Liquid Chromatography Mass Spectrometry Analysis

The two lichen extracts and each fraction obtained from the fractionation procedure
were analyzed using a liquid chromatography mass spectrometry (LC-MS) lon Trap 6310A
(Agilent Technologies, Santa Clara, CA, USA) to determine their chemical composition. For
each sample, 100 pL was diluted in 900 pL of sterile distilled water and 100 pL of acetoni-
trile. Compounds in the extracts were partitioned on an Agilent 1200 series HPLC (Agilent
Technologies, Inc., Santa Clara, CA, USA) consisting of a vacuum degasser, an autosampler,
and a binary pump equipped with a RP C18 analytical column (3 mm ID x 210 mm, 5 um
particle size, Agilent Zorbax SB). Acidified water (0.1% formic acid v/v) and acidified
acetonitrile (0.1% formic acid v/v) were employed as the mobile phases A and B, respec-
tively. The mobile phase was designed as follows: column flow, 0.300 mL/min; stop time,
20.00 min; post time, 10.00 min; timetable, 0 min at 40% B, 10 min at 100% B, 12 min at
100% B, and 15 min at 40% B; Injection volume, 10.0 pL.

For LC-MS/MS analysis, the Agilent 1200 LC was coupled to an Agilent 6310A
Ion Trap (Agilent Technologies Inc., Palo Alto, CA, USA) equipped with an electrospray
interface in negative mode, where the ion trap examined at 50-800 m/z ranges at 1300 u/s
during partitioning and detection. The maximum accumulation time for the ion trap was
set at 10 ms, the target count was set at 8000, and the compound stability was set at 100%.
The optimal values of the ESI-MS conditions were as follows: capillary voltage, 3.5 kV;
drying gas temperature, 320 °C; drying gas flow, 10.0 L/min; nebulizing gas pressure,
32.0 psi.

Each analysis was preceded by a thin-layer chromatography (TLC) analysis. The TLC
test was conducted on precoated Si60 F254 Silica plates (Merck-Sigma Aldrich, Darmstadt,
Germany). Typically, 3 uL solutions were spread on the plate and dried. The plate was
placed in a saturated chamber with a blend of cyclohexane and ethyl acetate in a ratio of
7:3. Spots were observed under an ultraviolet lamp.

2.6. Statistical Analyses

All values are the arithmetic mean of three determinations & SD (standard deviation).
The statistical significance was determined by t-test and ANOVA test using statistical pro-
gram GraphPad Prism 9.2.0. (San Diego, CA, USA). The p-values were declared significant
at <0.05.

3. Results
3.1. Extraction of Lichen Samples

The crude extracts obtained at room temperature by the Soxhlet apparatus in cyclo-
hexane and acetone appeared as pale-yellow oil. The extraction protocol led to extraction
yields of 1.0% and 2.4% for the two solvents, respectively.

3.2. Screening of the Antimicrobial Activity of Lichen Extracts

The antimicrobial activity of LC1 and LC2 lichen extracts, tested at the concentration
of 1000 nug/mL by the agar well diffusion assay against relevant human pathogens, is
shown in Table 1. Both extracts showed the same antimicrobial activity 1 day after the
extraction procedure, albeit with some differences among the indicator strains according to
the diameter of the inhibition zone. No activity was detected for the DMSO solution used
as a control.



Appl. Sci. 2023,13,1976

50f 10

Table 1. Antimicrobial activity of cyclohexane (LC1) and acetone (LC2) lichen extracts against human
pathogens using the agar well diffusion assay. Data are expressed in mm (diameter of inhibition
zone) detected 1, 7, 15, and 30 days (d) after extraction procedure. Values are the arithmetic mean
(n =3) & SD (standard deviation). Values marked with letters were statistically different according to
t-test and ANOVA; p < 0.05 (%), p < 0.01 (%), p < 0.001 (), and p < 0.0001 (9).

LC1 LC2
1d 7d 15d 30d 1d 7d 15d 30d
Staphylococcus aureus ATCC 6538 8§+2 4+£052 0P 0b 8+1 3+15P 0b 0b
Enterococcus faecalis ATCC 29212 24+2 24 +1 0d 0d 24 +0.5 22+1 0d 0d
Bacillus subtilis ATCC 6633 16 £2 15+1 0¢ 0°¢ 16 £0.5 14+1 0¢ 0°¢
Escherichia coli ATCC 8739 24£05 0d 0d 0d 24415 0d 0d 0d
Pseudomonas aeruginosa ATCC 27853 22 42 0d 0d 0d 22+1 0d 0d 0d
Burkholderia cepacia MM 08 6+1 0d 0d 0d 6+2 0d 0d 0d
Klebsiella pneunoniae MM 01 12405 0d 0d 0d 12425 0d 0d 0d
Candida albicans ATCC 10231 40+2 40+3 39+£05 38+3 40+1 40+1 37+2  37x1

According to the results, 24 h after the extraction procedure, B. cepacia MM 08 was
the least sensitive microorganism to lichen extracts, as shown by the small diameter of the
inhibition zone (6 mm), followed by S. aureus ATCC 6538 (8 mm), K. pneumoniae MM 01
(12 mm), and B. subtilis ATCC 6633 (16 mm). More relevant inhibition halos were observed
for the other indicator strains (E. faecalis ATCC, E. coli ATCC 8739, P. aeruginosa ATCC 902,
and C. albicans ATCC 10231) compared to the previous ones. The highest sensitivity was
detected against Candida albicans ATCC 10231, recording a diameter of 40 mm. Analyzing
the long-term antimicrobial effects (7, 15, and 30 days after the extraction procedure),
both lichen extracts were active for no longer than 1 day against the majority of indicator
strains. The two extracts maintained their activity up to 7 days (Figure 1) against the three
Gram-positive pathogens E. faecalis ATCC 29212, S. aureus ATCC 6538, and B. subtilis ATCC
6633, whereas the activity was retained up to 30 days toward C. albicans ATCC 10231.

Figure 1. Antimicrobial activity of LC1 and LC2 lichen extracts against (a) Enterococcus faecalis ATCC
29212 and (b) Candida albicans ATCC 10231 7 and 30 days, respectively, after the extraction procedure.

3.3. Fractionation of Lichen Extracts

From the chromatographic separation of LC1 and LC2, 19 and 18 fractions were
obtained, respectively. Among the 19 samples of LC1, TLC analysis showed organic com-
pounds only in fractions 5-17 (Figure 2); on the contrary, LC2 fractions did not exhibit a
clear composition. Nevertheless, both LC1 and LC2 fractions were analyzed for antimicro-
bial activity through the agar well diffusion assay as previously described. Results obtained
for LC1 fractions showed a good antimicrobial activity in samples 8-16 toward all indicator
strains, although with a reduced diameter of the inhibition zone, compared to the total LC1
extract, probably due to the fractionation of the active compound into the various samples.
On the contrary, in all LC2 fractions, no antimicrobial activity was detected; therefore, the
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chemical compound associated with the antimicrobial activity was probably diluted during
the procedure for the separation into fractions.

Figure 2. Results of thin-layer chromatography (TLC) analysis of LC1 solution’s fractions.

3.4. Liquid Chromatography/Mass Spectrometry Analysis

The most relevant and interesting peaks of LC1 and LC2 extracts were obtained at
retention times (tr) of 6.3 min (Figure 3), 10.6 min (Figure 4), and 11.5 min (Figure 5),
corresponding to a wide diversity of secondary metabolites. Acetone exhibited higher a
extraction yield than hexane as it is a more polar solvent that allowed the extraction of
polar components, which could explain the higher yield (Table 2).
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Figure 3. Peak at retention time of 6.3 min for solution LC1 (black) and solution LC2 (red).
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Figure 4. Peak at retention time of 10.6 min for solution LC1 (blue) and solution LC2 (green).
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Figure 5. Peak at retention time of 11.5 min for solution LC1 (green) and solution LC2 (gray).
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Table 2. Extraction yields and main metabolites in LC1 and LC2 lichen extracts.

Lichen Extracts Solvent % Yield Main Matabolites
LC1 Cyclohexane 1.0 variolatic acid scabrosin derivates
LC2 Acetone 2.4 variolatic acid scabrosin derivates

Chromatograms of samples 8-16 obtained from LC1 fractionation revealed the pres-
ence of a significant peak at tg 10.8 min (Figure 6). Liquid chromatography/mass spec-
trometry (LC-MS) analysis, in accordance with the GNPS database [42], showed that this
compound was traceable to a scabrosin (MW = 532.6) (Figure 7) derivative that was absent
in the remaining fractions of LC1, as well as in all the LC2 samples. These results suggest
that the antimicrobial activity can most be likely associated with the scabrosin derivative
that generates the peak at 10.8 min.
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Figure 6. Example of a LC1 fraction HPLC chromatogram (fraction 8) showing the antimicrobial
activity against Candida albicans ATCC 10231. The peak at a retention time (tg) of 10.8 min corresponds
to a scabrosin derivative.
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Figure 7. Example of the mass spectrometry (MS) spectrum related to the peak at 10.8 min.

4. Discussion

The research and the use of new drugs from natural sources have been accelerated in
recent years. Researchers are increasingly focusing on the discovery of new compounds,
which could be used for the treatment of various infectious diseases, especially those
caused by antibiotic-resistant microorganisms. A few chemical compounds have been
associated with the antimicrobial activity of lichens. Usnic acid is the most examined
among lichen compounds, and several studies have been developed to investigate its
antimicrobial properties [43,44]. Results obtained in our study demonstrate the presence in
the investigated lichen of bioactive compounds with a wide spectrum of activity against
yeasts and bacteria, which could be associated with a scabrosin derivative on the basis of the
chemical characterization. The scabrosin esters belong to the epipolythiodioxopiperazine
(ETP) family of fungal metabolites, and they are the first ETP compounds isolated from
lichens [45]. ETP compounds display an extensive range of biological activity, including
antibacterial and antifungal properties [46]. ETP scabrosin ester inhibits mitochondrial
function, which results in the release of calcium and magnesium, leading to cell death by
apoptosis [47].

Our results suggest that natural compounds extracted from lichens can be effective
against pathogenic microorganisms, thus providing an interesting alternative to the use
of traditional antimicrobials. In detail, the two lichen extracts were able to inhibit the
growth of bacteria of interest in human health, showing the same activity, especially
against Gram-positive bacteria. This can be explained by the fact that LC-MS analysis
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References

revealed the two extracts to contain the same components. Evidently, the two solvents were
both effective in extracting the bioactive metabolites. The most interesting and relevant
result was obtained against Candida albicans, which was susceptible to the extracts up to
30 experimental days. The Candida genus is responsible for many fungal infections, and
the species C. albicans and Candida glabrata are involved in the 65-75% of infections in
immunocompromised patients [48,49]. In addition, considering the emergence of drug-
resistant C. albicans strains, especially in clinical settings, due to the excessive use of
fluconazole and to the restricted number of new antifungal drugs, the development of
new effective anti-Candida approaches is necessary to target fungal diseases. Many studies
have demonstrated the antimicrobial activity of lichen extracts against Candida species,
used alone or in combination with other drugs [17,50,51]. Some studies on the anti-Candida
activity of usnic acid showed how this compound can alter the pro-oxidant-antioxidant
balance, which causes cell death due to irreversible tissue damage [52]. Furthermore, usnic
acid was able to reduce Candida biofilm by decreasing the amount of sugars present in the
exopolysaccharide (EPS) layer [53].

With regard to the amount of extracted active metabolites, as for other plant derived
natural compounds, the different environmental factors (light, temperature, precipitation
rates, and humidity) are particularly important in determining the growth differences of
lichens and the consequent production of secondary metabolites [54]. However, the basis of
the biosynthesis of active lichen compounds and their functions related to climatic factors
is poorly understood [55]. Some studies have shown that the concentrations of secondary
metabolites such as atranorin and salazinic acid differ according to altitude [56], while
usnic acid concentrations are affected by seasonal climatic changes [57]. This variability
in the production and concentration of active lichen compounds, determined by place
of growth, microclimatic factors, and seasonality, may partially represent a limitation of
research in this field. The encouraging results on the biological activities that emerged in
the present investigation, however, represent a starting point for further in-depth studies
of the most represented active metabolites. In conclusion, the preliminary results obtained
in the present investigation are of interest and encouraging, especially the prolonged
antimicrobial activity shown against the opportunistic pathogen Candida albicans. The
use of metabolites derived from lichens might represent a significant alternative or as a
synergistic adjuvant in clinical field. Additional experiments are necessary to isolate and
characterize the lichen compound associated with the anti-Candida activity, in order to test
it alone or in combination with other natural or synthetic drugs, and to validate its use as a
natural antimicrobial product.
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