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Abstract

Purpose – Prior literature has widely established that the design of storage locations impacts order picking
task performance. The purpose of this study is to investigate the performance impact of unit loads, e.g. pallets
or rolling cages, utilized by pickers to pack products after picking them from storage locations.
Design/methodology/approach –An empirical analysis of archival data on a manual order picking system
for deep-freeze products was performed in cooperation with a German brick-and-mortar retailer. The dataset
comprises N5 343,259 storage location visits from 17 order pickers. The analysis was also supported by the
development and the results of a batch assignment model that takes unit load selection into account.
Findings –The analysis reveals that unit load selection affects order picking task performance. Standardized
rolling cages can decrease processing time by up to 8.42% compared to standardized isolated rolling boxes
used in cold retail supply chains. Potential cost savings originating from optimal batch assignment range from
1.03% to 39.29%, depending on batch characteristics.
Originality/value – This study contributes to the literature on factors impacting order picking task
performance, considering the characteristics of unit loads where products are packed on after they have been
picked from the storage locations. In addition, it provides potential task performance improvements in cold
retail supply chains.

Keywords Europe, Warehousing, Retail logistics, Quantitative survey

Paper type Case study

1. Introduction
In the context of order picking as the process of retrieving products from storage locations
based on customer orders, it is the backdrop of this paper that it remains a laborious and cost-
intensive process of supply chains. This is because it is still widely performed manually,
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especially in the retail context wheremanual picker-to-parts order picking systems arewidely
diffused (Boysen et al., 2021). Since order picking accounts for more than 55% of warehouse
operation costs (de Koster et al., 2007), it also represents one crucial element for firms to
remain competitive (Neumann et al., 2021; Sgarbossa et al., 2020). Optimizing warehouse
design elements such as layout design (Roodbergen et al., 2015), storage assignment (Reyes
et al., 2019), zoning (de Koster et al., 2012), and routing policies (Masae et al., 2020) is a central
avenue through which firms can improve order picking task performance. Recent research
showed that the design of storage locations, including height (Loske et al., 2022; Petersen et al.,
2005), angle (Calzavara et al., 2017; Hanson et al., 2018), and depth (Hanson and Finnsg�ard,
2014; W€anstr€om and Medbo, 2008), is particularly effective for improving order picking task
performance.

The addressed research problem consists of the fact that the design of the unit loads
where to pick from at the storage location, including the type and the size, affect order
picking task performance, with existing research proving that picking from small plastic
containers is faster than picking from EUR-pallets (Neumann and Medbo, 2010). Literature
on the design of storage location and unit loads for manual picker-to-parts order picking
systems led both scholars and firms to largely conclude that these warehouse design
elements reduce the processing time by improving the accessibility of storage locations for
pickers, mainly in terms of shape and size. Yet, this research follows the question of the
design of another element that might affect order picking task performance; some picking
missions require products to be packed (the process of realizing geometric combinations of
products assigned to unit loads) after they have been picked from the storage locations.
Similar to storage locations, the unit load utilized by pickers to pack products after
retrieving them might vary in size and shape. This raises the possibility that the design of
the unit load utilized by the pickers to pack products might affect order picking task
performance. So far, literature attention has been devoted to the design of the systems where
products wait to be picked from, not considering the impact of the unit loads used to pack on.
In this paper, we want to prove the effect of the design of the unit load used for packing
products on processing time, answering the question “How and to what extent can the design
of unit load used for packing products affect processing time in manual picker-to-parts order
picking systems?”. As outlined before, this important step in the order picking process has
not yet been analyzed in depth empirically. This is novel and significant, as outlined before,
given the overall share of manual order picking cost among all warehouse management cost
positions and, in general, with backend handling of retail and many other supply chain
processes.

For this purpose, we back this question up bymethodologically testing and comparing the
impact of two different types of unit load used in retail to pack products (i.e. standardized
isolated rolling boxes and standardized rolling cages) on order picking task performance. An
empirical analysis of archival data obtained in cooperation with a large German brick-and-
mortar (B&M) grocery retailer was conducted to address the question. Our dataset included
data from a cold warehouse, including N 5 343,259 storage location visits collected during
November 2021. We formulate and apply a parametric log-logistic accelerated failure time
model (AFTM) with processing time as the dependent variable, we include the type of unit
load used for packing products as an independent variable, and we control for relevant
parameters in order picking task performance, e.g. the travel distance, product weight,
product, and volume. The model allowed one regression line per order picker, meaning that
each regression line shows the correlation between all the selected independent variables and
control parameters and the processing time considering the performance of a specific picker.
The results of the analysis show that the two types of unit load used for packing products had
different regression coefficients for the same picker, meaning that each picker has a specific
unit load with which they perform better. Based on these findings, we formulated a batch
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assignment model to assign picking tasks to workers according to their order picking task
performance with the two different unit loads.

The remainder of this paper is structured as follows: Section 2 presents related literature
on order picking systems and factors affecting order picking task performance in manual
material handling. Section 3 explains our methodology, empirical setting, and data collection.
We present the formulation of the log-logistic accelerated failure time model in Section 4. We
provide empirical results and analysis in Section 5. The batch assignment model is presented
in Sections 6 and 7 draws the conclusion of the study.

2. Related literature
2.1 Order picking systems
Order picking is defined as the process of retrieving products from storage in response to a
specific customer request (de Koster et al., 2007). In brick-and-mortar retailing, the basic
objective of order picking is breaking up the load units received from suppliers into smaller
sets (Dallari et al., 2009). Depending on order characteristics – including order size,
assortment, workload variation, load stability, store-specific buildup, product expiry, and
lead time – brick-and-mortar retailers may utilize order picking systems with different
automation levels, ranging from fully-automated case picking to fully manual picker-to-parts
order picking (Boysen et al., 2021).

Automated order picking systems are increasingly applied in distribution centers, since
they offer space and time advantages compared to manual systems that makes them
particularly fit for e-commerce operations (Azadeh et al., 2019). Recent and detailed reviews
about automated order picking systems can be found in Boysen et al. (2021)that specifically
addressed brick-and-mortar retailing, Boysen et al. (2019a, b) and Azadeh et al. (2019),
demonstrating the increasing interest in exploiting the innovative technologies to introduce
warehouse automation (Olsen and Tomlin, 2020). Authors have classified automated order
picking systems into two types: (1) automated order picking systems, including cranes/
automated forklift (AS/RS), compact storage systems, and conveyors and dispensers, and (2)
robot-based order picking systems (Fragapane et al., 2021; Zou et al., 2021). The latter that use
free-roaming retrieval robots such as shuttles and AGV, are receiving increasing attention
since they offer higher flexibility in managing varying demand requirements (Chen et al.,
2022; L€offler et al., 2023). Grocery retailing and especially cold retail, offers an interesting and
challenging application for automated order picking systems: for example, refrigerated
warehouses could benefit from high-density compact storage systems for saving cooling
costs up to 30% (Boysen et al., 2019a, b). These systems could include automatic mobile racks
mounted on rails that open an aisle only when accessing a specific SKU is required (Foroughi
et al., 2021) that can be served by automatic cranes, automated forklifts, or shuttles (Azadeh
et al., 2019). Despite automated picking systems are gaining increasing interest from both
research and practice, the very large majority of order-picking activity in warehouses is still
performed by human workers (Schiffer et al., 2022) and, in grocery retailing, human
involvement remains necessary for most order picking operations (Loske, 2022).

FollowingTompkins et al. (2010, p. 434), manual picker-to-parts order picking contains the
sub-processes of (1) traveling to and from storage locations, (2) searching for storage
locations, (3) reaching and bending to access storage locations, (4) physically picking
products from a storage location, (5) packing products into orders on a unit load, and (6)
documenting picking transactions. In most picker-to-parts order picking systems, human
pickers are equipped with industrial trucks when picking stock-keeping units from the
picking area on the ground level (de Koster et al., 2007; Gu et al., 2010). The upper shelf levels
are utilized as reserve areas where full pallets are stored andmanually retrieved to supply the
ground level (Boysen et al., 2021).
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2.2 Factors affecting picking time in manual material handling
The design of order picking systems is one major component of the warehouse design and
includes equipment selection, including rack types, unit load size, or unit load position
(Dallari et al., 2009) and operation strategy selection (Gu et al., 2010). Dallari et al. (2009)
propose a general framework including an input stage (product data, order data,
specifications of order picking system structure), a selection stage (specification of
equipment and operating strategy, physical and information transformation), and an
evaluation stage for the analysis of systems and strategies.

Most of the empirical field-based research on factors impacting order picking task
performance in manual material handling is concerned with manual picking and handling
tasks in assembly lines. W€anstr€om and Medbo (2008) and Finnsg�ard and W€anstr€om (2013)
are examples of early approaches taking an explorative view on manual material handling
processes by testing for a variety of factors. Hanson et al. (2016), Calzavara et al. (2017), and
Hanson et al. (2018) are examples ofmore detailed examinations on the impact of unit load size
or unit load position on order picking task performance.

W€anstr€om and Medbo (2008) investigate the impact of materials feeding design on
assembly process performance in the context of a workstation in the automotive industry.
Their research methods included video recordings, work instructions, and layout drawings.
The variables under investigation were the sizes of the packaging types for a storage
location, including EUR-pallets, half-size pallets, and two different types of plastic
containers. They found that the design of component racks and the choice of packaging
types have a major impact on the assembly process performance. Also, Finnsg�ard and
W€anstr€om (2013) explore factors impacting order picking task performance in an
automotive assembly line. By conducting 128 full factorial experiments, they found that
packaging type, angle of exposure, the height of exposure, and part size have the greatest
impact on processing time.

Hanson and Finnsg�ard (2014) investigated the impact of unit load size on in-plant material
supply efficiency for a Swedish automotive assembly industry through empirical field-based
research. Their findings indicate that the transition to smaller unit loads resulted in savings
for the assembly process as the presentation of the parts was improved. Hanson et al. (2016)
chose an identical setting but were more concerned with tilting unit loads and the position of
products on a unit load. They found considerable differences between the front and the rear
sections of the pallet, as well as between the top and the bottom sections, where the picking
time varies depending on the position of each component within the container picked from.
When opposing order picking from pallets and picking from boxes, Calzavara et al. (2017)
show that in terms of picking time, picking from a tilted container is beneficial in comparison
to picking from a horizontal one. At the same time, picking from a smaller container is
beneficial in comparison to picking from a larger one.

Batch assignment generally deals with the question of how existing batches should be
assigned to a limited number of pickers (Scholz et al., 2017). Given that batch assignment aims
atminimizing the total time required to pick all items in a set of orders, objective functions are
designed tominimize travel time, subject to various constraints such asworker capacity, item
availability, and order due dates (Boysen et al., 2019; �Zulj et al., 2022). Order picker
heterogeneity has frequently been taken into account by the batch assignment literature in
order to account for individual differences (Matusiak et al., 2017). Srinivas and Yu (2022)
propose a collaborative human-robot order-picking system that optimizes order batching,
batch assignment and sequencing, and picker-robot routing tominimize the total tardiness of
all orders. The study develops an optimization model and a simulated annealing algorithm to
handle large instances and shows that the performance of the system is influenced by several
factors, including, e.g. human-robot team composition. Rasmi et al. (2022) address the
optimization of order picking planning in mixed-shelves storage strategy based e-commerce
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warehouses, which can improve picking efficiency. The proposed decomposition approach
effectively balances the trade-off between customer service level and workforce level and
provides recommendations for choosing a storage location assignment strategy. Grounded
on these approaches, we derive that individual differences of order pickers when packing
products into existing orders are underrepresented in the batch assignment literature.

2.3 Synthesis of research streams and research gap
Empirical studies on manual material handling suggest that the size and inclination of unit
loads can impact order picking task performance. However, these findings are mostly related
to material-feeding processes for in-plant supply and ignore the unit loads used to pack
products after picking them from storage locations. Picking products on standardized rolling
cages or standardized isolated rolling boxes is common in brick-and-mortar grocery retailing,
where picker-to-parts order picking systems are still predominant. Therefore, we identify a
research gap for empirical research on unit load selection impacting processing time in
manual picker-to-parts order picking systems. We specifically contribute to the literature on
packing problems of manual material handling, including, e.g. bin packing, vector packing,
vehicle loading, pallet loading, or container loading (Dowsland and Dowsland, 1992). For this
purpose, we define packing as the process of realizing geometric combinations of products
assigned to unit loads (Dyckhoff, 1990).

At the same time, humans are an integral part of manual picker-to-parts order picking
systems and need to be integrated (Grosse et al., 2015, 2017). Therefore, it is quite surprising
that models investigating the impact of unit load positioning on picking time neglect
workforce heterogeneity by assuming the human factor to be static, e.g. Hanson and
Finnsg�ard (2014) and Hanson et al. (2018). Calzavara et al. (2017) report large variations in
picking time between different sections of a pallet and between different heights of boxes.
However, the authors miss proposing a methodological integration of human factors for
quantitative evaluations. We aspire to close this research gap by including workforce
heterogeneity in our econometric model. Additionally, we aspire to formulate a batch
assignment method that considers worker heterogeneity. Katiraee et al. (2021) underline the
importance of the integration of worker heterogeneity for system modeling and design.

3. Empirical setting and data description
The dataset stems from a warehouse for deep-freeze perishable products operated by a large
German brick-and-mortar grocery retailer. All zones of the warehouse are operated as picker-
to-parts order picking systems with vehicle support provided by industrial trucks. Order
pickers supply the storage locations at the ground level with full pallets stored at the reserve
area in the upper shelf levels. All products are stored on full pallet units in storage locations
for manual picking by order pickers. After the picking, the products are packed on either
standardized rolling cages or standardized isolated rolling boxes. The standardized isolated
rolling boxes used by the retailer have a net size of 0.735 m in length, 0.825 m in depth, and
1.770 m in height. The standardized rolling cages have a net size of 0.682 m in length, 0.815 m
in depth, and 1.850 m in height. Figure 1 illustrates the two types of unit loads utilized in the
warehouse under investigation.

Both unit loads are used to pack the entire product range. Grounded on specific
characteristics of a grocery store, including, e.g. available store space and backroom capacity,
the warehouse management system defines whether standardized isolated rolling containers
or standardized rolling cages are utilized for an order. For example, if storage space in a
specific store is restricted, the warehouse management systems might try to use more
standardized rolling cages as they require less space due to their specific measurement sizes.
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Order picking data from November 2021 is utilized to empirically test the impact of the two
different unit loads on order picking task performance. Most warehouse management
systems store extensive data on order picking processeswhich are captured at a very detailed
level. Such data has been used to construct amodel capable of evaluating the accelerating and
decelerating impact of unit load selection on picking time as the dependent variable of
interest. We implicitly included in the model workforce heterogeneity through quantitative
warehouse management systems data on the past performance of each picker. This implies
that the variance and differences in-between different workers regarding their performance
levels are included in the analysis.

The initial dataset includes data on batch identification, pick-identification, unit load-
identification, article number, number of units picked, length, width, and height of secondary
product packaging, volume of secondary product packaging, the weight of the product, and
secondary product packaging, timestamps of each pick, the slot address per pick, and the
picker-identification. There is a trade-off one needs to consider when defining the units of
analysis and the data aggregation level with respect to the process and temporal aggregation
level (Gallino et al., 2017). Finer aggregation, e.g. pick level data, has the advantage of higher
statistical power as more observations and available variations exist. At the same time, it
may be less accurate. Higher aggregation, e.g. batch data or daily picking data, probably
hides the impact of order picking system design variables. Considering this trade-off, the
study at hand utilizes archival picking data on a pick level. To alleviate any concerns about
the validity of the results with respect to alternative decisions on data aggregation,
robustness checks are conducted.

The initial dataset includes N 5 369,074 storage location visits performed by 26 order
pickers. Because real-world archival data is used, the data logs are polluted for several
reasons, e.g. personnel breaks or system breakdowns. Thus, all storage location visits lasting
longer than 180 s are excluded from this study because they have been identified as non-valid
for the underlying scenario. To control for the speed of the industrial trucks, we select storage
location visits performed by identical vehicles. Furthermore, a speed ratio is calculated, and
all storage location visits with a travel speed higher than 3.33 m/s are excluded. After cross-
validating all data cleaning rules with the company, the final dataset comprises N5 343,259
storage location visits performed by 17 order pickers for 2,322 products.

4. Model formulation
Our empirical analysis focuses on estimating the impact of unit load selection for product
packing on order picking task performance. Due to the longitudinal nature of our research

Figure 1.
Visualization of the
unit loads available in
the empirical setting
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design, we measure processing time for each order picker repeatedly over time. Because the
repetitive measurement of individuals will violate the assumption of independence in linear
regression models, we propose an accelerated failure time model with multiple levels, e.g.
order pickers. This allows us to measure individual order pickers more than once without
artificially inflating our estimates.

To evaluate the impact of unit load selection on order picking task performance in
manual picker-to-parts order picking systems, the processing time is chosen as the
dependent variable of interest. In order to assess the impact of independent and control
variables on the dependent variable, event history analysis, also known as time-to-event
analysis or survival analysis, is proposed. Event history analysis summarizes statistical
models which are concerned with the probability and the duration until a given event
occurs (Mills, 2011). An event is formally defined as the instantaneous transition from the
origin state to the destination state (Oud, 2014), reflecting a broad conceptualization
transferable to a large scope of scenarios in logistics and supply chain management
research. In event history analysis, one essential methodological differentiation relates to
the assumption regarding the effect of covariates: While proportional hazard models
assume that covariates have a constant impact on the hazard function, the accelerated
failure time model assumes an accelerating or decelerating impact (Greene, 2018). In a
nutshell, accelerated failure time models are regression models with different likelihood
estimators than ordinary least-square regressions and use event time as the dependent
variable (Mills, 2011).

This logic is transferred to logistics application scenarios where the impact of
independent and control variables on process time is of special interest. The approach is
inspired by the landmark paper of Batt and Gallino (2019). In the accelerated failure time
model, T represents the time-to-event or survival time which we translate to the general
logistics management research context as processing time.T represents a random variable
equal to or greater than zero (T ≥ 0). In parametric survival models, T follows a particular
distribution, e.g. exponential, Weibull, logistic, lognormal, or log-logistic. For
methodological details, the reader is referred to the comprehensive overview presented
by Mills (2011). The choice for the parametric distribution assumed in the accelerated
failure timemodel is made by comparing themodel fit for a variety of different distributions
through the Log-likelihood ratio (LL).

In the proposed econometric model, the processing time is denoted as T; and it is defined
as the elapsed time between the beginning and end of storage location visits performed by one
order picker. Because accelerated failure time models are log-linear regression models for T,
the basic model is a linear function of the covariate(s) in the form ofY ¼ logðTÞ (Mills, 2011).
Furthermore, n independent predictor variables (xn) are defined and their corresponding
regression coefficients denoted as βn. Additionally, ε represents the error term assumed to
have a particular parametric distribution.

lnðTÞ ¼ β0 þ β1x1 þ . . .þ βnxn þ ε (1)

The coefficient in the parametric accelerated failure time model can be interpreted as follows:
a positive coefficient indicates that the log processing time increases, leading to longer
duration times. A negative coefficient indicates that the log processing time decreases,
leading to shorter duration times. The regression coefficients βn are parametrized by the
following transformation (Mills, 2011):

100 ðexpðβnÞ � 1Þ (2)

The mathematical notation of the econometric model utilized to calculate the estimates is as
follows:
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lnðprocessing timeÞ ¼ β0 þ β1 unit load þ β2travel distanceþ β3 pick level

þ β4 number of previous picks in the batchþ β5number of picks

þ weight per SKU þ β7 volume per SKU

þ β8 primary packages in secondary packageþ β9 picker experience

þ ε

(3)

where we dummy-code,

unit load ¼
�
1 if the load unit is a SIRC;
0 otherwise:

(4)

Following the model formulation, we further define the relevant variables and their
operationalization.

4.1 Dependent variable
4.1.1 Processing time. This variable operationalizes the time for one unit of order picking task
performance. The clock starts when the order picker confirms to start a pick by pushing “next”
on a touch display mounted on the industrial truck. The processing time includes picking the
product from the storage location and packing it on the unit load. The clock ends after the picker
travels to the storage location and picks the product by confirming the pick while pushing a
symbol representing the respective unit load on the industrial truck. Both timestamps are used
to set the border of the total processing time. Processing time is operationalized as a continuous
metric variable and frequently used in logistics management research to evaluate order picking
task performance (Batt and Gallino, 2019; Matusiak et al., 2017).

4.2 Independent variable
4.2.1 Unit load. As mentioned in Section 3.1, the warehouse under investigation utilizes two
types of unit loads, including standardized isolated rolling boxes and standardized rolling
cages. The variable is coded as a binominal dichotomous variable where standardized
isolated rolling boxes are coded as 0 and integrated into the reference model. Standardized
rolling cages are coded with 1.

4.3 Control variables
4.3.1 Travel distance. Picker traveling is one of the most time-consuming processes inmanual
picker-to-parts order picking systems (de Koster et al., 2007). Thus, the travel distance from
storage location i�1 to storage location i in meters is integrated as a continuous variable.

4.3.2 Pick level. In the scenario investigated, each product is stored on an individual pallet and
the pallets are stored in one of three possible rack layouts, including, full pallets stored on the
ground floor (pick level5 0meters), half-pallet positionedon theground floor level of the rack (pick
level5 0meters), and half-pallet positioned on the upper level of the rack at 1.20 m from the floor.

4.3.3 Number of previous picks in the batch. After being grasped from the storage location,
products are packed on the unit load. Herein, the filling level is relevant for the processing time.
The higher the filling level, the more complicated the packing problem – comparable to the
container staffing problem (Dyckhoff, 1990; Dowsland and Dowsland, 1992). The cumulative
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number of picks per batch is integrated as a discrete variable to control for the packing problem
complexity.

4.3.4 Number of picks. One batch includes picks from several storage locations. Herein,
multiple picks per storage location may be required, which is quantified as the number of
picks and a continuous variable.

4.3.5Weight per product.Theweight of products directly impacts human energy expenditure
in manual order picking systems (Battini et al., 2016). Therefore, weight in kilograms is integrated
per product as a continuous variable to control for physical effort in manual order picking.

4.3.6 Volume per product. Similar to the weight of products, article dimensions are
relevant for the packing process in manual order picking systems. Thus, the volume per
product in liters is integrated as a continuous variable to control for the article dimensions
impacting the complexity of the packing problem.

4.3.7 Primary packages in secondary package. One secondary package groups a certain
number of primary packages to create a product. The number of primary packages in one
secondary package is integrated as a continuous variable to control for the design of the
product packaging system.

4.3.8 Experience of order picker. Research on learning effects in manual picker-to-parts
order picking systems has proven that performance increases through experience (Grosse
et al., 2013; Grosse and Glock, 2013, 2015). Therefore, the cumulative picks per order picker
identification number and for the entire dataset are included to control for the picker
experience. Pickers with less than 1,000 picks are excluded. The experience of the order
picker is a discrete variable.

After explaining the dependent, control, and independent variables, relevant descriptive
statistics are provided in Table 1. Next, a check for cross-correlation states no significant
correlations that would require excluding variables (Mills, 2011). These results are
summarized in Table 2.

5. Empirical results and analysis
5.1 General approach
Testing for distribution assumptions of the survival object (i.e. dependent variable
processing time) is important before interpreting the estimates in the accelerated failure
timemodel. Therefore, several distributions are tested:Weibull (Model 1), Gaussian (Model 2),
logistic (Model 3), lognormal (Model 4), and log-logistic distribution (Model 5).

Table 3 summarizes the results of the accelerated failure timemodel integrating all control
variables and tests for time distribution. The results state that the best model fit with the
lowest LL ratio is found in Model (5) with a log-logistic distribution of the dependent variable
pick time (LL5 2,550,385). Therefore, a log-logistics accelerated failure time model is applied
to the empirical dataset.

5.2 Fixed effects and random effects models
Grounded on the above-stated findings, a fixed-effects log-logistic accelerated failure time
model with one regression line fitted to the entire dataset is applied. Therein, the individual
order picker is not integrated into the model (Model 6 and Model 7). In contrast, a mixed-
effects log-logistic accelerated failure time model allows one regression line per order picker
identification number and, therefore, allows an implicit integration of human factors (Model 8
and Model 9). The results indicate that the model fit significantly improves from
LL 5 2,549,237 (Model 7, fixed-effects model) to LL 5 2,530,178 (Model 9, mixed-effects
model). At this point, the reader shall be reminded that the lower the LL, the better the model
fit. In summary, the best model is a log-logistic accelerated failure time model with mixed
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effects allowing one regression line per order picker identification number. All relevant
results are summarized in Table 4.

When transforming the estimate by applying Equation (2), the results of Model 9 can be
interpreted as follows:

(1) Unit load: Compared to the reference model calculated for picks with standardized
isolated rolling boxes (unit load5 0), the utilization of standardized rolling cages (unit
load 5 1) reduces processing time by up to 8.42%.

(2) Travel distance: Each additional meter of traveling increases pick time by up to 1%.

(3) Pick level: Picking from the upper shelf levels rather than from the lower level
increases processing time by up to 7.68%. This finding is in contrast with the golden
zone assumption for manual order picking systems (Petersen et al., 2005).

No Variable
Description of order picking
operationalization

Order picking
operationalization Mean SD

1 Processing time Timestamps for the begin and the
end of the picking process are
used to set the border of the total
event time

Continuous 16.15 16.86

2 Unit load The unit load used in the cold
storage warehousing might take
the form of standardized isolated
rolling boxes or standardized
rolling cages

Binary dummy
0 5 isolated rolling
boxes (29.4%)
1 5 rolling cages
(70.6%)

0.73 0.45

3 Travel distance The distance in meters from a
storage location to a storage
location

Continuous 11.81 23.85

4 Pick level The pick level of the storage
location

Binary dummy
0 5 ground level
(62.77%)
1 5 chest level
(37.23%)

0.36 0.218

5 Number of
previous picks in
the batch

One batch consists of several
picks. This variable quantifies the
position of a pick within the
respective batch

Continuous 75.45 57.17

6 Number of picks Number of picks from one storage
location

Continuous 1.26 0.81

7 Weight per
product

Weight in kilograms per product,
including the products, primary
packages, and secondary
packages

Continuous 4.49 2.61

8 Volume per
product

Volume of the secondary package
in liters

Continuous 16.82 12.66

9 Primary
packages in the
secondary
package

Number of primary packages
packed into one secondary
package representing one product

Continuous 12.31 14.97

10 Experience of
order picker

Cumulative number of picks per
order picker and in the dataset

Continuous 11,672.41 7,841.50

Note(s):Descriptive statistics for the dataset after the data cleaning processwithN5 343,259 storage location
visits, 17 order pickers and 2,322 articles
Source(s): Authors’ own work

Table 1.
Order picking
operationalization of
variables and
descriptive statistics
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(4) Number of previous picks in the batch: Each additional pick per batch increases
processing time by up 0.04%.

(5) Number of picks: Each additional product to pick increases processing time by up
11.10%.

(6) Weight per product:Each additional kilogram to pick increases processing time by up
to 0.04%.

(7) Volume per product: Each additional liter to pick increases processing time by up to
0.21%.

(8) Primary packages in a secondary package: Each additional package in the product
increases processing time by up to 0.13%.

(9) Experience of order picker: every 1,000 cumulative picks decreases processing time up
to 0.50%.

5.3 Robustness checks
To alleviate any concerns about correlated residuals or picker-specific effects, two robustness
checks are conducted. This includes a 50 vs 50% sample split through random numbering
and a model with random picker selection in Table 5. For all robustness checks, the estimates
of the independent variables of interest remain mostly constant. Thus, the results are robust
to picker-specific effects.

6. Unit load assignment incorporating pickers heterogeneity
The results of the log-logistic accelerated failure Model (9) proved that picking from rollable
containers or from roll cage loads has different performance on the pick time. Therefore, an
optimizationmodel is proposed to decidewhether a batch needs to be packed into a box or a roll
cage. This optimization matches the characteristics of the unit load with specific and individual
human factors like height or age while assigning batches to pickers. This problem called the
linear sum assignment problem (Burkard et al., 2012), is a special case of a linear programming
problem (Cattrysse and van Wassenhove, 1992), and is one of the fundamental combinational
optimization problems in the branch of operations research. The goal is to minimize the total
assignment costs z (Lawler, 1963). Therein,mbatches need to be assigned tonworkers (n≥m) in
such a way that each batch is assigned to one worker, while each worker has no more than one
batch assigned. Formally, in an assignment problem, the number of batches equals the number
ofworkers.When this property is not fulfilled, it is possible (in polynomial time) to insert dummy
batches and manipulate the problem to have a proper problem (Burkard et al., 2012).

Assuming n 5 m, the basic description of the assignment problem is as follows:

min z ¼
Xn

i¼1

Xn

j¼1

cijyij (5)

s.t.

Xn

i¼1

yij ¼ 1 for j ¼ 1; 2; . . . :n ðeach job is assigned to one workerÞ

Xn

j¼1

yij ¼ 1 for i ¼ 1; 2; . . . : n ðeachworker has one job assignedÞ

IJLM
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yij ¼
�
1; if the worker i is assigned to job j
0; if the worker i is not assignes to job j

where,

n number of workers and batches (i 5 1, . . ., n)

ci,j unit cost of assigning worker i to batch j (i5 1, . . ., n; j5 1, . . ., n). It will be explained in
the remainder of the section how these costs are obtained.

yi,j worker i assigned to batch j (1 if assigned, 0 otherwise)

Once themodel is solved, dummy batch assignments are identified and a subset of the workers
will not be used. Grounded on this general linear model above, which can be solved very
efficiently in polynomial time, the integration of individual worker characteristics is proposed.
These individual characteristics are quantified through the AFTM analysis introduced in the
previous chapters, and also take into account which unit load is used by each order picker
during the shift under investigation. This includes an order picking operationalization through
the individual intercepts of each worker i, which is denoted as b0i. Furthermore, the random
slope allows individual regression weights for a given number of beta-coefficients, denoted as
b1i, e.g. the coefficient for picking containers and the ability of a picker to process containers
faster than other pickers do. The regression weights are multiplied by the individual batch
characteristics.Herein, x1i sets the characteristics of the batchn, e.g.whether a batch needs to be
packed into rollable containers or a roll cage. Figure 2 visualizes our procedure and highlights
themapping between the coefficient b describing the characteristics ofworkers, the coefficient x
describing the characteristics of the batches, and the costs c of the assignment problem.

In a nutshell, the optimization model allows to assign batches where products need to be
packed into standardized isolated rolling boxes to pickers that are good at packing these
units. The same applied to the standardized rolling cages. Note that the model assumes that
each worker is assigned to one batch and vice versa.

The batch assignment model considering worker heterogeneity is then applied to the real-
world dataset, where 343,259 storage location visits are aggregated to 136 batches according
to the existing batch-IDs. These batches represent the batches in the optimization model and
are assigned to 17 order pickers representing the workers. The results indicate that
processing times can be reduced with respect to the explained assignment model by about
20% on average when assigning batches to pickers by taking worker heterogeneity into
account. Figure 3 illustrates the distribution of the potential cost savings in categories from
below 10% to nearly 40%.

Figure 2.
Visualization of
procedure for batch
assignment based on
individuals
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7. Conclusion
The aim of this study was to answer the research guiding question, “How and to what extent
can the design of unit load used for packing products affect processing time inmanual picker-to-
parts order picking systems?”. Therefore, a log-logistic accelerated failure time model was
applied to a unique empirical dataset comprising N5 343,259 storage locations by 17 order
pickers in cold storage warehousing during November 2021.

The findings of this study provide quantitative evidence that compared to standardized
isolated rolling boxes, the utilization of standardized rolling cages can decrease processing
time by up to 8.42%and, in thisway, improve order picking task performance. Therefore, this
is empirical proof that specified unit load selection can significantly impact processing time
as an economic outcome variable of order picking systems.

From a theoretical perspective, the findings of this study contribute to the stream of
literature investigating factors impactingorderpicking task performance. The characteristics of
unit loads where products are packed after they have been retrieved from the storage locations
have not generally been considered by existing research. Therefore, we argue that this study
investigated a second crucial element of the order picking task performance process, especially
in cold retail supply chains – not where to pick from, but where to pack on. Furthermore, our
findings can enhance the utility of optimization and analytical models used in supply chain
management. By incorporating our quantitative insights on unit load selection as an additional
constraint, these models can provide more accurate and comprehensive decision support,
influencing areas such as batch assignment, batch configuration, and performance forecasts.

This can be further extended towards the human factor and heterogeneity angle in
operations management: If the batch allocation is applied in relation to identified human-
specific variances in performance in relation to unit load selection, this could be a major
improvement. The applied simulation study in this regard states that, on average, close to
20% and even up to 40% of pick time can be saved this way.

From a managerial perspective, the findings span an interesting trade-off between food
supply chains and brick-and-mortar grocery retailing. The empirical results indicate that
standardized rolling cages accelerate processing time and, therefore, possibly lead to a
reduction of personnel costs with the ceteris paribus assumption of a fixed order volume.
However, when designing the distribution channels of standardized rolling cages to
supermarket stores, deep-freeze transports are necessary. In light of rising energy costs in the
context of the Ukrainian crisis, as well as sustainability issues (Hoang et al., 2023; Klumpp,

Figure 3.
Potential cost savings
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2018; Rivera-Valle and Silva, 2023), deep freeze transport logistics may cause subsequent
costs. Therefore, logistics managers can ground a supply chain cost analysis on the empirical
findings of this study. Management is then using the applied calculation models and values
for their own cost and process planning in their specific process setting. Furthermore, store-
specific characteristics defining unit load selection are well-established in retail practice. Our
findings can, however, make an important contribution to quantifying how positive effects
could look when changing this. When retail managers decide to change backroom cooling
capacity in order to enable large-scale use of non-isolated but smaller rolling cages, our
empirical results can contribute to return-on-investment calculations.

This study has several limitations, which provide space for further research avenues.
These may include but are not limited to (1) A triple-bottom-line sustainability evaluation
approach for the impact of unit load selection in brick-and-mortar grocery retailing. This is
especially the case for cold supply chains where transport temperature becomes relevant. (2)
A multi-echelon supply chain evaluation integrating transport and in-store logistics
perspectives. This is especially the case for in-store operations where limited cooling
capacities of grocery stores may require a certain unit load, e.g. standardized isolated rolling
boxes. (3) Finally, a simulation study addressing the potential economic advantages using the
acceleration and deceleration estimators may spawn interesting insights for logistic scholars
and practitioners. Given the fact that conditions in retail supply chains are frequently and
rapidly changing nowadays, logistics managers need to design efficient, sustainable, and
resilient food supply chains–more than ever before.
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