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Abstract. The large number of real-world applications have shown that the use of computational method for 

distribution process planning produces substantial savings. Many of these applications lead to problem generally 

known as Vehicle Routing Problem. The real-world applications are highly computationally demanding for larger 

instances. This article aims to show the possibilities and benefits of using hyperparameter search for solving the 

Periodic Vehicle Routing Problem for exhausted oil collection by execution on the supercomputing infrastructure 

using HyperLoom platform. HyperLoom is an open source platform for defining and executing scientific pipelines in 

a distributed environment. This experiment was run on the supercomputer Salomon operated by IT4Innovations. 

1 Introduction  

The logistic industry heavily relies on optimal route 

planning as it represents a critical task. Indeed, 

transportation costs account for up to 20% of the overall 

logistic cost [1]. The Vehicle Routing Problem (VRP) 

was proposed more than 50 years ago [2] and it is a 

challenging combinatorial optimization problem. 

Variants of the VRP have been proposed to respond to 

the variety of operational constraints arising in the 

distribution industry. 

One of such variants is the Periodic Vehicle Routing 

Problem (PVRP) in which routes are constructed over a 

period of time (e.g. days). The problem has been 

introduced by Christofides and Beasley [3] and has been 

solved mostly through heuristic approaches [4 - 6], [16]. 

In [7] we considered a variant of the PVRP in which 

exhausted oil must be collected from customers. 

Customers can be visited more than once during the 

planning period and the number of times they are visited 

is also a decision variable of the problem, furthermore all 

vehicles must return to the depot each day as wasted oil 

must be properly disposed. In the considered problem, 

exhausted oil accumulates at customers’ location at a 

fixed ratio expressed in liters per week. From this 

perspective our problem shares features with that of 

waste collection problem [8 - 10].  

High performance computing (HPC) architecture can 

be a solution to solve such large tasks, and to obtain the 

optimal solutions. The supercomputing infrastructure 

allows us to solve the complicated optimization problems 

and to use the optimization algorithms to find the optimal 

solutions. Many of these algorithms depend 

on configuration settings that are typically hand-tuned in 

the course of evaluating the algorithm for a particular 

data set. Such parameter tuning (hyperparameter search) 

is often presented as being incidental to the algorithm and 

correctly setting these parameters improves the quality 

of the algorithm results [11, 17].  

HyperLoom has been successfully used 

at IT4Innovations for distributed hyperparameter search 

within machine learning applications for pharma industry 

[18]. This application aims to be another use case proving 

its usability beyond the pharmaceutic domain. Scientific 

pipelines such those in machine learning compose 

of multiple data processing tasks. This article aims to 

show the possibilities and benefits of using 

hyperparameter search for solving the Periodic Vehicle 

Routing Problem for exhausted oil collection by 

execution on the supercomputing infrastructure using 

HyperLoom platform. For the experiments, we created 

extended test case for exhausted oil collection. 

Experiments were run on the supercomputer Salomon. 

2 Periodic VRP for oil collection 

We formally describe the PVRP for exhausted oil 

collection. We are given a set N of customers and a 

central depot, denoted as node 0. The set 𝑉 =  𝑁 ∪ 0 

forms the node set of a graph G whereas a set of arcs A is 

linking every pair of nodes in N. For each arc 𝑎𝑖,𝑗 , (𝑖, 𝑗) ∈

𝑁 × 𝑁 let 𝑡𝑖,𝑗  and 𝑑𝑖,𝑗 the travelling time and travelling 

distance between nodes i and j, respectively. Let 𝑝𝑗 be the 

expected exhausted oil accumulation ratio expressed in 

liters per week. We are also given a set 𝐾of identical 

vehicles of capacity Q located at the central depot 0 and a 

set M of planning periods. The problem asks to define up 
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to |𝐾| routes per period, one for each vehicle, possibly 

returning to the depot more than once per period and 

visiting a subset of customers. The planning problem has 

two objectives: minimize the total travelled distance and 

balance the workload between the single routes. This last 

objective is considered computing the standard deviation 

in routes total travelling time. Routes must respect 

vehicle’s capacity constraints and customers should not 

accumulate more exhausted oil than that transportable by 

a single vehicle in a single visit. 

2.1 Test case for exhausted oil collection 

In a collaboration with Caritas Suisse, we were asked 

to apply our heuristic algorithms to an exhausted oil 

collection problem in the area of Bali, Indonesia.  We 

have been given a set of 308 different locations for the 

collection of the exhausted oil.  For each location we 

know the expected amount of oil that accumulates within 

one week. We were asked to recommend one out of three 

potential locations for the exhausted oil processing plant. 

The travel times between any two locations are known. 

To collect the exhausted oil, cans of 25 liters capacity 

each are used.  Every collection tour starts at the depot 

with a vehicle filled with empty cans.  Empty cans are 

then exchanged at customer location with full ones. 

Finally, cans are delivered at the processing plant. As an 

additional requirement, the travel time for each route is 

not allowed to exceed a given bound on working hours 

corresponding to eight hours in our tests. 

In order to produce fairly balanced routes, we 

introduce a weight parameter w which is used to balance 

total travelled distance versus the standard deviation 

of route duration. The parameter ranges from 0 to 1. 

When w is set to 0, total travel time is the only 

considered objective, when w is set to 1, the standard 

deviation of route durations is the only considered 

objective. 

More formally, a solution S to the problem is a set 

of routes 𝑟𝑘,𝑝, 𝑘 ∈ {1, . . . , |𝐾|}, 𝑝 ∈ {1, . . . ,10}, where k is the 

vehicle index and p is the period index, starting at the 

depot, finishing at the depot, visiting a customer at most 

once. 

Let 𝑡(𝑟𝑘,𝑝) represent the total travel time of route 

𝑟𝑘,𝑝and 𝑞𝑣,𝑗 represent the demand of customer 𝑣 ∈ 𝑉\ {0} 

accumulated until the customer gets visited at working 

day j. Let 𝑠𝑣 ∈ {1, 2, 4}  be the decision variable 

representing the number of time customer v is visited in 

the planning period. 

𝑡(𝑟𝑘,𝑝) ≤ 8 ∀ 𝑘 ∈ {1, . . . , |𝐾|}, 𝑝 ∈ {1, . . . ,10}, (1) 

∑ ⌊𝑞𝑣,𝑝 /𝑐⌋𝑣∈𝑟𝑘,𝑝
≤ 𝑄 ∀ 𝑘 ∈ {1, . . . , |𝐾|}, 𝑝 ∈ {1, . . . ,10}, (2) 

| 𝑟𝑘,𝑝 : 𝑘 ∈ {1, . . . , |𝐾|}, 𝑝 ∈ {1, . . . ,10}, 𝑣 ∈ 𝑟𝑘,𝑝}| = 𝑠𝑣, (3) 

| 𝑟𝑘,𝑝 ∶ 𝑘 ∈ {1, … , |𝐾|}, 𝑣 ∈ 𝑟𝑘,𝑝}|≤ 1 ∀ 𝑣 ∈ 𝑉{0},  

𝑝 ∈ {1, . . . ,10}, (4)  

Constraint (1) states that the total travel time for each 

route does not exceed the working time limit of eight 

hours and constraint (2) states that vehicle capacity is 

respected, here c is the amount of oil contained in one can 

and Q is expressed in number of cans. The third 

constraint relates the number of visits in the solution with 

variable s. Constraint (4) ensures that a customer is not 

visited twice per day. The objective is a combination of 

two objectives: 

𝑧1 (𝑟)  = ∑𝑘 ∈{1,...,|𝐾|}∑𝑝 ∈{1,...,10}𝑡(𝑟𝑘,𝑝),              (5) 

𝑧2 = √  
1

10|𝐾|
∑ ∑ 𝑡 (

(𝑟𝑘,𝑝− 𝑧1(𝑟)

10|𝐾|
)

2

𝑝𝜖{1...10}𝑘𝜖{1...|𝐾|}   , (6) 

The objective function can then be written as 

𝑧 (𝑟) = 𝑤 𝑧1(𝑟) + 𝑧2(𝑟)                           (7) 

We adopt a two level approach similar to the first 

assigned strategy used for PVRP [14]. The assignment 

of customers to vehicles and working days is managed 

on the first level of the heuristic and explored using local 

search. The second level optimizes the single routes of 

the different vehicles on different days. Nicely, the 

changes imposed by the first level local search algorithm 

affects a portion of the solution (two routes). Therefore, 

only two routes must be re-optimized and usually the 

starting solution is already of a good quality. 

The heuristic starts with a random assignment of 

locations to vehicles and working days. It does so that the 

number of times a customer is visited in the planning 

period is compatible with its expected oil accumulation: 

none of the visit should occur after the customer 

accumulated more oil than the vehicle's capacity. For 

each vehicle and each working day an optimal route is 

computed. The obtained solution is the starting point for 

the local search algorithm. The local search exploits a 

shift operator and a swap operator. The shift operator 

takes a location assigned to a specific vehicle and a 

specific working day and shifts it to another vehicle 

and/or another working day. The swap operator considers 

two different locations and interchanges their 

assignments to vehicles and working days. In each 

iteration, the local search algorithm explores all the 

solutions in the local search neighborhoods induced by 

those two operators in a random order. 

The second level optimization mechanism computes 

an optimal route by complete enumeration in the case 

where at most a given number of locations are assigned 

to a vehicle, otherwise a fast insertion heuristic approach 

is used. 

If an improving solution is found, this solution 

replaces the current solution and a new iteration is started 

immediately. If there is no improving solution in the 

neighborhood of the current solution, the local search 

algorithm terminates, and the local optimal solution is 

returned by our approach as the final solution. Further 

details can be found in [7] and [15]. 

Histogram (Figure 1) reports the frequency 

of required running time for the algorithm to converge. 

Out of 75 runs, we observe that the algorithm 

convergence is almost always below 3 seconds. The 

proposed approach works very well for the given 

application anyway for the sake of challenging the 

HyperLoom platform a new and extended test case is 

necessary.  
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Figure 1. Run times histogram for test case 

2.2 Extended test case for exhausted oil 
collection 

We prepared an additional set of 1008 different locations 

for the oil collection problem. For each location we know 

the amount of oil. Every customer had a specific GPS 

location in Ostrava (Figure 2). We know the travel time 

between any two of the locations. Also, metric distances 

between the locations were created in Ostrava. We know 

the location of the central depot. The vehicles start at the 

central depot.  

 

 
Figure 2. GPS locations in Ostrava 

Planning time for algorithm testing was 10 working days. 

3 HyperLoom for periodic VRP 

HyperLoom is an open source platform for defining and 

executing scientific pipelines in a distributed environment 

developed at IT4Innovations. HyperLoom is able 

to efficiently execute millions of interconnected tasks 

on thousands of computational cores. In [12], the authors 

described a virtualization of HyperLoom – originally 

an HPC solution for defining and executing scientific 

workflows and compared the performance of the 

virtualized HyperLoom to the performance of the bare 

metal deployment. 

We used HyperLoom to define and execute VRP 

hyperparameters sweep pipeline. HyperLoom enables 

to take an advantage of distributed systems by running 

multiple instances of VRP in parallel which promises 

an efficient usage of the provided resources. The quality 

of results for the heuristic algorithm depends on the 

adjustment of the configuration parameters of the 

algorithm. In this article, the following configuration 

parameters were used: 

 Table 1. Configuration parameters 

Parameters name Configuration values 

Number_of_vehicles 15, 16, 17, 18, 19, 20 

Depot_number 0 

Weight 0.5, 0.05, 0.95 

Random_Seed 1, 2, 3, 4 

Horizon_days 10 

Vehicles_capacity 34, 35, 36, 37, 38 

Location_per_day 100, 101, 102, 103, 104, 105 

Liters_per_day 200, 250, 300, 350 

 

6000 combinations of configuration parameters were 

created for the algorithm. The experiments were 

performed on Salomon supercomputer, where each node 

has two – twelve – core Intel Xeon processors and 128 

GB RAM (2xIntel Xeon E5 – 2680 v3, 2.5 GHz, 12 

cores). We have carried out all the experiments on a 6, 12, 

24, 48 identical physical computational nodes (Table 2). 

We have observed the dependence of the total execution 

time values on the number of nodes. 

Table 2. Experiments results 

Number of 

nodes 

Total execution 

time, [s] 

Strong scaling 

efficiency, [%] 

 6   5,128 98.52 

 12  2,841  88.92 

 24  1,443 87.53 

 48  839 75.27 

   

Strong scaling efficiency was calculated for each 

experiment: 

𝑆 =
𝑡1

(𝑁𝑡𝑁)
 100%,  (8) 

where: 

𝑡1 - time to complete a work unit with 1 processing 

element, 𝑁- number of processing elements, 𝑡𝑁- time to 

complete the same unit of work with 𝑁 processing 

elements. 
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Figure 3. Strong Scaling  

4 Algorithm results 

The only result that was monitored during the 

experiments was the solution time of the algorithm which 

was between 62.999s and 201.839s for different 

configurations of input parameters described in Table 1. 

The histogram of solution time is given in Figure 4.  

 
Figure 4. Histogram of solution time 

We also assessed the dependence of solution time 

on the input parameter values and the importance 

of parameter values for total solution time. 

 
Figure 5. Parameters importance 

The importance of the input parameters was 

determined as the proportion of the variance of the 

solution time that can be explained by the given input 

parameter (using the local regression model LOESS) [13]. 

This proportion was then recalculated as the relative 

measure where the importance of the input parameters is 

relative to the input parameter with the highest degree 

of importance (100%). The relative parameter importance 

is given in Figure 5 and together with correlation 

coefficients in Table 3. 

As can be seen from the results, the total solution time 

is dependent only on two input parameters: liter_per_day 

and number_of_vehicles. 

Table 3. Parameter importance and correlation coefficient 

Parameter Parameter 

Importance 

Correlation 

Coefficient 

liter_per_day  100%  -0.699 

number_of_vehicles  74%  0.601 

weight  0%  0.038 

location_per_day  0%  0.002 

vehicle_capacity  0%  0.000 

 

The negative correlation coefficient for the 

liter_per_day input parameter means the fewer 

liter_per_day the higher solution time contrary to the 

number_of_vehicles, where the higher 

number_of_vehicles means the higher solution time. 

5 Conclusion 

In this article, we showed possibilities and benefits of 

using hyperparameter search for solving the Periodic 

Vehicle Routing Problem for the exhausted oil collection. 

HyperLoom platform was used for the definition of our 

hyperparameter search pipeline. We created an extended 

test case because the original instance of the problem was 

too small for test on the HPC infrastructures. 

We have observed the dependence of the total 

execution time values on the number of nodes. 

For heuristic algorithm, we also assessed the dependence 

of solution time on the input parameter values and the 

importance of parameter values for total solution time. 

Using HyperLoom platform for our problem we showed 

that it is not necessary to parallelize used optimisation 

algorithm for Periodic Vehicle Routing Problem to use 

larger instances. 
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