
Vol.:(0123456789)

SN Computer Science (2024) 5:225
https://doi.org/10.1007/s42979-023-02540-3

SN Computer Science

ORIGINAL RESEARCH

An Optimization‑Based Decision Support System for Multi‑trip Vehicle
Routing Problems

Mirko Cavecchia1 · Thiago Alves de Queiroz2 · Manuel Iori1 · Riccardo Lancellotti3 · Giorgio Zucchi4

Received: 30 September 2023 / Accepted: 1 December 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2024

Abstract
Decision support systems (DSS) are used daily to make complex and hard decisions. Developing a DSS is not an easy task
and may require combining different approaches to reach accurate and timely responses. In this paper, we present a DSS
based on a micro-service architecture that we developed to handle a variant of the vehicle routing problem. The DSS has been
implemented for a service company operating in the field of pharmaceutical distribution, and it helps decision-makers define
the routes that different types of vehicles need to perform during the day to serve the customers’ demands. The underlying
optimization problem assumes that a vehicle can perform multiple routes daily and is constrained to operate within a given
time horizon. Customers are characterized by hard time windows on the delivery times. The proposed DSS first handles
geo-referencing and distance calculation tasks. Then, it invokes a two-step optimization approach in which vehicle routes
are generated and combined to reduce the number of vehicles used. For the latter task, we propose and evaluate four solu-
tion methods: two greedy heuristics, a metaheuristic, and a mathematical model. All the methods are applied to solve real
and randomly generated instances, showing that the metaheuristic algorithm is superior to the others in terms of solution
quality and computing time. The company had a very positive feedback on the proposed DSS and is now using it to support
its daily operations.

Keywords Decision support system · Micro-service, Multi-trip vehicle routing problem · Iterated local search ·
Mathematical optimization problem

Introduction

The vehicle routing problem (VRP) is a difficult
combinatorial optimization problem that has gained
considerable attention from researchers, given its practical
applications in different fields such as logistics and

transportation. The main objective of the VRP is to find a
set of routes for a fleet of vehicles that minimizes the total
cost required to serve the demands of a set of geographically
dispersed customers. Due to its NP-hard nature, advanced
heuristic and metaheuristic algorithms have been proposed
to find approximate but good-quality solutions of large-size
VRP instances within limited computing times [1–3].

This paper addresses a variant of the VRP known as
the multi-trip vehicle routing problem with time windows

This article is part of the topical collection “Recent Trends on
Enterprise Information Systems” guest edited by Joaquim Filipe,
Michał Śmiałek, Alexander Brodsky and Slimane Hammoudi.

 * Mirko Cavecchia
 mirko.cavecchia@unimore.it

 Thiago Alves de Queiroz
 taq@ufcat.edu.br

 Manuel Iori
 manuel.iori@unimore.it

 Riccardo Lancellotti
 riccardo.lancellotti@unimore.it

 Giorgio Zucchi
 giorgio.zucchi@coopservice.it

1 Department of Sciences and Methods for Engineering,
University of Modena and Reggio Emilia,
42122 Reggio Emilia, Italy

2 Institute of Mathematics and Technology, Federal University
of Catalão, 75704-020, Catalão-GO, Brazil

3 Department of Engineering “Enzo Ferrari”, University
of Modena and Reggio Emilia, 41125 Modena, Italy

4 R &D department, Coopservice S.coop.p.A.,
42122 Reggio Emilia, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-02540-3&domain=pdf
http://orcid.org/0000-0002-4129-9876
http://orcid.org/0000-0003-2674-3366
http://orcid.org/0000-0003-2097-6572
http://orcid.org/0000-0002-9470-8784
http://orcid.org/0000-0002-5459-7290

 SN Computer Science (2024) 5:225 225 Page 2 of 18

SN Computer Science

(MTVRPTW), which arises from a real-world application at
Coopservice Soc.coop.p.A., an Italian large service provider
company. In this problem, the routes to be determined
must respect time window constraints, which impose each
vehicle to serve a customer within specified time intervals.
Besides that, vehicles with different capacities can depart
from different depots, and each vehicle can perform multiple
routes. Each route must start and end at the same depot.
The objective is to minimize the number of vehicles used to
fulfill the customers’ demands.

To tackle the MTVRPTW, we propose a decision support
system (DSS) designed to assist the company in its operations.
The DSS is a web application composed of different micro-
services. The micro-service architecture guarantees scalability
with respect to the PC workload (i.e., new instances of the
micro-services can be added to cope with traffic surges) and
ensures interoperability with other systems that can be eas-
ily interfaced with the DSS. The orchestration of the micro-
services has a single entry point where the user can enter the
addresses of depots and customers. The addresses are then geo-
referenced, and the distance between each couple of addresses
is computed. Next, the DSS generates a set of feasible routes
using the metaheuristic approach defined in [4]. However,
since the vehicles can perform more than one route daily, the
routes generated by the metaheuristic need to be aggregated to
minimize the fleet size. To this end, we consider two scenarios
in accordance with the company. In the first scenario, the start-
ing time of each route is fixed, and we propose a greedy algo-
rithm that sorts routes based on their departure time, assigning
them to vehicles while respecting the total driving time. In
the second, more flexible scenario, the starting time of each
route can be moved between the earliest and latest possible
starting times imposed by the time windows of the customers
visited in the route. In this case, we extend the greedy algo-
rithm to assign routes to vehicles as early as possible, and we
propose an iterated local search (ILS) metaheuristic. The ILS
tries to improve the greedy solution by applying a perturbation
step followed by a local search based on swap and insertion
movements. Additionally, we propose a mixed integer linear
programming (MILP) model. All these algorithms have been
evaluated on real instances provided by the industrial partner,
and the ILS obtained the best overall results.

To the best of our knowledge, the DSS represents a signifi-
cant innovation for the reference case study provided by the
industrial partner and for many other similar applications. The
micro-service-based architecture is a state-of-the-art technol-
ogy in the area of DSS, offering benefits in terms of scalability
and interoperability. Furthermore, using multiple algorithms,
which can be flexibly combined, guarantees the support for
evaluating approaches suitable for different scenarios. Finally,
the open architecture based on micro-services simplifies the
extension of the core framework so that new algorithms suit-
able for other specific scenarios can be easily added.

A preliminary version of the present research has been
published in [5]. This paper is a clear step ahead, providing
more algorithms added to the framework and outlining a
broader performance evaluation based on several real and
randomly-created data sets.

The remainder of this paper is structured as follows. The
next section provides an overview of the existing literature
in routing problems and related decision science. The sub-
sequent section outlines the DSS architecture followed by
which a formal description of the optimization problem
is provided. Then the algorithms developed to solve the
MTVRPTW are detailed. The penultimate section provides
a computational evaluation of the DSS concerning different
case studies. Finally, concluding remarks are given.

Literature Review

This section discusses the existing literature concerning
the VRP and its variants, with a specific emphasis on the
MTVRPTW. Additionally, it explores the domain of DSSs
and their relevance within the research context.

The VRP may consider additional characteristics and con-
straints, called attributes, resulting in multi-attribute VRPs.
In their survey, [6] reviewed more than sixty heuristic and
metaheuristic algorithms, identifying the core components of
each one and examining fifteen notable problems. When mul-
tiple attributes are combined together, we obtain the so-called
rich VRPs. A recent survey for rich variants was proposed by
[7], who presented a literature review on hybrid methods and
problems found, e.g., in food and newspaper distributions. The
authors emphasized the importance of cooperative methods
that combine exact and approximate algorithms and the pro-
posal of benchmark problems, including real-life instances.
For a recent, concise review of VRP and its variants, we refer
to [8], while [9] reviewed the variants with profits, split deliv-
eries, multiple commodities over time, and integrated VRPs,
like location-routing problems, multi-echelon routing prob-
lems, and the routing problems with loading constraints.

The VRPTW, an extension of the classical VRP, intro-
duces temporal constraints on customer service. Each cus-
tomer must be visited within a predefined time window.
This additional constraint adds complexity to the problem,
making it even more challenging. Over time, starting from
[10], researchers have proposed various exact and heuristic
methods to tackle the VRPTW [11, 12]. The applications of
the VRPTW span across various domains, including food
delivery [13], electric vehicle recharging [14], and pharma-
ceutical product delivery [4]. In addition, [15] addressed
a combined problem involving VRPTW and scheduling of
trucks and drivers, whereas [16] solved a school bus routing
problem using an ILS and a MILP model.

SN Computer Science (2024) 5:225 Page 3 of 18 225

SN Computer Science

Another well-established VRP variant is the MTVRPTW,
where vehicles can undertake multiple routes in a single day,
with each route starting and ending at the depot. This flex-
ibility enables better adherence to customer time windows
and can lead to more efficient solutions. The MTVRPTW
has been an area of significant research interest, and vari-
ous algorithms have been recently proposed to address
it effectively [9, 17]. Many solutions and methods for the
MTVRPTW can be found in the literature. [18] solved a vari-
ant related to the dial-a-ride problem, proposing hybrid bee
colony algorithms and an adaptive large neighborhood search
(ALNS). The algorithms were tested on new instances, and
the hybrid algorithms obtained the best results. [19] solved
an MTVRPTW variant arising in the meal delivery logistics,
proposing a MILP model and two heuristics, namely an ILS
and an ALNS. [20] handled the multi-trip time-dependent
vehicle routing problem with time windows by proposing a
MILP model and a hybrid ALNS. The proposed heuristics
obtained good results on a set of new instances proposed
by the authors. Recently, [21] solved a multi-trip multi-dis-
tribution center VRP with lower-bound capacity constraints
to minimize the number of used vehicles and maximize the
number of served customers. The authors considered greedy
algorithms based on savings, insertions, and sweeps to handle
the lower-bound capacity constraints. An ALNS improves the
solutions obtained with the greedy algorithms.

For what concerns DSSs, their application spans from
business and finance to healthcare and up to education. Sev-
eral criteria can be used to categorize DSSs based on their
scope or the provided functionalities. A possible classifica-
tion proposed in [22] divides DSSs into communications-
driven, data-driven, document-driven, knowledge-driven,
and model-driven. The proposed approach in this paper can
be seen as a model-driven DSS as it focuses on capturing
a business process that is described as the composition of
multiple basic functions.

The literature on DSSs presents a large corpus investi-
gating whether micro-service or cloud-based architectures
are viable options for managing services. For example, [23]
proposed a DSS to evaluate whether an application is suit-
able for cloud deployment. Similarly, [24] focus on micro-
service-based deployments, proposing a tool to evaluate
the benefits of architectural re-design following the micro-
service paradigm. With respect to this topic, our study
embraces the vision of a highly dynamic description of the
business process, where data is not a critical asset but rather
a commodity. Within this context, the choice of a micro-
service architecture for deploying the DSS is motivated, as
our application fits the critical parameters that make micro-
services appealing, as described by [25].

Finally, we notice that our approach also fits the area of
spatial-based DSS, which has been explored by [26]. The
proposed DSS fits the classic DSS area with optimization

based on geo-referenced data. However, even if the core
problem is classic, creating an agile, flexible, and scalable
system takes advantage of the most recent advances in dis-
tributed systems and cloud computing.

Decision Support System Architecture

We can define a DSS as an information system based on
computers supporting decision-making. In this section, we
outline the business process used in the proposed DSS and
discuss how to implement it.

Business Process Overview

To better explain the characteristics of the proposed DSS,
we start with a short description of the main tasks required
to solve an MTVRPTW.

Figure 1 shows the main tasks of the considered business
process according to a business process modeling (BPM)
notation. The input (i.e., the white circle in the figure) is a
list of points of interests (customers and depots) in the form
of geo-referenced addresses (as shown in the leftmost box
in the graph). The list of coordinates is further processed to
create a distance matrix where each matrix element is the
distance between two points (the distance can be expressed
in terms of time or as a physical distance (i.e., km), depend-
ing on the metric considered for the problem). The matrix
is then used as an input for the MTVRPTW, which is solved
using a two-step approach. The set of optimized routes is
given as output (i.e., the black circle in the figure).

The two tasks of geo-referencing and distance calculation
require complex operations and rely on external services
(such as APIs provided by third-party micro-services). For
example, ArcGIS provides an API with Python bindings
for most of its operations, as documented in [27]. However,
external services typically limit the number of invocations
per unit of time.

Fig. 1 BPM description of the business process

 SN Computer Science (2024) 5:225 225 Page 4 of 18

SN Computer Science

This constraint requires a suitable architectural solution,
as shown in Fig. 2. Considering geo-referencing the way-
points or computing distances, the requests are inserted in a
queue of requests handled by Celery.1 Each Celery Task ID
identifies a list of requests. The Task ID can be used to track
the state of a Task (i.e., how many requests have already
been completed). A further element is inserted between Cel-
ery and the external APIs, a cache implemented through
Redis.2 Redis stores resolutions of requests and can be used
to improve the system’s scalability by reducing the time to
interrogate external servers and avoiding wait time due to
the invocation rate limitations.

Service Definition

Focusing on the services for the vehicle routing application,
the services are described using the OpenAPI specification
v2.0. For space reasons, we provide only a summary of the
services.

The first service, which is geo-referencing a list
of addresses, can be described as the following set of
micro-services:

• Submission of a list of addresses for geo-referencing: for
the sake of interoperability with other tasks of the com-
pany, the list of supported input formats also includes
.xls files. The output of the input is a handle that

includes the ID of the geo-referencing task that runs
asynchronously concerning the end of the submission.

• Status of a task: the input is the handle with the task ID
provided by the previous service, and the output is the
number of resolved addresses up to now. The user inter-
face (UI) can invoke this service to provide feedback to
the user on the progress of a task.

• Download of coordinates lists: this service returns data
only after the task is completed; otherwise, an error code
is returned. The data can be returned as JSON and as
an .xls file. The first type of output is used to display
a map with the results of the geo-referencing (using a
mash-application that is based on Open Street Maps
APIs), while the .xls file is used as the input of the
subsequent task of computing a distance matrix between
every couple of points.

The API for the second task of the business process
described in Fig. 1 is similar to the previous task. The main
difference is that the main input is a .xls file with the
coordinates of the geo-referenced point previously obtained,
while the output is another .xls file containing the distance
matrix. Like the previous task, the execution is asynchro-
nous with a submission micro-service that returns a handle
used to check the progress of the computation.

Finally, the last task shown in Fig. 1 is the resolution of
the optimization problem. The solution is a two-step process,
but the main API implementation masks this double step
under two separate APIs:

• Problem submission: the API is used to submit a problem
definition consisting of a distance matrix and an expected
workload. The output is a handle to access the results of
the algorithm invocation.

• Solution download: the handle provided in the problem
submission API is used to access the data containing the
problem solution. The output can be either a JSON data
structure or a .xls file. The first is used for data visuali-
zation on a web UI, while the latter can be downloaded
for interaction with the other tasks of the company.

Technologies

As the goal is to provide support in logistic optimization
tasks that must be carried out by people who are not experts
in using computer systems, the proposed algorithms are
integrated into an intuitive and user-friendly web-based UI.
The UI leverages the modular architecture of the software
provided as a micro-services suite.

The micro-service approach to software development pre-
scribes that software should be split into several independ-
ent building blocks that are loosely coupled. This approach
made software development extremely agile, with each

Fig. 2 Address geo-referencing and distance computation

1 https:// docs. celer yq. dev/.
2 https:// redis. io/.

https://docs.celeryq.dev/
https://redis.io/

SN Computer Science (2024) 5:225 Page 5 of 18 225

SN Computer Science

service choosing its own technologies, scalability policies,
and life cycle. This is a clear step ahead over monolithic
architectures regarding scalability, maintainability, and fault
tolerance [28].

The global DSS architecture comprises two main parts:
a backend and a frontend. The backend handles HTTPS
requests, performs computations, and stores data, providing
the previously described micro-service interfaces to the sys-
tem. The backend is developed using a model-view-control-
ler paradigm [29] provided by the web framework Django.
The frontend runs on the user web browser, is written in

Javascript, and is based on the React framework to provide
a simple interface for the end-user.

A key technology selected for the deployment of the DSS
backend is the container management engine Docker,3 which
is also used in the testing and development phases of the
micro-services. Each task and the related micro-services
are implemented as isolated images (containers) that can
be created, replicated, and destroyed using a simple set of
command line tools.

3 https:// docs. docker. com/.

Fig. 3 Web interface
architecture

https://docs.docker.com/

 SN Computer Science (2024) 5:225 225 Page 6 of 18

SN Computer Science

The backend deployment scheme consists of several con-
tainers outlined by green boxes in Fig. 3:

• Route Aggregation contains the optimization algorithms,
with the two parts of the solution approach (described
in "Proposed methodology") implemented in C++ and
Python;

• OSRM4 is a C++ routing service designed to interrogate
Open Street Map APIs;

• Celery is an asynchronous task queue manager used to
automate multiple requests to different endpoints without
the risk of overloading the external services;

• Redis Cache is a service that manages the sending,
receiving, and queuing of messages with Celery;

• Django manages the API endpoints and provides the
micro-service APIs.

The logical components of the software are also detailed
in Fig. 3. These components can be detailed as follows:

• Geo-reference: this module is responsible for the first
task of the BPM model shown in Fig. 1, that is to retrieve
the coordinates of a list of addresses;

• Travel matrix generation: this module is in charge of the
second step in Fig. 1, that is to create a distance and time
matrix from the list of coordinates;

• MTVRPTW solver: this module is in charge of the
problem solution. The problem is detailed in "Formal

MTVRPTW description", while the solution approach
used to solve it is described in "Proposed methodology".

As an example of the web UI we also provide a screen-
shot in Fig. 4. We observe a graphical representation of the
computation output (in the form of a map with waypoints
and routes) and a tabular representation of the solver output
(with schedules and travel distances) that can be downloaded
as an .xls file. Several buttons are used to upload the prob-
lem definition, start the solver execution, plot results, or
download them.

Formal MTVRPTW Description

We define the MTVRPTW on a directed graph
G = (N,A) with a set of nodes N and a set of arcs
A = {(i, j) ∶ i, j ∈ N, i ≠ j} . The set of nodes N is divided
into depots (D) and customers (C). Each arc (i, j) ∈ A is asso-
ciated with a traveling time tij . Additionally, each node i ∈ N
is associated with a specific time window [ei , li], where ei
represents the earliest arrival time and li represents the latest
arrival time. If a vehicle arrives before ei , it must wait. In
addition, a vehicle cannot arrive after li.

Multiple-day deliveries may be required for each cus-
tomer. Let P denote the days in which the planning is
required. Each customer i ∈ C is characterized by a demand
qip on the day p ∈ P and a service time si . The vehicle fleet,
represented by the set V, is heterogeneous and is divided into
different types. Vehicles of the same type are defined by Kv ,
and all vehicles k ∈ Kv are identical in loading capacity and

Fig. 4 A screenshot of the MTVRPTW module

4 https:// proje ct- osrm. org/.

https://project-osrm.org/

SN Computer Science (2024) 5:225 Page 7 of 18 225

SN Computer Science

permissible routes (e.g., mountainous arcs can be traveled
only by the smallest vehicles).

A feasible solution for the problem must satisfy the fol-
lowing constraints: each route is associated with a unique
depot and respects the vehicle capacity; a vehicle can per-
form multiple routes in a day, and each route needs to start
and end at the same depot; each customer is assigned to
exactly one route, and the total demand must be accom-
plished during a single visit within the time window. Addi-
tionally, the sum of the durations of the routes assigned to
each vehicle cannot exceed T = 480 minutes per day. Fur-
thermore, before starting another route, the vehicle requires
a fixed loading time of Δ = 30 minutes, which is included
in the overall time limit T.

The objective of the problem is to find a set of routes that
satisfy the aforementioned constraints while minimizing the
number of used vehicles. All vehicles can operate on any
day in set P. The problem is solved separately for each day
p ∈ P , and the solution for one day does not depend on the
solutions for other days.

Proposed Methodology

In this section, we present the two-phase decomposition
approach that we implemented to solve the MTVRPTW.
According to [30], this kind of strategy has allowed us to
obtain high-quality results for VRPs with multiple trips.
In the first phase of our approach, we solve an instance of
the VRPTW. The objective is to obtain a set R of routes
satisfying the customers’ demands and other operational
constraints. The set R is then used as input for the second
phase. The objective in this phase is to minimize the number
of vehicles when solving an instance of the MTVRPTW. In
other words, "Solving the VRPTW" presents the first phase,
while "Solving the MTVRPTW" discusses the algorithms
that we have proposed for the second phase.

Solving the VRPTW

To solve the VRPTW, we use the algorithm proposed by [4].
They solved a real-world distribution case study in Coops-
ervice, considering multiple depots, a heterogeneous fleet of
vehicles, flexible time windows, periodic demands, incompat-
ibilities between vehicles and customers, a maximum duration
for the routes, and a maximum number of customers per route.
The authors proposed a multi-start ILS using several neigh-
borhood operators. The first step in the multi-start ILS is to
obtain an initial solution from a constructive heuristic. The
constructive heuristic creates routes by adding customers to
the closest depot by inserting customers one at a time in the
route that generates the lowest cost. This heuristic allows time
window violations, but they are penalized when calculating

the objective function. The next step is to improve the initial
solution using local search. It comprises a randomized variable
neighborhood descent and contains neighborhoods based on
inter- and intra-route movements. Besides that, perturbation
procedures are applied to the solution to escape from local
optima. They modify the routes using random swap move-
ments and customer relocations.

We use this algorithm to obtain a set R of routes used as
input for the second phase. Since our goal is to find the mini-
mum number of used vehicles, we aim to combine the routes
of R. In other words, depending on the customers’ time win-
dows, a vehicle can return to the depot and perform another
route, reducing the number of vehicles needed. Therefore, we
propose four algorithms, explained in the next section, to attain
this objective.

Solving the MTVRPTW

The algorithms we develop aim at merging the routes in R to
generate giant routes (i.e., routes with multiple trips). Next,
we assign these giant routes to appropriate vehicles, aiming
to minimize the number of used vehicles. The first approach
assumes the initial routes have a fixed starting time. Further
elaboration regarding this algorithm is provided in "Fixed
starting time Greedy Algorithm (FSTG)".

Considering that the customers’ time windows are large
enough, our next approaches optimize the starting time of each
route in R while still respecting the time windows. The objec-
tive is to determine the best starting time for each route. In this
context, for each vehicle type v ∈ V , each depot d ∈ D , and
each day p ∈ P , we can aggregate the routes on the same day
from the same depot and the same vehicle type.

We calculate the starting time of each route with the for-
ward-time slack procedure introduced by [31]. Let r ∈ R be a
route, and Nr denote the sequence of nodes visited by the route
r. For every node i ∈ Nr , we define STi as the earliest feasible
starting time, WTi as the cumulative idle time, and FTi as the
partial forward slack time. For the starting time of route r,
the initial values are set as follows: ST1 = e1 , WT1 = 0 , and
FT1 = l1 − e1 . For successive nodes i ∈ Nr , the calculations
are carried out as follows:

In addition, we also compute the latest starting time LTi for
each node i ∈ Nr . The calculation starts from the last node
n ∈ Nr , initializing LTn = ln , and then proceeds in reverse
order towards the first node of the route, as outlined below:

(1)STi = max(STi−1 + ti−1,i + si; ei + si),

(2)WTi = WTi−1 + (STi − STi−1 − ti−1,i − si−1),

(3)FTi = min(FTi−1; li − STi +WTi).

 SN Computer Science (2024) 5:225 225 Page 8 of 18

SN Computer Science

After all, the earliest and latest starting times for route r are
determined by the following expressions:

We generalize the fixed starting time greedy algorithm by
incorporating the earliest and latest starting times for the
routes in R, as elaborated in "Bounded starting time Greedy
Algorithm (BSTG)". We also take advantage of that by
implementing an ILS, outlined in "Iterated local search
(ILS)". Furthermore, these improvements are also consid-
ered in a MILP problem presented in "Mathematical model".

Fixed Starting Time Greedy Algorithm (FSTG)

To solve the problem variant where the starting time of each
route is fixed, we have developed the greedy algorithm out-
lined in Algorithm 1. The input is the set R of routes result-
ing from the previous step. Each route r ∈ R is assigned to

(4)LTi−1 = min(LTi − ti−1,i − si; li−1).

(5)ēr = e1 +min(FTn; WTn),

(6)l̄r = LT1.

a day pr ∈ P , to a depot dr ∈ D , and to a vehicle of type
kr ∈ Kv ⊆ V . The objective is to assign every day the routes
in R to the minimum number of vehicles.

The algorithm starts with an empty set � , representing
the set of used vehicles associated with a specific day p, a
depot d, and a vehicle of type k (i.e., �pdk). Let us denote by
Rpdk ⊆ R the subset of routes for which pr = p , dr = d , and
kr = k . Set Rpdk is created in line 6, and then the routes it
contains are sorted according to non-decreasing starting time
(breaking ties by non-increasing duration) in line 7. This
approach ensures that routes with similar starting times but
longer duration are prioritized. Following this order, each
route is assigned to an available vehicle belonging to �pdk
in line 10. The assignment is feasible if the vehicle v exists
and can perform the route concerning its starting time and
duration, besides respecting the overall driving time T in day
p and the time window of each customer. Otherwise, a new
vehicle of type k is initialized to perform the route r ∈ Rpdk .
The algorithm ends when all routes in R are assigned to a
vehicle v (line 16).

Algorithm 1 Greedy Algorithm

1: procedure Greedy(R)
2: σ ← ∅
3: for each day p ∈ P do
4: for each depot d ∈ D do
5: for each vehicle type k ∈ Kv : Kv ⊆ V do
6: Let Rpdk ⊆ R be the set of routes having pr = p, dr = d, kr = k
7: Sort the routes in Rpdk by non-decreasing starting time
8: for each r ∈ Rpdk do
9: if there exists a vehicle of type k to serve r then

10: σpdk ← r
11: else
12: Initialize a new vehicle of type k to serve r and include r in σpdk
13: end if
14: end for
15: if all routes in R have been assigned then
16: return σ
17: end if
18: end for
19: end for
20: end for
21: end procedure

SN Computer Science (2024) 5:225 Page 9 of 18 225

SN Computer Science

The advantage of using the fixed starting times is that
the resulting subproblem is easy, and, indeed, Algorithm 1
can solve it to proven optimality (i.e., it finds the minimum
number of vehicles). The proof derives from the interval
coloring problem, which is known to be polynomially
solvable by the greedy algorithm (see, e.g., [32]). In
our case, intervals are the fixed starting time routes, and
the colors are the vehicles. The disadvantage is that we
lose flexibility in the way routes can be merged and thus
drastically reduce the solution space. In the next section,
we overcome this drawback by allowing the route starting
times to be modified.

Bounded Starting Time Greedy Algorithm (BSTG)

This section introduces an enhancement to Algorithm 1
that considers a bounded starting time for each route in
R. In contrast to the fixed starting time strategy, this new
version incorporates flexibility by moving the starting time
within an interval defined by the earliest and the latest
starting time. These bounds are computed using equations
(5) and (6). In this way, the BSTG can optimize the merg-
ing of the routes by adjusting their starting times accord-
ing to the defined earliest-to-latest interval.

Formally, for each day p ∈ P and for each route r ∈ R , we
compute ēr and l̄r using equations (5) and (6), respectively.
Then, in Algorithm 1, line 7 is changed to have the routes in
Rpdk ⊆ R sorted in a non-decreasing order based on ēr . Con-
sequently, routes are scheduled to begin as early as possible,
respecting the defined earliest-to-latest interval.

Iterated Local Search (ILS)

The ILS is a metaheuristic optimization approach
that integrates local search techniques with iterative
improvement strategies. It aims to refine a given initial
solution by iteratively applying perturbation and local search
algorithms. The perturbation phase introduces randomness
into the current solution to escape from local optima and

expand the exploration of the solution space using local
search algorithms [33].

Algorithm 2 presents the ILS we implemented. It consists
of different phases: initialization, perturbation, local explo-
ration, and acceptance. All these phases contribute to the
iterative improvement process of the algorithm, allowing it
to escape from local optima solutions and converge to bet-
ter solutions. The algorithm receives in input � , the maxi-
mum number of iterations without improvements. The initial
solution is generated by the bounded starting time greedy
algorithm described in "Bounded starting time Greedy Algo-
rithm (BSTG)". Then, the solution is improved through the
local search procedure described in Algorithm 3. The main
loop in lines 6-16 of Algorithm 2 continues until � is eventu-
ally reached. The loop begins by applying the perturbation
procedure, detailed in Algorithm 4, followed by the local
search procedure. After that, if the cost of the new solution
(i.e., the number of vehicles used) improves the incumbent
solution value, the incumbent solution is updated and the
loop restarts from scratch (because we reached an improve-
ment). In line 15, the current solution is updated with the
new one if the new one uses fewer vehicles.

Algorithm 2 Iterated Local Search Algorithm

1: procedure ILS(ω)
2: i ← 0
3: x0 ← ConstructiveHeuristic
4: xcurrent ← LocalSearch(x0)
5: xbest ← xcurrent

6: while i < ω do
7: x′ ← Perturbation(xcurrent)
8: x′′ ← LocalSearch(x′)
9: if cost(x′′) < cost(xbest) then

10: xbest ← x′′

11: i ← 0
12: else
13: i ← i+ 1
14: end if
15: xcurrent ← Acceptance(xcurrent, x

′′)
16: end while
17: return xbest

18: end procedure

Table 1 Model decision
variables

Variable Description

xrkv Binary variable: 1 if route r ∈ R is assigned to vehicle k ∈ Kv of type v ∈ V , 0 otherwise
ykv Binary variable: 1 if vehicle k ∈ Kv of type v ∈ V is used, 0 otherwise
zrskv Binary variable: 1 if route r ∈ R precedes route s ∈ R , both assigned to vehicle k ∈ Kv of

type v ∈ V , 0 otherwise
�kv Continuous variable: starting time of vehicle k ∈ Kv of type v ∈ V

�kv Continuous variable: ending time of vehicle k ∈ Kv of type v ∈ V

trkv Continuous variable: starting time of route r ∈ R assigned to vehicle k ∈ Kv of type v ∈ V

 SN Computer Science (2024) 5:225 225 Page 10 of 18

SN Computer Science

Algorithm 3 Local Search Procedure

1: procedure LocalSearch(x)
2: for each pair of routes r1 and r2 in x do
3: xnew ← swap routes r1 and r2
4: if cost(xnew) < cost(x) then
5: x ← xnew

6: end if
7: end for
8: for each pair of routes r1 and r2 in x do
9: xnew ← insert route r1 before route r2

10: if cost(xnew) < cost(x) then
11: x ← xnew

12: end if
13: end for
14: return x
15: end procedure

In the local search (Algorithm 3), we start by applying
swap movements and, next, insertion movements. The swap
procedure involves exchanging pairs of routes, while the
insertion procedure involves selecting and inserting a route
before another route. We apply these movements on all com-
binations of two routes. As soon as an improvement is found,
if any, the solution is updated, and the search continues. On
the other hand, the perturbation function (Algorithm 4) is
used to change (drastically) a given solution by inserting a
random subset of routes in random positions of the solu-
tion. It starts by selecting k, i.e., the number of subsets of
perturbed routes. Next, each subset is defined randomly in
lines 4-6 and inserted in a random solution position in line 7.
These steps are repeated k − 1 times.

Algorithm 4 Perturbation Procedure

Mathematical Model

We also propose a MILP model to combine the routes r ∈ R
to minimize the daily number of used vehicles. The model
has three sets of binary decision variables and three sets of
continuous decision variables, as described in Table 1. The
parameter Tr represents the total duration of route r ∈ R .
Let Nr be the sequence of nodes visited by the route r, we
obtain Tr as the sum of the traveling times to visit the nodes
in Nr , and the service time at each node in Nr . In addition,
we need to sum the fixed loading time Δ to Tr . Let M be a
large number.

The resultant model is presented in (7)–(22) below. It is
executed independently for each day p ∈ P , and so it only
considers the routes Rp ⊆ R of day p.

1: procedure Perturbation(x)
2: k ← random integer number in [1, |x|)
3: for i ← 2 to k + 1 do
4: start ← random integer number in the range of |x| − i
5: end ← start+ i
6: subset routes ← x[start : end]
7: Insert subset routes into x at a random position
8: end for
9: return x

10: end procedure

SN Computer Science (2024) 5:225 Page 11 of 18 225

SN Computer Science

Fig. 5 Coopservice data of the Sardinia region

Fig. 6 Coopservice data of the
Emilia Romagna region

Fig. 7 Computing times of executing the geo-location services

 SN Computer Science (2024) 5:225 225 Page 12 of 18

SN Computer Science

(7)min Zp =
∑

v∈V

∑

k∈Kv

ykv

(8)xrkv ≤ ykv, ∀r ∈ Rp,∀v ∈ V ,∀k ∈ Kv

(9)
∑

v∈V

∑

k∈Kv

xrkv = 1, ∀r ∈ Rp

(10)
zrskv + zsrkv ≥ xrkv + xskv − 1, ∀v ∈ V ,∀k ∈ Kv,∀r, s ∈ Rp ∶ r ≠ s

(11)
zrskv + zsrkv ≤ 1, ∀v ∈ V ,∀k ∈ Kv,∀r, s ∈ Rp ∶ r ≠ s

(12)
trkv + (Tr + Δ) ≤ tskv +M(1 − zrskv),

∀v ∈ V ,∀k ∈ Kv,∀r, s ∈ Rp ∶ r ≠ s

(13)ēr ≤ trkv ≤ l̄r, ∀r ∈ Rp,∀v ∈ V ,∀k ∈ Kv

(14)�kv ≤ trkv +M(1 − xrkv), ∀r ∈ Rp,∀v ∈ V ,∀k ∈ Kv

(15)
�kv ≥ trkv + (Tr + Δ) −M(1 − xrkv), ∀r ∈ Rp,∀v ∈ V ,∀k ∈ Kv

(16)�kv − �kv ≤ T + Δ, ∀v ∈ V ,∀k ∈ Kv

(17)
∑

r∈Rp

(Tr + Δ)xrkv ≤ T + Δ, ∀v ∈ V ,∀k ∈ Kv

(18)xrkv ∈ {0, 1}, ∀r ∈ Rp,∀v ∈ V ,∀k ∈ Kv

(19)ykv ∈ {0, 1}, ∀v ∈ V ,∀k ∈ Kv

The objective function (7) asks to minimize the number of
used vehicles on the day p. Constraints (8) impose that each
route r is assigned to a given vehicle k if and only if k per-
forms that route. Constraints (9) ensure that all routes are
served by a vehicle. Constraints (10) and (11) impose the
precedence between routes performed by the same vehicle.
In (10), if two routes are performed by the same vehicle,
one must precede the other. Instead, in (11), the first route
precedes the second, or the second route precedes the first
one. Constraints (12) impose that a route starts after the end-
ing of another route if both are served by the same vehicle,
respecting the total duration Tr and the fixed loading time Δ .
Constraints (13) ensure that the starting time of each route
is between the earliest and latest starting time, computed
using equations (5) and (6), respectively. Constraints (14),
(15), and (16) guarantee that the multiple routes a vehicle
performs are executed within the maximum vehicle working
time T. Note that in constraints (16), we add an additional
fixed loading time Δ because it is not considered in the first
route. That is why in constraints (15), we assume that all
routes (including the first one performed by the vehicle) have
a fixed loading time. In addition, constraint (17) are valid
inequalities to ensure that the total duration of all the routes
performed by each vehicle respects the maximum vehicle
working time. Lastly, constraints (18)-(22) define the vari-
ables domain.

(20)zrskv ∈ {0, 1}, ∀r, s ∈ Rp ∶ r ≠ s,∀v ∈ V ,∀k ∈ Kv

(21)trkv ≥ 0, ∀r ∈ Rp,∀v ∈ V ,∀k ∈ Kv

(22)�kv ≥ 0, �kv ≥ 0, ∀v ∈ V ,∀k ∈ Kv

Fig. 8 Computing times of executing the distance-computation
services

Fig. 9 Computing times of executing the routing services

SN Computer Science (2024) 5:225 Page 13 of 18 225

SN Computer Science

Computational Results

To evaluate the performance of the considered system, we
deployed the DSS on a virtual machine (VM) in a private
cloud environment. The VM has 16GB of RAM and 16
virtual cores. The underlying virtualization environment is
based on XCP-NG (Xen-based) 8.2 and runs on a four Intel
Xeon Gold 6252N CPU with a clock of 2.30 GHz. The guest
is a VM running Microsoft Windows 11 Home 64-bits.

The algorithms in "Solving the VRPTW" were coded
in C++, and those in "Solving the MTVRPTW" in Python
3.10. Model (7)–(22) was solved with the help of Coin-OR,5
version 2.10.3. A time limit of 600 s was imposed on the
model to solve each instance. For the ILS, the maximum
number � of iterations without improvements was set to 10
after the outcome of preliminary experiments.

The instances have been obtained from the operations
planned by Coopservice, in compliance with data privacy
regulations, in the Sardinia and Emilia Romagna regions
in Italy. The Sardinia region is divided into two areas, as
illustrated in Fig. 5: North Sardinia, with 152 customers,
3 depots, and 2 vehicle types; and South Sardinia, with
154 customers, 1 depot, and 2 vehicle types. The Emilia
Romagna region, instead, is divided into three areas, as
illustrated in Fig. 6: West Emilia Romagna, with 206

customers, 1 depot, and 1 vehicle type; Central Emilia
Romagna, with 210 customers, 2 depots, and 1 vehicle type;
and East Emilia Romagna, with 201 customers, 1 depot, and
1 vehicle type. In the figures, the blue points represent the
customers, while the red ones represent the depots.

In the following, we first perform scalability analyses,
considering instances obtained from subsets with different
numbers of nodes in N (i.e., customers and depots) from the
Emilia Romagna region. Next, we present the computational
results obtained with the proposed algorithms on the given
instances.

Scalability Analysis of the Micro‑services

To evaluate the impact of the problem size on the speed of
the different micro-services, we consider the several steps
carried out by the DSS, from geo-referencing the points to
solving the routing problem, as described in "Decision sup-
port system architecture". To this aim, we generate random
instances by selecting subsets of nodes from the real-world
data representing the Emilia Romagna region. Each result-
ing instance is solved five times, and the average computing
times in seconds are reported to estimate the increase in the
computational effort.

In the first experiment, shown in Fig. 7, we evaluate the
execution time of geo-referencing points of interest varying
the instance size. We first generate three sets: Set #1 (East

Table 2 Computational results
on the 20 groups (120 random
instances)

 Instance |D| |C| Kramer FSTG BSTG ILS Model
∑

�Rp�
∑

Zp
∑

t(s)
∑

Zp
∑

t(s)
∑

Zp
∑

t(s)
∑

Zp
∑

t(s)

Group-01 1 30 18 18 0.013 16 0.013 16 0.730 16 0.198
Group-02 1 60 23 23 0.013 23 0.013 23 1.358 23 0.273
Group-03 1 90 38 38 0.018 35 0.017 35 3.661 35 0.737
Group-04 1 120 45 45 0.017 42 0.017 42 6.049 42 1.103
Group-05 1 150 49 49 0.017 49 0.017 49 6.932 49 1.285
Group-06 2 30 13 13 0.016 13 0.015 13 0.142 13 0.173
Group-07 2 60 28 28 0.023 27 0.023 27 0.735 27 0.477
Group-08 2 90 31 31 0.020 29 0.019 29 1.183 29 0.564
Group-09 2 120 42 42 0.024 39 0.024 38 2.111 38 1.163
Group-10 2 150 49 49 0.025 46 0.026 46 3.145 46 1.592
Group-11 3 30 15 15 0.019 14 0.019 14 0.050 14 0.236
Group-12 3 60 29 29 0.029 27 0.028 27 0.464 27 0.771
Group-13 3 90 32 32 0.030 30 0.030 30 0.459 30 0.828
Group-14 3 120 39 39 0.029 36 0.029 36 1.150 36 1.274
Group-15 3 150 49 49 0.034 46 0.033 46 1.689 46 2.006
Group-16 1 30 18 18 0.013 16 0.012 16 0.823 16 0.184
Group-17 1 60 29 29 0.014 25 0.013 25 2.371 25 0.380
Group-18 1 90 39 39 0.015 38 0.014 38 4.702 38 0.748
Group-19 1 120 43 43 0.018 41 0.017 41 4.610 41 0.903
Group-20 1 150 55 55 0.019 50 0.018 50 8.148 50 2.357
Average 34 34 0.020 32 0.020 32 2.526 32 0.863

5 https:// www. coin- or. org/ docum entat ion. html.

https://www.coin-or.org/documentation.html

 SN Computer Science (2024) 5:225 225 Page 14 of 18

SN Computer Science

Emilia Romagna) contains 41 instances with number |N| of
nodes in the range [1, 201]; Set #2 (Central Emilia Romagna)
contains 43 instances with |N| in the range [1, 211]; and Set
#3 (West Emilia Romagna) contains 14 instances with |N| in
the range [1, 196]. We can observe a quasi-linear increase
in the running time as the size of the instance grows. The
performance here is impacted by the running time of the
external ArcGIS service used for geo-referencing. Due to
the nature of the service, where a single key is used to access
the external service, multi-threaded and parallel execution of
the service do not provide a significant gain (the invocation
rate for a given key is limited).

The second experiment concerns the performance and
scalability of the distance matrix computation. To this aim,
we consider the output of the previous step, and we feed

the geo-referenced points into the distance computation
micro-service. For each problem size, we record the
average computing time required to obtain the distance
matrix. Figure 8 shows the micro-service computing time
(in seconds) as a function of the number of points. The
distance matrix contains a value for each couple of points.
This explains the quadratic shape of the running time curve
as a function of the instance size. Due to the frequency
of external service invocations, we also observe that the
distance computation matrix can require a time in the order
of tens of minutes. This observation confirms the validity of
our design choice to return a job ID for subsequent polling
rather than returning directly the distance at the end of the
computation: the TCP protocol (used to interact with the
micro-service instance) would return a timeout error before

Table 3 Computational results
on the 28 real instances

 Instance p Kramer FSTG BSTG ILS Model

|Rp| Zp t(s) Zp t(s) Zp t(s) Zp t(s)

North Sardinia 1 9 9 0.005 7 0.005 7 0.911 7 0.344
North Sardinia 2 9 9 0.007 9 0.007 9 0.476 9 0.319
North Sardinia 3 8 8 0.007 8 0.006 8 0.328 8 0.269
North Sardinia 4 9 9 0.006 9 0.006 9 0.610 9 0.331
North Sardinia 5 10 10 0.007 9 0.006 9 0.664 9 0.473
North Sardinia 6 3 3 0.004 3 0.004 3 0.002 3 0.038
Total 48 48 0.036 45 0.034 45 2.991 45 1.774
South Sardinia 1 10 10 0.003 9 0.003 9 1.359 9 0.337
South Sardinia 2 11 11 0.003 11 0.003 11 1.781 11 0.404
South Sardinia 3 11 11 0.003 8 0.003 8 1.771 8 0.440
South Sardinia 4 11 11 0.004 9 0.004 9 1.772 9 0.428
South Sardinia 5 10 10 0.003 10 0.003 10 1.347 10 0.315
South Sardinia 6 5 5 0.003 5 0.003 5 0.382 5 0.070
Total 58 58 0.019 52 0.019 52 8.412 52 1.994
West Emilia Romagna 1 22 22 0.003 21 0.003 21 23.808 21 TL
West Emilia Romagna 2 22 21 0.003 19 0.003 17 23.933 17 TL
West Emilia Romagna 3 22 21 0.003 21 0.003 21 23.897 21 TL
West Emilia Romagna 4 26 24 0.003 23 0.003 23 35.838 - TL
West Emilia Romagna 5 24 21 0.003 19 0.003 18 30.266 19 TL
West Emilia Romagna 6 3 3 0.002 3 0.002 3 0.199 3 0.071
Total 119 112 0.017 106 0.017 103 137.941 - 3000.071
Central Emilia Romagna 1 58 58 0.007 20 0.006 20 143.140 - TL
Central Emilia Romagna 2 10 10 0.004 5 0.004 4 2.192 4 1.158
Central Emilia Romagna 3 58 58 0.007 20 0.006 20 129.670 - TL
Central Emilia Romagna 4 10 10 0.003 4 0.003 4 2.178 4 0.815
Central Emilia Romagna 5 58 58 0.007 21 0.006 20 131.501 - TL
Total 194 194 0.028 70 0.025 68 408.681 - 1801.973
East Emilia Romagna 1 54 54 0.005 24 0.005 23 245.443 29 TL
East Emilia Romagna 2 7 7 0.002 4 0.002 4 1.577 4 0.311
East Emilia Romagna 3 54 54 0.005 24 0.005 23 244.933 32 TL
East Emilia Romagna 4 7 7 0.002 4 0.002 4 1.575 4 0.560
East Emilia Romagna 5 55 55 0.005 23 0.005 23 252.420 29 TL
Total 177 177 0.019 79 0.019 77 745.948 98 1800.871

SN Computer Science (2024) 5:225 Page 15 of 18 225

SN Computer Science

completing the service whenever the execution time of the
micro-service exceeds 120 s. A second observation from this
experiment is the critical impact of caching on performance:
whenever a distance is already available in the cache, there
is no need to contact the external service.

The third experiment concerns the computing time
required to solve the VRPTW with the algorithm proposed
by [4], as discussed in "Solving the VRPTW". We
evaluate the scalability of the micro-service as a function
of the instance size. The results are given in Fig. 9, where
we observe a non-linear increase in the running time
as a function of the number of points to visit, which is
compatible with the NP-hard nature of the vehicle routing
problem. However, the limited size of the considered
problem instances makes it feasible to provide a heuristic
solution in a reasonable time. The computational effort of
the algorithms in "Solving the MTVRPTW" is reported in
the next section.

Computational Results of the MTVRPTW Algorithms

With the algor ithms proposed in "Solving the
MTVRPTW", we aim to minimize the number of vehicles
used to generate a weekly schedule to serve the custom-
ers. The activities planned in the areas of North Sardinia,
South Sardinia, and West Emilia Romagna span over six
working days, whereas those planned in Central Emilia
Romagna and East Emilia Romagna last five working days.
Consequently, we have a total of 28 real instances, one per
day and area. To obtain a very extensive validation of the
algorithms, we have also created 120 random instances

that contain subsets of customers from the 120 working
days (grouped in 20 working weeks of 6 days each) in the
Sardinia region. Each instance is solved five times, and we
report, in the next tables, the best solution found among
these runs and the average computing time.

The 120 random instances are divided into two classes:

• Class 1 is obtained from the North Sardinia area,
considering a number of depots randomly selected in
the set {1, 2, 3} , and a number of customers randomly
selected in the set {30, 60, 90, 120, 150} . Customers
are randomly selected from the original set in the real
instance. Two types of vehicles are available. The
instances of this class correspond to Group-01 until
Group-15.

• Class 2 is generated similarly to Class 1, but it refers to
the South Sardinia area and is characterized by a single
depot. The instances of this class correspond to Group-16
until Group-20.

In Table 2, we present the results obtained with the proposed
algorithms on the 120 randomly generated instances, organ-
ized in 20 groups. Columns |D| and |C| report the number of
depots and total customers in the group (week), respectively.
Column |Rp| represents the number of routes generated by
solving the VRPTW with the algorithm of [4]. Columns Zp
and t(s) contain the number of used vehicles per day and
the average computing times in seconds over the five runs,
obtained from solving the MTVRPTW with the proposed
algorithms: FSTG, BSTG, ILS, and mathematical model.
The results comprise the entire week (i.e., a group having
six days, where the best solution for each day is considered).
Each line then shows the total values as the sum of the best
solutions per day over the five runs.

By analyzing the results in Table 2, we can notice that no
improvement is obtained in three cases: Group-02, Group-
05, and Group-06, all related to North Sardinia. In contrast,
for all other cases, the proposed algorithms, except the
FSTG, obtain a reduction in the number of vehicles used.
Notably, the BSTG achieves an average reduction of 6.14%
in the number of used vehicles compared to the solution
obtained with the algorithm of [4], while the ILS and the
mathematical model reach an average reduction of 6.29%.

From Table 2, we observe that the ILS and the math-
ematical model have the same solutions. To evaluate how
competitive they are, we now present the results for the 28
real instances, which are harder to solve. These results are
reported in Table 3 for each day p and each area. For some
instances, the imposed time limit has been reached (TL),
and the mathematical model found no feasible solution
(entry ‘-’). In the last line of each table, we summarize
the total values comprising the entire week for each area.

Fig. 10 Illustrative example of a solution found for the West Emilia
Romagna area

 SN Computer Science (2024) 5:225 225 Page 16 of 18

SN Computer Science

Table 3 shows that the ILS obtains the best overall
results, especially when the mathematical model cannot
find a solution within the given time limit. It means that
the model does not scale well as the size of instances
grows. For example, the ILS returns 77 vehicles for the
East Emilia Romagna, while the mathematical model
gives 98 vehicles. In the West and Central Emilia
Romagna, the mathematical model cannot find any fea-
sible solution on days p = 4 and p = 1, 3, 5 , respectively,
while the ILS achieves the best total number of vehicles,
followed by the BSTG with 3 and 2 vehicles more, respec-
tively. The BSTG obtains the same results concerning the
ILS for the North and South Sardinia. On the other hand,
the FSTG always returns the same number of vehicles as
obtained with the algorithm of [4], except for the West
Emilia Romagna.

The ILS can reduce by 6.25%, 10.34%, 13.45%,
64.95%, and 56.50% the number of vehicles concerning
the algorithm of [4] for North Sardinia, South Sardinia,
West Emilia Romagna, Central Emilia Romagna, and
East Emilia Romagna, respectively, considering the entire
week. It is important to consider that, in Italy, the cost
of a large vehicle (120 tons or more) can easily exceed
50,000 euros. Therefore, even if the number of route
reductions may appear small in some instances, they rep-
resent significant cost savings for Coopservice. Concern-
ing the computing times, they are negligible for FSTG
and BSTG. The ILS requires more time (260.80 s, on
average per week), but generally, it is much faster than the
mathematical model (1321.34 s, on average, per week).

Besides that, the proposed DSS allows the decision-
maker to visualize the generated routes on a map.
Figure 10 illustrates an example of the solutions found
in the West Emilia Romagna. The simplified UI allows
the decision-makers to easily check the solution and its
feasibility in daily planning.

Conclusions and Future Works

This paper presents the development of a model-driven
decision support system (DSS) designed to help decision-
makers tackle complex logistic decisions. The proposed
DSS encompasses specialized modules to address the
multi-trip vehicle routing problem with time windows (i.e.,
MTVRPTW). It considers a set of agile micro-services
capable of geo-referencing points and performing distance
calculations. The data produced is then used as input to
the vehicle routing problem, which in turn is solved by
a two-phase approach. In the first stage, we use a solu-
tion method proposed in the literature to find a solution
to the vehicle routing problem with time windows. Next,
four proposed methods are used to obtain a solution to the

MTVRPTW: two greedy heuristics, an ILS metaheuristic,
and a MILP model. The overall DSS architecture has the
flexibility to allow changing the micro-services already
implemented as well as to add new services and even solu-
tion methods.

The DSS is validated on real and randomly generated
instances, considering different numbers of depots, cus-
tomers, and vehicle types. Results indicate the superior
performance of the ILS, which can outperform on the real
instances the algorithm of [4] by 30.30%, the fixed starting
time greedy algorithm by 29.22%, the bounded starting
time greedy algorithm by 1.64%, and the mathematical
model by 4.50%, on average. All these improvements sig-
nificantly benefit the company that is using the DSS in
terms of operational costs. Besides that, the computing
times of the ILS are compatible with daily use.

Concerning future works, it would be interesting to
add new micro-services in the DSS to, e.g., handle other
logistic problems faced by the company in activities such
as pick-up and delivery and car patrolling (see, e.g., [34]).
Another interesting direction would be to investigate the
impact of new constraints on the problem, e.g., labor
constraints or maximum CO2 emissions. In this regard,
exploring the adoption of electric vehicles instead of fuel
vehicles, so as to minimize emissions while meeting addi-
tional operational constraints (see, e.g., [35]), offers a very
interesting perspective for future research. It would also
be interesting to apply the proposed DSS to handle prob-
lems related to reverse logistics. To this aim, one could
try to adapt the current algorithms, especially the ILS, by
including new perturbation procedures and local search
operators.

Acknowledgements The authors thank the financial support provided
by the National Council for Scientific and Technological Development
(CNPq) [grant numbers 311185/2020-7, 405369/2021-2, 408722/2023-
1, and 315555/2023-8], the State of Goiás Research Foundation
(FAPEG), the National Recovery and Resilience Plan (NRRP), Mission
04 Component 2 Investment 1.5-NextGenerationEU, Call for tender n.
3277 dated 30/12/2021, Award Number: 0001052 dated 23/06/2022,
and Coopservice Soc.coop.p.A. Besides that, Coopservice has provided
the authors with relevant information, feedback, and data for the
numerical experiments.

Declarations

Conflict of interest No potential conflict of interest was reported by
the authors.

References

 1. Golden B, Raghavan S, Wasil E (eds.): The Vehicle Routing
Problem: Latest Advances and New Challenges. Operations
Research/Computer Science Interfaces, vol. 43. Springer, Boston,
MA 2008; https:// doi. org/ 10. 1007/ 978-0- 387- 77778-8

https://doi.org/10.1007/978-0-387-77778-8

SN Computer Science (2024) 5:225 Page 17 of 18 225

SN Computer Science

 2. Toth P, Vigo D. Vehicle Routing: Problems, Methods, and
Applications. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA 2014; https:// doi. org/ 10. 1137/1. 97816
11973 594

 3. Uchoa E, Pecin D, Pessoa A, Poggi M, Vidal T, Subramanian
A. New benchmark instances for the capacitated vehicle
routing problem. European Journal of Operational Research.
2017;257(3):845–58. https:// doi. org/ 10. 1016/j. ejor. 2016. 08. 012.

 4. Kramer R, Cordeau J-F, Iori M. Rich vehicle routing with
auxiliary depots and anticipated deliveries: An application to
pharmaceutical distribution. Transportation Research Part E:
Logistics and Transportation Review. 2019;129:162–74. https://
doi. org/ 10. 1016/j. tre. 2019. 07. 012.

 5. Cavecchia M, De Queiroz TA, Iori M, Lancellotti R, Zucchi
G. A Decision Support System for Multi-Trip Vehicle Routing
Problems. In: Proceedings of the 25th International Conference
on Enterprise Information Systems, vol. 1, pp. 335–343.
SCITEPRESS - Science and Technology Publications, Prague,
Czech Republic 2023; https:// doi. org/ 10. 5220/ 00118 06600 003467

 6. Vidal T, Crainic TG, Gendreau M, Prins C. Heuristics for multi-
attribute vehicle routing problems: A survey and synthesis.
European Journal of Operational Research. 2013;231(1):1–21.
https:// doi. org/ 10. 1016/j. ejor. 2013. 02. 053.

 7. Goel RK, Bansal RS. Hybrid algorithms for rich vehicle routing
problems: A survey. In: Nalepa, J. (ed.) Smart Delivery Systems.
Intelligent Data-Centric Systems, 2020;157–184 Chap. 5. https://
doi. org/ 10. 1016/ B978-0- 12- 815715- 2. 00011-7

 8. Vidal T, Laporte G, Matl P. A concise guide to existing and
emerging vehicle routing problem variants. European Journal of
Operational Research. 2020;286(2):401–16. https:// doi. org/ 10.
1016/j. ejor. 2019. 10. 010.

 9. Mor A, Speranza MG. Vehicle routing problems over time: a
survey. Annals of Operations Research. 2022;314(1):255–75.
https:// doi. org/ 10. 1007/ s10479- 021- 04488-0.

 10. Desrochers M, Desrosiers J, Solomon M. A New Optimization
Algorithm for the Vehicle Routing Problem with Time Windows.
Operations Research. 1992;40(2):342–54. https:// doi. org/ 10. 1287/
opre. 40.2. 342.

 11. Desaulniers G, Madsen O, Ropke S. The Vehicle Routing Problem
with Time Windows. In: Toth, P., Vigo, D. (eds.) Vehicle Routing
vol. 18, 2014;119–159. Chap. 5. https:// doi. org/ 10. 1137/1. 97816
11973 594. ch5

 12. Vidal T, Crainic TG, Gendreau M, Prins C. A unified solution
framework for multi-attribute vehicle routing problems. European
Journal of Operational Research. 2014;234(3):658–73. https:// doi.
org/ 10. 1016/j. ejor. 2013. 09. 045.

 13. Amorim P, Parragh SN, Sperandio F, Almada-Lobo B. A rich
vehicle routing problem dealing with perishable food: a case
study. TOP. 2014;22(2):489–508. https:// doi. org/ 10. 1007/
s11750- 012- 0266-4.

 14. Keskin M, Çatay B. A matheuristic method for the electric
vehicle routing problem with time windows and fast chargers.
Computers & Operations Research. 2018;100:172–88. https://
doi. org/ 10. 1016/j. cor. 2018. 06. 019.

 15. Mendes N, Iori M. A Decision Support System for a Multi-trip
Vehicle Routing Problem with Trucks and Drivers Scheduling.
In: Proceedings of the 22nd International Conference on
Enterprise Information Systems, pp. 339–349. SCITEPRESS -
Science and Technology Publications, Prague, Czech Republic
2020; https:// doi. org/ 10. 5220/ 00093 64403 390349

 16. Sciortino M, Lewis R, Thompson J. A School Bus Routing
Heuristic Algorithm Allowing Heterogeneous Fleets and Bus

Stop Selection. SN Computer Science. 2022;4(1):74. https://
doi. org/ 10. 1007/ s42979- 022- 01466-6.

 17. Cattaruzza D, Absi N, Feil let D. Vehicle routing
problems with multiple tr ips. Annals of Operations
Research. 2018;271(1):127–59. https:// doi. org/ 10. 1007/
s10479- 018- 2988-7.

 18. Masmoudi MA, Hosny M, Braekers K, Dammak A. Three
effective metaheuristics to solve the multi-depot multi-trip
heterogeneous dial-a-ride problem. Transportation Research Part
E: Logistics and Transportation Review. 2016;96:60–80. https://
doi. org/ 10. 1016/j. tre. 2016. 10. 002.

 19. Wang Z. Delivering meals for multiple suppliers: Exclusive
or sharing logistics service. Transportation Research Part E:
Logistics and Transportation Review. 2018;118:496–512. https://
doi. org/ 10. 1016/j. tre. 2018. 09. 001.

 20. Pan B, Zhang Z, Lim A. Multi-trip time-dependent vehicle routing
problem with time windows. European Journal of Operational
Research. 2021;291(1):218–31. https:// doi. org/ 10. 1016/j. ejor.
2020. 09. 022.

 21. Nguyen VS, Pham QD, Nguyen TH, Bui QT. Modeling and
solving a multi-trip multi-distribution center vehicle routing
problem with lower-bound capacity constraints. Computers &
Industrial Engineering. 2022;172: 108597. https:// doi. org/ 10.
1016/j. cie. 2022. 108597.

 22. Power DJ, Sharda R. Decision Support Systems. In: Nof, S.Y. (ed.)
Springer Handbook of Automation, pp. 1539–1548. Springer,
Berlin, Heidelberg 2009; https:// doi. org/ 10. 1007/ 978-3- 540-
78831-7_ 87

 23. Farshidi S, Jansen S, Jong R, Brinkkemper S. A decision support
system for cloud service provider selection problem in software
producing organizations. In: 2018 IEEE 20th Conference on
Business Informatics (CBI), 2018;01:139–148 https:// doi. org/
10. 1109/ CBI. 2018. 00024

 24. Christoforou A, Garriga M, Andreou AS, Baresi L. Supporting
the Decision of Migrating to Microservices Through Multi-layer
Fuzzy Cognitive Maps. In: Maximilien, M., Vallecillo, A., Wang,
J., Oriol, M. (eds.) Service-Oriented Computing, pp. 471–480.
Springer, Cham 2017; https:// doi. org/ 10. 1007/ 978-3- 319- 69035-
3_ 34

 25. Di Francesco P, Malavolta I, Lago P. Research on architecting
microservices: Trends, focus, and potential for industrial adoption.
In: 2017 IEEE International Conference on Software Architecture
(ICSA), 2017;21–30: https:// doi. org/ 10. 1109/ ICSA. 2017. 24

 26. Keenan PB, Jankowski P. Spatial Decision Support Systems:
Three decades on. Decision Support Systems. 2019;116:64–76.
https:// doi. org/ 10. 1016/j. dss. 2018. 10. 010.

 27. ESRI: ArcGIS API for Python. https:// devel opers. arcgis. com/
python/ api- refer ence/ arcgis. gis. toc. html Accessed 2023-08-08

 28. Taibi D, Lenarduzzi V, Pahl C. Processes, motivations, and
issues for migrating to microservices architectures: An empirical
investigation. IEEE Cloud Computing. 2017;4(5):22–32. https://
doi. org/ 10. 1109/ MCC. 2017. 42509 31.

 29. Hunt J. Applying the Model-View-Controller Pattern. In: Hunt,
J. (ed.) Guide to the Unified Process Featuring UML, Java and
Design Patterns, pp. 235–252. Springer, London 2003; https://
doi. org/ 10. 1007/1- 85233- 856-3_ 14

 30. Santini A, Schneider M, Vidal T, Vigo D. Decomposition
strategies for vehicle routing heuristics. INFORMS Journal on
Computing. 2023;35(3):543–59. https:// doi. org/ 10. 1287/ ijoc.
2023. 1288.

 31. Savelsbergh MWP. The Vehicle Routing Problem with Time
Windows: Minimizing Route Duration. ORSA Journal on

https://doi.org/10.1137/1.9781611973594
https://doi.org/10.1137/1.9781611973594
https://doi.org/10.1016/j.ejor.2016.08.012
https://doi.org/10.1016/j.tre.2019.07.012
https://doi.org/10.1016/j.tre.2019.07.012
https://doi.org/10.5220/0011806600003467
https://doi.org/10.1016/j.ejor.2013.02.053
https://doi.org/10.1016/B978-0-12-815715-2.00011-7
https://doi.org/10.1016/B978-0-12-815715-2.00011-7
https://doi.org/10.1016/j.ejor.2019.10.010
https://doi.org/10.1016/j.ejor.2019.10.010
https://doi.org/10.1007/s10479-021-04488-0
https://doi.org/10.1287/opre.40.2.342
https://doi.org/10.1287/opre.40.2.342
https://doi.org/10.1137/1.9781611973594.ch5
https://doi.org/10.1137/1.9781611973594.ch5
https://doi.org/10.1016/j.ejor.2013.09.045
https://doi.org/10.1016/j.ejor.2013.09.045
https://doi.org/10.1007/s11750-012-0266-4
https://doi.org/10.1007/s11750-012-0266-4
https://doi.org/10.1016/j.cor.2018.06.019
https://doi.org/10.1016/j.cor.2018.06.019
https://doi.org/10.5220/0009364403390349
https://doi.org/10.1007/s42979-022-01466-6
https://doi.org/10.1007/s42979-022-01466-6
https://doi.org/10.1007/s10479-018-2988-7
https://doi.org/10.1007/s10479-018-2988-7
https://doi.org/10.1016/j.tre.2016.10.002
https://doi.org/10.1016/j.tre.2016.10.002
https://doi.org/10.1016/j.tre.2018.09.001
https://doi.org/10.1016/j.tre.2018.09.001
https://doi.org/10.1016/j.ejor.2020.09.022
https://doi.org/10.1016/j.ejor.2020.09.022
https://doi.org/10.1016/j.cie.2022.108597
https://doi.org/10.1016/j.cie.2022.108597
https://doi.org/10.1007/978-3-540-78831-7_87
https://doi.org/10.1007/978-3-540-78831-7_87
https://doi.org/10.1109/CBI.2018.00024
https://doi.org/10.1109/CBI.2018.00024
https://doi.org/10.1007/978-3-319-69035-3_34
https://doi.org/10.1007/978-3-319-69035-3_34
https://doi.org/10.1109/ICSA.2017.24
https://doi.org/10.1016/j.dss.2018.10.010
https://developers.arcgis.com/python/api-reference/arcgis.gis.toc.html
https://developers.arcgis.com/python/api-reference/arcgis.gis.toc.html
https://doi.org/10.1109/MCC.2017.4250931
https://doi.org/10.1109/MCC.2017.4250931
https://doi.org/10.1007/1-85233-856-3_14
https://doi.org/10.1007/1-85233-856-3_14
https://doi.org/10.1287/ijoc.2023.1288
https://doi.org/10.1287/ijoc.2023.1288

 SN Computer Science (2024) 5:225 225 Page 18 of 18

SN Computer Science

Computing. 1992;4(2):146–54. https:// doi. org/ 10. 1287/ ijoc.4. 2.
146.

 32. Cormen TH, Leiserson CE, Rivest RL, Stein C, editors.
Introduction to Algorithms. 2nd ed. Cambridge, Mass: MIT Press
and McGraw-Hill; 2001.

 33. Lourenço HR, Martin OC, Stützle T. Iterated Local Search:
Framework and Applications. In: Gendreau, M., Potvin, J.-Y. (eds.)
Handbook of Metaheuristics. International Series in Operations
Research & Management Science, pp. 129–168. Springer, Cham
2019; https:// doi. org/ 10. 1007/ 978-3- 319- 91086-4_5

 34. Vidigal Corrêa VH, Dong H, Iori M, Santos AG, Yagiura M,
Zucchi G. An iterated local search for a multi-period orienteering

problem arising in a car patrolling application. Networks. 2023.
https:// doi. org/ 10. 1002/ net. 22187.

 35. Biswas S, Behera S, Choudhury NBD. A Brief Review on the
Barriers of Electric Vehicle Adoption and Present Scenario in
India. In: Goyal, S.K., Palwalia, D.K., Tiwari, R., Gupta, Y.
(eds.) Flexible Electronics for Electric Vehicles. Lecture Notes in
Electrical Engineering, Springer, Singapore 2024;539–550 https://
doi. org/ 10. 1007/ 978- 981- 99- 4795-9_ 51

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1287/ijoc.4.2.146
https://doi.org/10.1287/ijoc.4.2.146
https://doi.org/10.1007/978-3-319-91086-4_5
https://doi.org/10.1002/net.22187
https://doi.org/10.1007/978-981-99-4795-9_51
https://doi.org/10.1007/978-981-99-4795-9_51

	An Optimization-Based Decision Support System for Multi-trip Vehicle Routing Problems
	Abstract
	Introduction
	Literature Review
	Decision Support System Architecture
	Business Process Overview
	Service Definition
	Technologies

	Formal MTVRPTW Description
	Proposed Methodology
	Solving the VRPTW
	Solving the MTVRPTW
	Fixed Starting Time Greedy Algorithm (FSTG)
	Bounded Starting Time Greedy Algorithm (BSTG)
	Iterated Local Search (ILS)
	Mathematical Model

	Computational Results
	Scalability Analysis of the Micro-services
	Computational Results of the MTVRPTW Algorithms

	Conclusions and Future Works
	Acknowledgements
	References

