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A B S T R A C T

In order to increase the accuracy of traditional methods for camera-based pulse rate estimation, we propose
a novel systemic approach that extracts multiple remote photoplethysmography (rPPG) signals from a set of
scattered facial patches and effectively separates good estimates from noisy ones via a novel unsupervised
Power Spectral Density (PSD) clustering method. In contrast to commonly adopted rPPG pipelines, which are
often challenged by rigid head movements, facial expressions, and rapidly changing lighting conditions, our
patch-oriented solution leverages the key feature of patch recurrence in video sequences. Instead of focusing
on a small group of specific Regions of Interest (ROIs), our method adaptively selects a set of patches tracked
across successive frames. The spatio-temporal self-similarity among these patches provides powerful internal
statistics that significantly enhance standard techniques for rPPG assessment. Our main contribution is a novel
unsupervised discriminatory strategy called CircleClustering, which naturally separates PSDs into those with
low intra-class variability from those with high intra- and inter-class inhomogeneity. Extensive experimental
results demonstrate the overall superiority of our patch-based clustering method compared to both traditional
signal processing-based rPPG techniques and recent supervised deep learning-based models for rPPG recovery.
1. Introduction

Remote photoplethysmography (rPPG) enables contactless Heart
Rate (HR) monitoring by capturing the subtle skin color variations
induced by blood volume pulse, through a video camera [1]. This
technology has recently seen increased interest due to the wide va-
riety of its downstream applications, such as sleep monitoring [2],
telemedicine [3], emotion recognition [4], estimation of other physi-
ological signals [5] or DeepFake detection [6,7].

The rationale behind rPPG is simple. According to the dichromatic
reflection model (cf. Fig. 1), the camera signal can be decomposed
into specular and diffuse reflections [8]: the former is a mirror-like
reflection that does not deliver any significant cardiac detail; con-
versely, diffuse reflection originates from light that penetrates through
the layers of the skin and diffuses back. As a result, the latter represents
a better carrier of physiological information.

In such an effort, the vast majority of rPPG methods exploit either
signal processing or deep learning techniques to effectively extract
diffuse reflections from RGB traces. Clearly, their effectiveness strongly
depends on the reliability of the considered Regions of Interest (ROIs).
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In principle, it is paramount to select ROIs that are not dominated by
specular reflection.

Classic approaches either rely on the detection of specific ROIs
(e.g. forehead or cheeks) or - by exploiting the spatial redundancy of
a color camera sensor - obtain RGB traces by averaging the whole
face skin color intensities (this is sometimes referred to as holistic
approach [9,10]). Notoriously, these approaches suffer from lack of
robustness due to various reasons, such as sudden changes in pixel
intensity values caused by facial expressions, uneven or varying face
illumination, and motion-induced color variations.

More recently, end-to-end deep-learning techniques have been
adopted; these typically ingest lightly pre-processed face videos and de-
fer the selection of the appropriate ROI to the learning algorithm. This
can be achieved, for example, via neural attention mechanisms [11,
12]. Despite the undeniable advantages, deep learning-based solutions
exhibit some downsides related to the need of huge amounts of data,
a cogently critical condition to be satisfied in the rPPG field; indeed,
building rPPG corpora requires the measurement of a physiologi-
cal ground truth (necessitating contact sensors) and the recording of
uncompressed (or lightly compressed) videos [13].
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Fig. 1. Dichromatic reflection model: diffusion reflection is related to pulse signal and
any rPPG method uses signal processing to extract heartbeat information.

With the aim of mitigating such problems, in this work, we present a
novel approach that leverages the spatio-temporal similarities existing
in the diverse set of ROIs scattered on a face video. This is accomplished
by a novel unsupervised algorithm (CircleClustering) able to adaptively
and effectively select the most useful ROIs without requiring training
or ground truth physiological signals.

The approach is based on the fact that face images contain local in-
formation that is relatively coherent across certain patches(particularly
those conveying more diffuse reflection) while other patches tend to
show more noisy, incoherent patterns. The overall objective is to exploit
such substantial internal information redundancy, eventually yielding
reliable internal statistics [14]. More specifically, many small patches
(e.g. 10 ×10 pixels) are likely to present similar spectral characteristics
as representing different measurements of the same underlying process
(cardiac activity). Similar properties have been extensively exploited
by classical image processing algorithms that tackle problems such as
denoising, super-resolution and text synthesis [14]. A common ground
of these approaches is to split the image into possibly overlapping
patches (ROIs) and arrange them in a suitable way according to their
similarity to gain predictive performance.

A fundamental difficulty when comparing two or more patches in a
real scenario is deciding whether the differences should be ascribed to
either noise or intrinsic dissimilarity. The very same problem applies
to the rPPG context that presents challenges related to uncontrolled
illumination, different skin-tones, and significant body motions. More-
over, it is worth noticing that as to the rPPG problem, local patches
are not represented by standard ‘‘low-level’’ features, but are processed
through complex models, the actual rPPG technique employed. This
inevitably entails that classical noise models (e.g. Gaussian noise) are
not applicable here.

In this work, we propose a novel clustering algorithm that acts on
the spectrum of locally estimated rPPG signals, referred to as CircleClus-
tering. Empirical results demonstrate that this algorithm effectively
identifies two well-separated sets of ROIs, defining a ‘‘good’’ cluster
and a ‘‘bad’’ one. More specifically, it provides a bipartition with
the following asymmetric property: the good cluster groups together
homogeneous Power Spectral Densities (PSDs) with peaks concentrated
around the same frequency, while the bad cluster collects PSDs that
are inhomogeneous with one another (intra-class variability) and also
dissimilar from those in the good cluster (inter-class variability). From
a theoretical perspective, CircleClustering relies on dynamical system
theory, a principled tool for modeling and studying phenomena that
undergo spatial and temporal evolution. In brief, the algorithm asso-
ciates PSD points lying in a Euclidean space of large dimensions (of
the order of a few hundred) with elements on the unit circle, assumed
2 
by scalar variables representing angles in the real interval of size 2𝜋.
Given an arbitrary metric to measure distance or similarity between
PSDs, a nonlinear autonomous dynamical system with state on the edge
hypercube 2𝜋 is activated to minimize an energy (cost) function; the
cost combines such distances and the scalar variables instantiated on
the hypercube. An asynchronous dynamics is applied to lead the system
to a point arbitrarily close to a fixed point that is asymptotically stable
in a finite number of steps. The system is shown to always converge
and the equilibrium point found represents a local minimum of the
cost function, which in turn represents a Lyapunov function for the
dynamical system [15]. At the end of this process, the best separating
hyperplane of the points on the unit circle is found through a simple
greedy technique, from which a bipartition of the original PSD set is
automatically derived due to the isomorphism with the points on the
circle. A final pulse-rate estimation for each patch group is achieved by
Gaussian fitting the average PSDs of the two clusters and selecting the
cluster with the best fit.

In a crude summary, the relevant and innovative points of our
approach can be summarized as follows.

• A novel adaptive patch-oriented approach for better capturing the
faint presence of blood pulsations from a set very noisy rPPG
estimates.

• A novel two-stage PSD clustering method able to group PSDs
exhibiting high spectral coherence (good cluster) from dissimilar
or highly inconsistent ones (bad cluster).

We perform extensive experiments on multiple datasets and test
several classic rPPG methods with or without the proposed CircleClus-
tering algorithm. Results demonstrate the effectiveness of the pro-
posed method, even compared to state-of-the-art deep learning-based
approaches.

The paper unfolds as follows. Section 1.1 summarizes previous
rPPG-related research focusing specifically on the ROI selection prob-
lem. Section 2.1 describes the adopted face sampling technique. Sec-
tion 2.2 details the spectral analysis performed at the patch level of the
rPPG measurements used in this study. In Section 2.3 the CircleCluster-
ing algorithm is proposed and analyzed. Section 3 reports experimental
work, demonstrating the ability of the proposed method to infer the
right pulse rate with minimal error. Eventually, conclusions are drawn
in Section 4.

1.1. Related works

A great deal of research work witnesses the crucial role of ROI
selection as a fundamental first step of many rPPG techniques to obtain
reliable pulse signals. Main reasons are to be attributed to a number
of factors ranging from anatomical elements to a wide range of noise
types. In [16] it is argued that a critical element is the nonuniform
thickness of the skin in all areas of the face, which is the reason
why one cannot obtain the same diffuse reflection information in
each zone. Similarly [17] states that some skin regions contain more
rPPG signal than others, mainly for physiological reasons, suggesting
explicitly favoring areas where information is more predominant using
a spatially weighted average of skin pixels based on a trained model.
Instead, the authors of [18] propose dynamically selecting regions that
perform block-based spatio-temporal division and final clustering to
find adaptive ROIs driven by SNR.

In recent years, the literature has been driven by the flourishing
of deep learning (DL)-based approaches (for recent reviews, see [19–
21]). Some DL methods consider hybrid approaches where DL is used
to cover only some steps over the pipeline. In this group, several papers
highlight the necessity to extract ROIs in order to only process the most
informative regions. For example, in [22] the ROI corresponding to the
central part of the face (including the cheeks and nose) is detected and
fed as input into PRnet. In [23] the ROIs corresponding to the forehead
and to the cheeks are considered as input to a Siamese-rPPG Network.
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Fig. 2. Pipeline summarizing the approach for adaptive ROIs (patches) selection via the proposed CircleClustering algorithm to enhance camera-based heart rate estimation via
rPPG.
All these approaches have certain limitations. On the one hand,
the static selection of ROIs, while efficient, lacks flexibility to adapt to
varying subjects and environmental conditions. On the other hand, DL-
based methods, while adaptable and powerful, have several drawbacks.
First, they require large amounts of labeled data, which is often scarce
in rPPG applications. Furthermore, these models can overfit noisy data
and may be sensitive to factors such as lighting conditions, facial
movements, and environmental changes, which can compromise their
robustness. Moreover, DL models are frequently regarded as ‘‘black
boxes’’ making their decision-making processes difficult to interpret,
which is a critical concern in health monitoring. Finally, these models
require significant computational resources, including GPUs and large
datasets for effective training.

2. The method

In this section, we provide a thorough description of the proposed
approach, which involves the detection and tracking of ROIs (face
patches), rPPG estimation, and the novel PSD clustering technique that
adaptively and automatically selects the most useful ROIs. The pipeline
illustrating the overall proposal is shown in Fig. 2.

2.1. Patch detection and tracking

Following the typical rPPG-based pulse rates estimation pipeline, we
assume a sequence of 𝑇 (windowed) RGB frames as input. The 𝑡th frame
(for 𝑡 = 1,… , 𝑇 ) represents the collection of pixels given by the vectors
𝐜𝑖,𝑗 (𝑡) = (𝑟𝑖,𝑗 (𝑡), 𝑔𝑖,𝑗 (𝑡), 𝑏𝑖,𝑗 (𝑡))⊤, where 𝑟𝑖,𝑗 (𝑡), 𝑔𝑖,𝑗 (𝑡), 𝑏𝑖,𝑗 (𝑡) represent the red,
green and blue channels for the pixel in position (𝑖, 𝑗), respectively, and
⊤ denotes vector transposition.

Unless stated otherwise, in the rest of the paper, we implicitly
assume that a given video 𝑣 ∈ Rℎ×𝑤×3×𝑁 of 𝑁 RGB frames of size (ℎ, 𝑤)
is sliced into 𝐾 = ⌊𝑁∕(𝑇 − 𝑆)⌋ overlapping windows, where 𝑇 is the
number of frames per window, and 𝑆 the stride. Therefore, each pulse
rate estimate derived from this modeling is limited to a window of 𝑇
frames and is conducted independently of the others. Based on this, the
whole evaluation process takes as input a video and produces 𝐾 BPM
estimates, one for each considered window.

In the patch-based approach, we consider a collection of scattered
patches centered on  = [1..𝐿] landmarks from which a bunch of
RGB traces can be extracted (see the forthcoming section for details).
Examples of different sets of face landmarks are given in Fig. 3. Fig. 3(a)
shows a set of landmark locations sampled from a quasi-uniform spa-
tial distribution. The subsequent figures (b-d) depict different sets of
patches (each centered on a landmark) with increasing spatial density
(from 25 to 100). As can be seen from the figure, non-skin pixels
3 
Fig. 3. Model with 100 quasi-uniformly spread face mesh landmarks (a). Patches
centered on 25 (b), 50 (c), and 100 (d) landmarks respectively.

Fig. 4. Landmarks automatically tracked by MediaPipe and correspondent patch
tracking.

(e.g., eyes, eyebrows, mouth, and background) are excluded from the
patch sampling process, as these are typically considered noisy areas
for the rPPG estimation process.

An example of landmark extraction and tracking is illustrated in
Fig. 4, where three patches were selected for visualization from the
forehead, left cheek, and right cheek areas. Note that a patch may
disappear due to the subject’s movement, thus providing partial or no
contribution. Typically, a fairly high number of patches is chosen to
better deal with the many variations in boundary conditions (move-
ment, ambient light, etc.) and to achieve higher confidence levels in
the subsequent inferences.

2.1.1. Filtering of RGB color signals
The second processing step is ubiquitous in model-based rPPG meth-

ods and is related to spatial quantization. Given an input video that
contains a face, we spatially average the RGB values of the pixels within
the sampled patches in each frame. These values are then temporally
concatenated to yield RGB color traces.

Specifically, given a mesh of scattered patches centered on land-
marks , for each landmark 𝑙 ∈  we select a patch 𝑃𝑙 centered in 𝑙.
For each frame 𝑡 ∈ [1..𝑇 ] we compute the average color intensities over
𝑃𝑙(𝑡) (RGB color trace):

�̄�𝑙(𝑡) = (�̄�𝑙(𝑡), �̄�𝑙(𝑡), �̄�𝑙(𝑡))⊤ = 1 ∑

𝐜𝑖,𝑗 (𝑡) (1)

|𝑃𝑙(𝑡)| (𝑖,𝑗)∈𝑃𝑙 (𝑡)
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Fig. 5. Patch tracking within a frame temporal window, and the RGB color signal
computation at frame 𝑡.

where |𝑃𝑙(𝑡)| is the number of pixels in 𝑃𝑙(𝑡).
Fig. 5 shows how the patch-based split and tracking procedure is

implemented along with the RGB color signal �̄�𝑙(𝑡) collected for each
frame 𝑡 on the patch 𝑃𝑙(𝑡).

Assuming that a video has 𝑇 frames, the RGB traces �̄�𝑙 provide a
vector in the R3×𝑇 space. For a video-camera recording at a rate of 𝜏
frames-per-second (fps), the time span of the data in Eq. (1) covers 𝑇 ∕𝜏
seconds.

It is good practice to eliminate the DC-colors1 by temporally nor-
malizing each row of (1) as:

�̃�𝑙 =
[ �̄�𝑙
𝜇(�̄�𝑙)

,
�̄�𝑙

𝜇(�̄�𝑙)
,

�̄�𝑙
𝜇(�̄�𝑙)

]⊤

∈ R3×𝑇 ,

where the temporal average operator 𝜇(⋅) is applied to each RGB chan-
nel [24]. Both spatial and temporal normalization play an important
role in rPPG estimation: spatial pixel averaging breaks down the camera
quantization error [8], while temporal normalization aims to eliminate
the dependency of 𝐜𝑙 on the average skin reflection color, considered
as the large steady component over a time interval.

In the pre-processing stage, common filtering procedures are often
applied to retain only the frequencies within the human heart rate
range (40–240 BPM, corresponding to 0.65–4 Hz), as this has a sig-
nificant impact on pulse extraction. Temporal filtering techniques are
typically employed, such as detrending, moving-average, and bandpass
filters. Detrending helps in isolating the pulsatile component of rPPG
by drastically reducing the low frequencies of the raw signal which de-
termines non-stationary trends of signals [25,26]. The moving-average
filter smooths the signal by suppressing high-frequency random noise
caused by sudden color changes due to light or motions using the
temporal average of consecutive frames. Classical filters such as the
bandpass filter are also used to remove irrelevant frequencies outside
the heart rate bandwidth (e.g., Butterworth filters).

All the aforementioned filters are often used in combination [25],
and the resulting signal obtained by applying 𝑘 filters in cascade to
spatially and temporally normalized signals �̃�𝑙 related to the patch 𝑃𝑙
thus becomes:

�̂�𝑙 = FILT1(⋯ FILT𝑘(�̃�𝑙)⋯).

Fig. 6 shows some samples of raw RGB color signals (top picture)
obtained from patches (randomly choosing only one channel among �̂�𝑙,
�̂�𝑙 and �̂�𝑙), together with their filtered versions (bottom picture) after
the application of detrending and bandpass filters.

1 Here the DC-colors refer to the temporally averaged colors of skin and
background, where it is assumed that such averages are quite stable over a
short period.
4 
Fig. 6. Samples taken from some patches of both raw (top) and filtered (bottom) RGB
color signals after the application of detrending and bandpass. Line colors are purely
random, used to distinguish the overlapped plots.

Fig. 7. rPPG signals provided by the two methods CHROM (upper) and LGI (lower)
respectively, after RGB trace extraction from various patches.

An example of cardiac signals recovered by two commonly adopted
rPPG methods is shown in Fig. 7 (see Section 3 for details).

2.2. Patch-level spectral analysis

From a pure signal processing point of view, rPPG measurement
poses two relevant issues: the periodicity of the underlying
phenomenon and the random effects introduced by noise. By and
large, most rPPG pipelines analyze the frequency domain content
of the estimated signals as opposed to a time domain analysis. A
reason for supporting this approach is that the noise spectrum has
almost certainly a different spectral line, helping to discriminate the
most informative frequency peaks. Under such circumstances, spectral
analysis is performed via Power Spectral Density (PSD) estimation.
PSD provides information on the power distribution as a function
of frequency, provided that the signal is at least weakly stationary
to avoid distortions in the time and frequency domains. In order to
grant a weaker form of stationarity, here we compute the PSD on
small intervals, e.g. 5 ÷ 10 seconds, so as to preserve the significant
peaks in the pulse frequency band ([40, 240] BPM). Here, the PSD
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is computed via the discrete time Fourier transform (DFT) using the
Welch’s method, which employs both averaging and smoothing to
analyze the underlying random phenomenon.

Formally, given an rPPG signal 𝑏𝑙 of length 𝑇 for each patch 𝑙 ∈
, the sequence 𝑏𝑙 = (𝑥(1),… , 𝑥(𝑇 )) is divided into 𝑆 segments (or
windows) of length 𝑀 , with a shift of 𝐾 samples between adjacent
segments, thus producing an overlap of 𝑀 − 𝐾 samples. Denote a
segment

𝑥𝑗 (𝑡) = 𝑥((𝑗 − 1)𝐾 + 𝑡), 𝑡 = 1,… , 𝑀 , 𝑗 = 1,… , 𝑆
where (𝑗− 1)𝐾 is the starting element of the segment 𝑗. As proposed by
Welch method, the 𝑗th segment gives rise to the periodogram

 𝑙
𝑗 (𝜔) =

1
𝑀 𝛷

|

|

|

|

|

|

𝑀
∑

𝑡=1
𝑤(𝑡)𝑥𝑗 (𝑡)𝑒−𝑖𝜔𝑡

|

|

|

|

|

|

2

,

where 𝑤(𝑡) is a smoothing temporal window (typically of Hamming
or Hanning) and 𝛷 =

∑

𝑡 𝑤(𝑡)2 denotes the power spectral density
of the window. Assuming 50% overlap, then 𝐾 = 𝑀∕2, from which
𝑆 ≈ 2𝑇 ∕𝑀 .

Welch’s method can be efficiently computed via FFT, and it is one
of the most frequently used methods for PSD estimation obtained by
averaging the periodograms of the individual overlapping windows:

 𝑙(𝜔) = 1
𝑆

𝑆
∑

𝑗=1
 𝑙
𝑗 (𝜔). (2)

For a periodic signal such as rPPG pulse signals, the power is
concentrated in extremely narrow bands of frequencies. Hence, finding
the estimate of the BPM value given by the rPPG 𝐛𝑙 signal of the patch
𝑙, leads us to search for the maximum peak of the associated PSD
 𝑙(𝜔), whose most representative patterns generally show a unique lobe
centered on the frequency correlated with the pulse (some examples are
shown in Fig. 8).

Denoting by 𝜏 = 1∕fps the time elapsed between two frames and
assuming that a patch is analyzed for 𝑇 frames starting from time 𝑡0,
the actual sampling times correspond to the sequence 𝑡0 + 𝑛𝜏, with
𝑛 = 0, 1,… , 𝑇 − 1, for a time window of 𝑇 𝜏 seconds. The frequency
𝑓 = 𝜔∕2𝜋 (expressed in Hz) falls in the range (−1∕2𝜏+ 1∕𝑄𝜏) to 1∕2𝜏 Hz,
with a resolution 𝜈 = 1∕𝑄𝜏 Hz when using the FFT from (2) with
exactly 𝑄 samples. The peak, being generally unique, is therefore easily
obtained in the set of frequencies 𝛺 = {−1∕2𝜏 + 𝑘𝜈 ∶ 𝑘 = 1,… , 𝑄} as

𝑓 𝑙 = argmax
𝑓𝑘∈𝛺

{

 𝑙(𝑓𝑘)
}

. (3)

Note that the final frequency should be expressed in BPM (Beats per
Minute): 𝑓 𝑙

BPM = 60 × 𝑓 𝑙.
As in general the video frame rate is rather low (normally fps = 25

or fps = 30 for standard video) it is useful to define a higher frequency
resolution by setting, for example, 𝑄 = 2048, which is a reasonable
compromise for video segments shorter than 10 s.

2.3. PSD clustering

In this section, we introduce a novel two-stage clustering method
to separate the PSD set  = { 𝑙(𝜔) ∈ R𝑇 ∶ 𝑙 ∈ } into two clusters,
denoted  and , one exhibiting high spectral coherence (good cluster)
and one presenting more dissimilar or highly incoherent PSDs (bad
cluster). This transforms the problem of final BPM estimation into
choosing the cluster that collects the PSD peaks 𝑓 𝑙

BPM with high internal
consistency. For example, in Fig. 8 it can be seen that the two outer
PSDs are much more similar to each other than the middle one is to
the others.

Define for each pair 𝑖,𝑗 ∈  (we remove the independent variable
𝜔 for simplicity), a pairwise distance matrix 𝑊 =

(

𝑤𝑖𝑗
)

, of size 𝐿 × 𝐿.
The element 𝑤𝑖𝑗 = distance(𝑖,𝑗 ) gives the degree of (dis)similarity
between the two vectors  and  in an inner product space. In our
𝑖 𝑗

5 
Fig. 8. PSD examples extracted from three patches of the same rPPG segment and
related peaks in BPMs highlighted.

experiments, the cosine distance provides the most effective results,
giving a degree of dissimilarity between 0 and 1. For practical reasons
that will become clear later, we associate with each vector 𝑖 ∈  a
variable assuming values on the unit circle 𝜉𝑖 ∈ S2. The main advantage
of this trick is to make the optimization of the functional simpler, as the
original vectors 𝑖, typically lie in a high-dimensional space. A second
non-negligible advantage comes from the fact that, since the inner
product between two vectors 𝜉𝑖 = (cos 𝜃𝑖, sin 𝜃𝑖) and 𝜉𝑗 = (cos 𝜃𝑗 , sin 𝜃𝑗 )
verifies 𝜉𝑖 ⋅ 𝜉𝑗 = cos(𝜃𝑖 − 𝜃𝑗 ), the relative similarity of two vectors in
S2 depends on the scalar variables 𝜃𝑖 and 𝜃𝑗 and can be written as a
function that (with some abuse of notation) assumes the form:

𝑑(𝜉𝑖, 𝜉𝑗 ) =
1 − 𝜉𝑖 ⋅ 𝜉𝑗

2
= 𝑑(𝜃𝑖, 𝜃𝑗 ) =

1 − cos(𝜃𝑖 − 𝜃𝑗 )
2

. (4)

Eq. (4) takes values in the unit real range, where 0 indicates maximum
similarity and 1 maximum dissimilarity; intermediate values provide a
degree of similarity proportional to the cosine of the angle between the
two vectors 𝜉𝑖 and 𝜉𝑗 .

By combining the weights 𝑤𝑖𝑗 and the functions defined for each
pair of distinct indices {𝑖, 𝑗} in (4), the problem of finding a bipartition
{,} of , can be formulated as an optimization problem on the
hypercube  = [0, 2𝜋]𝐿 with the objective function to be maximized
given by

𝐽 (𝜃1,… , 𝜃𝐿) =
∑

𝑖<𝑗
𝑤𝑖𝑗 𝑑𝑖,𝑗 (𝜉𝑖, 𝜉𝑗 )

=
∑

𝑖<𝑗
𝑤𝑖𝑗

1 − cos(𝜃𝑖 − 𝜃𝑗 )
2

= 𝑐 − 1
2
∑

𝑖<𝑗
𝑤𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗 ),

where 𝑐 = 1
2
∑

𝑖<𝑗 𝑤𝑖𝑗 .
In this equation, the term to be maximized appears (up to a con-

stant) with the negative sign, which is equivalent to minimize the same
functional with inverted sign (which with some abuse of notation we
denote with the same symbol):

𝐽 (𝜃1,… , 𝜃𝐿) = 1
2
∑

𝑖<𝑗
𝑤𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗 ). (5)

Intuitively, each term 𝑤𝑖𝑗 cos(𝜃𝑖−𝜃𝑗 ) in the previous sum contributes to
the magnitude of 𝐽 depending on the value of the weight 𝑤𝑖𝑗 . In fact,
when 𝑤𝑖𝑗 ≈ 0, its product with cos(𝜃𝑖−𝜃𝑗 ) allows for free choice of 𝜃𝑖 and
𝜃𝑗 ; on the contrary when 𝑤𝑖𝑗 > 0, the amplitude of cos(𝜃𝑖 − 𝜃𝑗 ) is forced
to be as close as possible to zero, and consequently to interpose an
angle 𝜋 between 𝜉𝑖 and 𝜉𝑗 , thus forcing their separation onto opposite
semicircular loci of points.

The function in Eq (5) is in general non-convex, hence finding an
exact global solution is an NP-hard problem. One way to deal with
non-convexity is to relax the goal from finding the global minimum
to looking for a local minimum using, for example, a local search tech-
nique based on a discrete-time dynamical system with asynchronous
update rule and minimum-energy state estimation, as in the following
formalization.
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Let us associate to the function in Eq (5) a local updating rule
𝑇 =

(

𝑇𝑘
)𝐿
𝑘=1 on hypercube 𝐷, i.e. 𝑇 (𝜃) = (

𝑇1(𝜃1),… , 𝑇𝐿(𝜃𝐿)
)

such that

𝑇𝑘(𝜃𝑘) = argmin
𝜃𝑘∈[0,2𝜋]

{

𝐶𝑘 cos 𝜃𝑘 + 𝑆𝑘 sin 𝜃𝑘
}

, (6)

where

𝐶𝑘 =
∑

𝑘≠𝑗
𝑤𝑘𝑗 cos 𝜃𝑗 and 𝑆𝑘 =

∑

𝑘≠𝑗
𝑤𝑘𝑗 sin 𝜃𝑗 . (7)

For the system in Eq (6) the point 𝜃∗𝑘 ∈ [0, 2𝜋] is an equilibrium point
if and only if
𝑇𝑘(𝜃∗𝑘) = 𝜃∗𝑘 , 𝑘 = 1,… , 𝐿,
implying that

𝑇 (𝜃∗) = 𝜃∗, 𝜃∗ ∈ 𝐷 . (8)

To deal with (8), we introduce the discrete time nonlinear au-
tonomous system with asynchronous dynamics (6) defined through the
recurrent relation

𝜃(𝑡 + 1) = 𝑇 (𝜃(𝑡)), 𝜃(0) = 𝜃0, 𝑡 ∈ N, (9)

where 𝜃(𝑡) ∈ 𝐷 is the state at time 𝑡. In asynchronous updating, the
components of the current state vector 𝜃(𝑡) are updated one at a time
according to Eq. (6), so as to produce the new state vector 𝜃(𝑡 + 1).
In order to show that system in Eq (9) converges to an asymptotically
stable fixed point 𝜃∗ ∈ 𝐷 that locally minimize the function 𝐽 on 𝐷 we
do the following considerations.

The equilibrium point 𝜃∗ ∈ 𝐷 is said to be (locally) asymptotically
stable in the sense of Lyapunov if for every 𝜖 > 0, there exists some
𝛿 > 0 such that ‖𝜃(0) −𝜃∗‖ < 𝛿 implying ‖𝜃(𝑡) −𝜃∗‖ < 𝜖 for all 𝑡 ∈ N, and
then lim𝑡→+∞ 𝜃(𝑡) = 𝜃∗ [15]. That is, if the state of the system is close
to the equilibrium initially, it always stays close to the equilibrium. If,
in addition, the state converges to the equilibrium, 𝜃∗, it is said to be
asymptotically stable in the sense of Lyapunov.

To prove this stability property for the system in Eq (9), the follow-
ing lemma is needed.

Lemma 2.1. Assume 𝑊 =
(

𝑤𝑖𝑗
)

is a 𝐿 × 𝐿 symmetric matrix, and that
𝜃𝑗 , 𝑗 = 1,… , 𝐿, are fixed, then the difference
𝛥𝑘𝐽 = 𝐽 (𝜃1,… , 𝜃′𝑘,… , 𝜃𝐿) − 𝐽 (𝜃1 … , 𝜃𝑘,… 𝜃𝐿) ≤ 0

if and only if
{

𝜋 − 𝛼 ≤ 𝜃′𝑘 ≤ 2𝜋 , if 𝛼 ≤ 𝜋
0 ≤ 𝜃′𝑘 ≤ 2𝜋 − 𝛼 , if 𝛼 > 𝜋

where cos 𝛼 = 𝐶𝑘∕
√

𝐶2
𝑘 + 𝑆2

𝑘 , and 𝐶𝑘, 𝑆𝑘 are defined in (7). Moreover:

argmax
𝜃′𝑘∈[0,2𝜋]

𝛥𝑘𝐽 =

{

𝛼 + 𝜋 , if 𝛼 ≤ 𝜋
𝛼 − 𝜋 , if 𝛼 > 𝜋 .

Proof. Due to the symmetry of 𝑊 we start by rewriting the function
𝐽 in (5) in the form:

𝐽 (𝜃1,… , 𝜃𝐿) = 1
4

𝐿
∑

𝑖,𝑗=1
𝑤𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗 )

= 1
4

𝐿
∑

𝑗=1
𝑤𝑘𝑗 cos(𝜃𝑘 − 𝜃𝑗 ) + 𝑐 ,

where 𝑐 = 1
4
∑

𝑖,𝑗≠𝑘 𝑤𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗 ).
Using the variables 𝐶𝑘 and 𝑆𝑘 defined in (7), we can write the

difference as

𝛥𝑘𝐽 = 𝐽 (𝜃1,… , 𝜃′𝑘,… , 𝜃𝐿) − 𝐽 (𝜃1 … , 𝜃𝑘,… 𝜃𝐿)

= 1
4
∑

𝑤𝑘𝑗
(

cos 𝜃′𝑘 cos 𝜃𝑗 + sin 𝜃′𝑘 sin 𝜃𝑗
)

𝑗

6 
Fig. 9. The two cases of intervals for 𝜃′ where 𝛥𝑘𝐽 ≤ 0.

− 1
4
∑

𝑗
𝑤𝑘𝑗

(

cos 𝜃𝑘 cos 𝜃𝑗 + sin 𝜃𝑘 sin 𝜃𝑗
)

= 1
4
(

𝐶𝑘 cos 𝜃′𝑘 + 𝑆𝑘 sin 𝜃′𝑘 − 𝐶𝑘 cos 𝜃𝑘 − 𝑆𝑘 sin 𝜃𝑘
)

.

By multiplying and dividing 𝛥𝑘𝐽 by 𝑍𝑘 = 4
√

𝐶2
𝑘 + 𝑆2

𝑘 and setting
cos 𝛼𝑘 = 𝐶𝑘∕𝑍𝑘, sin 𝛼𝑘 = 𝑆𝑘∕𝑍𝑘, we have
𝛥𝑘𝐽 = 𝑍𝑘(cos 𝛼𝑘 cos 𝜃′𝑘 + sin 𝛼𝑘 sin 𝜃′𝑘

− cos 𝛼𝑘 cos 𝜃𝑘 − sin 𝛼𝑘 sin 𝜃𝑘)
= 𝑍𝑘

(

cos(𝜃′𝑘 − 𝛼𝑘) − cos(𝜃𝑘 − 𝛼𝑘)
)

.

Therefore, assuming that 𝛼𝑘 ∈ [0, 2𝜋], since 𝑍𝑘 > 0, then 𝛥𝑘𝐽 ≤ 0 if
and only if
{

𝜋 − 𝛼𝑘 ≤ 𝜃′𝑘 ≤ 2𝜋 , if 𝛼 ≤ 𝜋
0 ≤ 𝜃′𝑘 ≤ 2𝜋 − 𝛼𝑘, if 𝛼 > 𝜋 .

This scenario is clearly shown in Fig. 9 where the two cases of intervals
for 𝜃′𝑘 are highlighted with a dashed red line.

In particular, concerning the minimum of the difference 𝛥𝑘𝐽 , the
following holds:
�̂�𝑘 = argmin

𝜃′𝑘∈[0,2𝜋]
𝑍𝑘

(

cos(𝜃′𝑘 − 𝛼𝑘) − cos(𝜃𝑘 − 𝛼𝑘)
)

= − argmin
𝜃′𝑘∈[0,2𝜋]

𝑍𝑘
(

1 + cos(𝜃𝑘 − 𝛼𝑘)
)

i.e.,

�̂�𝑘 =

{

𝛼𝑘 + 𝜋 , if 𝛼𝑘 ≤ 𝜋
𝛼𝑘 − 𝜋 , if 𝛼𝑘 > 𝜋 . □

In order to use the fundamental results of Lyapunov stability theory
for the system (9), we observe that 𝐽 ∶  → R is Lipschitz continuous
on , since the same holds for the trigonometric function cos ∶ [0, 2𝜋] →
[−1, 1], being its Lipschitz constant 1. By Lemma 2.1 and the continuity
of function (5), the main theorem on discrete-time nonlinear dynamical
system states that 𝐽 is a Lyapunov function for system (9) [15]. In fact,
for 𝐽 (𝜃) − 𝑐 (see definition (5) for constant 𝑐) it holds:

𝐽 (0) = 0,
𝐽 (𝜃) > 0, 𝜃 ∈  − {0},

𝐽 (𝑇 (𝜃)) − 𝐽 (𝜃) ≤ 0, 𝜃 ∈ .

2.3.1. Circle clustering algorithm
To find the solution to system (9), we apply the recursive schema

sketched in Algorithm 1. The procedure involves two stages. The first,
iteratively computes an approximate solution to (9), generating a finite
trajectory (or sequence) 𝜃(0), 𝜃(1), 𝜃(2),… , 𝜃(𝑡), starting at an arbitrary
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point 𝜃(0) = 𝜃0, until the condition |𝐽 (𝑇 (𝜃(𝑡))) − 𝐽 (𝜃(𝑡))| < 𝜀, for a
ixed 𝜀 > 0, is met. Actually, the algorithm uses a more efficient

stopping condition given by the difference between two iterations,
i.e., |𝜃(𝑘 + 1) − 𝜃(𝑘)| < 𝜀. The second, given the approximate solution
𝜃(𝑡) ≈ 𝜃∗ to (5), outputs two clusters {𝐴, 𝐵} by easily identifying
he best separating hyperplane on the circle which splits the vectors
𝑘 = (cos 𝜃𝑘, sin 𝜃𝑘) ∈ S2 in the best possible way.
Algorithm 1: CircleClustering
Data: The weight matrix 𝑊 and a real 𝜀 > 0.
Result: Bipartition {𝐴, 𝐵} of .
/* STAGE 1 */
∀𝑘 𝜃𝑘 ← rand in [0, 2𝜋];
for 𝑘 ∶= 1 to 𝐿 do

𝐶𝑘 ←
∑

𝑗 𝑤𝑘𝑗 cos 𝜃𝑗 ;
𝑆𝑘 ←

∑

𝑗 𝑤𝑘𝑗 sin 𝜃𝑗 ;
end
𝑐 𝑜𝑛𝑑 ← 𝑇 𝑟𝑢𝑒;
while 𝑐 𝑜𝑛𝑑 do

𝑐 𝑜𝑛𝑑 ← 𝐹 𝑎𝑙 𝑠𝑒;
for 𝑘 ∶= 1 to 𝐿 do

�̂�𝑘 ← argmin𝛾∈[0,2𝜋]
{

𝐶𝑘 cos 𝛾 + 𝑆𝑘 sin 𝛾
}

;
if |�̂�𝑘 − 𝜃𝑘| > 𝜀 then

𝑐 𝑜𝑛𝑑 ← 𝑇 𝑟𝑢𝑒;
for 𝑗 ∶= 1 to 𝐿 do

𝐶𝑗 ← 𝐶𝑗 +𝑤𝑘𝑗
(

cos �̂�𝑘 − cos 𝜃𝑘
)

;
𝑆𝑗 ← 𝑆𝑗 +𝑤𝑘𝑗

(

sin �̂�𝑘 − sin 𝜃𝑘
)

;
end
𝜃𝑘 ← �̂�𝑘;

end
end

end
/* STAGE 2 */
for 𝑘 ∶= 1 to 𝐿 do

𝜉∗⟂𝑘 ← (− sin 𝜃∗𝑘 , cos 𝜃∗𝑘);
𝑔𝑘(𝜃∗) ←

∑

𝑖<𝑗
𝑤𝑖𝑗 sign

(

sin(𝜃∗𝑗 − 𝜃∗𝑘) sin(𝜃∗𝑖 − 𝜃∗𝑗 )
)

;

end
𝜅 ← argmin

𝑘∈
𝑔𝑘(𝜃∗);

𝐴 ← {𝑗 ∣ sin(𝜃∗𝑗 − 𝜃∗𝜅 ) ≥ 0};

𝐵 ← {𝑗 ∣ sin(𝜃∗𝑗 − 𝜃∗𝜅 ) < 0};

Specifically, observe that the local minimum 𝜃∗ of the objective
function (5) achieved in stage 1 satisfies the following equilibrium
conditions:
𝜕 𝑓
𝜕 𝜃𝑘

|

|

|𝜃∗
=
∑

𝑗
𝑤𝑘𝑗 sin(𝜃∗𝑗 − 𝜃∗𝑘) = 0, ∀𝑘 = 1,… , 𝐿.

Taking the orthogonal vector 𝜉∗⟂𝑘 = (− sin 𝜃∗𝑘 , cos 𝜃∗𝑘) ∈ S2 of 𝜉∗𝑘 , for each
we obtain the same expression as above:

∑

𝑗
𝑤𝑘𝑗 𝜉

∗⟂
𝑗 ⋅ 𝜉∗𝑘 =

∑

𝑖<𝑗
𝑤𝑖𝑗 sin(𝜃∗𝑗 − 𝜃∗𝑘),

meaning that in order to preserve the local minimum 𝜃∗ in the split, the
bipartition of indexes 𝑗 ∈  (to get the two clusters) can be done by
seeking the one, say 𝜉∗𝜅 , which acts as the best separating hyperplane,
that is,
𝜅 = argmin

𝑘∈

∑

𝑖<𝑗
𝑤𝑖𝑗 sign

[

sin(𝜃∗𝑗 − 𝜃∗𝑘) sin(𝜃∗𝑖 − 𝜃∗𝑘)
]

, (10)

where sign [⋅] represents the sign function. This process finally leads to
he bipartition {,} of the original set of PSDs  = {1 … ,𝐿}, where
𝑖 ∈  ⇔ 𝜉𝑖 ∈ 𝐴 and 𝑖 ∈  ⇔ 𝜉𝑖 ∈ 𝐵. This procedure is replicated for
ach patch within each frame window.

Fig. 10 provides a concrete example of the overall process which
ivides the PSDs associated to the patches into two clusters. The blue
7 
curve (left image) is the average PSD curve of the first cluster and the
ed one (middle image) is the average PSD curve of the second cluster.
he circle in right image, depicts the fixed point 𝜃∗ which, in turn,

is partitioned into blue and red points according to the minimization
of (10). Notably, Fig. 10 shows a typical scenario where the power of
the main pulsatile component of the BVPs is concentrated on a single
frequency as in the good cluster (blue line). Conversely, in the bad
cluster (red line), the spectra of the extracted signals are spread over
 wide frequency range, as typically shown by noisy patterns. This
xample clearly illustrates the ability of CircleClustering to separate the
ulsatile component (when present) from other elements (eg. noise,
ead movements, ambient light variation etc.).

2.3.2. Determining the good cluster
Fig. 11 shows a Gaussian fitting of the average PSD curves obtained

n the previous step. It should be evident that when the average PSD is
oncentrated on a single frequency, the main lobe that contains most of
he power of the PSD can be well approximated by a Gaussian function.
herefore, the cluster whose average PSD best fits a Gaussian function

s chosen as the good one and is hence employed to perform the final
BPM estimation. Eventually, Eq. (3) is applied to the average PSD of the
good cluster (instead of to the single PSDs  𝑙) to determine the final
BPM estimate.

2.3.3. The quest for a novel clustering algorithm
A general comment is deserved at this point, to relate CircleClus-

ering to other directional data clustering methods, such as spherical
-means [27] and Von Mises clustering [28]. The first is a simple
xtension of the classical 𝑘-means for sparse unit vectors, while the
atter is a generative model consisting of a mixture of von Mises–Fisher

distributions, tailored for directional data distributed on the surface of
a unit hypersphere and based on EM for estimating the parameters of
the mixture model. Naturally, PSDs can be considered in all respects as
data distributed on unitary hyperspheres whose relevant features are
the directions and not the general magnitude. So, it makes sense to
compare the techniques mentioned here at least on the basis of the
operating principle. In short, the main reason to introduce a novel
technique is that, when considering experimental data provided by the
challenging rPPG datasets, none of the classic clustering techniques
was able to separate the real pulsatile component from the multiform
noise sources affecting it. Conversely, empirical evidence suggests that
Algorithm 1 naturally produces a ‘‘good cluster’’ and a ‘‘bad cluster’’,
he first comprising PSDs tightly localized around a common mean

pulse rate, while the other cluster comprises PSDs more reminiscent
of noise.

Furthermore, as to the computational demands, it is worth noting
hat the EM algorithm employed by Von Mises clustering is computa-
ionally expensive and does not cope well with the real-time constraints
equested by many rPPG applications.

2.3.4. Computational complexity
As for the worst-case time complexity of the CircleClustering algo-

rithm, note that the first stage of algorithm 1 is the most demanding,
and within it the repetition of the while loop represents the most time-
consuming block. Therefore, the following proposition can be proved.

Proposition 2.2. Given an instance of size 𝑛 and a real 𝜀 > 0, the
orst-case running time of the algorithm CircleClustering is (𝑛2∕𝜀).

Proof. Fix a sufficiently small real 𝜀 > 0. For an arbitrary trajectory
𝜃(0), 𝜃(1),… , 𝜃(𝜏),… of states visited by system (9) with corresponding
units 𝑘0, 𝑘1 … , 𝑘𝜏 ∈ [1..𝑛] asynchronously updated at each step, by
Lemma 2.1 we have the strictly decreasing sequence:
|𝛥𝑘0𝐽 | > |𝛥𝑘1𝐽 | > ⋯ > |𝛥𝑘𝜏 𝐽 | > 𝜀.
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Fig. 10. Clusters {,} (with average PSDs depicted in blue and red) achieved by Algorithm 1. The central circle represents the separation of elements on S2 yielded by
CircleClustering.
Fig. 11. Average PSD curves (blue and red) of the two clusters. The Gaussian fitting
is shown by a green shadow curve.

Consider that in each term of the previous sequence the factor
𝑍𝑘 = 4

√

𝐶2
𝑘 + 𝑆2

𝑘 which can be expanded as

𝑍2
𝑘∕4 =

(

𝑛
∑

𝑗=1
𝑤𝑘𝑗 cos 𝜃𝑗

)2
+
(

𝑛
∑

𝑗=1
𝑤𝑘𝑗 sin 𝜃𝑗

)2

=
∑

𝑖,𝑗
𝑤𝑘𝑖𝑤𝑘𝑗 (cos 𝜃𝑖 cos 𝜃𝑗 + sin 𝜃𝑖 sin 𝜃𝑗 )

=
∑

𝑖,𝑗
𝑤𝑘𝑖𝑤𝑘𝑗 cos(𝜃𝑖 − 𝜃𝑗 ).

By denoting with �̄� the maximum entry of the distance matrix 𝑊 ,
the previous expansion can be upper bounded by �̄�2𝑛2, thus implying
𝑍𝑘 ≤ 2�̄�𝑛. Since in the worst case we have at least one update in each
iteration of the while loop and its cost is proportional to 𝑛, we conclude
that the worst-case running time is (𝑛2∕𝜀). □

In terms of actual complexity, it is challenging to provide absolute
metrics due to the strong dependency on implementation and avail-
able computational resources. However, it can be noted that, using
a standard PC with a modern CPU and no GPU requirement, many
of the clustering methods used in the approach allow for real-time
computations. Specifically, the most computationally demanding part is
video analysis, such as extracting landmarks and tracking them across
frames. Approximately 50% of the total processing time is allocated
8 
Fig. 12. Notch-shaped filters for head movements, one for each axes 𝑋 (horizontal),
𝑌 (vertical) and 𝑍 (depth).

to this operation for HD video. In contrast, the clustering process,
particularly when using the CHROM and POS methods (the fastest),
takes up around 2% of the time, ensuring that time constraints are met
in almost all test scenarios.

2.4. Motion analysis

It is clearly understood that the movement of the head substantially
affects the geometric structure between the light source, the skin sur-
face, and the camera [8]. It also represent a very insidious type of
noise as its spectral components can overlap those of the heart beat,
especially when the motion is regular and its spectral energy falls
within the frequency band of interest. To deal with this drawback, we
devise a family of filters empirically derived from the displacement of
certain reference landmarks not subjected to deformation, such as those
located on the nose or forehead. The rationale is that of equalization
through cut or notch-shaped filters, which suitably reshape the PSDs
collected in the set  = { 𝑙(𝜔) ∈ R𝑇 ∶ 𝑙 ∈ } yielded by patches. This
step is performed prior to the clustering procedure.

A typical cut filter pattern triad used to counteract movement is
shown in Fig. 12, one for each axis of motion, namely 𝑋 (horizontal),
𝑌 (vertical), and 𝑍 (depth). In particular, the PSDs of the movement,
projected on the axes and denoted by 𝑋 (𝜔), 𝑌 (𝜔) and 𝑍 (𝜔) respec-
tively, are calculated on the basis of the changes in the positions of the
landmarks within the bounding box that crops the face.

This step is an essential premise for calculating the filter parameters,
that are the amplitude and cutoff frequency, which will shape the fre-
quency response of the filters themselves. In other words, the frequency
response of each of the three filters is obtained as a complement to the
normalized movement PSDs with unit gain on the maxima, thus giving
rise to the model:

𝐻∗(𝜔) = 1 − ∗(𝜔)

where ∗ represents each axes 𝑋, 𝑌 , or 𝑍.
Under such assumptions and by activating the motion filters only

when the energy of the motion indicated by the landmarks exceeds an
empirically predetermined threshold, each PSD  𝑙(𝜔) at landmark level
is analytically remodeled as follows:
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Fig. 13. Histograms of the distribution of good and bad patches for two video samples
from two distinct datasets.

̂ 𝑙(𝜔) = 𝐻𝑋 (𝜔)𝐻𝑌 (𝜔)𝐻𝑍 (𝜔) 𝑙(𝜔).

The clustering procedure previously described is eventually applied to
the set  = {̂ 𝑙(𝜔) ∈ R𝑇 ∶ 𝑙 ∈ }.

2.5. Parameter setting and workflow

Patch detection and tracking is carried out via the pyVHR frame-
work [9,10], which relies on the MediaPipe model [29] for the extrac-
tion of facial landmarks. This model identifies and tracks up to 468
landmarks on the face, which are used to exclude non-skin regions,
such as the eyes and mouth, and to define the set of patches. In all
our experiments, we employ a set of 100 patches uniformly sampled
across the subject’s face.

All subsequent processing, including filtering, actual rPPG computa-
tion and spectral estimation are carried out via the pyVHR framework.
The code to reproduce the method and its results is available on
github.2

To clarify the workflow and key parameters involved in the biparti-
tion process executed by CircleClustering for final BPM inference using
Gaussian analysis, we summarize the approach as follows. At each time
𝑡, after generating the two clusters 𝑡 and 𝑡 (as shown in Fig. 10), a
decision process is initiated. This decision is primarily based on the
normality of the sum of power spectra, which have been divided into
the two clusters 𝐺

𝑡 (good cluster) and 𝐵
𝑡 (bad cluster). The Gaussian

fitting provides the mean 𝜇𝐺
𝑔 and std 𝜎𝐺𝑔 for the good cluster, as well

as 𝜇𝐵
𝑡 and 𝜎𝐵𝑡 for the bad cluster.

Although this process concludes by providing a BPM value at each
time 𝑡 equal to 𝜇𝐺

𝑡 , it is insightful to analyze the informational contribu-
tion that individual patches, particularly their aggregation, dynamically
bring to the process. Two elements are of importance in this simple
empirical analysis we present: the frequency of patches in the two
clusters and the Gaussian fitting parameters in the successive time
windows.

Examples of frequency distributions are provided in Fig. 13. Two
distinct videos, sourced from different datasets, were analyzed, and the
corresponding patch frequencies are reported. Each patch contributes
to the overall video by providing salient information, either good or
bad. Notably, a given patch may not consistently fall into the good or
bad cluster across frames in the same video, and its classification can
differ when analyzed in a different video. These distributions further
illustrate the varying influence that individual patches have on the final
analysis.

2 https://github.com/phuselab/pyVHR.
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Fig. 14. Saliency maps based on patch importance for two sample from two distinct
datasets.

Notably, this allows to establish a quantitative measure that scores
the importance of a patch belonging to a cluster. To this end, we
evaluate how likely is the Ground-Truth value 𝑔𝑡 under the obtained
Gaussian fitting of both the good and bad clusters:

𝑝(𝑔𝑡 ∣ 𝜇∗
𝑡 , 𝜎∗2𝑡 ) =  (𝑔𝑡 ∣ 𝜇∗

𝑡 , 𝜎∗2𝑡 ), ∀𝑡 = 1,… , 𝑇 ,
where ∗∈ {𝐺 , 𝐵}, and  represents the Gaussian distribution of mean
𝜇∗
𝑡 and variance 𝜎∗2𝑡 . The rationale behind this is that typically 𝑝(𝑔𝑡 ∣

𝜇𝐺
𝑡 , (𝜎

𝐺
𝑡 ))

2 > 𝑝(𝑔𝑡 ∣ 𝜇𝐵
𝑡 , (𝜎

𝐵
𝑡 )

2).
In Eq. (11) we combine the above quantity with the frequency

with which a patch is included in a cluster. The combination of patch
frequencies and Gaussian likelihoods over time, here referred to as
temporal saliency, yields the overall saliency measure 𝑆∗

𝑗 for each patch
𝑗:

𝑆∗
𝑗 =

𝑇
∑

𝑡=1
𝑝(𝑔𝑡 ∣ 𝜇∗

𝑡 , 𝜎∗2𝑡 )
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
temporal saliency

⋅ 1∗𝑡 (𝑗)
⏟⏟⏟

patch freq

(11)

where 1∗𝑡
is the indicator function of the subset ∗

𝑡 ⊆ ∗
𝑡 and 𝑇 is the

total number of time steps.
Fig. 14 illustrates the saliency 𝑆∗ for two cases taken from two

different datasets, corresponding to the frequencies shown in Fig. 13.
The images highlight the face regions typically recognized as belonging
to either the good or bad cluster.

3. Experimental work

This section presents the experimental setup and empirical analysis
on multiple benchmark corpora. After briefly introducing the adopted
datasets, we perform extensive experimental analyses to demonstrate
the consistent improvement yielded by the proposed approach. To this
end, we consider five rPPG recovery methods and apply CircleClustering
to each of them.

3.1. Datasets

The datasets used for comparison are chosen to give a complete
picture of the abilities of the proposed technique to handle a wide
variety of challenging situations for the task of remote heart rate
recovery. Specifically, four datasets have been selected due to their
wide availability and use in the rPPG-related literature. Moreover these
corpora allow to explicitly test the robustness of our approach to vari-
ous lighting conditions (ambient light, halogen lamp, etc.), movement
patterns (head movements, camera movements, movements induced by
cardiac activity, talking heads, etc.) and overall contexts (laboratory,
gym, in the wild, etc.). These are briefly described below:

PURE [30]. This database comprises 10 subjects (8 male, 2 female)
that were recorded in 6 different setups, resulting in a total number of
60 sequences of 1 min each. Lighting condition was frontal daylight,
with clouds changing illumination conditions slightly over time. Six
different setups have been recorded: Steady (S); Talking (T); Slow
translation (ST); Fast translation (FT); Small rotation (SR); Medium
rotation (MR).

https://github.com/phuselab/pyVHR
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Table 1
Average performance comparisons on all the datasets using MAE and quality metrics (PCC and MAX) for holistic and patched approaches
collecting results from core methods. The best values for each metric is shown in bold.
Dataset PatchClustering PatchMedian Holistic

MAE ↓ PCC ↑ MAX ↓ MAE ↓ PCC ↑ MAX ↓ MAE ↓ PCC ↑ MAX ↓

PURE Steady 0.92 0.91 3.07 1.27 0.80 5.15 15.37 0.35 72.88
PURE Talking 2.85 0.72 17.58 4.09 0.70 18.23 5.57 0.56 34.37
PURE Small Translation 0.72 0.95 2.94 0.93 0.90 3.63 8.74 0.47 55.01
PURE Fast Translation 0.86 0.92 2.91 1.19 0.86 4.70 5.37 0.52 31.06
PURE Small Rotation 1.92 0.79 5.11 2.24 0.75 9.57 5.86 0.44 35.96
PURE Medium Rotation 3.02 0.76 6.72 3.69 0.70 12.43 3.78 0.49 26.25
UBFC1 0.75 0.95 5.82 1.71 0.81 15.16 9.97 0.47 54.67
UBFC2 3.61 0.84 14.64 5.27 0.70 24.94 10.55 0.47 48.74
LGI-PPGI Resting 1.97 0.53 8.27 2.47 0.60 10.58 11.65 0.32 61.51
LGI-PPGI Rotation 4.49 0.26 22.33 4.12 0.38 23.66 8.46 0.18 66.16
LGI-PPGI Talk 12.98 0.10 37.67 11.35 0.01 41.18 11.41 0.02 54.34
LGI-PPGI Gym 14.42 0.75 45.68 19.68 0.46 70.64 18.10 0.45 80.33
ECG-FITNESS Rowing Ambient 7.55 0.36 22.10 13.33 0.17 37.73 10.0 0.33 44.21
ECG-FITNESS Speaking Ambient 18.25 0.43 34.60 44.31 0.08 65.55 36.74 0.09 75.06
ECG-FITNESS Rowing Halogen 15.62 0.33 31.76 21.53 0.12 45.25 15.32 0.23 53.59
ECG-FITNESS Speaking Halogen 33.20 0.26 52.79 55.44 0.12 81.32 46.25 0.09 86.45
ECG-FITNESS Elliptical Ambient 23.33 0.40 39.26 35.17 0.30 57.85 25.29 0.26 66.86
ECG-FITNESS Bike Ambient 28.30 0.45 49.91 38.67 0.15 62.64 29.60 0.22 68.85
Global Mean 9.71 0.59 22.57 14.80 0.48 32.79 15.41 0.33 56.52
c

t
o

P

UBFC [31]. This dataset is composed of 50 videos divided into
two subsets: the first one, UBFC1 is composed by 8 videos, in which
participants were asked to sit still; the second one, UBFC2 is composed
by 42 videos, in which participants were asked to play a time sen-
sitive mathematical game that aimed at augmenting their heart rate
while simultaneously emulating a normal human–computer interaction
scenario.

LGI-PPGI [32]. This database is designed to estimate the heart rate
rom uncompressed face videos acquired in the wild. It is recorded
n four different sessions: (1) a resting scenario with neither head
otion or illumination changes, (2) head movements are allowed (with

tatic lighting), (3) a more ecological setup, where people are recorded
hile performing exercises on a bicycle ergometer in a gym; (4) urban

conversations are recorded including head and camera motions as well
as natural varying illumination conditions (in the wild setup).

ECG-fitness [33]. Its collects a realistic corpus of subjects perform-
ng physical activities on fitness machines: 17 subjects (14 male, 3
emale) performing 4 different activities (speaking, rowing, exercising
n a stationary bike, and on an elliptical trainer). Three lighting se-
ups were used, natural light coming from a nearby window, 400 W
alogen light and 30 W led light. The dataset covers the following
hallenges: large subject’s motion (possibly periodic) on all three axis,
apid motions inducing motion blur, strong facial expressions, wearing
lasses,non-uniform lighting, light interference, atypical non-frontal

camera angles.

3.2. rPPG methods

We select the following signal processing based rPPG methods for
ulse extraction:

ICA [34]. Decomposition based on blind source separation (BSS) to
achieve independent components from temporal RGB mixtures.

PCA [35]. Statistical technique for extracting a subset of uncorre-
lated components from temporal RGB traces.

CHROM [24]. Chrominance-based method to perform color channel
normalization to overcome distortions.

POS [8]. It leverages on a plane orthogonal to the skin-tone in the
temporally normalized RGB space.

LGI [32]. It provides features invariant to action and motion based
on differentiable local transformations.
10 
3.3. Experiments and results

For each video clip, we extract 100 facial landmarks with their
corresponding RGB traces. Subsequently, these data are segmented into
8-seconds windows, and rPPG signals are estimated accordingly. A
bandpass filter is applied to each rPPG estimate with a bandwidth
of 40–240 BPM (which corresponds to 0.65–4 Hz). CircleClustering
is then applied to each window, and a BPM estimate is provided as
reported in Section 2.2. We refer to this procedure as the Patch-
Clustering method. For comparison purposes, the median BPM
across all patches (PatchMedian) and the prediction from the holistic
approach (Holistic) are computed. To ensure a fair comparison,
all parameters were kept consistent during the processing of videos
belonging to all treated datasets.

As for the quantitative assessment, the following metrics were com-
puted: the mean absolute difference (MAE) between the main pulsatile
omponent of the estimated rPPG signal and the PPG ground truth,

the Pearson’s correlation coefficient (PCC), and the maximum error
difference (MAX). While PCC is essentially a normalized measure of
he covariance between two quantities, MAX captures the magnitude
f the maximum outlier present in the provided estimates.

Table 1 shows at a glance the comparisons between the computa-
tional approaches discussed above, i.e. PatchClustering, Patch-
Median and Holistic in terms of the adopted metrics. Each metric
has been computed for every method across each dataset; in order to
better investigate the robustness of the method across various condi-
tions, each dataset is split following the provided experimental trials.
The obtained values are then averaged. This allows us to highlight the
average impact of the PatchClustering algorithm in comparison
to the two commonly adopted approaches of estimating heart rate from
rPPG signals.

As a general trend, all experiments seem to demonstrate a superior
performance of the PatchClustering approach compared to the
atchMedian or Holistic approaches. Specifically, the MAE error

increases by 52.4% for PatchMedian with respect to PatchClus-
tering and by 58.7% for the Holistic approach, as can be seen by
inspecting the global mean (cfr. Table 1, last row).

We substantiate this crude summary employing a proper statistical
assessment technique. More precisely, we verify whether the differ-
ences in terms of a given metric are statistically significant or are drawn
by chance. Typically, this involves the adoption of Null Hypothesis
Statistical Testing (NHST) procedures, often used for rigorous per-
formance evaluation of classification algorithms [36]. Recently, [37]
proposed the adoption of Bayesian estimation techniques to assess
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Fig. 15. Posterior samples for the Bayesian Sign-Rank Test on the simplex for the MAE (top row) and PCC (bottom row) metrics. Each plot shows the probability for an approach
to yield higher values of the metric if compared with another on multiple datasets.
the significance of performance differences between machine learning
algorithms on different datasets.

In the vein of [37], we gauge the eventual improvement of the
proposed methods through a Bayesian non-parametric approach that
directly extends the Wilcoxon signed-rank test [38]. Differently from
frequentist NHST, Bayesian estimation allows to inspect the actual
probability of a method to yield results that are either greater or
equivalent to another. The equivalence is established via the so called
Region of Practical Equivalence (ROPE) i.e. an interval inside which
the differences of performance (for a given performance metric) be-
tween two approaches can be considered of negligible magnitude. [39]
suggests that ROPE should be set as half the value of what can be
considered as a negligible magnitude according to the metric at hand.
Consequently for the MAE, we consider the differences below 1 BPM
as negligible, hence we set 𝑟𝑜𝑝𝑒 = 0.5. On the other hand, for the PCC
metric, we set 𝑟𝑜𝑝𝑒 = 0.05 (half of a negligible correlation, as suggested
by [40]). The results are depicted in Fig. 15, which reports the posterior
distribution samples of the Bayesian Sign-Rank Test on the simplex for
the MAE (top row) and PCC (bottom row) metrics. Each vertex of the
triangle represents the case where an approach is either more probable
to produce higher values of the specified metric w.r.t. the other or
equivalent.

Results can be summarized as follows: when comparing the Patch-
Clustering method with the Holistic one on multiple datasets,
the Holistic method yields higher MAE values with probability 1
(Fig. 15(a)); the PatchMedian approach gives higher MAE values
than PatchClustering with probability 0.987 (Fig. 15(b)); Patch-
Median returns higher MAE values than Holistic with probability
0.841 (Fig. 15(c)). In summary, the analysis allows us to conclude that
the proposed PatchClustering method significantly outmatches
the Holistic and PatchMedian approaches. A similar conclusion
can be drawn by inspecting the results on the PCC metric (Fig. 15(d–
f)) with PatchClustering method yielding significantly higher PCC
values than the others.

3.3.1. Comparison with deep learning-based approaches
The experimental results presented above show the added value

introduced by PatchClustering as a systemic approach useful to
enhance common signal processing-based methods for rPPG estima-
tion. However, the general consensus in recent dedicated literature,
proposes supervised DL-based approaches for rPPG estimation as the
most accurate techniques. Consequently, in this section, a comparison
11 
Table 2
Average MAE values on the UBFC and PURE datasets obtained using CircleClustering
with CHROM or POS as base methods, along with results from 5 state-of-the-art
neural supervised models implemented in rPPG-Toolbox. In order to establish a
fair comparison and ensure consistent evaluation across models, for neural approaches
cross-dataset results are reported. The best values are highlighted in bold, and the
second-best values are underlined.

Method Train set PURE UBFC

PatchClustering (CHROM) – 0.92 1.11
PatchClustering (POS) – 1.85 1.41

TS-CAN [42] PURE – 1.29
UBFC 3.69 –

PhysNet [43] PURE – 0.98
UBFC 8.06 –

Physformer [12] PURE – 1.44
UBFC 12.92 –

DeepPhys [11] PURE – 1.21
UBFC 5.54 –

EfficientPhys [44] PURE – 2.07
UBFC 5.47 –

between PatchClustering and five state-of-the-art neural rPPG
approaches is provided. To this end, we refer to the results recently
delivered by [41], which presents rPPG-Toolbox, a Python toolbox
that implements and benchmarks different neural rPPG methods on a
variety of different datasets.

Table 2 reports the results delivered by PatchClustering with
two base rPPG methods, namely CHROM and POS, and the most rep-
resentative supervised approaches implemented in rPPG-Toolbox.
We present the MAE results obtained on two widely adopted datasets:
PURE and UBFC. Both datasets are adopted in the benchmarks of both
rPPG-Toolbox and pyVHR. For neural supervised models, we report
cross-dataset results; this allows to evaluate the generalization abilities
of the considered approaches, while ensuring a consistent compari-
son, as all adopted test-sets are coherent across all the considered
benchmark models of Table 2.

The obtained results show an overall superiority of the unsupervised
PatchClustering approach when compared to different state-of-
the-art supervised neural methods. Specifically, employing Patch-
Clustering with POS or CHROM as base rPPG estimation methods,
consistently delivers better results on the PURE dataset and comparable
results on UBFC. By resorting to averages across the two datasets,
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PatchClustering achieves an average MAE of 1.38 BPM as opposed
to the 7.14 BPM from neural approaches.

A more in-depth and systematic evaluation is reported in the ‘‘Ap-
pendix: Numerical Results (supplementary material)’’ where an exten-
sive comparison of the base methods and two further supervised neural
methods (HR-CNN and MTTS-CAN), is reported.

4. Conclusion

In this paper, we presented a novel PSD clustering algorithm, Cir-
cleClustering, which significantly improves the performance of tradi-
ional methods for camera-based heart rate measurement. The proposed
echnique integrates patch sampling with a non-parametric clustering
pproach on rPPG spectral data to estimate heart rates with high pre-

cision. CircleClustering leverages self-similarities and structural group
nformation from skin patches tracked across video frames, clustering

the spectral content of the pulse signals using a group Gaussian fitting
applied to a bipartite set of PSDs. This is evident in two key aspects:
the likelihood that the contribution of a patch matches the ground
ruth, and how often that patch is classified within the good cluster.
hese combined factors highlight the method’s precision in isolating
eliable pulse signals from noise, improving the accuracy of heart rate
stimation.

The effectiveness of the proposed approach has been quantitatively
valuated through extensive experiments and robust statistical tests
n a wide range of challenging datasets. Additionally, comparisons
ith various state-of-the-art supervised Deep Learning-based methods

onfirmed the overall superiority of the proposed technique in accu-
ately recovering the ground truth pulsatile component. These results
nderscore the method’s robustness and its potential advantages over
raditional supervised approaches in real-world applications.

Future work will focus on extending the proposed approach by
ncorporating learning-based solutions. Specifically, instead of using

a fixed similarity measure (such as cosine similarity) to run the Cir-
cleClustering algorithm, weakly supervised (deep) metric learning tech-
niques [45] could be introduced. This adaptation could further enhance
oth the robustness and generalization capabilities of the approach.
ore on the application side, the proposed procedure may also be

mployed for more effective rPPG estimation from compressed videos,
otoriously exhibiting faint physiological information [13] due to the

disruption of the color variations associated to blood volume pulse
variations. In such cases, the adoption of the proposed adaptive patch
election strategy may lead to a better choice of those areas of the

subject’s skin holding the most salient physiological information.
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