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Abstract

In the landscape of modern industries, scheduling problems are pivotal as they
influence an organization’s competitiveness, operational costs, and capacity to
meet demands. This work specifically delves into variants of shop scheduling
problems involving the planning of production or logistics processes with prece-
dence among tasks/jobs. Our attention is mainly directed toward two distinct
types of shop scheduling problems: the classical Job Shop Scheduling and a
generalization of the Flexible Flow Shop Scheduling. The former, extensively
studied in the literature, stands as a perfect candidate for developing innovative
resolution methodologies. Conversely, the latter stems from a real-life problem
that is first introduced in this work. Our research contributes to the existing
literature in two different directions. Motivated by the recent success of learning
methodologies in other fields, the first part of this work focuses on deep learn-
ing applications to shop scheduling problems. When strategically employed,
these data-driven methodologies can complement and enhance existing meth-
ods, offering additional flexibility and customization. Although several recent
works addressing Flow and Job Shop variants exist, mostly relying on Reinforce-
ment Learning, they still lag behind classic methodologies. Therefore, in one
research direction, we investigate and advance the applicability of supervised
learning paradigms for the resolution of a renowned problem, namely Job Shop
Scheduling. Specifically, we employ supervised strategies to enhance a Tabu
Search meta-heuristic by guiding its exploration with a sequential deep learning
model. In addition, we devise an end-to-end learning system that relies on a
self-supervised training strategy, neither requiring expensive optimal solutions
nor resorting to Reinforcement Learning. Notably, this latter method outper-
forms all the recent deep learning approaches for the Job Shop. In the second
part of this work, we study novel and intricate scheduling problems. One of
these problems arises from a manufacturing industry, where parallel machines
and workforce constraints intertwine with precedence ones. Although these con-
straints are separately studied in variants of scheduling problems, their conflu-
ence creates a distinctive landscape that challenges and modifies assumptions
upon which traditional methodologies rely. Thus, we formalize the problem,
develop lower bounds to evaluate algorithms, adapt baseline heuristics from
related scheduling variants, and propose a new heuristic method to efficiently
tackle this problem. In a different context, we tackle variants of a recently pre-
sented problem, requiring the routing of vehicles and the scheduling of drones
for parcel deliveries. We propose new Constraint Programming models and in-
troduce valid inequalities for improving exact methods. These proposals are
extensively benchmarked and compared against proposals in the literature to
demonstrate their effectiveness. We believe that our work makes a step forward
in enriching the repertoire of problem-solving methodologies and contributes to
adapting techniques to the complexity of real-world industrial challenges.
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1 Introduction

The scheduling of tasks with finish-to-start precedences is a common problem
across various industries, prompting extensive research by the Operations Re-
search community. This has given rise to a large spectrum of methodologies,
including (meta-)heuristics and exact methods, designed to effectively tackle
renowned scheduling problems. Despite their advancements, these methodolo-
gies still exhibit inherent limitations in certain circumstances and often require
cumbersome adaptation to address emerging problem variants.

Therefore, this work unfolds in two distinct parts. In the first part, we ad-
dress some limitations of existing methodologies and introduce novel approaches
by harnessing the power of Machine Learning (ML) techniques, which enabled
several breakthroughs across different domains. Whereas, in the second part, we
delve into the exploration of novel problems involving scheduling and propose
effective resolution methodologies, without relying on learning techniques. This
dual approach aims to advance the understanding and resolution of scheduling
problems from traditional and new data-driven perspectives.

Within the realm of scheduling problems characterized by finish-to-start
precedences, the Job Shop Scheduling (JSP) stands out as a classic optimiza-
tion problem with many practical applications in manufacturing, production
scheduling, and logistics [1, 2]. At its core, the JSP involves scheduling a set of
jobs onto a set of machines, where each job has to be processed on the machines
following a specific order. Although the JSP may target various optimization
objectives (see [3] for examples), it frequently requires the minimization of the
makespan – the overall time required to complete all jobs. In the first part of
this work, we use the well-established Job Shop Scheduling Problem with the
makespan objective as a case study.

Over the years, researchers have developed several methodologies for tackling
the JSP. A common one is adopting exact methods such as Mixed Integer Linear
Programming (MILP). While effective for small instances, standard MILP mod-
els often fall short in delivering optimal or high-quality solutions for medium and
large-scale problems [4]. As a remedy, meta-heuristics have emerged as a widely
embraced and effective alternative, capable of providing quality solutions within
reasonable timeframes – usually minutes. Extensively studied and refined over
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the years [5, 6, 7, 8, 9], these methods strike a delicate balance between so-
lution quality and computational efficiency. Achieving the right balance while
designing meta-heuristics requires both algorithmic expertise and a deep un-
derstanding of the problem at hand, especially when additional personalization
has to be introduced. Under tighter time constraints and in applied variants
of the JSP, like dynamic and rescheduling ones [10], Priority Dispatching Rules
(PDR) are often preferred or adopted as baseline algorithms. The main issue
of PDRs is their tendency to perform well in some cases and poorly in others,
primarily due to their blind prioritization schema based on rigid hardcoded and
hand-crafted rules [11].

For these reasons, recent works have started investigating ML techniques to
partially alleviate some of these issues or create new and better neural solvers.
After initial promising works, Reinforcement Learning (RL), one of the three
main ML paradigms, demonstrated to be a valid paradigm for either improv-
ing [12] or creating resolution methodologies for the JSP [13, 14]. Despite the
potential demonstrated by RL, training RL agents is in general a complex op-
timization task [15] and has reproducibility issues [16]. Therefore, we focus on
supervised methodologies which have been less investigated and are subject to
fewer of these issues.

In one research direction, we introduce a novel supervised learning task
for enhancing and automating the creation of effective algorithms like meta-
heuristics and decomposition heuristics. We arrived at the formulation of this
task by addressing two fundamental questions: (i) what kind of information
could enhance methodologies for solving the JSP? (ii) how can this information
be learned in a supervised manner? These questions arise from the fact that
not all the solutions to a JSP instance are feasible, i.e., respect the problem
constraints, and for those feasible, the objective value (e.g., the makespan or
the total tardiness) is not trivially derivable. Consequently, applying supervised
learning to the JSP requires a learning task closely related to the objective
function that may fit in the back-propagation algorithm.

We thus propose as a novel supervised learning task to learn the quality of
machine permutations. Since having a method to judge machines is important,
either for speeding up meta-heuristics or even in machine-based decomposition,
we present an original methodology to learn the quality of machines using se-
quential deep learning and a MILP solver. Unlike existing approaches in the
literature, such as the shifting bottleneck [17], we define the quality of a ma-
chine permutation as the likelihood of finding this permutation in an optimal or
near-optimal solution.

In another research direction, we focus on designing an end-to-end supervised
learning system that learns to construct high-quality solutions with a rather sim-
ple strategy, effectively outperforming most of the traditional constructive and
RL approaches for the JSP. As mentioned above, supervised learning is generally
not affected by training instability and reproducibility issues, but heavily relies
on expensive annotations [18]. This is particularly problematic in combinato-
rial problems, where annotations in the form of optimal solutions are generally
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produced with expensive exact methods.
To contrast labeling and still train in a supervised manner, we demonstrate

how Semi- and Self-Supervised learning [18, 19] can be combined to train effec-
tive neural constructive algorithms. To the best of our knowledge, this is the first
application of these paradigms to the JSP and any combinatorial problem [20].

In the second part of this work, we focus on studying and designing resolution
methodologies for new complex problems still involving the scheduling of tasks.
Specifically, we present a new problem that can be seen as a generalization of the
Flexible Flow Shop Problem, encompassing characteristics of other scheduling
problems, and a new mixed problem involving the routing of vehicles and the
scheduling of drones.

Stemming from a real-life industrial setting, we delve into a scheduling prob-
lem encountered in off-road vehicle manufacturing – a sector pivotal to modern
and automated industries. Off-road vehicles have a wide range of applications
thanks to unique and distinctive characteristics, and in general, their manufac-
turing process is rather complex and challenging, involving parallel machines,
special precedence structures, and reusable resources.

More in detail, the problem requires the manufacturing of vehicles according
to a three-level assembly process. At the first level, the vehicle is equipped with
all the necessary components (e.g., wheels or engine), which are assembled in
the two upper levels. Each of these levels renders a separate scheduling problem,
and different levels are intertwined by finish-to-start precedences. For instance,
the first assembly level receives components from the upper levels and it can be
modeled as a Flexible Flow Shop Problem, where operations at each stage can be
processed on one of several identical parallel machines. The third and uppermost
level of the assembly is essentially a Parallel Machine Scheduling Problem with
identical machines. In addition, to perform any assembly operation, both a
machine and a worker are required, where the number of workers is typically
smaller than the number of machines, making the former a scarce resource,
similar to renewable resources in a Project Scheduling Problem.

As far as we know, no prior publications have addressed this problem. There-
fore, we systematically tackle the problem by proposing a MILP model, lower
bounds, and constructive as well as meta-heuristic approaches.

Finally, we extend our research to last-mile delivery problems, which are
loosely related to scheduling problems but are becoming popular due to the
increasing demand of e-commerce and the strategic integration of drones for
sustainable deliveries. Specifically, we tackle a variant of a problem originally
proposed in [21], named Parallel Drone Scheduling Traveling Salesman Prob-
lem. In this variant [22], a heterogeneous fleet composed of a truck and multiple
drones collaborate to deliver parcels from a central depot. The truck behaves
as a standard traveling salesman while drones have to perform back-and-forth
trips from the depot and can be modeled as identical parallel machines. Sim-
ilarly to scheduling problems, the objective is to minimize the makespan, i.e.,
minimize the longest route of vehicles. A unique aspect of this problem involves
the cooperative behavior of drones, capable of connecting and working together
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for specific deliveries. This collaborative approach enhances drones by boosting
lifting capabilities and enabling faster delivery, thereby addressing limitations
observed in scenarios where drones operate independently. However, this collab-
orative behavior makes the scheduling of drones a more complex task, requiring
careful decisions on when the synchronization of multiple drones is advanta-
geous, considering the cost of this operation and its subsequent benefits.

Due to the similarities of this mixed problem with scheduling ones, like the
makespan objective and drones behaving as parallel machines with synchroniza-
tions, we investigate the effectiveness of state-of-the-art scheduling techniques
for dealing with this problem. Specifically, we propose new Constraint Pro-
gramming approaches, which are demonstrated to be among the best resolution
methodologies for many shop scheduling variants, see, e.g., [23]. Furthermore,
we extend the problem by considering multiple trucks, rather than a single one,
thus introducing the Parallel Drone Scheduling Vehicle Routing Problem with
collective (collaborative) drones.

The remainder of this work is organized as follows. In Section 2, we intro-
duced preliminary concepts necessary to understand parts of this work, such as
deep learning methodologies and the Job Shop. Section 3 outlines a novel super-
vised methodology for enhancing meta-heuristics and potentially other optimiza-
tion methods for the JSP. Section 4 describes a new self-supervised methodol-
ogy for training superior ML-based constructive heuristics for the JSP. Section 5
presents a new complex shop scheduling problem encompassing precedence and
workforce constraints, as well as lower bounds and resolution approaches. Sec-
tion 6 describes forms of a mixed problem, requiring the routing of vehicles and
the scheduling of drones, along with constraint programming models to tackle
two versions of this problem. Lastly, Section 7 closes with final considerations.
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2 Preliminaries

This section is meant to provide a concise overview of key concepts employed
in this work and elucidate the rationale behind chosen research directions. No-
tably, we introduce relevant Machine Learning paradigms, types of neural net-
works, and formally describe the Job Shop Scheduling Problem. Additionally,
we review methodologies used to address this scheduling problem.

2.1 Machine & Deep Learning

Machine learning, and particularly deep learning, has become ubiquitous in
many fields. In the last years, there has been a growing interest in applying
learning techniques to Combinatorial Optimization (CO) problems [24]. The
rationale is that CO problems are solved daily, and one can use ML to learn
better algorithms from the thousands of instance-solution pairs produced. The-
oretically, once a ML model has learned valuable pieces of information about
a problem, the model can be used for either solving or aiding the resolution of
large and challenging instances.

However, applying ML to CO problems is far from being trivial as the con-
struction of solutions often involves long sequences of decisions subject to mul-
tiple constraints. Designing the right model and learning from these long con-
strained sequences are difficult tasks with traditional ML methodologies. For
instance, a natural idea for creating neural solvers is to learn how to make
decisions from (near-)optimal solutions of past or small synthetic instances.
However, having access to tens of thousands of optimal solutions is unusual,
and generating them is extremely costly. Moreover, some CO problems like the
JSP are multimodal, meaning there might be multiple and different optimal
solutions for an instance, and learning a model that approximates a one-to-one
instance-solution mapping may pose additional obstacles.

Therefore, in the remainder, we describe learning paradigms that may answer
some of the challenges posed by CO problems or have proved effective on various
kinds of packing, routing, and scheduling problems. Specifically, we present
common Reinforcement Learning approaches to deal with CO problems and
describe other two ML paradigms for reducing labeling costs which are much
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less investigated, if not at all. Lastly, we outline a well-known architecture for
dealing with CO problems, namely the Pointer Network.

2.1.1 Reinforcement Learning

Reinforcement Learning (RL) is one of three basic ML paradigms, alongside
supervised and unsupervised learning. Reinforcement Learning is concerned
with how an agent ought to take actions in an environment in order to maximize
a cumulative reward [15]. Different from supervised learning, RL agents learn
from experience (the cumulative reward) derived by directly acting within the
environment. Therefore, no labeled input-output pairs are required nor sub-
optimal actions have to be explicitly corrected. This unique characteristic makes
RL a very appealing paradigm wherever generating labeled pairs is challenging
and expensive, like in combinatorial optimization problems.

In RL, an agent takes actions within an environment and how this environ-
ment reacts is defined by a model. Although the model of the environment is
sometimes available, in which case a Dynamic Programming approach is often
the way to go, RL agents commonly learn without this model (model-free RL)
or try to explicitly learn it as part of the algorithm. Within the environment,
the agent can stay in one of many states and choose actions from a defined pool
to switch to other states. Once an action is taken, it is the environment that
returns the new state and a reward as feedback.

The agent follows a behavioral policy, either a deterministic or stochastic
function, that tells which action to take in any state of the environment. During
the learning process, the agent accumulates knowledge about the environment,
adjusts its policy, and makes new decisions on which action to take next so as
to efficiently learn the best policy. Associated with a policy, there is always a
state-value function that measures how rewarding a state is in terms of future
rewards, a.k.a. return. In other words, the state-value function gives the ex-
pected return the agent receives from a state by acting according to the current
policy. Similarly, the action-value function is used to define the goodness (still
in terms of expected future rewards) of being in a certain state and taking a spe-
cific action. The concepts of policy, state-value, and action-value functions are
used to learn the best (sometimes optimal) behavior for a given environment.
We refer the reader to [15] for an in-depth treatment of these concepts.

As reviewed in [25], the two broad families of RL algorithms mainly adopted
for CO problems are: value-based and policy-based methods.

Value-based methods focus on finding a policy through the approxima-
tion of the state-value and action-value functions. Once the value function is
fully known, meaning that the optimal function has been extracted for an envi-
ronment, an optimal policy can be found by acting greedily with respect to such
a function. For instance, when the state-value function is known, one can find
optimal actions with a greedy one-step search: picking the actions that result
in the next state with the maximum value. Therefore, approximating the best,
and possibly the optimal, value function is the key of value-based methods.
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The simplest value-based methods are Monte Carlo ones. The idea of these
methods is to learn from episodes of raw experience. Once many episodes have
been completed, i.e., many solutions of a CO problem are constructed, the
return of a state can be approximated as the discounted mean of future rewards
received in episodes visiting the state. Monte Carlo methods learn only on the
completion of episodes, therefore, other methods focus on learning while playing
episodes. One of the most popular methods of this type is Q-learning [15], and
its deep variant Deep Q-learning [26]. In Q-learning, the action-value function
is iteratively updated after visiting a state by learning from the received reward.

With the rise of deep learning, researchers have started to explore the poten-
tial of using neural networks to approximate action-value functions. However,
Q-learning is demonstrated to suffer from instability and divergence when com-
bined with a nonlinear function approximation [25, 15, 27]. Therefore, various
fixes have been introduced to reduce training instability, including experience
reply and its prioritize version [27]; periodic updates; and double dueling net-
works [28]. Although the effectiveness of these fixes is largely demonstrated,
they introduce further complexity and hyper-parameters to be tuned.

In contrast to value-based, policy-based methods attempt to directly find
the (optimal) policy, often parametrized by neural networks, without the need
to approximate value functions explicitly. These methods, rooted in the policy
gradient theorem [29, 15], collect experience (rewards) in the environment us-
ing the current policy and then optimize it based on this experience. A vanilla
policy gradient method is REINFORCE [15] (a.k.a. Monte-Carlo policy gradi-
ent) which estimates returns through Monte-Carlo methods, updating the policy
with the gradient descent algorithm. A widely used variation of REINFORCE
is to subtract a baseline value, such as the average reward over the sampled
episodes, from the return to reduce the variance of gradient estimations.

Instead of using simple statistics over the sampled rewards, one can use
neural networks to approximate value functions, effectively going in the direc-
tion of hybrid policy- and value-based methods. Knowing the value function
can assist the policy updates, like reducing gradient variance in vanilla policy
methods, and that is exactly what the Actor-Critic method does. Actor-Critic
methods [30] consist of two models: a Critic approximating the value function
and an Actor shaping the policy. By using the estimates of the expected return
given by the critic, the updates of the actor are less noisy. However, the critic
has to be updated as well like in value-based methods.

Policy-based methods typically suffer from high variance in gradient updates,
sample complexity, and sensitivity to hyperparameters [25, 31, 32]. Proximal
Policy optimization algorithms [32] aim to address these issues by improving
robustness to hyper-parameters and constraining policy updates to remain near
(within a trusted region) the old policy. Whereas, [31] focuses on asynchronously
executing multiple policies (actors) in parallel to sample more uncorrelated re-
wards and improve the training, similarly to mini-batch stochastic gradient de-
scent [33]. As in value-based methods, these effective fixes add complexity to
both understanding and implementing these methods.
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While Reinforcement Learning has proven to be a valuable paradigm for
training neural solvers, its widespread understanding is still limited, and its
complexity cannot be overlooked. Given these factors, and considering that
supervised approaches are relatively less explored for combinatorial problems,
our primary focus in this work is on supervised learning methodologies.

2.1.2 Semi- and Self-Supervised Learning

In the previous Section 2.1.1, we briefly introduced RL approaches for tackling
CO problems and motivated them by stating that they remove the need for
expensive labels. However, RL is not the only paradigm that removes or reduces
the need for labeled pairs while training ML models.

Semi-Supervised learning leverages both labeled and usually a large amount
of unlabeled data to train neural networks with fewer annotations [19]. Exam-
ples of these approaches are: Feature Extraction methods [34] that pre-train
models in an unsupervised manner to extract representative features before
fine-tuning on labeled data; Clustering approaches [35] that group labeled and
unlabeled data into clusters and propagate labels within clusters to aid super-
vised signals; and Regularization approaches [36, 37] that add a term to a su-
pervised loss for improving generalization. Despite these approaches, the most
common Semi-Supervised approach involves iteratively training models using la-
beled data alongside previously unlabeled data, the latter being annotated with
the most confident predictions resulting from previous iterations [19]. Notably,
this process progressively enhances models until everything is labeled, where
newly annotated data is termed pseudo-labeled data [38]. Many variants of this
pseudo-labeling process exist, mainly differing in the way models are retrained
with the new pseudo-labels, e.g., Self- and Co-Training [39].

Although some of these approaches are extensively investigated in fields like
computer vision and natural language processing, we could not find applications
to combinatorial problems. As labeling is very costly in general, and even more
in combinatorial problems, we believe that applying semi-supervised approaches
to these problems might be an interesting and promising research direction.

Another popular ML paradigm that may help either in reducing or removing
labeling costs is Self-Supervised learning. The goal of Self-Supervised learn-
ing is to reduce the need for annotations by learning meaningful and generic
patterns in unlabeled data with pretext tasks [18], i.e., artificial and unsuper-
vised tasks nevertheless related to downstream applications. The advantage
of pretext tasks is to simplify subsequent supervised tasks by mainly requir-
ing models to associate patterns with targets. Self-Supervised approaches are
commonly divided into contrastive and predictive [40].

Contrastive approaches encode inputs into latent vectors by reducing the
similarity from positives (augmented copies of the input) and increasing that
from negatives (different inputs). Two examples are MoCo [41] and SimCLR [42],
which showed the importance of creating hard positives and negatives. Another
(contrastive) example is DeepCluster [43] which uses K-Means to group simi-
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Figure 1: The operations of the Pointer Network. Initially, the neural encoder
takes in the problem instance and generates an embedding ei for each item i.
Then, the generative decoder uses these embeddings, contextual information
about the instance, and the already selected items to iteratively generate solu-
tions in the form of permutations. The probability p(ei | q) of selecting an item
i is generated at every iteration with an attention module that combines the
embeddings and the query q produced by the memory module.

lar latent vectors and train a model in predicting their pseudo-labels, i.e., the
indices of the clustering stage.

Predictive approaches focus on (re)constructing a desired output from a
potentially altered input without requiring similarity metrics. Examples are
Denoising and Variational Auto-Encoders [33], which use various strategies to
encode inputs into latent vectors and decode them back into the original inputs,
or Masked Auto-Encoders [44, 45], where models are trained to reconstruct
masked patches of the input from unmasked ones.

Despite the increasing adoption and the potential of these approaches [18,
40], they have little to no applications for combinatorial problems. One obstacle
limiting the application of contrastive approaches is the lack of augmentations
that preserve the solution space of instances [46], without them is hard to ap-
ply constructive strategies. Moreover, applying predictive approaches requires
identifying meaningful patterns and designing effective pretext tasks, both of
which are non-trivial operations in combinatorial problems.

2.1.3 The Pointer Neural Network

The Pointer Network [47] (PN) is an encoder-decoder architecture inspired by
natural language processing models and commonly applied to solve different CO
problems [47, 48, 49, 50]. The main reason for employing the PN in problems
such as the Traveling Salesman Problem and the Job Shop Problem is that they
can be solved by defining one or multiple permutations of their items. Standard
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convolutional or feedforward neural networks cannot approximate sorting func-
tions, as sorting is not a trivially derivable operation. To fix this issue, the PN
was proposed to learn functions for sorting a variable number of input items.

More in detail, the PN constructs a permutation of the input items in an au-
toregressive (iterative) manner, where at each construction step it first generates
a score for all the items not yet inserted and selects one based on these scores.
After each step, the scores of remaining items – not yet in the permutation –
are regenerated and the process is repeated until the permutation is complete.
As shown in Figure 1, this iterative process is realized with two separate neural
networks: a neural encoder and a generative decoder.

The role of the encoder is to embed a problem instance into the multidi-
mensional space where the decoder works. The encoder considers patterns or
characteristics of the items within an instance and produces meaningful embed-
ding representations ei for all its items. Although this is not always the case,
the embedding generation step is normally executed once, before starting the
construction of permutations, and prepares the ground for the decoder. Other
than producing embeddings, the encoder often produces the context necessary to
initialize the decoder, like a graph embedding or a state for recurrent networks.

The decoder uses the embeddings ei and internal information derived from
past selections to generate scores and select items. Logically, the decoder can be
divided into two parts: (i) a memory module that uses the instance context (if
provided or necessary) and the partially constructed permutations to generate
a query q; (ii) an attention module that receives in input the variable number
of items and the query q to produce a probability p(ei | q) of selecting each item
i. Once the probabilities have been generated, many different strategies can be
used to select the next item [51, 52, 53, 14, 54]. Some common strategies are
selecting the item with the highest probability (greedy decoding) or sampling
one with a probability of p(ei | q) (sampling decoding). Note that the decoder
is autoregressive as it updates the information contained in the memory after
each selection and generates from it the queries for future iterations. In this
update step, also the embeddings ei are sometimes regenerated [13].

Overall, the PN is a flexible architecture that can comprise different types of
neural networks. For instance, [47] used a Recurrent Neural Network (RNN) for
both the encoder and decoder; [48] replaced the RNN encoder with element-wise
projections; [49] introduced a Transformer inspired encoder; and [50] augmented
the RNN encoder with a Graph Neural Network [55]. Note that most of these
variations focus on the encoder part, while the decoder is typically based on the
alignment score produced with either additive [56] or dot-product [57] attention.
In addition, this architecture is robust to different training regimes, e.g., [47]
trained the PN in a purely supervised framework while [51, 50, 49, 58] used
various RL algorithms.
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2.2 Job Shop Scheduling Problem

In the Job Shop, we are given a set of jobs J = {J1, . . . , Jn}, a set of machines
M = {M1, . . . ,Mm}, and a set of operations O = {1, . . . , o}. Each job j ∈ J
comprises a sequence of mj ∈ N consecutive operations Oj = (lj , . . . , lj +mj) ⊂
O indicating the order in which the job must be performed on machines, where
lj is the index of the first operation of the job (lj = 1+

∑j−1
i=1 mi). An operation

i ∈ O has to be performed on machine µi ∈M for an uninterrupted amount of
time τi ∈ R≥0. Additionally, machines can handle one operation at a time. The
objective of the JSP is to provide an order to operations on each machine, such
that the precedences within jobs are respected, the operations do not overlap
on each machine, and the time required to complete all jobs (makespan) is
minimized. In scheduling theory [3], this problem is identified as Jm ||Cmax.

Let π = {η1, . . . , ηm} be a solution of an instance, and ηk = (sk1 , s
k
2 , . . . , s

k
nk

)
the permutation or sequence of nk ∈ N operations on machine k ∈ M . The
permutation ηk fixes the order of operations on machine k, and skt , with t ∈
{1, . . . nk}, gives the operation of some job j that is processed in the tth position.
Lastly, we use Ci(π) to identify the completion time of operation i ∈ O in π.

2.2.1 Disjunctive Graph

It is common to represent a JSP instance as a disjunctive graph [59] G =
(V,A,E) (see left of Figure 2), where:

• V contains one vertex for each operation i ∈ O with weight τi;

• A is the set of conjunctive (directed) arcs connecting consecutive oper-
ations of jobs, these arcs reflect the order in which operations must be
performed to complete jobs;

• E is the set of disjunctive (undirected) edges connecting those operations
to perform on the same machines.

When the JSP is represented as a disjunctive graph G, finding a solution
means providing a direction to all the edges in E, such that the resulting graph
is directed and acyclic (all precedences are respected), and its weighted longest
path (the critical path) is minimized. We will refer to the set of oriented edges
with Ê and the corresponding digraph with Ĝ = (V,A, Ê). We remark that
there is a unique one-to-one correspondence between a generic solution πg and

a digraph Ĝg, as orienting the edges of E is equivalent to creating permutations
{ηk}mk=1 and vice versa. In Figure 2, we better highlight the unique correspon-
dence between a solution and its digraph. Lastly, we remark that any feasible
solution of a JSP instance results in an acyclic digraph. Therefore, proving
the feasibility of a solution is equivalent to checking whether its corresponding
digraph is acyclic [3].
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Figure 2: On the left, an example of a disjunctive graph that represents a JSP
instance with 3 jobs (J1, J2, J3) and 3 machines (dashed lines). On the right, a
feasible solution that gives the sequence of operations ηk for each machine k.

2.2.2 Constructing Solutions

JSP solutions can be constructed step-by-step as a sequence of decisions, an ap-
proach adopted in constructive heuristics such as Priority Dispatching Rules [11,
3]. This construction process can be visualized using a branch-decision tree,
shown at the bottom of Figure 3. Each path from the root node (R) to a leaf
node presents a particular sequence of o = |O| decisions and leads to a feasible
solution, such as the one highlighted in gray.

At every node in the tree, one uncompleted job needs to be selected, and
its ready operation is scheduled in the partial solution being constructed. Due
to the constraints imposed by jobs (i.e., the conjunctive arcs) and the partial
solution πt constructed up to decision t, there is at most one operation o(t, j) ∈
Oj that can be scheduled for any job j ∈ J . Thus, by selecting a job j, we
uniquely identify an operation o(t, j) that will be scheduled by appending it to
the partial permutation of its machine. Once a job is completed, it cannot be
selected again, and such a situation is identified with a cross in Figure 3.

We also highlight there exist multiple paths in the branch-decision tree that
lead to the same solution. This indicates that certain JSP solutions are more
probable than others. In some instances, due to the distribution of processing
times τi, optimal or near-optimal solutions may be found among the less likely
paths, making the construction of quality solutions a more complex task.

This observation holds significant implications. For instance, it might be
more difficult for constructive heuristics to create (near-)optimal solutions in
instances where these solutions result from very unlikely paths. Additionally,
some ML approaches (especially RL ones) use the concept of instance complexity
to learn first from easy instances and move to more complex ones later on in the
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Figure 3: The sequences of decisions that allow constructing solutions for a JSP
instance with two jobs and two machines (identified with different colors).

training, something known as curriculum learning [60, 61]. In these curriculum
learning strategies, the complexity is often associated with the instance size only,
see e.g., [14]. Our observation can be used to further improve these approaches.

One of the most common constructive heuristics in scheduling is the Priority
Dispatching Rule (PDR). PDRs [11] are simple heuristics that assign operations
to machines based on job priorities, the higher the job priority more likely
is to schedule its ready operation. In general, priorities are computed with
hard-coded rules that consider the status of the schedule and characteristics
of jobs, machines, and operations. Designing an effective PDR is difficult and
requires substantial domain knowledge, especially on complex problems like the
JSP. Moreover, as partially explained in the above complexity observation, the
performance of a PDR may drastically vary on different instances. Therefore, in
the last years, researchers tried to enhance and automate the design of superior
PDRs with the help of Machine Learning [13, 62]. In Section 4, we contribute
in this direction.

2.2.3 Improving Solutions: Meta-heuristics

As constructive heuristics are in general unable to deliver high-quality solutions,
iterative methods have been proposed to improve the quality of JSP solutions.
Among others, meta-heuristics are the most common and effective ones.

At a high level, meta-heuristics are strategies that guide an underlying, more
problem-specific heuristic, to provide a sufficiently good solution to an optimiza-
tion problem. As meta-heuristics make relatively few assumptions about the
problem being solved, they can be used for a variety of different problems [63].
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The goal of a meta-heuristic is to find (near-)optimal solutions by efficiently
exploring a subset of the solution space that is otherwise too large to be com-
pletely enumerated. Therefore, compared to certain algorithms, meta-heuristics
do not generally guarantee that a globally optimal solution can be found or can
be proved as such.

The literature on meta-heuristics is rich and several books and surveys have
been published on the subject [63, 64, 65]. While the field features high-quality
research, e.g., various works provide formal theoretical results on the possibil-
ity of finding global optima [63, 6, 7], many publications have been of poor
quality. Common issues include implementation flaws, presentation vagueness,
poor experiments, and ignorance of previous literature [66]. Therefore, selecting
an effective meta-heuristic and correctly implementing it for efficiently solving
real-life problems requires a substantial knowledge of the field.

In general, a meta-heuristic will be successful on a given problem if it can
provide the right balance between diversification (exploration) and intensifica-
tion (exploitation). This balance is important, on one side to quickly identify
regions of the space with high-quality solutions, and on the other side to avoid
wasting a lot of time in already explored or poor quality regions. The main
differences between the most popular meta-heuristic frameworks concern the
particular way in which this balance is achieved.

Some meta-heuristics can be seen as “intelligent” extensions of local search
algorithms. The goal of this kind of meta-heuristic is to escape from local
minima to proceed the exploration of the solution space for hopefully finding
better minima. This is for example the case of Tabu Search [67], Iterated Local
Search, Variable Neighborhood Search, and Simulated Annealing [5, 6]. These
meta-heuristics, also called trajectory-based algorithms, work on one or several
neighborhood structures. In a nutshell, they describe trajectories in the solu-
tion space of an instance, starting from initial solutions and visiting neighbor
solutions according to some criteria [68, 69]. Each trajectory generally stops
either when no improving solution exists in the neighborhood, i.e., the current
solution is a local optimum, or when a predefined criterion is met.

A different philosophy can be found in Ant Colony Optimization [9] and
Evolutionary algorithms [70, 71]. They incorporate a learning component in
the sense that they implicitly or explicitly learn correlations between decision
variables to identify high-quality regions of the solution space. This kind of
meta-heuristic performs a sort of biased sampling of solutions. For instance, in
Evolutionary algorithms this is achieved by recombining certain parts of selected
solutions, and in Ant Colony Optimization by sampling the solution space in
every iteration according to a probability distribution.

Despite the kind of meta-heuristics, just picking one or another meta-heuristic
does not guarantee to successfully tackle a problem. The effectiveness of every
meta-heuristic depends on a brittle and complex balance of its elements, like
the neighborhood structure, the searching procedure, and other mechanisms.
This balance is achieved by specifically designing elements on the faced prob-
lem, such that the algorithm can intensify promising regions while escaping from
local optima. Therefore, selecting, designing, and assembling the right elements
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is extremely important and requires domain and algorithm-design expertise.
In the context of the JSP, the most successful type of meta-heuristics are

trajectory-based ones, like Tabu Search and Simulated Annealing [6, 72]. The
breakthrough work in the field of meta-heuristics is [6]. This work adapted the
Simulated Annealing (SA) [5] and proposed one of the most studied and effective
neighborhood structures for the JSP, called N1. N1 was the first to show how
it is possible to construct the neighborhood of a solution without incurring in
unfeasible solutions. In addition, it guarantees the existence of a trajectory that
leads to global minima, the so-called convergence property.

After this work, many variations and extensions of N1 were proposed in
[72, 7, 73], mostly in the context of a Tabu Search [67]. The most successful
application of the TS to the JSP is [7], where the authors proposed a reduced
variation of N1 in which some of the neighbor solutions were removed since
they cannot immediately improve the current solution. In [7] is also proposed
the best implementation of the TS for the JSP, successively refined in [74] by
incorporating elements of path relinking in the generator of initial solutions.

Besides the TS and SA, there are other meta-heuristics proposed to tackle
the JSP [9, 75, 8]. In these regards, we just want to stress that regardless of the
meta-heuristics, e.g., single-source or population-based [68], an ad-hoc searching
procedure or a local search is often required to enhance performance [9, 75, 8].

As creating new effective meta-heuristics for the JSP, its variations, and
similar scheduling problems is a challenging and time-consuming process, in
Section 3, we propose a novel methodology that may benefit in these regards.

2.2.4 Machine Learning Applications

Supervised.

The Job Shop Scheduling has been tackled in a fully supervised manner by
mostly relying on exact methods such as MILPs. The idea of these methods is
to create small synthetic instances, compute their (near-)optimal solutions, and
learn from them scheduling patterns that generalize to larger instances.

One of the first applications of ML is presented in [62], where a neural
network selects the most suited PDR from a pool to schedule the next operation.
The decisions of the neural network are based on the current system state and
the training is done through simulations. Another approach for enhancing PDRs
is proposed in [76], where imitation learning [24] is leveraged to learn superior
dispatching rules from optimal solutions. This work demonstrated how learning
from optimal solutions is not enough to produce robust PDRs. In [77], the
authors proposed to jointly use optimal solutions and Lagrangian terms while
training to better capture the JSP constraints. A different supervised proposal
is in [12]; herein, the MILP generates the likelihood of machine permutations
being in an optimal solution, and a Recurrent Neural Network [33] learns to
predict the likelihood of permutations for guiding a meta-heuristic.

Despite the potential demonstrated by these supervised approaches, they
rely on optimality information which is expensive to generate and limits their
adoption and widespread.
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Reinforcement.

Therefore, several recent works focus on adapting (Deep) Reinforcement
Learning approaches. The advantage of RL is that it does not need costly
optimal or near-optimal solutions, but only requires a correct formulation of the
Markov Decision Process [15], as explained in Section 2.1.1. After formulating
the Markov Decision Process, a policy to either schedule operations or make
decisions is learned from the experience derived by resolving the same instances
many times. RL has been mainly applied to create superior PDRs while only a
few works used it inside a meta-heuristic.

Regarding research efforts focusing on PDRs, [78] proposed an actor-critic
architecture [30], where the critic evaluates the value of decisions in the partial
schedule, and the actor learns to make decisions based on the schedule and the
critic estimations. In [13], an actor-critic is also proposed, but with a Graph
Neural Network (GNN) [55] to construct an adaptive representation of the par-
tial schedule. One interesting aspect of this work is that the authors underline
how GNNs seem to have poor performance when applied to disjunctive graphs.
Another example of an actor-critic architecture coupled with a GNN is in [79].
This work specifically designed a GNN architecture for encoding the disjunc-
tive graph representing JSP instances by using a rich set of features to describe
operations. Differently from these proposals, [58] did not use any GNN but
a rather complex Transformer-based [57] model, without substantially improv-
ing performance. We underline that all these works adopted Proximal Policy
Optimization (PPO) algorithms [32] to train their models, one may therefore
conclude that such algorithms are necessary when dealing with the JSP. How-
ever, a remarkable non-PPO proposal is in [80], where a Double Deep Q-Network
is equipped with prioritized Experience Replay [27] to schedule job operations,
proving that also value-based approaches are indeed effective (see Section 2.1.1
for more information on RL algorithms). More recently, [14] proposed a cur-
riculum learning strategy that gradually increases the size of JSP instances to
increase complexity, still in the context of an actor-critic algorithm.

Note that all these works construct JSP solutions step-by-step as explained
in Section 2.2.2, using reward signals that are only indirectly related to the
makespan, such as greedily minimizing the makespan increment of partial solu-
tions [13] or minimizing the number of waiting jobs [79]. We argue that such
local rewards may sometimes result in sub-optimal performance for learning to
construct globally optimal solutions. Thus, in Section 4, we propose a new
training strategy that focuses on the objective of complete solutions.

As reviewed in [81], ML can be fruitfully integrated in the most common
meta-heuristics and constitutes an opportunity to enhance, simplify, and auto-
mate the creation of effective algorithms. Some examples of how ML techniques
can be integrated into meta-heuristics for scheduling problems are [82, 83, 84].

In [82], it is proposed a DRL-based rewriting method in which a region-
picking policy selects regions of solutions that are rewritten with rules selected
by a rule-picking policy. Picking the right regions and selecting the best rewrit-
ing rule are non-trivial operations, and learning to perform them from experi-
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ence outperformed heuristic rules. The authors of [83] identified three points
of interventions within meta-heuristics where better strategies can be learned.
Thus, they used a Double Deep Q-learning approach to learn when to accept
new candidate solutions, which among different neighborhoods has to be used,
and when is necessary to apply a perturbation before continuing the explo-
ration. Meta-heuristics enhanced in these three points achieved slightly better
performance than non-enhanced ones on benchmark instances. Lastly, in [84],
a Variable Neighborhood Search is enhanced with a mechanism that favors the
creation of solutions having promising attributes during the shaking step. Al-
though this work does not use any ML techniques, learning to construct these
solutions might be a viable and better approach. For other examples of how to
combine ML with meta-heuristics, we refer the reader to [81].

Recently, [85] presented a hybrid imitation learning and policy gradient ap-
proach coupled with Constraint Programming (CP) for outperforming PDRs
and a CP solver. This last work unveils another way to combine RL for enhanc-
ing JSP resolution methods.

Despite these premises, meta-heuristics did not receive the same attention
as PDRs in hybridization with ML for the JSP. Therefore, in Section 3, we
contribute in this direction.
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3 Enhancing Tabu Search for the Job

Shop Problem

The Job Shop Scheduling Problem [3] is a notorious NP-hard combinatorial prob-
lem with many practical applications in industry [1, 2]. Mixed Integer Linear
Programming and Constraint Programming are two optimization methods that
can solve the JSP [4] and prove the optimality of solutions, valuable informa-
tion for both academia and industries. Although these methods are becoming
every day faster, they do not scale well on medium and large instances [4], and
they become rapidly useless even in small but complex industrial environments
[1]. For these reasons, approximation methods are still largely employed and
constitute an active area of research.

Meta-heuristic algorithms are the state-of-the-art approximation method
when comes to solving the JSP. Once implemented, a meta-heuristic can be
tuned to rapidly improve solutions (in a matter of minutes) or can be left run-
ning for a long time to find the best solution possible. However, designing
and implementing effective meta-heuristics is a long and challenging process,
as largely reviewed in Section 2.2.3. Sometimes, even when effective meta-
heuristics have already been designed, it might be difficult to reproduce results
or adapt algorithms to variations of the original problem.

As reviewed in [81], Machine Learning can be fruitfully integrated into com-
mon meta-heuristics and constitutes an opportunity to enhance, simplify, and
automate the creation of effective (meta-)heuristics. For instance, ML can learn
how to make effective decisions, how to recreate partially deconstructed solu-
tions, and how to avoid exploring unpromising regions of the solution space.
Despite these premises, meta-heuristics did not receive the same attention as
PDRs in hybridization with ML, and we believe there is much to gain from such
a combination. Therefore, we try to fill this gap by enhancing the effectiveness
and automating the creation of meta-heuristics thanks to ML approaches.

To this end, we focus on supervised learning as adopting RL makes the
training a more challenging task, it is not easy to reproduce [16], and takes
a lot of time [13], especially for Monte Carlo-based methods [15]. However,
finding which type of information might help enhance meta-heuristics is not
trivial. Moreover, designing a supervised methodology requires special care and
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a high-quality dataset to effectively learn valuable information once identified.
This is particularly true in the JSP, as not all the solutions to an instance are

feasible, i.e., respect the problem constraints, and for those feasible, the objec-
tive value (e.g., the makespan or the total tardiness) is not trivially derivable.
For these reasons, the application of supervised learning to the JSP requires
a learning task tightly related to the objective function, and that may fit in
the back-propagation algorithm. We thus propose as a novel supervised learn-
ing task to learn the quality of a machine permutation, i.e., how good is the
sequence of operations on a machine.

Understanding whether a sequence of operations on a machine is of high
quality is a valuable but difficult task in the JSP [3]. Since having a method
to judge machines is important, either for speeding up existing algorithms or
even in machine-based decompositions, we present an original methodology to
learn the quality of machines by means of sequential deep learning and a MILP
solver. There already exists in literature approaches to evaluate a machine,
most notably [17], but they frequently estimate the criticality of machines, a
related but different concept. Contrary, we define the quality of a machine
permutation as the likelihood of finding this permutation in an optimal or near-
optimal solution.

We evaluate the impact of our proposal by comparing the results obtained
with one of the best meta-heuristics for the JSP, namely the Tabu Search (TS),
with and without these quality estimations. In addition, we compare the results
of the TS with some of the DRL approaches to justify our proposal for enhancing
existing approximation algorithms.

Note:

An extracted version of the work published at:
Andrea Corsini, Simone Calderara, and Mauro Dell’Amico, “Learning
the Quality of Machine Permutations in Job Shop Scheduling”, in IEEE
Access, Volume 10, 2022. DOI: 10.1109/ACCESS.2022.3207559.

3.1 Learning the Quality of Machine Permuta-
tions

Our novel supervised learning task about the JSP is to predict the quality of
machine permutations, where the quality is the likelihood of finding this permu-
tation in an optimal solution. To justify why our learning task should help in
solving the JSP, we briefly report the intuition behind the proof of the conver-
gence property of the N1 neighborhood (see [6] for the complete proof).

Let π1 and πo be respectively a feasible and an optimal solution of an in-
stance. The converge property implies that from any π1, it is possible to con-
struct a trajectory of solutions through N1 that allows moving from π1 to an
optimal solution πo. The proof starts from the definition of a special set of
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critical arcs (remember that critical arcs are those in the longest path of Ĝ):

K1(πo) = {(v, w) ∈ Ê1 | (v, w) is critical ∧ (w, v) ∈ Êo} (1)

that is the set of critical arcs in Ĝ1 that do not belong to the optimal solution Ĝo,
where Ĝ1 and Ĝo are the acyclic digraphs associated to π1 and πo respectively.
When π1 ̸= πo, this set is always non-empty, and it is possible to create a finite
trajectory (π1, π2, . . . , πo) that guarantees to reach an optimal solution, where
π2 is obtained from π1 by reversing an arc in K1. Clearly, the convergence is a
desirable property for a neighborhood structure, but in practice, it is of no help
as it requires knowing the set K of critical arcs to reverse.

Nevertheless, this proof leads us to what might be beneficial for solving the
JSP: an information about which critical arcs are unlikely to be in an optimal
solution. At least in the context of N1, knowing this information allows ex-
cluding those solutions that introduce arcs unlikely to be in Êo, resulting in
better exploration and a faster convergence towards optima. However, there is
a problem in learning a function that gives the likelihood of finding an arc in an
optimal solution: the representation of the arc must encode enough information
about the entire solution.

Instead of learning this function, we propose to learn a function that receives
in input the machine permutation associated with an arc and outputs the like-
lihood of finding this permutation in an optimal solution. If the permutation
resulting from the inversion of a critical arc is of higher quality than the original
permutation, the reversed arc has a higher chance of being in Êo. Therefore,
learning such a function still allows discriminating which critical arcs should be
reversed. In addition, it simplifies the learning task since permutations intrin-
sically encode more information about solutions than single arcs.

Based on this theoretical intuition, our learning task should help solve the
JSP in at least those approximation algorithms based on N1. Note that the
proposed learning task might also benefit other approximation methods, e.g.,
machine-based decomposition and ruin-and-recreate algorithms [86], but we
leave this analysis to future works.

What remains uncovered is how the quality yk of a machine permutation ηk
can be quantified. To define the quality yk, we rely on the concept of makespan,
and we compute:

yk = 1− tanh

(
Cmax(ηk)

C opt
max

− 1

)
(2)

where Cmax(ηk) is the best makespan found by imposing ηk as part of the solu-
tion, C opt

max is the optimal makespan of the instance, and tanh is the hyperbolic
tangent function.

Note that Eq. 2, beyond giving the mathematical definition of the quality
of a machine permutation, also points out the methodology needed to estimate
this quality. This methodology includes a method to optimally solve the JSP
and a method to find the best solution with an imposed sequence ηk. With these
methods, Eq. 2 estimates yk by comparing the best makespan found with the
sequence ηk against the optimal makespan, and it scales this comparison with
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the tanh function. When ηk is near-optimal, meaning that Cmax(ηk) is close to
the optimal makespan, yk takes a value close to 1. Contrary, when Cmax(ηk) is
far from the optimal value, yk takes a value close to 0. Due to its definition, the
quality of a permutation is always a value in the interval [0, 1] ⊂ R, thus, it can
be interpreted as a kind of probability (or a likelihood parameterized by some
parameters) of finding the permutation in an optimal solution.

As the method to optimally solve the JSP, we propose to use a MILP solver
by formulating the problem as a disjunctive model [4]. As pointed out in [4],
today solvers can solve instances with 10 jobs and 10 machines in a few seconds.

Instead, as the method to find the best makespan Cmax(ηk) by imposing a
sequence ηk, we propose to use a modified version of the standard disjunctive
model, again in a MILP solver. In this modified version, we introduce a set of
constraints to prevent the solver from changing the order of the sequence ηk.
Note that this modification effectively reduces the solution space and speeds up
the solver. The modified disjunctive model is then:

min Cmax(ηk) (3)

s.t. xi ≥ xi−1 + τi−1 ∀j ∈ J ; ∀i ∈ Oj \ {lj} (4)

xi ≥ xt + τt −Qzit ∀h ∈M ; ∀i, t ∈ ηh, i < t, (5)

xt ≥ xi + τi −Q (1− zit) ∀h ∈M ; ∀i, t ∈ ηh, i < t (6)

xsht
≥ xsht−1

∀h ∈M, t = 2, . . . , nh (7)

Cmax(ηk) ≥ xlj+mj
+ τlj+mj

∀j ∈ J (8)

zit ∈ {0, 1} ∀h ∈M ; ∀i, t ∈ ηh (9)

xi ≥ 0 ∀i ∈ O (10)

The model has two decision variables: xi gives the starting time of operation
i ∈ O, and, zit takes value 1 if operation i precedes operation t on their machine.
The set of constraints (4) guarantees that for each job, the start time of every
operation must be equal to or higher than the completion time of the previous
operation. The disjunctive constraints in sets (5) and (6) guarantee that the
start time of an operation i must be higher than the completion time of another
operation t when i is scheduled before t and vice versa. Finally, the set of
constraints (7) fixes the order of operations on machine h to be equal to ηh =
(sh1 , s

h
2 , . . . , s

h
nh

), and the set (8) computes the makespan. The value of Q is set
to

∑
i∈O τi to ensure the correctness of the disjunctive constraints.

Summarizing, the methodology to obtain the quality of a machine permu-
tation ηk starts by optimally solving the JSP instance, then the best makespan
Cmax(ηk) is found with the presented modified disjunctive model, and finally,
the quality is computed with Equation 2.
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Figure 4: The architecture of the oracle. On the left, the 2-dimensional repre-
sentation Xk of a sequence is transformed into a sequence embedding through
the first block. In the right, the sequence embedding is fed into the second block
to compute the quality yk.

3.2 The Neural Network Oracle

To predict the quality yk of a sequence ηk, we designed a sequential deep learning
model that is sensitive to the order of the input. We will refer to such a model
as the oracle.

As a standard in sequential deep learning, each operation of a sequence
ηk = (sk1 , s

k
2 , . . . , s

k
nk

) is described by a feature vector in Rg. This means that
the representation Xk of a sequence ηk is in turn a sequence of feature vectors, or
alternatively, a tensor Xk ∈ Rnk×g, where the t ∈ {1, . . . , nk} element describes
the operation skt . The complete list of g features describing an operation is given
in Section 3.4.

Our oracle is composed of two blocks: the first block takes in the repre-
sentation of a sequence Xk and creates a sequence embedding ; the second block
uses this embedding to output the probability yk of the sequence. The entire
architecture is depicted in Figure 4.

The first block is realized with two layers of the Gated Recurrent Unit (GRU)
[87]. A GRU is a type of Recurrent Neural Network [33] that uses a “memory
structure” to let information from prior inputs influence the current output.
This “memory structure” needs to be initialized to some initial state, and is
updated at each step of the sequence by using the current input and the state
through a gating mechanism.

Our oracle warms start the initial states with Xk, but without considering
the order. Specifically, the initial state of each GRU layer is created by first
projecting the feature vectors describing operations in a latent space Rd with a
hidden layer (H0 ∈ Rg×d and H1 ∈ Rg×d in Figure 4), and then by taking the
mean along each of the d dimensions. This allows modeling the concept of a
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JSP machine directly in the architecture.
After this initialization starts the creation of the sequence embedding by

considering the order of the sequence. As depicted in Figure 4, the first GRU
layer receives in input at each step t = (1, . . . , nk) the feature vector of the
operation skt and produces in output the state h0

t . Whereas the second GRU
layer receives in input at the step t the state h0

t and produces in output h1
t . The

final sequence embedding is the concatenation of the last states, h0
nk

and h1
nk

,

and is therefore a vector in R2d.
The second block is realized with a Feedforward Neural Network (FNN) [33]

composed of 3 hidden layers of decreasing size. This block takes in input the
sequence embedding and produces in output the probability yk.

3.3 Tabu Search

Since Tabu Search empirically demonstrated to be the best meta-heuristic for
solving the JSP [69], we evaluate the advantages of our novel learning task in
this algorithm. To this end, we design two versions of the TS: sTS is a simple
TS inspired by the works reviewed in Section 2.2.3, while oTS is identical to
sTS but uses the oracle. We borrow part of the structure of sTS and oTS from
the TS proposed in [7]. Since our algorithms are almost identical, they differ
only in the procedure to select the next solution, we first describe the structure
of sTS and afterward the modification to the searching procedure.

The key components of sTS are: (i) the generator of the initial solution,
(ii) the neighborhood structure, (iii) the tabu list to prevent revisiting recent
solutions, (iv) the neighborhood searching procedure to select the next solution,
and (v) the restart list to intensify promising regions of the solution space.

sTS begins by generating a random solution that constitutes both the start-
ing point of the exploration and the initial best solution. This solution is gener-
ated with a random PDR that gives priority to jobs by sampling from a uniform
distribution. We decided to use a random starting point to test the capability
of our algorithms to converge to global optima in different runs of the same
instance. This allows a better comparison between the algorithms.

After this initialization, sTS enters the cyclic phase where the following steps
are repeated:

Step 1: Create the neighborhood of the current solution.

Step 2: Select the new current solution through the neighborhood searching
procedure.

Step 3: Update the best solution if the new solution improves the best one.

Step 4: Save a restart point in the restart list if the region is promising.

Step 5: Go to Step 1: if the iteration condition is met.

Step 6: Restart from the latest promising region and go to Step 1: if the
restart condition is met.
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At each iteration, the algorithm selects from the N1 neighborhood [6] the
solution with minimum makespan that is not forbidden by the tabu list (Step
2:). Once sTS finds a solution improving the best one (Step 3:), it records this
point in the restart list (Step 4:). Based on [7, 74], a promising region of the JSP
solution space is a point in which there is an update of the best solution, and
such regions must be intensified by trying to explore the entire neighborhood.

This cyclic exploration is repeated until a maximum number of non-improving
iterations is reached (iteration condition of Step 5:), where a non-improving it-
eration is an iteration that does not improve the best solution. If the iteration
condition is not met, the algorithm tries to resume the exploration from the
last promising region inserted in the restart list. The restart condition of Step
6: simply checks that the restart list is not empty. If this condition is not met,
the algorithm stops. The pseudo-code of the neighborhood searching procedure,
the tabu list, and the restart list can be found in [7]

oTS is identical to sTS, but it uses the oracle to further reduce the N1
neighborhood by excluding solutions that lower the quality of machine permu-
tations. This aligns with the discussion of Section 3.1. Our oracle predicts
the likelihood that a sequence (a permutation on some machine i ∈ M) has of
belonging to an optimal solution. In N1, a neighbor solution πn differs from
the current solution πc in only one permutation on a machine. Therefore, we
use the oracle to remove all the neighbor solutions that introduce a sequence
with a lower likelihood of belonging to an optimal solution. More in detail, if
the permutation of πn on machine i has a higher likelihood of belonging to an
optimal solution than πc, we accept this solution in the neighborhood, in the
opposite case, we remove πn from the neighborhood. The searching procedure
for selecting a new solution from this reduced neighborhood remains the same
of sTS, which in turn is the same of [7]. There might be situations in which all
the neighbor solutions are removed, in these cases, we undo the reduction and
use the normal N1 neighborhood. Finally, this reduction is applied only for the
first quarter of the maximum number of non-improving iterations (Step 1-5),
and in the same way after every restart.

3.4 The Supervised Dataset

For training our oracle, we created a dataset of sequences from a set of 200 JSP
instances with 8 jobs (ni = 8,∀i ∈ M) and 8 machines (mj = 8,∀j ∈ J). The
set of instances has been generated following the guidelines of [88].

Then, for each instance, we generated 136 sequences for each machine, and
we computed the quality of these sequences with the MILP introduced in Sec-
tion 3.1. This results for a single instance q ∈ {1, . . . , 200} in a total of 1088
observations of the form (Xq

k , y
q
k), where Xq

k ∈ Rni×g is the representation of
a machine sequence ηk, and yqk is its quality. To ease the notation, in the re-
mainder, we omit the index of the instance q; nonetheless, remember that each
observation of our dataset refers to one and only one instance.

The 136 sequences for each machine have been generated as follows:

28



Algorithm 1 Generate s ∈ N random sequences from (sk1 , . . . , s
k
nk

)

function SequenceGenerator((sk1 , . . . , s
k
nk

), s)
seq ← Generate s empty sequences
w ← (sk1 , . . . , s

k
nk

)
for all pos ∈ {1, . . . , nk} do

idx = 0
for all t ∈ {0, . . . , s− 1} do

while widx in seqt do
idx = (idx + 1)mod |w|

end while
seqt ← seqt ⊕ widx

idx = (idx + 1)mod |w|
end for
w ← w ⊕ (sk1 , . . . , s

k
nk

) ▷ Increase w’s period.
w ← shuffle(w)

end for
return seq

end function

• 128 random sequences by trying to place each operation in all positions of
a machine.

• 1 optimal sequence taken from the optimal solution of the instance.

• 7 suboptimal sequences obtained from the optimal sequence by swapping
consecutive operations (we did not swap the first and last operations).

The rationale behind these different sequences is that we tried to uniformly sam-
ple the characteristics of a machine in an instance. The 128 random sequences
should reflect the “unbiased” impact of the machine on the instance and they
are generated with Algorithm 1, where ⊕ indicates that an item is appended to
a partial sequence. Note that the SequenceGenerator procedure may generate
repeated sequences. In such cases, we removed the repeated sequences and ap-
plied the procedure again to ensure that s different sequences were generated.
The optimal sequence is introduced to model the optimality for a machine, and
the suboptimal sequences are used to model the neighborhood of an optimal
sequence, and hopefully the Big Valley phenomenon [74].

Regarding the representation Xk of a sequence ηk, we defined a set of 18
features to describe operations. Our set of features has been constructed by
selecting some of the best features from [89] and from the graph theory. The
features selected from [89] describe characteristics of single operations and jobs,
some examples are: the processing time of operations and the mean processing
time of jobs. The graph theory features are extracted from the disjunctive
graph and they express relationships among operations, some examples are: the
eigenvector centrality and the closeness centrality. These features depend only
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on information about the instance, therefore, in our experiments, we computed
the feature vector for each operation once and we dynamically concatenated the
feature vectors in the order given by ηk to form Xk (Xk ∈ R8×18 in this work).
We report in Table 1 the complete set of features.

3.5 Results

For our experimental evaluation, we configured the oracle of Section 3.2 as
outlined in Table 2. We recall that the objective of our oracle is to predict
from the representation Xk of an input sequence ηk its quality yk, i.e., the
probability of ηk of being in an optimal solution of the instance. Due to the
nature of yk ∈ [0, 1], we trained our oracle to approximate the distribution of
yk in our dataset by using the Kullback–Leibler Divergence as the loss function.
Using this loss allows to train the model without transforming the problem
into a binary classification, and this brings several advantages: (i) our labels
yk have a larger semantic compared to binary ones, giving more freedom in the
application of the oracle; (ii) it is not clear which threshold should be set on
the continuous labels yk to transform them into binary ones; (iii) casting the
problem as a binary classification brings imbalance issues [90].

We split 75/25 the dataset of Section 3.4, and use the 75% for training and
the remaining for testing. The oracle was trained with the adam optimizer [33],
with a batch size of 128, and for a total of 100 epochs divided as follows:

1. 40 epochs with learning rate 0.005.

2. 30 epochs with learning rate 0.002.

3. 20 epochs with learning rate 0.001.

4. 10 epochs with learning rate 0.0005.

The training of the oracle was done in Python and was successively ported
by using the tracing functionality of PyTorch [91]. Both sTS and oTS have
been written in C++, compiled with g++ 9.3.0, and executed on an Ubuntu
machine equipped with an Intel Core i9-11900K and an NVIDIA GeForce RTX
3090. Finally, the oracle was integrated into the oTS with the LibTorch library
and run on the GPU.

3.5.1 Oracle performance

We start the evaluation by showing the performance of the oracle on two different
aspects: (i) we quantify the error in the predictions by measuring how much
they differ from labels, (ii) we quantify the performance of the oracle in a binary
classification problem. The results of this section refer to a test set composed
of 54400 sequences (25% of the dataset) randomly selected by ensuring that the
test distribution is similar to the one of the entire dataset, see Figure 5.
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Table 1: The set of features describing an operation i ∈ O and its relations with
the other operations in the JSP instance.

ID Name Equation Description

f0
Processing

time
τi

maxt∈O τt

The processing time of operation i normalized by the max-
imum processing time in the instance.

f1
Job

completion

∑i
k=lj

τk∑
t∈Oj

τt
The completion of job j when its operation i is scheduled.

f2 Job mean 1
avg ∗mj

∑
k∈Oj

τk
Mean processing time of job j normalized by the mean pro-
cessing time of the instance (avg in the equation).

f3 Job median median(τlj ,...,τlj+mj
)

avg

Median processing time of job j scaled by the mean process-
ing time of the instance (avg in the equation).

f4
Job

std-mean
std(τlj ,...,τlj+mj

)mj∑
i∈Oj

τi

The standard deviation of the processing time in job j nor-
malized by the mean processing time of the job.

f5
Job

std-median
std(τlj ,...,τlj+mj

)

median(τlj ,...,τlj+mj
)

The standard deviation of the processing time in job j nor-
malized by the median processing time of the job.

f6 Job min
mini∈Oj

τi

maxk∈O τk

The minimum processing time of job j normalized by the
maximum processing time in the instance.

f7 Job max
maxi∈Oj

τi

maxk∈O τk

The maximum processing time of job j normalized by the
maximum processing time in the instance.

f8

Source
shortest
distance

d∗(src, i)
The shortest weighted distance in the graph from the source
(dummy) node to operation i.

f9

Destination
shortest
distance

d∗(i,dst)
The shortest weighted distance in the graph from operation
i to the destination (dummy) node.

f10
Eigenvector
Centrality

Ax = xλ

The eigenvector centrality of an operation i is the element
of the eigenvector x associated with the largest eigenvalue λ
that corresponds to i. A high eigenvector centrality means
that an operation connects to other operations having high
centrality. A is the adjacency matrix of the graph.

f11

Weighted
Eigenvector
Centrality

A∗x = xλ
The same as the eigenvector centrality, but it uses the
weighted adjacency matrix A∗ where arcs take the weight
of the source node.

f12
Closeness
Centrality

|V |−1∑
k∈N(i) d(k,i)

The normalized closeness centrality measures the shortest
non-weighted distance from the nodes than can reach i,
scaled by the number of nodes in the graph. N (i) is the
set of nodes that can reach i, d(k, i) is the number of arcs
on the shortest path from k to i, and |V | is the number of
nodes.

f13

Weighted
Closeness
Centrality

|V |−1∑
k∈N(i) d

∗(k, i)

The same as the closeness centrality, but it uses the weighted
shortest path d∗(k, i).

f14
Betweenness
Centrality

∑
v,w∈V

Γv→w(i)
Γv→w

The betweenness centrality is the fraction of all-pairs short-
est paths that pass through operation i. This measure in-
dicates which operations are “bridges” between others in a
graph. Γv→w is the number of non-weighted shortest paths
from v to w, and Γv→w(i) is the number of such shortest
paths through i.

f15

Weighted
Betweenness
Centrality

∑
v,w∈V

Γ∗
v→w(i)
Γ∗
v→w

The same as the betweenness centrality, but it uses the
weighted shortest path for computing the number of paths
Γ∗
v→w.

f16 Page Rank A The Page Rank.

f17
Weighted

Page Rank
A∗ The weighted Page Rank.
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Table 2: Hyper-parameters of the oracle presented in Section 3.2.

GRU 0 GRU 1 FNN
Hyper-parameter Value

hidden size 32
bidirectional False
dropout 0.3
H0 size 32
H0 activation tanh
H0 dropout 0.3

Hyper-parameter Value

hidden size 32
bidirectional False
H1 size 32
H1 activation tanh
H1 dropout 0.3

Hyper-parameter Value

H2 size 32
H2 activation tanh
H3 size 16
H3 activation tanh
H4 size 2

Figure 5: The discretized distributions of the dataset (blue), test set (green),
and oracle predictions (red).

To quantify the errors of the oracle, we compare its predictions against the
labels of the test set by defining the Within Tolerance Accuracy (WTA) in
Equation 11:

WTA(tol) =
1

T

T∑
k=0

I(|yk − ŷk| < tol) (11)

where ŷk is the predicted quality of a sequence ηk, yk is the true quality, tol is
the error tolerance, I() is the indicator function (it returns 1 when the difference
is within the tolerance), and T is the dimension of the test set.

As it is clear from the distributions in Figure 5, the predictions of the oracle
approximate well the distribution of the test set, with some mistakes in the
region around the quality 0.90. This is even more clear from Table 3 which
quantifies the errors between true and predicted values in different portions of
the test distribution. This table divides the sequences into intervals based on the
true quality. The first column points out the quality intervals, the second column
gives the number of occurrences in each interval, the third and fourth columns
give some statistics about the absolute error between labels and predictions,

32



Table 3: The errors and WTA for different quality intervals.

Quality Num
Abs error WTA(.05) WTA(.07)

avg max (%) (%)

[0.0, 0.3) 1117 0.012 0.078 98.0 99.7
[0.3, 0.4) 4756 0.015 0.111 95.8 99.3
[0.4, 0.5) 9710 0.016 0.158 94.2 98.6
[0.5, 0.6) 11775 0.018 0.150 91.7 97.8
[0.6, 0.7) 10808 0.020 0.171 89.2 97.1
[0.7, 0.8) 7702 0.020 0.158 87.3 96.7
[0.8, 0.9) 4343 0.021 0.152 85.9 96.2
[0.9, 1.0] 4189 0.018 0.123 91.3 97.9

Test set WTA 91.0 97.7

and the last two columns give the WTA for different tolerances. The last row
gives the WTA for the entire test set.

Note how the WTA is almost perfect for a tolerance of 0.07 and still very
good for a tighter tolerance of 0.05. As noted above, we can appreciate an
increment in the errors in the interval [0.7, 0.9). We believe that this increment
is jointly caused by the lower number of training sequences in this interval and
by the fact that these sequences are more difficult to discriminate from optimal
ones because they are mostly suboptimal, i.e., they differ from optima only in
one consecutive pair of operations.

To better understand the quality of the oracle, we also report in Table 4 its
performance in a binary classification task. In this evaluation, the true quality
yk is transformed into binary labels by setting a threshold and marking with a 1
(positive) all the sequences having a quality higher than the threshold, and with
a 0 (negative) all the remaining sequences. The class predicted by the oracle is
given by the argmax function. We report the results for 5 different thresholds,
each producing a binary test set with a different imbalance ratio. Despite these
different imbalance ratios, the performance of the oracle on standard imbalanced
metrics [90] remains good in all cases. This is possible because we trained the
model to match the quality of the training sequences.

With these evaluations, we want to stress how the oracle can be effectively
used either for predicting or classifying sequences, allowing great flexibility in
its usage within our TS and potentially in other approximation methods. In
addition, the results of this section suggest that with our dataset, and hence
with the methodology of Section 3.1, it is possible to learn which sequences are
likely to be in an optimal solution.
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Table 4: The results on 5 binary classification problems obtained by setting 5
different thresholds on the labels of the test set.

Threshold
Num Num Imbalance Accuracy Balanced Precision Recall

positive negative ratio (%) accuracy (%) (%) (%)

0.5 38817 15583 0.4 95.5 94.3 96.6 97.0
0.6 27042 27358 1.01 94.7 94.7 94.6 94.8
0.7 16234 38166 2.35 95.4 94.5 92.3 92.2
0.8 8532 45868 5.38 97.1 94.0 91.9 89.4
0.9 4189 50211 11.99 98.6 94.4 92.2 89.4

Table 5: The results of the two TS algorithms for different configurations of
parameters.

Parameters Num opt Avg gap (%) Worse Better Avg time (ms)

ID Max iter Rest. sTS oTS sTS oTS Num Avg diff (%) Num Avg diff (%) sTS oTS

0 500

0

335 465 2.24 2.12 277 1.56 408 1.93 29 142
1 1000 449 620 1.81 1.77 192 1.32 372 1.56 41 210
2 1500 511 673 1.66 1.41 167 1.06 341 1.55 56 318
3 2000 559 741 1.55 1.29 135 1.11 320 1.49 72 409
4 2500 593 763 1.51 1.34 116 1.10 293 1.46 86 473

5
700

0 382 548 1.99 1.75 223 1.22 406 1.75 33 153
6 1 741 849 1.02 0.92 80 0.93 195 1.02 138 526
7 2 807 892 0.89 0.92 65 0.97 150 0.89 199 690

8
800

0 409 572 1.89 1.71 211 1.28 395 1.65 35 165
9 1 754 867 1.01 0.84 71 0.79 185 1.04 181 592
10 2 818 905 0.89 0.85 58 0.80 140 0.91 245 795

11
900

0 425 594 1.84 1.69 218 1.24 377 1.70 38 191
12 1 766 879 1.00 0.97 66 0.96 173 1.04 204 714
13 2 833 918 0.88 0.82 48 0.93 128 0.97 263 961

3.5.2 Tabu Search performance

We proceed by analyzing the impact of the proposed learning task on the Tabu
Search meta-heuristic. To this end, we compare the results of the TS described in
Section 3.3 with (oTS) and without (sTS) the oracle. This comparison is done on
the 200 instances used to create our dataset, where for each instance we repeated
the execution of the algorithms 5 times, from the same 5 initial solutions (this
is done by seeding the random PDR with 5 different seeds). The results of
the algorithms are compared in terms of the number of optimal solutions, the
average optimality gap of suboptimal solutions (gap = (Cmax/C

opt
max) − 1 ), and

the average execution time. Note that comparing the results of the algorithms
on the same instances of our dataset is fair since the sequences visited by sTS
and oTS are independent from those used to train the oracle.

In Table 5, we report the results of the algorithms for different configurations
of parameters. In these configurations, we omit the length of the tabu list that
is always set to 10. The first column of the table assigns an identifier to every
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configuration. The second and third column specifies respectively the maximum
number of non-improving iterations and the length of the restart list. The “Num
opt” and the “Avg gap” columns compare the number of optimal solutions and
the average optimality gap of each algorithm. Whereas the “Worse” (“Better”)
columns compare respectively the number of solutions and the average scaled
difference (diff = (CoTS

max − CsTS
max)/C

opt
max) in which oTS worsens (improves) with

respects to sTS. The last two columns give the average execution times.
First, we underline that oTS finds a higher number of optimal solutions than

sTS regardless of the parameter configurations. This is important for empirically
confirming that the proposed learning task, our methodology, and the learning
model indeed enhance the performance of the TS.

This increment in performance is also supported by the lower average opti-
mality gaps obtained by oTS in suboptimal solutions (“Avg gap” columns). For
all the tested configurations, we only see one case, row with ID 7, in which oTS
does slightly worse than sTS in terms of optimality gap. However, note how in
this case the overall performance of both the algorithms is almost perfect, and
how oTS is still able to find a larger number of optimal solutions.

Regarding the “Worse” and the “Better” columns, we highlight how the
number of solutions in which oTS does better than sTS is almost twice the
number of solutions in which it does worse. Furthermore, it is worth noting
that with more restarts, the average difference in the gaps of the algorithms
tend to decrease as they both converge towards optimality, rendering the oracle
suggestions less advantageous.

Finally, as it is clear from the average times, using a deep learning model
will likely increase the running time. This trend has already been observed
in [13], where the execution of a DRL proposal takes 2x up to 5x the time of
traditional PDRs. A similar increment is also observed in [78]. In line with these
works, we observe a comparable increment between sTS and oTS. However,
our algorithms have been written by keeping the implementation as simple as
possible. Therefore, there is space for engineering the code and producing better
average execution times, especially in the case of the oTS. For instance, it is
possible to reduce the oracle calls by batching or keeping a memory of past
predictions, and it is possible to reduce the execution time of the oracle by using
faster architectures like Transformers [92] and Convolutional Network [33].

Concluding, this comparative analysis shows that it is possible to find better
solutions by using the quality predictions in a TS as described in Section 3.3.
This empirically highlights how the proposed learning task seems to be valuable
in the context of the JSP.

3.5.3 Comparison with Reinforcement Learning

Lastly, we compare oTS with RL proposals reviewed in Section 2.2.4. Our goal
is to prove the superiority of meta-heuristics enhanced with machine learning
and stress the importance of further investigating these hybrid approaches.

For this comparison, we selected standard benchmark instances from works
discussed in Section 2.2.4. Specifically, we selected the instances Orb01-09 [93]
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Table 6: The comparison between oTS and the RL approaches on benchmark
instances.

Instance OPT SPT [78] [13] [83] oTS-1 oTS-2

1
0
×

1
0

Orb01 1059 1478 (39.6%) 1211 (14.4%) - - 1106 (4.4%) 1106 (4.4%)
Orb02 888 1175 (32.3%) 1002 (12.8%) - - 902 (1.6%) 902 (1.6%)
Orb03 1005 1179 (17.3%) 1150 (14.4%) - - 1048 (4.3%) 1044 (3.9%)
Orb04 1005 1236 (23.0%) 1132 (12.6%) - - 1032 (2.7%) 1032 (2.7%)
Orb05 887 1152 (29.9%) 1045 (17.8%) - - 902 (1.7%) 896 (1.0%)
Orb06 1010 1190 (17.8%) 1106 (9.5%) - - 1028 (1.8%) 1028 (1.8%)
Orb07 397 504 (27.0%) 460 (15.9%) - - 397 (0.0%) 397 (0.0%)
Orb08 899 1170 (30.1%) 1022 (13.7%) - - 911 (1.3%) 911 (1.3%)
Orb09 934 1262 (35.1%) 1082 (15.8%) - - 961 (2.9%) 955 (2.2%)

15
×

1
5

Ta01 1231 1872 (52.1%) - 1443 (17.2%) 1320 (7.23%) 1281 (4.1%) 1281 (4.1%)
Ta02 1244 1709 (37.4%) - 1544 (24.1%) 1311 (5.39%) 1283 (3.1%) 1283 (3.1%)
Ta03 1218 2009 (64.9%) - 1440 (18.2%) 1318 (8.21%) 1292 (6.1%) 1292 (6.1%)
Ta04 1175 1825 (55.3%) - 1637 (39.3%) 1287 (9.53%) 1248 (6.2%) 1248 (6.2%)
Ta05 1224 2044 (67.0%) - 1619 (32.3%) 1323 (8.09%) 1280 (4.6%) 1280 (4.6%)
Ta06 1238 1771 (43.1%) - 1601 (29.3%) 1311 (5.89%) 1272 (2.7%) 1260 (1.8%)
Ta07 1227 2016 (64.3%) - 1568 (27.8%) 1270 (3.50%) 1250 (1.9%) 1247 (1.6%)
Ta08 1217 1654 (35.9%) - 1468 (20.6%) 1305 (7.23%) 1240 (1.9%) 1240 (1.9%)
Ta09 1274 1962 (54.0%) - 1627 (27.7%) 1461 (14.68%) 1307 (2.6%) 1307 (2.6%)
Ta10 1241 2164 (74.4%) - 1527 (23.0%) 1334 (7.49%) 1290 (3.9%) 1290 (3.9%)

and the instances Ta01-10 [88]. In Table 6, we report for each instance its name,
the optimal makespan, and the results in terms of makespan and optimality gap
(in round brackets) for the Shortest Processing Time (SPT), the proposal in [78],
the proposal in [13], that of [83], and oTS. Based on Table 5, we decided to use
2 parameter configurations for oTS: 2 restarts and 700 iterations for oTS-1, and
2 restarts and 800 iterations for oTS-2.

From Table 6, it is immediately clear that oTS outperforms the DRL pro-
posals. This is also true if we qualitatively compare the results of oTS with
those reported in [79]. By looking at the average percentage gap reported for
Orb01-10 and Ta01-80, we can see that the gap of this other DRL proposal is
around 20%, ten times the gap obtained by oTS.

This comparison demonstrates that meta-heuristics enhanced with machine
learning guarantee to find better solutions. We believe that further research in
hybrid approaches as our may give life to simpler and better meta-heuristics
capable of producing near-optimal solutions in a shorter amount of time.

3.6 Final Remarks

This study showcases the feasibility of leveraging supervised methodologies
to acquire informative insights about CO problems, thereby enhancing opti-
mization techniques like meta-heuristics. Furthermore, we emphasize that ML
approaches can effectively approximate assumptions derived from theoretical
proofs about optimization methods, which might not be of practical use other-
wise. This, in turn, enables the implementation of enhanced methods where the
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ML component generally has only a limited negative impact on the method.
Finally, we underscore the significance of a methodology for learning the

quality of machine permutations. Such an approach holds valuable implications
and can be seamlessly extended to a diverse array of algorithms and scheduling
problems.
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4 Self-Labeling the Job Shop Problem

Over the years, researchers have developed a variety of techniques to tackle
the JSP, including exact methods [4], heuristics [3], and meta-heuristics [6,
7]. Although many techniques exist, they still have limitations, and none is
appropriate for every circumstance. Some related limitations are: (i) only few
of the best techniques can scale well on large instances; (ii) most techniques
relying on heuristics or pre-defined rules, such as PDRs, fail to be flexible when
exposed to different instances; (iii) incorporating domain knowledge about jobs
and machines into existing techniques can be challenging and time-consuming.

To address some of these challenges, we investigate again Machine Learning
paradigms, which have provided several technological breakthroughs in the last
decades. Differently from Section 3, where we employed ML to enhance meta-
heuristics, we now focus on solving the JSP by resorting only to ML models in
an end-to-end fashion. By learning general and flexible patterns, ML models can
rapidly and effectively solve large and complex instances than part of traditional
JSP algorithms. Additionally, incorporating domain knowledge while training
models is as easy as personalizing the training set, and this may lead to superior
solutions in real-world applications.

Despite these premises, how to effectively and efficiently apply ML to solve
the JSP remains an open question. Recently, significant research efforts focus on
applying Reinforcement Learning to the JSP (see Section 2.2.4). The driving
interest in RL approaches is that they allow learning neural solvers through
trial-and-error schemes, thus avoiding expensive supervision. However, training
RL agents is a complex optimization task, has reproducibility issues [16], and
is computationally expensive [13]. Therefore, in this work, we specifically focus
on designing an efficient supervised methodology.

In traditional supervised learning, a model is trained to associate each exam-
ple with a single class through the aid of pre-defined labels. A natural idea is
to apply a similar approach whereby a model learns a mapping between a JSP
instance and its optimal solution. However, as supervised learning is known
to require several thousands of annotations [18], this approach is particularly
problematic in combinatorial problems, where annotations in the form of opti-
mal solutions are generally produced with expensive exact methods.

38



As explained in Section 2.1.2, Semi- and Self-Supervised learning [19] are
recently gaining popularity in many ML fields due to their ability to learn from
fewer labeled data. This allows reducing labeling costs and also improves gener-
alization [18]. However, little to no application of these paradigms can be found
in the JSP and the combinatorial optimization literature [20].

We thus focus on the design of a supervised training procedure relying only
on model-generated solutions and not requiring expensive (near-)optimal solu-
tions. Our proposal is based on the following two assumptions: i) we suppose to
be able to generate multiple solutions for an instance, a common characteristic
of generative ML models like the Pointer Network [94]; and ii) we suppose it is
possible to discriminate solutions based on the problem objective. When these
assumptions are met, we train a model by generating multiple solutions and us-
ing the best one according to the problem objective as a pseudo-label [38]. This
procedure borrows from semi-supervised learning the idea of pseudo-labeling but
does not resort to additional annotations as in self-supervised learning. Hence,
we refer to it as a Self-Labeling training strategy.

Similar to constructive heuristics described in Section 2.2.2, we cast the
generation of JSP solutions as a sequence of decisions, where at each decision
one operation is selected to be added to the solution under construction. This is
achieved with a popular architecture known as Pointer Network (PN) for dealing
with sequences of decisions. We refer the reader to Section 2.1.3 for an in-depth
treatment of the PN. We train our PN on a set of 30 000 instances by generating
multiple parallel solutions and using the one with the minimum makespan to
update the model. Quite surprisingly, this simple training strategy produces
models outperforming existing state-of-the-art RL proposals for the JSP on two
popular benchmark sets.0

Note:

An extended version of this work is currently under revision at a top ML
conference and was presented at:
Andrea Corsini, and Mauro Dell’Amico, “Using Self-Supervised Learning
to Solve the Job Shop Scheduling Problem”. International Conference on
Optimization and Decision Science, 2023. Ischia, IT.

4.1 Proposed Pointer Neural Network

Since we tackle the JSP as a sequence of decisions (see Section 2.2.2), we propose
a PN whose goal is to select the right job at each decision step t. Formally, our
PN learns a function fθ(·), parametrized by θ, that estimates the probability
pθ(π|G) of a solution π of being of high-quality as a product of probabilities:

pθ(π|G) =

o∏
t=1

fθ(j |πt, G), (12)

0The code is available at: https://github.com/AndreaCorsini1/SelfLabelingJobShop
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where fθ(j |πt, G) gives the probability of selecting j ∈ J conditioned on the
instance G and the partial solution πt at step t. By learning fθ, it is possible to
construct solutions autoregressively with a high chance of being of high-quality.

Our PN works by taking in input JSP instances represented as a disjunctive
graph G, and produces a single deterministic or multiple randomized solutions
depending on the adopted construction strategy. Following the other ML ap-
proaches for the JSP reviewed in Section 2.2.4, we augment the disjunctive
graph associated to an instance with additional features for each vertex. We
provide the complete list such features xi describing an operation i in Table 7.

As described in Section 2.1.3, the PN comprises an encoder and a decoder.
The encoder of our PN creates with a single forward computation of G an
embedded representation for all the operations in O. Whereas the decoder uses
the embeddings of operations and the partial solution πt to produce a probability
for each job of being selected at step t. Recall that after selecting a job j, its
ready operation o(t, j) is scheduled in πt to produce the partial solution for step
t + 1. In the following, we present the details of both the encoder and decoder.

Encoder.

Its role is to encode meaningful patterns within an instance into the em-
bedded representation of operations. The encoder can be embodied by any
architecture, like a Feedforward Neural Network (FNN), that transforms the
feature of operations xi ∈ R15 into embeddings ei ∈ Rh, without necessarily ac-
counting for information contained in the graph G. As in related works [13, 79],
we propose to additionally encode the relationships among operations present
in the disjunctive graph. Therefore, we equip the encoder with graph neural
networks [55], which enables the embeddings to also incorporate information
related to the topological structure of G. In our encoder, we stack two layers
of Graph Attention Network [95] (GAT) as follows:

ei = [xi || σ(GAT2( [xi || σ(GAT1(xi, G))], G)], (13)

where σ is the ReLU non-linearity and || stands for the concatenation operation.

Decoder.

Its role is to produce at any step t the probability of selecting each job with
two logically distinct components:

• Memory Network : generates a state sj ∈ Rd for each job j ∈ J from the
partial solution πt. This is achieved by first extracting from πt a con-
text vector cj for every job j, which contains eleven hand-crafted features
providing useful cues about the job in the partial solution. We refer to
Table 8 for the definition of such features. Then, these vectors are fed
into a Multi-Head Attention (MHA) layer [57] followed by a non-linear
projection to produce the jobs’ states:

sj = σ([cj W1 + MHA
b∈J

(cb W1)]W2), (14)
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Table 7: The features xi ∈ R15 associated with a vertex i ∈ V describing
information about operation i within the instance.

ID Description

1 The processing time τi of the operation.

2 The completion of job j up to operation i:
∑i

b=lj
τb /

∑
b∈Oj

τb.

3 The remainder of job j from operation i:
∑lj+mj

b=i+1 τb /
∑

b∈Oj
τb.

4-6
The 1st, 2nd, and 3rd quartiles among processing times of operations on
job j.

7-9
The 1st, 2nd, and 3rd quartile among processing times of operations on
machine µi.

10-12
The difference between τi and the 1st, 2nd, and 3rd quartiles among
processing times of operations in job j.

13-15
The difference between τi and the 1st, 2nd, and 3rd quartiles among
processing times of operations on machine µi.

where W1 and W2 are two projection matrices, and σ is the ReLU func-
tion. Note that we use the MHA to consider the context of all jobs when
producing the state for a specific one, similarly to [58].

• Classifier Network : outputs the probability pj of selecting a job j by
combining the embedding eo(t, j) of its ready operation and the state sj
produced by the memory network. To achieve this, we first concatenate
the embeddings eo(t, j) with the states sj and apply an FNN:

zj = FNN([eo(t, j) || sj ]). (15)

Then, these scores zj ∈ R are transformed into probabilities with a Soft-
max function: pj = ezj /

∑
b∈J ezb . Finally, the decision of which job to

select at t is made with a sampling strategy, as explained next.

Sampling solutions.

Traditionally, the PN generates a single greedy solution by scheduling at
each step t the operation of the job j with the highest probability pj [13, 58].
To generate solutions, we instead employ a probabilistic approach for deciding
the job selected at any step. Specifically, we randomly sample a job j with
a probability proportional to pj , which is produced at step t by our decoder.
We also prevent the selection of completed jobs by setting their probabilities to
zero before sampling, i.e., we set pj = 0 for completed jobs j. Note how this
probabilistic selection is autoregressive, meaning that sampling a job depends
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Table 8: The features of a context vector that describes the status of a job j
within a partial solution πt. Recall that o(t, j) is the ready operation of job j
at step t and o(t, j)− 1 its predecessor, if it does not exist Co(t, j)−1(πt) = 0.

ID Description

1 Co(t, j)−1(πt) minus the completion time of machine µo(t, j).

2 Co(t, j)−1(πt) divided by the makespan of πt.

3 Co(t, j)−1(πt) minus the average completion time of all jobs.

4
The completion time of machine µo(t, j) divided by the makespan of the
partial solution πt.

5
The completion time of machine µo(t, j) minus the average completion
time of all machines in πt.

6-8
The difference between Co(t, j)−1(πt) and the 1st, 2nd, and 3rd quartile
computed among the completion time of all jobs.

9-11

The difference between the completion time of machine µo(t, j) and the

1st, 2nd, and 3rd quartile computed among the completion time of all
machines.

on pj which is a function of eo(t, j) and sj resulting from earlier decisions (see
Eq. 14 and 15). In literature, there are various strategies for sampling from
autoregressive models, including top-k sampling [54], nucleus sampling [54], and
random sampling [96]. After preliminary analysis, we found that these strategies
exhibit similar effectiveness in our setting. Therefore, we adopt the simplest
strategy for training and testing, which is random sampling, i.e., sampling a
job j with probability pj at random. Lastly, we use our PN to generate β
parallel solutions for an instance. This is achieved by keeping β separate partial
solutions and sampling at any step a job for each one independently.

4.2 Self-Labeling Training Strategy

To train generative models, we propose a simple self-supervised strategy that
resorts only to the model being trained and does not require optimality informa-
tion nor the formulation of the Markov Decision Process. Our strategy exploits
two aspects: the ability of generative models to construct multiple (parallel) so-
lutions, and the possibility of discriminating solutions based on their objective
values, such as the makespan in the JSP. With these two ingredients, we design
a procedure that at each iteration generates multiple solutions and uses the best
one as a pseudo-label [38], see Figure 6 for a graphical illustration.

Specifically, for each training instance G (either randomly created or loaded
from a dataset), we generate with the model a set of β different solutions. We
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Load or generate a 
problem instance 

Sample 𝜷	solutions 
from the generative 

model
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solution 𝝅$ according 

to criteria
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with respect to 

𝓛𝑺𝑳(𝝅$)

Figure 6: The self-labeling strategy for training generative models as the Pointer
Network of Section 4.1.

do that by keeping β partial solutions in parallel and independently sample for
each one the next job from the probabilities generated by the decoder. Once the
solutions have been generated, we take the one with the minimum makespan
π and use it to compute the Self-Labeling loss (LSL) by evaluating the cross-
entropy on all the decision steps as follows:

LSL(π) = −1

o

o∑
t=1

log fθ(yt |πt, G), (16)

where o is the number of operations in the instance G and yt ∈ J is the index
of the job selected at the decision step t while constructing the solution π.

The rationale of this training schema is to collect knowledge about sequences
of decisions leading to high-quality solutions and save it in the model parameters
θ. This is done by selecting the best-generated solution π for an instance G and
maximizing its likelihood with Eq. 16 as in supervised learning, i.e., by mini-
mizing cross-entropy. Through iterative exposure to different training instances,
the model refines its ability to effectively solve the JSP.

Although our strategy was developed independently, attentive readers may
find a resemblance with the Cross-Entropy Method (CEM), a stochastic and
derivative-free optimization method [97]. Typically applied to optimize para-
metric models such as Bernoulli and Gaussian mixtures models [98], the CEM
relies on a maximum likelihood approach to either estimate a random variable
or optimize the objective function of a problem [99]. According to Algorithm 2.2
in [99], the CEM independently samples N = β solutions, selects a subset based
on the problem’s objective (γ̂ = S(N) in our case), and updates the parameters.

Unlike the CEM, which independently tackles different instances by opti-
mizing a separate model for each, our strategy trains a single model on many
instances for learning how to globally solve the JSP. Moreover, we adopt a more
complex parametric model rather than mixture models, always select a single
solution for updating, and resorting to the gradient descent for updating pa-
rameters. It is noteworthy that our strategy also differs from CEM applications
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to model-based RL, e.g., [98], as we do not rely on rewards in Eq. 16. Summa-
rizing, our strategy shares the idea of sampling and selecting with the CEM,
but operates globally as a fully supervised learning once target solutions are
identified. Hence, we named it: self-labeling training strategy.

Other self-labeling approaches can be found e.g. in [43, 100], where the for-
mer uses K-Means to generate pseudo-labels, and the latter assigns labels to
equally partition data with an optimal transportation problem. As highlighted
in [100], these approaches may incur in degenerative solutions, i.e., solutions
that trivially minimize Eq. 16, such as producing the same solution despite
the input instance in our case. We remark that our strategy avoids such solu-
tions by jointly using a probabilistic generation process and the objective value
(makespan) of solutions to select the best pseudo-label π.

4.3 Experimental Setup

Dataset and Benchmarks.
To train our Pointer Network, we created a dataset of 30 000 instances fol-

lowing [88]. For generating instances, we arbitrarily selected six instance shapes
(n×m): {10× 10, 15× 10, 15× 15, 20× 10, 20× 15, 20× 20}, and randomly
generate 5000 instances per shape. Although a fixed dataset is not strictly re-
quired by our self-labeling training strategy (instances can be generated on the
fly), we prefer using it to favor reproducibility and consistently track training
statistics such as average loss and performance.

We also adopted two popular benchmark sets to evaluate our model and favor
the cross-comparison with other works. The first benchmark is the well-known
from Taillard1 [88], containing 80 instances of medium and large shapes (10
instances per shape). The second one is from Demirkol’s work1 [101], containing
80 instances of medium-large shapes. Although this set is less popular than
others, it demonstrated to contain challenging instances [13, 14]

Architecture.
In all our experiments, we configure and train the Pointer Network of Sec-

tion 4.1 in the same way. Our encoder consists of two Graph Attention lay-
ers [95], both with 3 attention heads and Leaky slope at 0.15. In GAT1, we set
the size of each head to 64 and concatenate their outputs; while in GAT2, we
increase the head’s size to 128 and average their output to produce ei ∈ R143

(h = 15 + 128). Inside the decoder’s memory network, the MHA layer fol-
lows [57] except it concatenates the output of 3 heads with 64 neurons each,
while W1 ∈ R11×192 and W2 ∈ R192×128 use 192 and 128 neurons, respectively.
Thus, in Eq. 14, states sj ∈ Rd have size d = 128. Regarding the classifier, the
FNN features a dense layer with 128 neurons activated through the Leaky-ReLU
non-linearity (slope = 0.15) and a final linear layer with a single neuron.
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Training.
We train this model on our dataset for 50 epochs with the Adam opti-

mizer [33] and save the parameters producing the best results on a hold-out
set comprising 100 random instances of each shape. We set the learning rate to
0.0002, and we reduced it by 5 after 5 epochs in which the loss does not decrease
below the minimum. Additionally, we fix the number of sampled solutions β
in training to 256, and use a batch size of 32, hence accumulating the gradi-
ents across 16 instances before updating θ. Training this way roughly takes 140
hours, while with smaller β the time decreases down to 24 hours when β = 32.

Competitors.
We compare the effectiveness of our PN and training strategy against various

types of conventional and ML competitors. As not all the competitors can
generate multiple solutions, either because they are not freely available or they
do not support randomization, we divide them as follows:

• Greedy constructives generate a single solution for any input instance. We
consider ML works of Section 2.2.4 tested at least on 20 benchmark in-
stances, and conventional JSP algorithms referenced in such works. This
includes the Actor-Critic (L2D) of [13]; the GNN (L2S) of [79]; the Trans-
former (TRL) of [58]; the Deep Q-Network (DQN) in [80]; and the Cur-
riculum Learning approach (CL) of [14]. We also coded the INSertion
Algorithm (INSA) of [7] along with three standard dispatching rules that
prioritize jobs based on the Shortest Processing Time (SPT); Most Work
Remaining (MWR); and Most Operation Remaining (MOR).

• Randomized constructives generate multiple solutions for an instance by
introducing a controlled randomization in the selection process, a sim-
ple strategy for enhancing conventional and RL algorithms [47, 14]. We
consider the three dispatching rules above, randomized by arbitrarily se-
lecting the operation to schedule among the three with higher priority;
the randomized results of CL; and those of L2D. Since only greedy results
are disclosed for L2D, we used the open-source code and trained model
to generate randomized solutions. All these approaches were seeded with
12345, generate β = 128 solutions, and return the one with minimum
makespan.

• Non-constructive approaches do not rely on a pure constructive strategy
for creating JSP solutions. We include the enhanced metaheuristic (NLSA)
of [102], which is proven to outperform standard JSP metaheuristics; the
hybrid CP (hCP) proposal of [85]; and the results of Gurobi 9.5 (MIP)
solving the disjunctive JSP formulation of [4] with a time limit of 3600
seconds.
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4.4 Results

This section compares the performance of our Self-Labeling Pointer Network
(SPN), configured and trained as explained in Section 4.3, with the selected
competitors. When contrasted with greedy constructive approaches, our SPN
generates a single solution by picking the job with the highest probability. In
the other comparisons, we randomly sample 128 (SPN128) and 512 (SPN512)
solutions as explained in Section 4.1.

We coded in Python 3.9 and PyTorch 13.1 our SPN, INSA, dispatching rules,
and the MILP. Whereas we report results from original papers of all the ML
proposals but L2D, for which we used the open-source code and trained models
for generating multiple solutions. All our experiments were performed on an
Ubuntu 22.04 machine equipped with an Intel Core i9-11900K and an NVIDIA
GeForce RTX 3090 having 24GB of memory. Finally, we report performance in
terms of the Percentage Gap (PG):

PG = 100 · (Calg /Cub − 1), (17)

where Calg is the makespan produced by an algorithm for a benchmark instance
and Cub is either the instance optimal or best-known makespan1.

4.4.1 Performance on Benchmarks

As some ML algorithms were tested only on certain benchmark instances, we
divide this evaluation in two parts. We start by considering the implemented
algorithms and ML proposals which were tested on all the instances of the bench-
marks. Recall that both the benchmarks comprise 80 instances, 10 instances per
shape. Then, we compare all the algorithms on the instances selected in [58, 80].

Table 9 presents the comparison of algorithms tested on all the instances
of Taillard’s and Demirkol’s benchmarks, each arranged in a distinct horizontal
section. This table is vertically divided into Greedy Constructive, Randomized
Constructive, and Non-constructive approaches, with the results of algorithms
categorized accordingly. Competitors not included in the table are discussed in
the text as we could not compute their PGs. Each row reports the average PG
on a specific instance shape, with the best gap highlighted in bold. The last row
(Avg) reports the average gap across all instances, regardless of their shapes.

Table 9 shows that our SPN and CL produce lower gaps than PDRs and
INSA in both the greedy and randomized case. Surprisingly, INSA and PDRs
outperform L2D. This is likely related to how PDRs were coded in [13], where
ours align with those in [14]. Focusing on our SPN, we observe that it consis-
tently archives lower average gaps than all the greedy competitors and, when
applied in a randomized manner (SPN128), it outperforms all the randomized
constructives. We also underline that our SPN outperforms L2S [79], as it ob-
tains an average PG of 13.37% on Taillard’s benchmark while L2S an average of

1Available at: https://optimizizer.com/jobshop.php
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Table 9: The average PGs of the algorithms on the two benchmark sets. We
highlight in bold the best performance (lowest gap) on each row. Shapes marked
with * are larger than those seen in training by our SPN.

Greedy Constructives Randomized Constructives Non-constructive

Shape

T
a
il
la
rd
’s

b
en

ch
m
a
rk

15× 15
20× 15
20× 20
30× 15∗

30× 20∗

50× 15∗

50× 20∗

100× 20∗

Avg

D
em

ir
k
o
l’
s
b
en

ch
m
a
rk

20× 15
20× 20
30× 15∗

30× 20∗

40× 15∗

40× 20∗

50× 15∗

50× 20∗

Avg

PDRs RL Our

SPT MWR MOR INSA L2D[13] CL[14] SPN

26.09 19.09 20.40 14.43 25.96 14.26 13.77
32.30 23.33 24.86 18.88 30.03 16.52 14.96
28.27 21.81 22.89 17.29 31.61 17.27 15.17
35.04 24.07 22.89 21.14 33.00 18.52 17.09
33.45 24.82 26.75 22.64 33.62 21.47 18.49
24.01 16.45 17.59 15.89 22.38 12.23 10.06
25.59 17.84 16.79 20.34 26.51 13.24 11.55
14.05 8.33 8.71 13.49 13.61 5.86 5.85

27.35 19.47 20.10 18.01 27.09 14.92 13.37

27.94 27.54 30.68 24.18 39.03 - 17.99
33.19 26.80 26.26 21.27 37.73 - 19.36
31.15 31.89 36.86 26.51 42.03 - 21.75
34.37 32.06 32.34 28.50 39.69 - 25.73
25.26 27.00 35.85 24.68 35.55 - 17.51
33.81 32.28 35.89 29.44 39.64 - 22.19
24.30 27.65 34.88 23.05 36.46 - 15.67
30.01 30.34 36.76 30.22 39.52 - 22.44

30.00 29.45 33.69 25.98 38.71 - 20.33

PDRs (β = 128) RL (β = 128) Our

SPT MWR MOR L2D[13] CL[14] SPN128 SPN512

13.47 13.47 12.53 17.11 9.02 7.24 6.52
18.45 17.17 16.38 23.74 10.58 9.31 8.81
16.74 15.59 14.69 22.61 10.87 9.95 9.04
23.23 18.96 17.30 24.35 13.98 10.97 10.61
23.59 19.94 20.44 28.40 16.09 13.43 12.66
14.14 13.51 13.52 17.06 9.32 5.47 4.93
17.65 14.57 13.96 20.44 9.89 8.35 7.58
10.39 7.02 7.11 13.30 3.96 2.32 2.06

17.21 15.03 14.49 20.50 10.46 8.38 7.78

17.17 22.28 23.85 29.27 19.43 12.00 11.32
18.83 18.89 21.61 27.10 15.97 13.51 12.33
20.73 26.79 30.73 33.99 16.48 14.41 14.01
23.31 26.12 28.34 33.59 20.18 17.10 15.80
17.90 23.15 30.25 31.54 17.62 11.71 10.91
24.46 27.58 31.85 35.80 25.64 15.99 14.81
17.70 24.07 30.97 32.73 21.74 11.22 10.64
23.50 26.75 32.71 36.12 15.17 15.81 15.00

20.44 24.46 28.79 32.52 19.03 13.97 13.10

Approaches

NLSA[102] MIP

7.74 0.07
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Figure 7: Percentage Gap statistics of the best randomized constructive ap-
proaches for various shapes of each benchmark and with β = 128.

19.50%2. Additionally, the SPN generalizes well to shapes larger than training
ones (marked with *), as its gaps do not progressively increase on such shapes.

Notably, our SPN is competitive even when compared with non constructive
approaches. Specifically, the SPN512 largely outperforms the enhanced meta-
heuristic NLSA, and on shapes larger than 20 × 20, it always achieves lower
gaps with just a few seconds of computations (see Sec. 4.4.2 for times) than
a MILP executing for 3600 sec. We also remark that the SPN is better than
the CP-based proposal hCP, which achieves an average makespan of 2670 and
5701 on Taillard and Demirkol benchmark respectively, while our greedy SPN
yet obtains an average of 2642 and 5581. Therefore, we conclude that our pro-
posed SPN and training strategy are effective in solving the JSP, despite their
simplicity compared to models and training strategies adopted in the literature.

2Only qualitative results are disclosed about L2S [79], we did our best to report them.
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Table 10: The average PG of greedy constructive approaches on the same two
Taillard’s instances of the ten available for each shape selected in [58, 80].

Shape

T
a
il
la
rd
’s

b
en

ch
m
a
rk

15× 15
20× 15
20× 20
30× 15∗

30× 20∗

50× 15∗

50× 20∗

100× 20∗

Avg

Dispatching Rules RL

SPT MWR MOR INSA TRL[58] L2D[13] CL[14] DQN[80] SPN

17.50 18.76 15.21 15.45 35.37 22.34 15.16 7.11 15.14
29.69 24.52 26.83 15.25 32.10 26.83 17.85 13.87 13.99
27.76 22.05 23.10 16.70 28.29 30.27 16.16 17.88 17.37
39.45 22.79 23.92 21.13 36.41 31.47 20.29 16.13 17.06
30.03 27.70 27.51 19.17 34.66 38.26 22.15 21.78 21.13
30.14 23.78 26.16 12.42 31.85 24.58 15.61 17.69 11.82
24.26 18.37 18.62 22.96 28.03 28.62 14.19 19.50 14.42
14.23 8.21 8.54 15.19 17.99 12.47 5.50 9.52 4.96

26.63 20.77 21.24 17.28 30.59 26.85 15.86 15.44 14.49

MILP

0.00
2.35
3.41
12.29
15.55
13.23
13.70
13.25

9.22

To further demonstrate the quality of our SPN, we depict in Figure 7 the
PG statistics of four randomized constructive approaches on the ten instances
of each shape of the benchmarks. The box plot of Taillard’s instances reveals
the statistical dominance of our SPN as it shows lower median and quartiles
compared to the other approaches. In Demirkol’s plot, we observe in general
larger variations for all the approaches but CL. However, despite experiencing
larger variations than in Taillard’s case, our SPN produces quality solutions
resulting in low median values. It is worth noting that the SPN, the other
algorithms, and also the MILP tend to struggle more with Demirkol’s instances,
compare e.g., the average PGs and variations of the 50 × 20 shape in both
benchmarks. This is caused by the second half of the benchmark (from instance
dmu40 to dmu80), where all algorithms but CL find worse solutions compared
to the first half. As the first and second half comprise the same instance shapes,
this evidence supports the observation on the complexity of Section 2.2.2, i.e.,
the complexity of JSP instances is not related only to their size but also to the
distribution of operation processing times.

Finally, to comprehensively compare our SPN with all the reviewed ML
proposals, we include in Table 10 the average PGs on the same two instances
of each shape selected by TRL [58] and DQN [80] in Taillard’s benchmark. On
these subset of instances, we see that TRL is the worst-performing ML approach
and that DQN roughly aligns with CL. As our SPN is always the best or second
best algorithm on each shape, it achieves the lowest overall average gap (Avg)
excluding the MILP, remarking once again the quality of our proposal.

4.4.2 Execution Times

We also assess the timing factor, an important aspect in some scheduling sce-
narios. To this end, we compare in Figure 8 the execution time of dispatching
rules (PDR), the INSertion Algorithm (INSA), the SPN, and L2D [13] on typical
shapes of the two benchmarks, when applied in a greedy constructive manner.
We also include the execution time of our SPN when sampling 512 solutions
(SPN512) to demonstrate that sampling multiple solutions does not dramati-
cally increase times. Note that all these algorithms were executed on the same
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Figure 8: The execution times of algorithms on different instance shapes consid-
ered in Table 9. PDR, INSA, SPN, and L2D construct a single greedy solution,
while SPN512 samples 512 parallel solutions.

machine described at the beginning of Section 4.4. We omit other RL proposals
as they do not disclose execution times or is unclear whether they used GPUs.

When sampling 512 solutions, the SPN takes less than a second on medium
shapes, less than 3 sec on large ones, and around 10 sec on the big 100× 20. As
these trends align with L2D, which only construct a single solution, our SPN
is a much faster alternative, despite being also better in terms of quality. This
is also confirmed by the execution time of the SPN when constructing a single
greedy solution, which are slightly higher than INSA. Finally, we remark that
the SPN and any ML-based approach are likely to be slower than PDRs and
constructive heuristics, either applied in a greedy or randomized way. One can
see that such approaches work faster: PDRs take 0.2 sec and INSA 1.61 sec on
100 × 20 instances. However, this increase in execution time is not dramatic
and is largely justified by the better performance, especially in the case of our
SPN.

4.4.3 The effect of β on Training

As we are proposing a new training strategy based on sampling, we assess the
impact of sampling a different number of solutions β while training. To this end,
we retrain a new SPN as described in Section 4.3 with a number of solutions
β ∈ {32, 64, 128, 256}, where we stop at 256 as the memory usage with larger
values becomes impractical. Then, we test the resulting models by sampling 512
solutions on all the instances of both benchmarks for a broader and unbiased
assessment. Figure 9 reports the average PG (the lower the better) of the
trained SPNs (different colored markers) on each benchmark shape. Finally, to
ease the comparison with competitors, we also include the results of the best
RL proposal in Table 9, namely CL (dashed line), and the MILP (dotted line).
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Figure 9: The performance of the SPN when trained by sampling β solutions.
For each shape, we report the average PG on instances of both benchmarks by
sampling 512 solutions during testing.

Overall, we see that training by sampling more solutions slightly improves
the model’s overall performance, as outlined by lower PGs for increasing β. We
also observe that such improvement is less marked on shapes seen in training,
such as in 15× 15, 20× 15, and 20× 20 shapes, while is more marked on others.
This suggests that training by sampling more solutions results in better general-
ization, although it is more memory-demanding. However, the trends observed
for the SPN in Table 9 remain consistent with smaller β, demonstrating the
robustness of our self-labeling training strategy.

4.4.4 The effect of β on Testing

Finally, we assess how the number of sampled solutions β impacts the qual-
ity of the solution produced by our SPN at test time. To evaluate such an
impact, we plot in Figure 10 the average PG on different shapes for varying
β ∈ {32, 64, 128, 256, 512}. For this analysis, we use the SPN trained by sam-
pling 256 solutions, the same used in Table 9. As done in Section 4.4.3, we also
report the results of CL and MILP to ease the comparison.

Despite the reduced number of solutions, the SPN remains a better alter-
native than CL, one of the best RL proposals, and still outperforms the MILP
on medium and large instances. Not surprisingly, by sampling more solutions
the performance of the SPN improves, but this also increases the model execu-
tion times. Although we verified that sampling more than 512 solutions further
improves results, we decided to stop at β = 512 as a good trade-off between
performance and execution time.
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Figure 10: The performance of the SPN for varying numbers of sampled solu-
tions β at test time. For each shape, we report the average PG on instances of
both benchmarks.

4.5 Final Remarks

This work unveils a novel Self-Labeling strategy, which may effectively simplify
the training of generative models, typically confined to more intricate reinforce-
ment learning paradigms. Our innovative strategy, leveraging a classic Pointer
Network and relying solely on model-generated solutions, not only outperforms
established methods like PDRs and RL algorithms but also showcases remark-
able resilience to varying parameters.

Looking ahead, our Self-Labeling strategy may be easily extended beyond
the JSP, and we plan to apply it to diverse combinatorial problems such as rout-
ing ones. Furthermore, our training strategy can also serve as a pretext task for
enhancing existing learning-based approaches, particularly those rooted in rein-
forcement learning. This work lays a solid foundation for future advancements
in generative models, offering new avenues for solving complex scheduling and
routing problems across various domains.
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5 Solving a Complex Shop Problem

The focus of this section is on a shop scheduling problem arising from a real-
world off-road vehicle manufacturing process. Off-road vehicles play a central
role in modern and automated industries operating in sectors such as agricul-
ture, construction, and logistics. The production of these vehicles often involves
specialized components and systems that require expertise, dedicated tools, and
long assembly and installation times, making the manufacturing process more
intricate than in traditional vehicles. Additionally, customization and configu-
ration based on specific customer needs are common and further increase the
complexity of the production. Therefore, the development of effective scheduling
methods that account for the characteristics of different vehicle types is crucial
and can result in significant cost savings and increased productivity.

Herein, we focus on the scheduling problem encountered by a company that
manufactures vehicles according to a three-level assembly process. At the first
level, the vehicle chassis is equipped with all the necessary components (e.g.,
wheels and engine), which are assembled in the two upper levels. The assembly
process takes place in specific areas of the shop floor, known as workcenters,
each of which houses one or more machines. The chassis moves through the
workcenters of the first level in a fixed sequence that is identical for all vehicles.
To perform any assembly operation, both a machine and a worker are required,
where the number of workers is typically smaller than the number of machines,
making them a scarce resource. The goal is to assign machines and workers to
assembly operations in a way to minimize the total completion time of vehicles.

This manufacturing process has a unique and distinctive precedence struc-
ture among assembly operations forming a directed rooted in-tree, a special kind
of directed tree characterized by a root vertex where all paths end. Therefore,
we refer to this problem as the rooted in-Tree Resource Constrained Flexible
Flow Shop Scheduling (rTRCFFSP).

To the best of our knowledge, no prior publications have addressed the rTR-
CFFSP. Nevertheless, this problem contains characteristics of several others.
For instance, a rTRCFFSP sub-problem stemming from the identical sequence
of workcenters at the first level is the Flexible Flow Shop Problem, which gen-
eralizes the classic Flow Shop, where operations at each stage can be processed
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on one of several identical parallel machines (see [103, 104] for recent surveys).
Additionally, the third and uppermost assembly level of the rTRCFFSP is a
Parallel Machine Scheduling Problem with identical machines (see [105]). Fi-
nally, the constraint imposed by the scarce number of workers can be viewed as
a renewable resource in a Project Scheduling Problem, (see, e.g., [106]). These
and other characteristics are further explained in Section 5.1.

To address the rTRCFFSP, we developed heuristic algorithms inspired by
related scheduling problems, as solving the problem with standard MILP formu-
lation is intractable even for small instances. Specifically, we evaluate priority
dispatching rules when employed in an iterative and randomized manner, and
we adapt job sequencing approaches commonly used in Flow Shop variants. Ad-
ditionally, we propose a novel constructive algorithm building upon dispatching
rules that is specifically designed to exploit the problem-specific structure of
rTRCFFSP. The choice and the design of such algorithms are guided by a dual
objective: on one side, we propose simple and effective algorithms appealing
from an industrial perspective; on the other side, we seek to gain insights into
the interplay of the unique combination of rTRCFFSP’s characteristics.

Our proposals have been extensively evaluated on two benchmark sets mim-
icking industrial use cases, four configurations of the shop floor machines, and
eight real-life scenarios. As the MILP formulation of the problem fails to produce
quality lower bounds, we additionally propose a simple procedure for rapidly
computing high-quality lower bounds for our benchmark instances. These lower
bounds are thus used to evaluate the proposed algorithms. Our results demon-
strate the effectiveness of both the job sequencing and the proposed constructive
heuristic, with the latter exhibiting the best overall performance.

Note:

An extracted version of the work under the second round of revision at:
Andrea Corsini, Mauro Dell’Amico, and Dario Bezzi. “Lower and Upper
Bounds for Scheduling a real-life Assembly Problem with Precedences and
Resource Constraints”, in Computers & Operations Research, 2024.

5.1 The manufacturing problem

The manufacturing process involves the assembly of several components on a ba-
sic vehicle chassis, including, e.g., the engine, motion distribution group, wheels,
and electronic components. Before installation on the chassis, components are
prepared through assembly operations of sub-components, and sometimes, sub-
components may also require additional operations. Thus, the manufacturing
process is composed of three levels of operations: two dedicated to component
preparation and one to installation.

The process takes place on a large shop floor that is divided into workcen-
ters, with each workcenter containing several identical parallel machines. Each
assembly operation is associated with a specific workcenter and requires one of
the machines of the workcenter to be executed. It is important to note that in
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Figure 11: The precedences in a job. 3rd-level operations (blue circles) are
executed on the same workcenter; 2nd and 1st-level operations (respectively
green and red circles) are executed on distinct workcenters.

reality, a machine may refer to a specific tool, an equipped workbench, or even
a section of the floor where the chassis is placed before an operation is executed.

A crew of human workers with identical skills is responsible for carrying out
the assembly operations. Any assembly operation requires exactly one machine
in its workcenter and one worker. The set of human workers is finite and its
cardinality is smaller than the number of machines on the shop floor, hence not
all machines can be active at the same time. Additionally, workers can freely
move among workcenters and from one machine to another.

The objective of this problem is to schedule the assembly operations required
to produce a set of vehicles (frequently of different types) in the shortest amount
of time possible, i.e., to minimize the makespan.

The assembly process of each type of vehicle maps on a job, and it consists
of three levels of operations with the following structure:

1. First-level operations: refer to the installation of a component on the
chassis and must be executed following an order identical for every vehi-
cle. These operations always require as a prerequisite a single component,
which is obtained either through a 2nd-level or a 3rd-level operation. Each
1st-level operation is assigned to a distinct workcenter.

2. Second-level operations: produce the components that are installed
on the chassis at the 1st-level. These operations are optional and always
require a single 3rd-level component as a prerequisite. Each 2nd-level
operation is assigned to a different workcenter.

3. Third-level operations: transform raw material into a component that
is used either by a 2nd-level or a 1st-level operation. These operations
never require other operations to be performed before. All 3rd-level oper-
ations are assigned to a unique workcenter.

This hierarchical structure among job operations is well represented with a
directed rooted in-tree, where vertices are operations and arcs are precedences.
In this tree, there is a vertex u, called root, and for any other vertex v there is
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exactly one direct path from v to u. The 1st-level operations form a backbone
path to the root. In each vertex of the backbone enters an additional path
with at most two vertices, starting from a leaf vertex corresponding to a 3rd-
level operation and possibly containing a vertex corresponding to a 2nd-level
operation. An example of this graph is depicted in Figure 11.

Real-life setting.

The real-life problem that inspired this work involves the scheduling of pro-
duction orders with a varying number of jobs ranging from 20 to 30. The indus-
try receives orders requiring to assemble vehicles (jobs) of different types. These
orders are grouped together to form production batches (instances). Within
each job, assembly operations can take up to several hours, thus the entire pro-
duction of an order requires weeks to complete. Although the approximate time
for executing an operation depends on the specific job, and hence of the type of
vehicle, it goes in general from 30 minutes up to 13 hours. The variability caused
by human factors and machines can be assumed negligible. The shop floor is
divided into 11 workcenters for a total of 36 machines. At the 1st-level, there are
6 workcenters with a number of machines given by the sequence (4, 3, 2, 2, 3, 2),
starting from the beginning to the end of the main path. At the 2nd-level,
there are 4 workcenters with 2 machines each, except for the last one, which
has 4 machines. At the 3rd-level there is a single workcenter with 10 machines.
Lastly, a crew of 20 human workers is available to execute operations, limiting
the maximum number of machines working in parallel to 20.

5.2 Related problems

We have already anticipated that the scheduling problem given by the 1st-level
operations is a Flexible Flow Shop Problem (FFSP), see [107, 108, 109]. The
FFSP combines two scheduling problems: parallel machine scheduling and flow
shop scheduling. At each stage of the flow shop, the FFSP presents a set of
parallel machines, instead of a single one. The key decision of the parallel
machine problem is the allocation of operations to machines whereas the key
decision of the flow shop problem is the sequence of jobs through the shop. In
the literature, this problem is also referred to as the Hybrid Flow Shop Problem
(see, e.g., [104, 110]). In rTRCFFSP, we deal with a more complex structure
since each operation of the flow shop has one or two additional predecessors to
be scheduled (2nd-level and 3rd-level operations).

rTRCFFSP includes also a global constraint on human resources. A flow
shop with unit processing times and a renewable resource has been studied in
[111]. A generalization of the FFSP with limited human resources and setup
times has been recently considered in [112] and solved with a modified Back-
tracking Search Algorithm hybridized with a Tabu Search. However, human
resources are only dedicated to the activities related to the setup times and not
to the execution of the production operations. Another version of the FFSP,
related to our setting, is tackled in [113]. This paper studies in detail the effects
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of human characteristics like skills, age, and learning/forgetting effects. The
objective function is a weighted sum of the makespan and total flow time. A
Particle Swarm Optimization algorithm is proposed to solve the problem.

The rTRCFFSP also relates to the Resource-Constrained Project Scheduling
Problem (RCPSP) [114, 106]. The RCPSP asks to schedule project activities,
described by a directed graph, which may require one or more resources for their
execution. There is a large number of problem variants in the RCPSP literature.
Some distinctive characteristics are: i) a resource can be renewable, as in rTR-
CFFSP, or non-renewable (i.e., once consumed a resource is no longer available
for later activities); ii) one activity may require multiple resources, each in a
certain amount; iii) resources can handle multiple activities at the same time.
Each rTRCFFSP job defines a project in an RCPSP with identical renewable
resources (workers and machines), each of which can handle one operation at a
time. Therefore, an instance of the rTRCFFSP induces a Multi-Project prob-
lem, denoted as RCMPSP, see [106]. We address the reader to [115] for an
overview of the principal variants and solution methods of the RCMPSP.

The rTRCFFSP also generalizes the scheduling of tasks with caterpillar
precedence graphs on dedicated machines, namely the PD|caterpillar|Cmax. In
[116] the authors present lower bounds and heuristic algorithms for this problem.

Scheduling problems where an operation can be processed only if a machine
and a worker are simultaneously available are known as Dual-Resource Con-
strained. [117] and [118] present surveys on several types of shop scheduling
problems with dual-resource constraints. However, the specific structure of the
precedence graph and machine setting of rTRCFFSP do not match any of the
problems listed in these two surveys.

5.3 Problem formulation

An instance of the rTRCFFSP asks to schedule a set of jobs J = {1, . . . , n}
onto a set of workcenters W = {1, . . . ,m}. The set W is partitioned into three
disjoint subsets: W = W 1 ∪W 2 ∪W 3, with |W 1| ≥ |W 2| and |W 3| = 1. Each
workcenter w ∈ W contains mw identical parallel machines that can handle
one operation at a time. Each job j ∈ J is composed of a set of operations
Oj = O1

j ∪O2
j ∪O3

j . Operation o ∈ Oj must be executed on one of the machines
of workcenter w(o) ∈ W for an uninterrupted amount of time p(o) ∈ Z≥0.
(The choice of the machine to be used for each operation is part of the decision
process.) The set of operations is organized as follows:

• O1
j is the sequence of 1st-level operations, where an operation o ∈ O1

j must

be executed on a machine of workcenter w(o) ∈W 1;

• O2
j is the set of 2nd-level operations, where |O2

j | ≤ |O1
j | and operation

o ∈ O2
j must be executed on a machine of workcenter w(o) ∈W 2;

• O3
j is the set of 3rd-level operations that must be executed on a machine

of the unique workcenter in W 3.

56



The operations in Oj must be executed by respecting the precedence rela-
tions of job j ∈ J which are expressed through a directed rooted in-tree (see
Section 5.1). Let Gj = (Vj , Aj) be the digraph representing job j, where Vj

contains one vertex for each operation in Oj and Aj is the set of precedence
relations among the operations. We use uj ∈ Vj to identify the root of Gj . The
arcs of Aj have no cost while each vertex v ∈ Vj is given a cost pv = p(o), where
o ∈ Oj is the operation associated to vertex v. Moreover, let wv = w(o) denote
the workcenter that must execute the operation o associated to v. For each ver-
tex v ∈ Vj , we use tail(v) to refer to the length of the unique path starting at v
and ending in uj (computed as the sum of the costs of the vertices in the path
but pv). Similarly, let head(v) denote the length of the longest path ending in v
again excluding pv. The complete set of precedences of a rTRCFFSP instance
is represented by the (disconnected) digraph G = (V,A), where V =

⋃
j∈J Vj

and A =
⋃

j∈J Aj .
A set of Rmax <

∑
w∈W mw workers with identical skills is available to

execute operations. In order to start the execution of an operation both a
machine and a worker must be available, and the preceding operations, if any,
must be completed. Preemption is not allowed, i.e., an operation o starting at
time t must be uninterruptedly executed in the time interval [t, t + p(o)].

Summarizing, a rTRCFFSP instance is completely described by the digraph
G, the set of workcenters W , the number of machines in each workcenter, and
the number of workers Rmax. rTRCFFSP asks to assign the operation asso-
ciated to each vertex v ∈ V to a machine of its workcenter wv and to a time
interval [tv, tv + pv] by guaranteeing that no more than Rmax operations are si-
multaneously executed. The objective is to minimize the maximum completion
time among all the operations: maxv∈V tv + pv.

5.3.1 Mathematical model

We propose a mathematical formulation of the rTRCFFSP based on the time-
indexed model in [119]. In order to simplify the writing, we introduce the set
Vw = {v ∈ V : wv = w}, for each w ∈W , which contains all the vertices whose
operations are assigned to workcenter w. In addition, let 0, 1 , . . . , T be the
discretized planning horizon. For each v ∈ V , we define the time interval where
the operation associated to v can start as: Tv = {head(v), . . . , T−tail(v)−pv}.
Our time-indexed model uses a continuous variable z to define the makespan,
and binary decision variables x, where:

xvt =

{
1 if the operation associated to v starts at time t

0 otherwise
v ∈ V, t ∈ Tv
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min z (18)

s.t.
∑

t∈Tuj

txuj t + puj
≤ z ∀j ∈ J (19)

∑
t∈Tv

xvt = 1 ∀v ∈ V (20)

∑
v∈Vw

t∑
h=t−pv+1

xvh ≤ mw ∀w ∈W, t = 0, . . . , T (21)

∑
t∈Ta

txat + pa ≤
∑
t∈Tb

txbt ∀(a, b) ∈ A (22)

∑
v∈V

t∑
h=t−pv+1

xvh ≤ Rmax ∀t = 0, . . . , T (23)

xvt ∈ {0, 1} ∀v ∈ V, t ∈ Tv (24)

z ≥ 0 (25)

We minimize the makespan (18)-(19). Constraints (20) impose that each
operation is executed once, constraints (21) ensure that no more than mw ma-
chines are used in parallel in each workcenter w ∈ W . Constraints (22) impose
the precedence constraints for each pair (a, b) ∈ A. Finally, constraints (23)
impose that no more than Rmax operations are executed simultaneously.

MILP implementation

The model (18-25) contains a pseudo-polynomial number of binary variables,
which amount to O(|V |T ). In addition, constraints (21) and (23) introduce
multiple inequalities for each time instant t.

To reduce the number of binary variables and also limit the introduction of
constraints (21) and (23), we rapidly compute a small planning horizon T with
a deterministic PDR prioritizing operations with the earliest start time (refer
to Section 5.4.1 for more details on PDRs). We selected this priority rule as it
results to be the best-performing one in the analysis of sections 5.6.1 and 5.6.4.
The solution produced by this PDR is also used to warm start the model by
loading it as the initial incumbent before starting the Branch & Bound.

Lastly, we add to the model the inequalities (23) as lazy constraints (available
in the most popular MILP solvers). Specifically, the solver starts by disregarding
the inequalities declared lazy, and once a feasible integer solution is found, it
invokes a user defined separation procedure. At each invocation, this procedure
adds inequality (23) to the smallest time instant violating the Rmax constraint.
We avoid applying this strategy to constraints (21) as they are violated often
when modeled as lazy constraints, lowering performance.

5.3.2 Lower bounds

To evaluate the performance of heuristic algorithms of the next Section 5.4, we
introduce two lower bounds for the rTRCFFSP problem: one accounting for the
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precedence structure and one for the human resource constraint Rmax.

The first lower bound considers one workcenter at a time by disregard-
ing the constraint on the human resources. For each workcenter w ∈ W ,
we compute the minimum time at which w can start to execute operations
as: hminw = minv∈Vw

head(v). Similarly, we compute the minimum total
time required to complete all the operations following any operation in w as:
tminw = minv∈Vw

tail(v). In addition, we remark that a lower bound on the
time needed to execute the operations of w can be obtained by solving an iden-
tical parallel machine scheduling problem (P ||Cmax), see, e.g., [120]. However,
since P ||Cmax is NP-hard, we use the L2 lower bound defined in [120] instead
of the optimal solution value. With these three information, we compute the
lower bound LBw given by workcenter w as:

LBw = hminw + L2(w) + tminw. (26)

As starting operations of w before hminw, completing all the operations of the
workcenter in less than L2(w), and completing all the operations following w in
less than tminw is impossible; it is proved that LBw is a lower bound for the
rTRCFFSP. Thus, an overall lower bound can be obtained with:

LBprec = max
w∈W

LBw. (27)

The other lower bound focuses on the human resources that are needed
to execute operations. In this bound, we relax the precedence constraint and
assume that all the operations are assigned to a unique workcenter, say wRmax,
with Rmax parallel machines. Using again the bound L2 from [120], we obtain:

LBres = L2(wRmax) (28)

Similarly to LBw, it is simple to prove the impossibility of executing all the
operations in V before L2(wRmax) by respecting all the rTRCFFSP constraints.

The final lower bound LB for the rTRCFFSP can thus be computed as:

LB = max(LBprec, LBres) (29)

5.4 Heuristics

This section describes the designed algorithms for tackling the rTRCFFSP. We
start by presenting constructive algorithms based on popular dispatching rules,
then, we show how we adapted job sequencing approaches to the rTRCFFSP
problem. Finally, we introduce a novel heuristic building upon constructive
algorithms that exploits the special structure of the problem.

5.4.1 Priority Dispatching Rules

Priority Dispatching Rule (PDR) are simple heuristics particularly suitable to
deal with complex environments [110]. Motivated by their simplicity and speed,
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PDRs have been extensively studied and employed in various scheduling prob-
lems, see, e.g., [121, 110, 122]. For these reasons, and since PDRs are frequently
used as baselines for comparing other algorithms, we propose and evaluate four
PDR-based algorithms, each employing a different priority rule.

A PDR algorithm is a simple constructive heuristic that schedules one oper-
ation at a time selected according to a priority rule, often a simple rule of thumb
checking characteristics of operations. At each iteration, our PDRs compute the
minimum time instant t in which at least one operation can be scheduled by
verifying the following two conditions: (a) there are less than Rmax machine
in use at time t; (b) there is at least one operation with all its predecessors
completed before t and one idle machine that can process the operation. Once
a time t is identified along with the operations that can start at t, the operation
with the highest priority is scheduled with starting time equal to t. This process
is repeated until all the operations are scheduled. It should be noted that in
rTRCFFSP, an operation can only be scheduled when both a machine and a
worker are available, which is different from classic scheduling problems.

As priority rules, we selected the following popular four:

i) Earliest Start Time (EST): prioritizes operations with the smallest “start
time”, computed as the maximum completion time of its predecessors.

ii) Shortest Processing Time (SPT): prioritizes operations with the least
amount of processing time;

iii) Most Operations Remaining (MOR): prioritizes operations with the largest
number of operations in the path from the vertex corresponding to the op-
eration to the root of the graph;

iv) Most Work Remaining (MWR): prioritizes operations with the longest
tail of the corresponding vertex.

The main drawback of PDRs is that their myopic reasoning may perform well
in some instances and very badly in others. To obtain more robust algorithms,
it is common to introduce randomization in the selection process. Therefore,
we have modified the traditional PDR approach by randomly selecting the next
operation to be scheduled from the first 5 operations with higher priority. Based
on preliminary analysis, we found that selecting from the top five operations pro-
vides the best trade-off between exploration and exploitation when compared to
selecting among the top k ∈ {3, 4, . . . , 10} operations. We run this randomized
PDR several times on the same instance until the time limit has expired and
we return the solution with the minimum makespan.

5.4.2 Job Sequencing

In contrast to PDRs, which schedule one operation at a time, job sequencing
heuristics schedule a complete job at a time. These heuristics define a permu-
tation of jobs according to some criteria, then, they iteratively select the next
unscheduled job in the permutation and schedule all its operations. Examples of
job sequencing heuristics can be found in [123] and [124]. As observed in [125],
scheduling an entire job at once, instead of a single operation, can significantly

60



Algorithm 2 Job Sequencing - Iterated Greedy (Js-IG)

1: π∗ = π = Initial Solution() ▷ Apply NEH.
2: while not “Stop Condition” do
3: π̂ = Deconstruct(π)
4: π′ = Reconstruct(π̂)
5: if Accept(z(π′)) then π = π′

6: if z(π′) < z(π∗) then π∗ = π′

7: end while

reduce the solution space that is explored. This reduction may result in faster
algorithms, but also in a final solution of lower quality. Due to the effectiveness
of job sequencing heuristics in Flow Shop problems [124, 110, 126], and as an
important part of the rTRCFFSP is a FFSP, we evaluate two such heuristics.

In general, the design of job sequencing heuristics involves two degrees of
freedom: (i) how to define the permutation of jobs; (ii) how to schedule opera-
tions of a job. Herein, we propose two algorithms of different complexity that
differ in the way they generate job permutations. Instead of using deterministic
rules to generate permutations, these algorithms rely on a randomized iterative
approach similar to that of randomized PDRs. Both algorithms employ the
same deterministic PDR to schedule the operations of a job, which works as
described in the previous Section 5.4.1. After testing several priority rules for
scheduling job operations, we found that MWR provided the best results for
job sequencing heuristics. In the remainder, we describe how each algorithm
generates permutations of jobs.

Our first algorithm, called RAND, simply tries several job permutations at
random. It starts from a pure random permutation, and at each iteration, it
shuffles the current permutation to create a new one. For each permutation,
the job’s operations are scheduled using the deterministic PDR algorithm. The
algorithm executes until its time budget expires.

The second algorithm, named Js-IG, is based on the popular Iterated Greedy
paradigm [126], which has proven effective for Flow Shop problems [124, 127].
Specifically, Js-IG builds upon the original proposal of [124] for the permuta-
tion Flow Shop, but without utilizing any local search strategy. The complete
algorithm is outlined in Algorithm 2.

Js-IG begins by generating an initial permutation π of jobs using an adapted
version of the classic NEH algorithm [128] for rTRCFFSP. The NEH heuristic
starts with an empty schedule and arranges jobs in decreasing order of the total
processing time. Following this order, each job is inserted in the current partial
schedule by trying all the possible positions in the current permutation. The
permutation giving the schedule with minimum makespan is selected and the
next job is considered.

The final permutation π is the starting point of the iterative phase (steps
2-7), which executes the following three steps until the time budget expires.

step 3: procedure Deconstruct removes d jobs from the current permu-
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tation π using a roulette-wheel selection, where the score of a
job is its total idle time in the schedule: the higher the idle, the
greater the probability of being removed.

step 4: procedure Reconstruct builds a new complete permutation π′

by inserting each of the d removed jobs, following their removal
order, in the position of the partial permutation that produces
the minimum makespan.

step 5: procedure Accept receives the makespan z(π′) of the induced
rTRCFFSP’s solution π′ and accepts it using the simulated
annealing criterion of [124]. It always accepts an improving
permutation, while it accepts a worsening one with probability
e(z(π)−z(π′))/T , with constant temperature:

T =
τ

10
∑

j∈J |O1
j |

∑
v∈V

pv, (30)

where τ is a parameter that needs to be adjusted.

In all our experiments, we set τ = 0.4 and d = 3. This pair of values was the
one giving the best performance for τ ∈ {0.2, 0.3, . . . , 0.8} and d ∈ {2, 3, . . . , 6}
on a random sample of instances tested in Section 5.5.

5.4.3 A novel PDR Approach

Lastly, we propose a novel method, called PDR-IG, that generates priorities for
a PDR algorithm by targeting the 1st-level operations of the rTRCFFSP within
an Iterated Greedy framework. As noted in Section 5.1, the sub-problem defined
by 1st-level operations is a Flexible Flow Shop Problem and is the more complex
among the problems induced by the three levels. The rationale of this method
is that the FFSP contains the operations in the backbone of the precedence
graph, and this backbone induces the most important problem constraints.

PDR-IG uses solutions of this FFSP to define priorities for scheduling all the
operations of the rTRCFFSP. More specifically, given a solution of the FFSP,
let C(uj) be the completion time of the last operation of job j in this solution
(see Section 5.3). We define the due date of each operation o of the complete
problem as: do = C(uj)−tail(o). Then, the PDR prioritizes operations with the
minimum value of the Latest Start Time: lo = do − po. This PDR constructs
a single solution according to the priorities as explained in Section 5.4.1 and
without any randomization. In addition, to consider the existence of 2nd and
3rd levels operations, we extend the FFSP by setting as release date of each
1st-level operation o its head(o). Let rFFSP denote this extended problem.

To solve the rFFSP, we again adopted the framework by [124]. The com-
plete PDR-IG is reported in Algorithm 3. In step 1, the algorithm considers
the rFFSP consisting only of 1st-level operations and solves it with a modified
version of the NEH heuristic, which considers the release date constraint while
scheduling operations. Step 2 uses procedure Complete to first define the prior-
ities of the operations based on the current solution rFFSP, then runs the PDR
algorithm with these priorities to obtain a solution of the complete problem.
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Algorithm 3 PDR - Iterated Greedy (PDR-IG)

1: srffsp = Initial Solution rFFSP()
2: s∗ = Complete(srffsp)
3: while not “Stop Condition” do
4: ŝrffsp = Deconstruct(srffsp)
5: s′rffsp = Reconstruct(ŝrffsp)
6: s′ = Complete(s′rffsp)
7: if Accept(s′) then srffsp = s′rffsp
8: if z(s′) < z(s∗) then s∗ = s′

9: end while

The while loop at steps 3-9 implements the Iterated Greedy method us-
ing procedures Deconstruct and Reconstruct to change the solution of rFFSP
and again procedure Complete to obtain a rTRCFFSP solution. Deconstruct
and Reconstruct are a modified version of the corresponding procedures from
[110] obtained by taking into account the release date constraints. The Stop
Condition and the Accept criterion are the same of the Js-IG.

5.5 Experimental setup

The proposed algorithms are evaluated on synthetic benchmark instances that
emulate industrial use cases, and eight real-life scenarios. Initially, we attempted
to solve all our instances using the MILP approach presented in Section 5.3.1
with Gurobi 9.5.1. For instances with up to 10 jobs, we were able to compute
optimal solutions in less than a CPU hour; however, with 12 jobs the MILP
required more than 2 hours, and with more jobs it slowly increases lower bounds
by hardly improving over the warm start solution after 6 hours. As a result,
the MILP approach failed to provide any useful information, such as optimal
solutions or lower bounds.

In real environments, we need to schedule 20-30 jobs at a time, therefore,
we conducted our experiments with only the heuristic algorithms. Due to the
lack of optimal solutions, we evaluate our algorithms in terms of the Percentage
Gap (PG) from the lower bound presented in Section 5.3.2. Formally, given a
single instance, let CLB be the lower bound on the makespan, and Cmax the
makespan of a heuristic. The PG is defined as:

PG =

(
Cmax − CLB

CLB

)
∗ 100 (31)

All the algorithms of Sections 5.4.1-5.4.3 have been written in C++, com-
piled with g++ 9.3.0, and executed on an Ubuntu machine equipped with an
Intel Core i9-11900K. These heuristics iteratively execute until a time limit is
reached by taking in input a rTRCFFSP instance and returning the solution
with minimum makespan. To guarantee reproducible results and fairness, we
execute all the algorithms with the same initial random seed.
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Table 11: The processing time of operations in each job level for each type of
instance. S stands for Small, M for Medium, and L for Large.

Type
1st-level 2nd-level 3rd-level
S M L S M L S M L

0 × · · × · · × · ·
1 × · · × · · · × ·
2 × · · × · · · · ×
3 × · · · × · × · ·
4 × · · · × · · × ·
5 × · · · × · · · ×
6 × · · · · × × · ·
7 × · · · · × · × ·
8 × · · · · × · · ×

Type
1st-level 2nd-level 3rd-level
S M L S M L S M L

9 · × · × · · × · ·
10 · × · × · · · × ·
11 · × · × · · · · ×
12 · × · · × · × · ·
13 · × · · × · · × ·
14 · × · · × · · · ×
15 · × · · · × × · ·
16 · × · · · × · × ·
17 · × · · · × · · ×

Type
1st-level 2nd-level 3rd-level
S M L S M L S M L

18 · · × × · · × · ·
19 · · × × · · · × ·
20 · · × × · · · · ×
21 · · × · × · × · ·
22 · · × · × · · × ·
23 · · × · × · · · ×
24 · · × · · × × · ·
25 · · × · · × · × ·
26 · · × · · × · · ×

5.5.1 Benchmarks

To comprehensively evaluate our algorithms, we have generated two benchmark
sets and four configurations of the shop floor.1

Typed instances

The first benchmark set, called Typed -Set, consists of 24 types of instances,
where each type is defined by the intervals used to sample the processing times
of operations at each level. We loosely defined three intervals for the processing
times: Small = [5, 50], Medium = [30, 100], and Large = [80, 150]. The intervals
of all the 24 instance types are given in Table 11. For each type, we generated
10 instances by uniformly sampling the processing time of job operations at the
1st-level, 2nd-level, and 3rd-level in the corresponding intervals. This resulted
in a total of 270 instances, with each instance consisting of 30 jobs. When a
level of a type is associated with more than one interval, their processing times
are sampled from the union of the intervals. As an example, a Type15 instance
has all the 30 jobs with 3rd-level processing times uniformly sampled in [5, 50],
2nd-level times sampled in [80, 150], and 1st-level in [5, 100].

Mixed instances

The second benchmark set, called Mixed -Set, has been designed to introduce
more diversity in the jobs of the instances. It contains 200 instances with 30
jobs each. The first 100 instances are generated by uniformly deciding a type
for each job from Table 11, and generating the processing times accordingly.
The next 100 instances contain batches of the same jobs. To generate these
instances, we randomly select an instance type and an integer b ∈ [1, 10], we
generate a batch of b jobs according to the current type, and we repeat the type
and batch size selection until we have generated all the 30 jobs (in the last batch
we possibly generate less than b jobs to avoid exceeding the total of 30).

1Instances and lower bounds are available at: https://github.com/AndreaCorsini1/

inTreeFFSP
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Table 12: Different machine configurations of the shop floor.

Config.
3rd-level 2nd-level 1st-level

Tot
w3

1 w2
1 w2

2 w2
3 w2

4 w1
1 w1

2 w1
3 w1

4 w1
5 w1

6

1 10 2 2 2 4 4 3 2 2 3 2 36
2 16 2 2 2 2 2 2 2 2 2 2 36
3 6 3 3 3 3 3 3 3 3 3 3 36
4 8 4 4 4 4 2 2 2 2 2 2 36

Shop floor configurations

We generated four machine configurations to evaluate different shop floor
characteristics. Table 12 describes the configurations by reporting, in each row,
the number of parallel machines that we include in the 11 workcenters (see
Section 5.3). Note that the first configuration corresponds to the machine’s
setting of the real-case that inspired this work.

5.6 Results

5.6.1 Typed Instances

We start the evaluation of the algorithms by considering the Typed -Set of in-
stances and the first configuration for the shop floor. Figure 12 reports the
average Percentage Gap (PG) over all the 270 instances for each algorithm by
varying the running time from 1 to 150 seconds. Remember that the PG is
computed as given in Eq. 31 and thus compares the makespan of a solution
with the proposed lower bound (see Section 5.3.2) of an instance.

Figure 12 highlights a clear dominance of the job sequencing and the PDR-IG
heuristics with respect to the dispatching rules. We observe improvements up to
three orders of magnitude in the PG. For this reason, we decided to discard the
dispatching rules in the next experiments (we only report their results on real-
life scenarios in Section 5.6.4). We can also see that the best overall proposal
is the PDR-IG algorithm, followed by the job sequencing algorithm Js-IG and
the RAND heuristic.

To provide a more accurate evaluation of these three algorithms, we present
their performance for each of the 27 instance types in Table 13. For each type
and algorithm, we report the average (Avg) PG, the standard deviation (Std),
and the number of best solutions (# bst). The results in the table confirm that
RAND has the worst performance, as it never produces average gaps better than
Js-IG and PDR-IG. In addition, we see that on certain types of instances, Js-IG
obtains slightly better average results than PDR-IG. However, when Js-IG fails
to find the best solutions, its results are significantly worse than those of PDR-
IG. Hence, the overall result of PDR-IG on the entire benchmark constantly
outperforms that of Js-IG.
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Figure 12: The average Percentage Gap of the algorithms on the 270 instances
for time limits up to 150 seconds.

Table 13: Average Percentage Gaps from the lower bounds of typed instances
(machine configuration 1) after 150 seconds of running time. The values in bold
are the best across an instance type (row).

Type
Job Sequencing Decomposition

RAND Js-IG PDR-IG
Avg (Std) # bst Avg (Std) # bst Avg (Std) # bst

0 15.14 (0.77) 0 12.01 (1.11) 0 7.53 (0.72) 10
1 5.01 (1.62) 0 1.68 (1.48) 8 1.76 (1.30) 5
2 3.14 (1.32) 0 1.26 (0.77) 8 1.54 (0.82) 2

3 1.56 (0.66) 0 0.87 (0.50) 7 0.92 (0.51) 3
4 11.82 (3.24) 0 8.80 (3.45) 0 5.86 (3.02) 10
5 2.44 (1.03) 0 0.83 (0.45) 7 0.88 (0.62) 6

6 0.73 (0.49) 0 0.46 (0.38) 8 0.63 (0.54) 6
7 1.87 (0.71) 0 0.73 (0.47) 7 1.07 (0.68) 4
8 7.80 (1.24) 0 5.04 (1.17) 9 5.97 (1.40) 1

9 7.86 (0.62) 0 7.36 (0.67) 0 2.84 (0.40) 10
10 20.69 (0.97) 0 17.96 (1.00) 0 10.53 (0.93) 10
11 3.02 (1.12) 0 1.20 (0.65) 9 1.44 (0.77) 4

12 11.87 (0.62) 0 9.70 (0.91) 0 6.41 (0.71) 10
13 15.85 (0.45) 0 13.60 (0.74) 0 8.97 (0.30) 10
14 6.90 (1.49) 0 5.01 (1.57) 0 1.68 (0.90) 10

15 1.06 (0.72) 0 0.88 (0.59) 7 1.18 (0.76) 3
16 6.35 (2.93) 0 4.73 (2.84) 0 3.12 (2.07) 10
17 18.02 (1.25) 0 16.23 (1.01) 0 11.21 (0.95) 10

18 3.90 (0.66) 0 3.67 (0.63) 0 1.62 (0.27) 10
19 10.98 (1.18) 0 10.49 (1.20) 0 3.72 (0.35) 10
20 18.12 (1.59) 0 16.65 (1.52) 0 8.18 (1.69) 10

21 5.35 (0.84) 0 5.09 (0.86) 0 2.10 (0.39) 10
22 14.53 (1.16) 0 13.23 (1.18) 0 4.57 (0.50) 10
23 20.63 (0.39) 0 19.05 (0.54) 0 12.04 (0.40) 10

24 8.52 (0.40) 0 7.74 (0.39) 0 2.40 (0.40) 10
25 13.35 (0.92) 0 11.85 (0.91) 0 7.96 (0.28) 10
26 17.04 (0.55) 0 15.62 (0.65) 0 10.58 (0.28) 10

Tot 253.56 (28.94) 0 211.75 (27.66) 70 126.76 (21.79) 214
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Figure 13: The average Percentage Gap on the 270 instances for each time limit.

5.6.2 Performance for Large Computing Times

To better assess the complete behavior of the three best algorithms (RAND,
Js-IG, and PDR-IG); we run them again on the typed instances with increasing
time limits. More specifically, we added to the previous computations the results
obtained with a maximum running time equal to 300, 600, and 1800 seconds.
Figure 13 resumes the results with time limits from 10 to 1800 seconds.

The three algorithms exhibit a clear ranking: RAND is the worse method
with a PG of 9.07% at 1800 seconds, followed by Js-IG with a PG of 7.65% and
by PDR-IG with 4.45%. Overall, we see that all the algorithms benefit from
increasing running time, but the gains diminish after 150 seconds as doubling
the time results in always lower improvements. Since the relative differences
between proposals remain more or less consistent after 150 seconds, we choose to
keep this time limit as a reasonable trade-off between performance and execution
time for continuing the evaluation of the algorithms on the other instances and
shop floor configurations.

5.6.3 Performance Under Different Shop Floor Configurations

To further extend our analysis on the Typed instances, we run the RAND, Js-IG,
and PDR-IG algorithms on the other shop floor configurations not considered
in previous sections, i.e., configurations 2, 3, and 4 of Table 12. In Table 14,
we report the average PG and the number of best solutions obtained by each
algorithm for each instance type and configuration, and in the last row, we
accumulate the average PG and the number of best solutions across all types.

Similarly to configuration 1, RAND results to be the worst-performing al-
gorithm, while the PDR-IG confirms to be the best algorithm, both in terms of
the total average PG and number of best solutions.
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Table 14: Average Percentage Gaps from the lower bounds of Typed instances
and machine configurations 2-4, after 150 seconds of running time. The values
in bold are the best across an instance type (row).

Config. 2

Type
RAND Js-IG PDR-IG

Avg #bst Avg #bst Avg #bst

0 13.44 0 10.97 0 6.91 10
1 7.56 0 2.81 6 3.17 4
2 4.98 0 2.32 9 2.86 2

3 1.64 0 0.89 7 0.82 5
4 11.71 0 8.01 1 6.71 9
5 5.05 0 2.47 8 2.88 2

6 0.66 0 0.39 9 0.54 8
7 2.11 0 0.81 10 1.14 0
8 8.86 0 5.71 10 6.51 0

9 8.95 0 7.59 0 4.40 10
10 16.06 0 14.13 0 8.26 10
11 5.15 0 2.44 10 2.95 2

12 7.85 0 6.59 0 5.16 10
13 14.16 0 12.58 0 7.77 10
14 6.56 0 4.43 1 3.66 9

15 1.16 0 0.82 7 0.91 4
16 5.38 0 3.90 4 3.09 7
17 16.59 0 15.18 0 10.26 10

18 7.14 0 6.17 0 3.82 10
19 12.90 0 11.63 0 6.72 10
20 12.01 0 11.09 0 4.93 10

21 6.64 0 5.85 1 4.59 9
22 12.08 0 10.97 0 6.05 10
23 17.34 0 16.24 0 10.14 10

24 7.11 0 6.24 9 6.55 3
25 10.56 0 9.52 1 6.72 9
26 15.44 0 14.30 0 8.97 10

Tot 239.09 0 194.06 93 136.53 193

Config. 3
RAND Js-IG PDR-IG

Avg #bst Avg #bst Avg #bst

10.73 0 10.42 0 2.27 10
26.65 0 22.55 0 13.75 10
10.47 0 8.37 0 5.67 10

15.26 0 12.02 0 7.83 10
17.79 0 14.61 0 9.66 10
20.33 0 18.06 0 11.90 10

5.28 0 3.51 8 4.04 2
14.15 0 12.16 0 9.00 10
18.72 0 16.93 0 11.24 10

3.32 0 3.19 0 0.81 10
10.58 0 10.39 0 1.82 10
23.55 0 22.82 0 7.22 10

5.00 0 4.89 0 0.96 10
11.41 0 11.21 0 2.33 10
27.32 0 24.71 0 12.51 10

7.37 0 7.23 0 0.98 10
14.24 0 13.28 0 4.38 10
21.41 0 19.14 0 11.27 10

1.75 0 1.66 0 0.46 10
5.18 0 5.05 0 1.07 10
12.27 0 12.06 0 2.11 10

2.43 0 2.36 0 0.64 10
6.26 0 6.10 0 1.07 10
12.03 0 11.82 0 2.34 10

3.77 0 3.69 0 0.58 10
6.91 0 6.79 0 1.27 10
12.92 0 12.71 0 2.94 10

327.09 0 297.73 8 130.09 262

Config. 4
RAND Js-IG PDR-IG

Avg #bst Avg #bst Avg #bst

20.27 0 16.12 0 8.93 10
7.88 0 2.57 7 2.82 4
4.94 0 2.17 10 2.58 0

11.82 0 9.54 0 5.70 10
12.18 0 8.79 0 4.59 10
4.63 0 2.06 10 2.54 0

8.51 0 6.83 0 4.70 10
15.33 0 13.38 0 8.68 10
6.21 0 3.91 2 3.05 8

5.50 0 5.20 0 1.88 10
16.82 0 15.52 0 5.77 10
5.85 0 2.89 5 2.68 6

7.55 0 7.24 0 2.40 10
20.34 0 17.62 0 10.03 10
8.93 0 6.87 0 3.17 10

12.04 0 10.23 0 5.36 10
14.71 0 12.68 0 8.24 10
18.85 0 16.84 0 10.87 10

2.78 0 2.61 0 0.96 10
7.96 0 7.66 0 2.44 10
18.07 0 17.51 0 6.73 10

3.79 0 3.62 0 1.30 10
9.49 0 9.15 0 2.77 10
18.55 0 17.49 0 7.27 10

5.61 0 5.43 0 1.39 10
10.45 0 10.01 0 3.36 10
21.03 0 19.27 0 11.38 10

300.07 0 253.18 34 131.60 238

Table 15: Results for Mixed instances and machine configurations 1-4, after 150
seconds of running time. The values in bold are the best across an instance
type (row).

Config. 1

Type
RAND Js-IG PDR-IG

Avg #bst Avg #bst Avg #bst

Uniform 11.3 0 6.4 41 6.3 59
Batched 12.9 0 8.5 31 7.4 70

Tot 24.1 0 14.9 72 13.7 129

Config. 2

Type
RAND Js-IG PDR-IG

Avg #bst Avg #bst Avg #bst

Uniform 9.5 0 5.5 29 4.8 71
Batched 11.3 0 7.7 24 6.5 76

Tot 20.8 0 13.2 53 11.5 147

Config. 3

Type
RAND Js-IG PDR-IG

Avg #bst Avg #bst Avg #bst

Uniform 6.1 0 4.4 5 2.6 92
Batched 8.8 0 6.3 9 3.4 94

Tot 14.9 0 10.7 14 6.0 186

Config. 4

Type
RAND Js-IG PDR-IG

Avg #bst Avg #bst Avg #bst

Uniform 14.9 0 8.4 2 5.8 97
Batched 15.2 0 10.0 6 7.9 95

Tot 30.1 0 18.3 8 12.6 192
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Table 16: Makespan of solutions for the eight real-life instances.

Name
Num.

LB
Manual Dispatching Rules MILP

jobs Solution MWR MOR SPT EST RAND Js-IG PDR-IG [LB, UB]

I1 17 761 952 1029 1026 940 899 924 924 873 [574, 947]
I2 21 905 1116 1245 1246 1114 1079 1093 1093 1042 [688, 1140]
I3 18 797 988 1066 1119 983 945 966 966 913 [685, 997]
I4 24 1013 1239 1406 1426 1253 1213 1216 1216 1165 [665, 1286]
I5 23 977 1200 1339 1375 1207 1163 1182 1182 1130 [681, 1254]
I6 25 1049 1268 1471 1460 1282 1246 1233 1234 1195 [833, 1326]
I7 22 941 1143 1285 1272 1149 1103 1102 1101 1061 [709, 1182]
I8 25 1049 1267 1493 1460 1294 1246 1230 1229 1184 [687, 1289]

We finally conclude our computational analysis on randomly generated in-
stances by considering the Mixed -Set (see Section 5.5.1) and the four shop floor
configurations. Table 15 reports the average PG and number of best solutions
obtained by each algorithm on the 100 uniform instances and on the 100 batched
instances, for each configuration. We remark again that PDR-IG achieves con-
sistently lower average PG than Js-IG regardless of the shop floor configurations.
Therefore, PDR-IG remains the best overall proposal also in mixed instances.

5.6.4 Real-life Instances

Due to internal company policies and regulations, we were allowed to use only
eight real-life instances and their relative manual solutions for reporting. These
instances involve the assembly of approximately 20-25 vehicles from five different
jobs, and the processing times of these jobs are distributed similarly to type 17
of Table 11. The assembly of jobs is performed by a crew of 20 workers on the
shop floor corresponding to the first machine configuration in Table 12. The
manual solutions are constructed by scheduling one job at a time, in order of
their arrival time, and occasionally job exchanges may be done by a local expert
without any precise or reproducible logic.

Table 16 presents the makespan of the solution produced by the proposed
algorithms on the instances I1,. . . , I8. The considered algorithms (columns) are
the manual solution; the four dispatching rules; and the three heuristics: RAND,
Js-IG, and PDR-IG. All these algorithms were executed as in previous sections
for 150 seconds. We also consider the MILP formulation of the rTRCFFSP
presented in Section 5.3.1, which was implemented in Gurobi 9.5.1 and executed
for 3600 seconds.

It is noteworthy that the manual solution outperforms the MWR, MOR, and
SPT rules, but is outperformed by the EST rule. Surprisingly, RAND and Js-IG
algorithms perform worse than EST for I1-I5 instances, while they exhibit simi-
lar performance for I6-I8. The PDR-IG algorithm still consistently achieves the
best solution across all instances, demonstrating consistent performance also in
these real scenarios. Lastly, we underline that the presented MILP formulation
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is practically useless even in these small instances, as both its produced bounds
are dominated by our proposed lower bound and algorithms.

5.7 Final Remarks

This work introduces a new complex scheduling problem encompassing charac-
teristics of other well-known problems. We not only formalized the problem,
but also proposed baseline heuristics, generated a comprehensive set of bench-
mark instances, and introduced a lower bound for evaluating our algorithms
and potentially future ones.

Although several methodologies exist to tackle related problems, our inves-
tigation revealed that many of them face challenges when applied directly to
address the rTRCFFSP complexities. Therefore, we believe that this new prob-
lem may offer a valuable opportunity to extend concepts and modify assump-
tions inherent in existing algorithms for shop scheduling problems. Lastly, the
multiple intertwined constraints of the rTRCFFSP pose serious obstacles to the
adoption of standard exact methods, another opportunity for further research.
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6 Parallel Drone Scheduling Vehicle

Routing Problems with Collective

Drones

The employment of drones in last-mile delivery is considered extremely strategic
as leading distribution operators are facing a continuously increasing volume of
parcels to handle, mainly generated by e-commerce (Statista, [129]). Consider-
ing that drones use low-emission electric motors, do not move along the road
network, can fly approximately in straight lines, and are not affected by traffic
congestions; their adoption for deliveries could lead to advantages for companies
(operational costs reduction), customers (faster deliveries), and the whole soci-
ety (sustainability). Forbes [130] refers to the heavy interest in drone technology
as the “Drone Explosion”. The authors of [131] forecast that autonomous ve-
hicles will deliver about 80% of all parcels in the upcoming decade. Therefore,
we analyze a mixed routing and scheduling problem where drones are used in
conjunction with trucks for last-mile delivery.

Murray and Chu [21] introduced the idea of a new problem in which a
truck and a drone collaborate to make deliveries. The authors present two
new prototypical models expanding from the traditional Traveling Salesman
Problem (TSP) called the Flying Sidekick TSP (FSTSP) and the Parallel Drone
Scheduling TSP (PDSTSP). In both cases, a truck and some drones collaborate
to deliver parcels. In the former model, drones can be launched from the truck
during its tour, while in the latter one, drones are only operated from the central
depot, and the truck executes a traditional delivery tour. In the remainder, we
will focus on the latter problem, addressing the interested reader, e.g., to [132]
and [133] for details and solution strategies for the FSTSP.

More formally, in the PDSTSP there is a truck that can leave the depot, serve
a set of customers, and go back to the depot. In parallel, there is also a set of
drones, and each one of them can leave the depot, serve a customer, and return
to the depot before serving other customers. Some of the customers cannot be
served by the drones, either due to their location or the characteristics of their
parcel. The objective of the optimization is to minimize the makespan, i.e., the
time of the last vehicle returning to the depot while serving all its customers.
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A first Mixed Integer Linear Programming model for the PDSTSP was pro-
posed in [21] together with some simple heuristic methods. Another MILP
model and the first meta-heuristic, based on a two-step strategy embedding a
dynamic programming component, were discussed in [134]. Another two-step
approach was presented in [135], a hybrid ant colony optimization meta-heuristic
was discussed in [136], and a variable neighbor search in [137]. In [138], an ef-
fective constraint programming approach was proposed, which optimally solved
all the benchmark instances previously adopted in the literature for both ex-
act and heuristic methods. Recently, in [139] another exact approach based on
branch-and-cut was proposed, together with new benchmark instances.

Several PDSTSP variants were also introduced and studied in the literature,
see e.g., [140] and [141] for extensive surveys. We review herein only those
extensions of the PDSTSP that we find more relevant to the present study.

Recently, [142] discussed the Parallel Drone Scheduling Multiple Traveling
Salesman Problem, which is a straightforward extension of the PDSTSP where
multiple trucks are employed and the target is to minimize the time required
to complete all the deliveries. The authors proposed a hybrid meta-heuristic,
a MILP model, and a branch-and-cut approach. The same problem was inde-
pendently introduced in [143], where the authors proposed three MILP models,
together with a branch-and-price approach. A heuristic version of the branch-
and-cut method was also introduced, aiming at solving the larger instances. A
more realistic version of the PDSTSP was introduced in [144], where concepts
such as capacity, load balancing, and decoupling of costs and times are taken
into account. The authors proposed a MILP model and a Ruin & Recreate meta-
heuristic. Constraint Programming methods for PDSTSP variants employing
several trucks were also discussed in [145], with convincing experimental results.

One common assumption in the literature on combined truck-drone deliv-
ery models has been a linear battery consumption for drones, leading to fixed
operation ranges and carrying capacities. Recently, power consumption models
with more realistic settings have been presented, e.g., in [143], [146], and [147].
A review of drone energy consumption models is also available in [148]. In the
patent [149] filed by Amazon Inc., a novel method using a so-called “Collective
Drone” (c-drone) is introduced. Under this setting, multiple drones can be cou-
pled to aerially transport items of large size and weight. By sharing resources,
such as power and operating instructions, a collective drone might outperform
a single drone. The authors of [22] joined the new concept of c-drone with ad-
vanced power consumption models to create an innovative problem, called the
PDSTSP-c, where c stands for collective. In this problem, a realistic model is
used to calculate the endurance, speed, and capacity of groups of drones work-
ing together to carry out tasks. Based on these calculations, they proposed a
MILP model and a Ruin & Recreate meta-heuristic for this new problem.

An example of a PDSTSP-c instance is provided in Figure 14.
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Figure 14: Example of a PDSTSP-c instance. Node 0 is the depot, the other
nodes are customers. Travel times are omitted for the sake of simplicity. The
black continuous arcs represent the tour of the truck (0, 2, 3, 0). The dashed
arcs depict the missions of the drones, each colour representing a different one.
Notice that some of the missions are carried out by multiple drones.

Note:

An extracted version of the work published at:
Roberto Montemanni, Mauro Dell’Amico, and Andrea Corsini. “Paral-
lel Drone Scheduling Vehicle Routing Problems with Collective Drones”,
in Computers & Operations Research, Volume 163, 2023. DOI:
10.1016/j.cor.2023.106514.
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6.1 Parallel Drone Scheduling Traveling Sales-
man Problem with Collective Drones

In this section, we formally describe the PDSTSP-c, as originally introduced
in [22], and present a new Constraint Programming model. We start from the
single-vehicle problem as its description helps in introducing the multiple-vehicle
version.

6.1.1 Problem Description

Let G(V,E) be the complete graph describing an instance of the PDSTSP-c,
with V = {0, 1, . . . , n} being the set of vertices where vertex 0 represents the
depot and the remaining all the customers to visit (set C = V \ {0}). Each
customer i requests the delivery of a parcel of weight wi from the depot. The
fleet of delivery vehicles is composed of a single driver-operated truck, with
unlimited range and capacity, and a set D of m homogeneous drones that are
based at the depot and equipped with batteries of given capacity (a fresh battery
is installed before each mission).

The truck performs its task within a single tour, beginning from the depot,
visiting all its assigned customers, and returning to the depot. The truck travel
times between pairs of vertices i, j ∈ V is given as tij . Matrix [tij ] satisfies the
triangular inequality tik ≤ tij + tjk, i, j, k ∈ V .

The drones have to perform back-and-forth trips between the depot and the
customers’ locations to deliver the parcels. Travel times and ranges of drone
missions depend on factors such as the number of drones cooperating and the
traveling speed. Given a customer i and a number k of drones executing the
mission, it is possible to pre-calculate the optimal speed and consequently the
total travel time τki for the back-and-forth trip. When it is not possible to
service a customer i for some values of k, then τki is set to +∞.

We group the customers that can be serviced by truck only in the set CT ⊊
C. Instead, let CF = C \ CT denote the (sub)set of customers that may be
served with some drones’ configuration, and let qj and pj be the minimum and
maximum number of drones to serve a customer j ∈ CF . We adopted the
realistic model described in [22] for the calculation of their travel times, and we
refer the interested reader to this paper for full details.

Note that a main difficulty of the problem is that once k drones collaborate
for a delivery mission, strict synchronization constraints must be fulfilled. The
objective of the PDSTSP-c is to find a truck tour, drone-customer assignments,
and drones scheduling that minimize the makespan (i.e., the maximum com-
pletion time at which all vehicles are back at the depot after completing their
services) while fulfilling all the constraints and conditions listed above.

6.1.2 A Constraint Programming model

The Constraint Programming model we present is based on the Google OR-Tools
CP-SAT solver [150] and follows the ideas behind the Mixed Integer Linear
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Program described in [22]. In particular, drone missions are modeled through
a flow. Changes have however been introduced to take full advantage of the
characteristics of the solver used.

The CP-SAT solver is designed to work in a multi-thread environment (com-
patible with all new processors) and can be seen as a portfolio-strategy with
some limited data exchange among the different threads. The main process
runs a Constraint Programming Solver based on a Lazy Clause Generation
(LCG) [151], but other unrelated methods work in parallel to support it and
exchange information such as new bounds and solutions. The concept behind
LCG involves the (incremental) transformation of the problem into an SAT-
formula, subsequently employing an SAT-solver to seek a solution (or prove
bounds by infeasibility). The model also gets linearized to some degree, and
the corresponding linear program gets (partially) solved with the (dual) sim-
plex algorithm, and other classic MILP techniques are run to enhance bounds
and retrieve new solutions, aiming at supporting the satisfiability model. Fi-
nally, different instances of a Large Neighborhood Search (LNS) meta-heuristic,
seeking for high-quality feasible solutions, are executed.

While the idea above may initially appear as an inefficient approach due to
potential redundancy, it proves highly effective in practice. The rationale behind
this lies in the inherent challenge of predicting which algorithm is best suited
to solve a given problem (No Free Lunch Theorem, [152]). Thus, the pragmatic
strategy involves running various approaches in parallel, with the hope that one
will effectively address the problem at hand. In contrast, Branch and Cut-based
Mixed Integer Programming solvers like Gurobi [153] implement a more efficient
partitioning of the search space to reduce redundancy. However, they specialize
in a particular strategy, which may not always be the optimal choice.

The variables used in the CP model we present for the PDSTSP-c as follows:

• xij : binary variables equal to 1 (true) if edge (i, j), with i, j ∈ V , is
traveled by the truck, 0 (false) otherwise. Whereas a loop xjj = 1 means
that customer j is served by drones, while xjj = 0 if it is served by the
truck.

• zkj : binary variables equal to 1 if customer j ∈ CF is served by k drones,
0 otherwise.

• yij : binary variables equal to 1 if vertex i is served right before vertex j
within the schedule of any drone, 0 otherwise.

• fij ∈ Z+: continuous flow variables indicating number of drones serving
vertex i right before vertex j in their schedule.

• Tj ∈ R+: continuous variables representing the time at which the mission
to customer j ∈ CF is completed by the drones. T0 is the start time of the
operations (typically 0), with all the vehicles at the depot.

• α ∈ R+: continuous variable denoting the completion time, by which all
the carriers are back to the depot.
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(CP1) : minα (32)

s.t. α ≥
∑
i∈V

∑
j∈V,i̸=j

tijxij (33)

α ≥ Tj j ∈ CF (34)

xjj =
∑

qj≤k≤pj

zkj j ∈ CF (35)

Circuit(xij , with i, j ∈ V, j ̸= i if j ∈ CT ) (36)∑
j∈CF

f0j ≤ m (37)

∑
i∈CF∪{0},i̸=j

fij =
∑

qj≤k≤pj

kzkj j ∈ CF (38)

∑
i∈CF∪{0},i̸=j

fij =
∑

l∈CF∪{0},l ̸=j

fjl j ∈ CF ∪ {0} (39)

fij ≤ myij i, j ∈ CF ∪ {0}, i ̸= j (40)

yij =⇒ Tj ≥ Ti +
∑

qj≤k≤pj

τkj z
k
j i ∈ CF ∪ {0}, j ∈ CF , i ̸= j (41)

0 ≤ fij ≤ m i, j ∈ CF ∪ {0}, i ̸= j (42)

xij ∈ {0; 1} i, j ∈ V (43)

zkj ∈ {0; 1} j ∈ CF , qj ≤ k ≤ pj (44)

yij ∈ {0; 1} i, j ∈ CF ∪ {0}, i ̸= j (45)

Tj ≥ 0 j ∈ CF ∪ {0} (46)

Following the trivial objective function (32), the constraints have the following
meaning. Constraint (33) says that the total time α has to be greater than
or equal to the time required by the truck tour. Analogously, constraints (34)
impose that α has to be greater than or equal to the completion time of the
eventual drone mission to serve customer j. Given the logic of the variables,
constraints (35) state that each drone-eligible customer has to be visited either
by the truck or by a group of drones; Constraint (36) uses the CP-SAT method
Circuit [150] to have a feasible truck tour that skips each customer j for which
xjj = 1 (these customers will be visited by drones). Notice that the input
parameter for the Circuit command is a set of arcs that the tour can visit,
including self-loops. In our case, we exclude only those xjj for which j ∈
CT (corresponding to customers that are not drone-eligible). The Constraints
(37)-(39) model the operations and synchronization of the drones as a flow
problem (see [22] for more detailed explanations): Constraint (37) states the
flow going out from node 0 has to be less than or equal to m (remind that
each drone is represented as a unit of flow); Constraints (38) impose that if
a customer j is serviced by k drones, than the flow entering node j has to
equal k; Constraints (39) are classic conservation equalities, imposing that the
flows entering and exiting a node must be equal. Constraints (40) activate the
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variables y corresponding to arcs used by flows (variables f) which are necessary
to calculate the completion time of drones. Constraints (41) are active only if the
variable yij = 1 and state that the synchronization constraint on arc (i, j) must
be respected. This is achieved through the CP-SAT command OnlyEnforceIf
[150], which is indicated with =⇒ in the model. The remaining constraints
(42)-(46) define the domain of the variables.

6.1.3 Valid inequality

The following valid inequality can be introduced to improve the linear relaxation
of model CP1.

Theorem 1. The following inequality is valid for the model CP1:

mα ≥
∑
j∈CF

∑
qj≤k≤pj

kτkj z
k
j (47)

Proof. The value of α has to be greater than the maximum completion time
of drone missions among all drone-eligible customers (from constraints (34)),
which in turn is (by definition) greater than or equal to the average time spent
into missions by the drones. This last value is obtained by dividing by the
number of drones (m) the cumulative time spent on drone-missions, expressed
for each accomplished mission as the time of the mission itself (τkj ) multiplied
by the number of drones involved (k). Formally:

α ≥ max
j∈CF

Tj ≥

∑
j∈CF

∑
qj≤k≤pj

kτkj z
k
j

m
⇒ (47)

The valid inequality (47) will intuitively be tight when the following two
conditions hold: (i) the time waited by the drones to synchronize prior to multi-
drone missions is small, since this time is not captured by the inequality; (ii) the
vehicles (and the drones in particular) have similar total mission times, therefore
making the maximum completion time comparable to the average mission time.
Notice that both these conditions tend to be fulfilled by optimized solutions.

Finally, we anticipate that the inequality (47) will be valid also for all the
models discussed in Section 6.2 for the PDSVRP-c.
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6.2 Parallel Drone Scheduling Vehicle Routing
Problem with Collective Drones

In this section, we build upon Section 6.1 and introduce the PDSVRP-c, a
natural extension of the PDSTSP-c where multiple vehicles operate in parallel
to the drones. The problem is introduced in Section 6.2.1 while two models
based on Constraint Programming are discussed in Sections 6.2.2 and 6.2.3.
The first one is a 2-indices formulation based on the CP1 model of the previous
section while the second one is a 3-indices formulation. Section 6.2.4 outlines a
MILP model to serve as a baseline.

6.2.1 Problem Description

A formal definition of the PDSVRP-c can be proposed as a straightforward
extension of the PDSTSP-c provided in Section 6.1.1. The difference is that
now we have a fleet S of s trucks, with the same characteristics of the single
truck employed for the PDSTSP-c: unlimited capacity, unlimited range, and
same traveling speed. No concept of collaboration exists for the trucks and each
customer has to be served either by one of the trucks or by drones.

Having a fleet of trucks does not change substantially the problem, but has
an impact on the optimization since we now have to plan multiple tours and
account for the mission time of each truck while calculating the completion time
α. We will see in the next sections two alternative Constraint Programming
models and a Mixed Integer Linear Programming formulation.

6.2.2 A 2-indices Constraint Programming model

This model is the direct extension of that discussed in Section 6.1.2 for the CP1
and delegates the Constraint Programming solver to handle the multiple truck
tours. The variables remain the same, although now the x can take the shape
of multiple tours instead of a single one. Another important difference is the
definition of the variables Tj . In the CP1 model of Section 6.1.2, they are only
related to the drones and represent the time in which the mission to a customer
is completed. Here, they are extended to the customers served by the trucks and
represent the starting time of the service of the truck to the customer. Formally
we use the new variables T with the following meaning

• T j ∈ R+: continuous variables with a different meaning depending of the
type of vehicle involved. It represents the time at which the mission to
customer j ∈ CF is completed when the visit is carried out by drones (it
is the time they are back to the depot). If the customer is serviced by
a truck, it is the time the truck reaches the customer and the service is
started. T 0 denotes the start time of the operations (typically 0), with all
the vehicles at the depot.
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(CP2) minα (48)

s.t. α ≥ T j + tj0xj0 j ∈ C (49)

xjj =
∑

qj≤k≤pj

zkj j ∈ CF (50)

MultipleCircuit(xij , with i, j ∈ V, i ̸= 0 ∨ j ̸= 0, j ̸= i if i ∈ CT ) (51)∑
j∈C

x0j ≤ s (52)

xij =⇒ T j ≥ T i + tij i ∈ V, j ∈ C, i ̸= j (53)∑
j∈CF

f0j ≤ m (54)

∑
i∈CF∪{0},i̸=j

fij =
∑

qj≤k≤pj

kzkj j ∈ CF (55)

∑
i∈CF∪{0},i̸=j

fij =
∑

l∈CF∪{0},l ̸=j

fjl j ∈ CF ∪ {0} (56)

fij ≤ myij i, j ∈ CF ∪ {0}, i ̸= j (57)

yij =⇒ T j ≥ T i +
∑

qj≤k≤pj

τkj z
k
j i ∈ CF ∪ {0}, j ∈ CF , i ̸= j (58)

0 ≤ fij ≤ m i, j ∈ CF ∪ {0}, i ̸= j (59)

xij ∈ {0; 1} i, j ∈ V (60)

zkj ∈ {0; 1} j ∈ CF , qj ≤ k ≤ pj (61)

yij ∈ {0; 1} i, j ∈ CF ∪ {0}, i ̸= j (62)

T j ≥ 0 j ∈ V (63)

The constraints strictly follow the meaning already described for the CP1
model in Section 6.1.2. The only changes are as follows. Constraints (49) are
now extended to cover also the case of truck visits. In this case, α is defined
based on the time required by each truck to go back to the depot after visiting
each of its assigned customers. This constraint is valid since the travel times
satisfy the triangular property, although it could be made valid also for the
general case with the use of a OnlyEnforceIf statement (see below). Constraint
(51) describes a set of circuits through the MultipleCircuit command of CP-
SAT ([150]) to reflect we are now dealing with several tours instead of one.
The command takes in input the set of arcs feasible to be traversed, with the
possibility of self-loops in case a customer is visited by the drones. Notice that
the arc (0, 0) is excluded to avoid subtours not involving the depot, as well as
self-loops involving customers that cannot be visited by the drones. The number
of tours is not a parameter of the command, and therefore the new constraint
(52) is necessary to force the number of tours to be s at most. Whereas the
new constraints (53) calculate the service start time for each customer visited
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by a truck (remember that =⇒ indicates the OnlyEnforceIf, which activates
the constraint if, and only if, xij = 1).

6.2.3 A 3-indices Constraint Programming model

This model is another extension of the CP1 model in Section 6.1.2 that uses s
separate sets of variables to describe the tours of the s trucks. All the variables
remain the same, apart from the x variables which are substituted by a set
of variables w such that wk

ij = 1 if edge (i, j) is traveled by truck k ∈ S, 0

otherwise. Notice that wk
jj = 1 means that customer j is not served by truck

k, hence it is not part of its tour. In addition, wk
00 = 1 means that truck k is

not operated in the solution. Notice that differently from model CP2, here all
the loop variables for the truck are inserted when invoking the method Circuit
used to find a circuit for each truck (see (69) below) since now only one of the
trucks will have to visit a node contained in CT (as imposed by the constraints
(68) below). Finally, notice that the timing variables T are the same used in
model CP1 of Section 6.1.2.
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(CP3) minα (64)

s.t. α ≥
∑
i∈V

∑
j∈V,i ̸=j

tijw
k
ij k ∈ S (65)

α ≥ Tj j ∈ CF (66)
s∑

k=1

(1− wk
jj) +

∑
qj≤k≤pj

zkj = 1 j ∈ CF (67)

s∑
k=1

wk
jj = s− 1 j ∈ CT (68)

Circuit(wk
ij , with i, j ∈ V ) k ∈ S (69)

wk
ij ≤ 1− wk

00 k ∈ S, i, j ∈ C (70)∑
j∈CF

f0j ≤ m (71)

∑
i∈CF∪{0},i̸=j

fij =
∑

qj≤k≤pj

kzkj j ∈ CF (72)

∑
i∈CF∪{0},i̸=j

fij =
∑

l∈CF∪{0},l ̸=j

fjl j ∈ CF ∪ {0} (73)

fij ≤ myij i, j ∈ CF ∪ {0}, i ̸= j (74)

yij =⇒ Tj ≥ Ti +
∑

qj≤k≤pj

τkj z
k
j i ∈ CF ∪ {0}, j ∈ CF , i ̸= j (75)

0 ≤ fij ≤ m i, j ∈ CF ∪ {0}, i ̸= j (76)

wk
ij ∈ {0; 1} k ∈ S, i, j ∈ V (77)

zkj ∈ {0; 1} j ∈ CF , qj ≤ k ≤ pj (78)

yij ∈ {0; 1} i, j ∈ CF ∪ {0}, i ̸= j (79)

Tj ≥ 0 j ∈ CF ∪ {0} (80)

The constraints strictly follow the meaning already described for the CP1
model in Section 6.1.2. The changes reflect the presence of multiple trucks
and are as follows. Inequalities (65) now constrain α to be equal to or larger
than the length of the tour of each truck k. Equalities (67) now express that
each drone-eligible customer has to be visited either by one of the trucks or the
drones. The new constraints (68) state that customers in CT cannot be visited
by drones, and have to be serviced by exactly one truck. Constraints (69) are
now independently defined for each truck k, dropping the concept of giant-tour
introduced for the CP2 model. The new technical constraint (70) forces the
circuit of a truck k to be empty once the relative variable wk

00 takes the value 1.

81



6.2.4 A 3-indices Mixed Integer Linear Programming model

We finally present the Mixed Integer Linear Programming formulation of the
PDSVRP-c, which is based on the 3-indices CP3 model of Section 6.2.3. For
the sake of simplicity in the presentation of the model, we adopt a new variable
uk
j that for j ∈ C takes value 1 if k ∈ S serves customer j, 0 otherwise. In case

j = 0, uk
0 takes instead value 1 if k ∈ S is deployed (used), 0 otherwise. Notice

that this variable can be defined as uk
j = 1−wk

jj in the logic of the CP3 model,

but in the MILP model the loop variables wk
jj are not used.

(MILP ) minα (81)

s.t. α ≥
∑
i∈V

∑
j∈V,i̸=j

tijw
k
ij k ∈ S (82)

α ≥ Tj j ∈ CF (83)∑
k∈S

uk
j +

∑
qj≤k≤pj

zkj = 1 j ∈ CF (84)

∑
k∈S

uk
j = 1 j ∈ CT (85)

uk
j ≤ uk

0 j ∈ C, k ∈ S (86)∑
i∈V,i ̸=j

wk
ij +

∑
l∈V,l ̸=j

wk
jl = 2uh

j j ∈ V, k ∈ S (87)

∑
i,j∈H,i̸=j

wk
ij ≤ |H| − 1 H ⊆ C, k ∈ S (88)

fij
m
≤ yij ≤ fij i, j ∈ CF ∪ {0}, i ̸= j (89)

Tj + M(1− yij) ≥ Ti +
∑

qj≤k≤pj

τkj z
k
j i ∈ CF ∪ {0}, j ∈ CF , i ̸= j (90)

0 ≤ fij ≤ m i, j ∈ CF , i ̸= j (91)

wk
ij ∈ {0; 1} k ∈ S, i, j ∈ V, i ̸= j (92)

zkj ∈ {0; 1} j ∈ CF , qj ≤ k ≤ pj (93)

uk
j ∈ {0; 1} j ∈ C, k ∈ S (94)

yij ∈ {0; 1} i, j ∈ CF ∪ {0}, i ̸= j (95)

Tj ≥ 0 j ∈ CF ∪ {0} (96)

The model minimizes the time to serve all the customers (81). Constraints
(82) force α to be larger than any tour of the trucks, and inequalities (83) guar-
antee that α is larger than the completion time of any drone’s mission time.
Equations (84) assign customers from CF to either a drone or a truck, while
constraints (85) force the customers that can be visited only by a truck (CT ) to
receive such a visit. Inequalities (86) impose that a customer can be visited by
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a truck only if it is in use. Equalities (87) are flow conservation constraints for
the truck tours. Inequalities are subtour elimination constraints [154] (further
defined below) and guarantee that truck tours are circuits including the depot.
Notice that these constraints are exponential in number, depending on any pos-
sible subset H of C. In our implementation, they will be generated dynamically
as described below. Constraints (89) refers to the flow of drones and guaran-
tee that the number of drones going from customer i to j must be lower than
m, only if there is a flow from i to j. Inequalities (90) regulate completion of
the service time for the customers visited by the drones. Finally, constraints
(91)-(96) define the domain of the variables.

Separation of the subtour elimination constraints

The subtour elimination constraints (88) are dynamically added to the MILP
as Lazy constraints (available in the most popular MILP solvers). Specifically,
the solver starts by disregarding the constraints declared lazy, and once a feasible
integer solution is found, it invokes a user-defined separation procedure. In our
case, since the solution at hand is integer, the separation is a simple O(|E|)
exploration of the graphs Gk = (V,Ek) with Ek = {(i, j) ∈ E : wk

ij = 1} to look
for subtours not involving the depot.

6.3 Results

All the models presented in previous sections have been coded in Python 3.11.2.
The Constraint Programming models of Sections 6.1 and 6.2 have been solved
via the CP-SAT solver of Google OR-Tools 9.6 [150] while the Mixed Integer
Linear model of Section 6.2 has been solved with Gurobi 10.0 [153].

The outcome of the experimental campaign is discussed in the remainder of
this section and is organized according to the tackled problems. Tables 17-24
report, for each instance: i) the instance name; ii) the lower bound eventually
produced and the best heuristic solution ([LB, UB]); iii) the computing time
to find the best heuristic solution (Secbst); iv) the eventual computing time to
prove optimality (Sectot); v) a final summary column (Best bounds) containing
the current state-of-the-art results of each instance for easing future research.

In addition, we use a dash whenever a result is not retrieved or the time limit
is reached, and we mark in italics the results of our models not matching nor
improving best-known bounds while in bold those producing new best bounds.
A line with the average of the relevant column is present in the bottom of each
table, to ease the interpretation of the results. Hardware configurations, solvers
used, experimental settings and time limits are finally reported in the notes of
the tables for each approach.

6.3.1 Benchmark Instances

To evaluate the performance of the proposed models for both the PDSTSP-c
and the new PDSVRP-c, we consider the instances originally introduced in [22]
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for the PDSTSP-c2. The number n of customers varies from 15 to 200 (first
number of the instance name) and the instances are divided into small (n ≤ 30)
and large (n > 30). The number m of drones available varies in the range [3, 6]
for the small instances and [5, 10] for the large ones. The traveling distances for
trucks are computed using Manhattan distances and a speed of 30 km/h, while
drones follow the Euclidean distance and the optimal travel times (rounded
up to the nearest integer) are pre-calculated for each collaborative cluster of k
drones. The interested reader can find all the details of the instances in [22].

For generating PDSVRP-c instances, we used the same set of benchmarks
and added the number s of trucks chosen in the range [2, 3] for small instances
and in [2, 5] for large instances.

6.3.2 PDSTSP-c

In this section, we compare the results obtained by solving the CP1 model
of Section 6.1.2, with and without the valid inequality (47). The results are
summarized in Table 17 for the small instances and in Table 18 for the large ones.
We compare CP1 with the methods introduced in [22], namely a MILP model
solved with IBM CPLEX 12.1 [155] and two versions of a Ruin & Recreate meta-
heuristic: RnR fast and RnR. Notice that the results of the MILP model in [22]
are only available for small instances and those reported for the Ruin&Recreate
methods are the best over 30 runs. To fully understand the impact of inequality
(47), we also considered the MILP model described in Section 6.2.4 for the
PDSVRP-c, and run it with s = 1 (one truck only) as well as the inequality
(47). This method is run on small instances only, since [22]) demonstrated that
MILP models are not suitable for large instances.

We are not aware of other existing methods to deal with this problem.

2Available at: http://orlab.com.vn/home/download

84

http://orlab.com.vn/home/download


T
ab

le
17

:
E

x
p

er
im

en
ta

l
re

su
lt

s
o
n

th
e

P
D

S
T

S
P

-c
.

S
m

a
ll

in
st

a
n

ce
s.

R
n

R
fa

st
[2

2]
a

R
n

R
[2

2]
a

M
IL

P
[2

2
]b

M
I
L
P

+
(4

7)
c

C
P

1
d

C
P

1
+

(4
7)

d
B

es
t

In
st

an
ce

U
B

S
ec

b
st

U
B

S
ec

b
st

[L
B

,
U

B
]

S
ec

to
t

[L
B

,
U

B
]

S
ec

to
t

S
ec

b
st

[L
B

,
U

B
]

S
ec

to
t

S
ec

b
st

[L
B

,
U

B
]

S
ec

to
t

S
ec

b
st

b
ou

n
d

s

15
-r

-e
92

0
.3

2
92

0
.9

5
[9

2,
92

]
8.

65
[9

2,
9
2]

12
1
5.

79
85

0
.0

0
[9

2,
92

]
0.

84
0.

44
[9

2,
92

]
1.

1
4

1
.1

0
92

15
-r

c-
c

4
4

0.
4
3

44
1
.4

6
[3

1
.7

4
,

44
]

-
[4
4

,
44

]
18

37
.9

5
1
79

0
.0

9
[4

0
,

4
4

]
-

28
.7

9
[4
4

,
44

]
12

.0
0

11
.9

4
44

16
-c

-c
60

0.
5
2

6
0

2.
14

[6
0,

6
0]

2
.6

1
[6
0

,
60

]
3.

66
3.

63
[6
0

,
60

]
2
.9

5
2.

90
[6

0
,

60
]

2
.1

0
2.

0
5

60
16

-r
-e

1
12

0.
55

11
2

1.
52

[1
1
2,

11
2
]

6
3.

86
[9

8.
2
0,

1
12

]
-

25
0.

10
[1

12
,

11
2]

2.
00

1.
94

[1
12

,
11

2
]

1
.6

1
1.

57
11

2
18

-c
-c

56
0.

42
56

1
.8

6
[3

8.
72

,
56

]
-

[5
6

,
56

]
12

58
.0

6
5
0.

89
[4

4
,

56
]

-
30

2.
7
6

[5
6

,
56

]
42

.2
2

42
.1

3
56

18
-r

-e
96

0.
59

96
1.

79
[8

6.
94

,
96

]
-

[8
7
.8

6,
9
6]

-
2
33

8.
1
5

[9
2,

9
6

]
-

55
.8

3
[9
6

,
96

]
4.

7
0

4
.6

3
96

18
-r

c-
c

58
0.

54
57

2.
40

[3
7.

78
,

5
7]

-
[5

6,
57

]
-

30
60

.2
1

[3
8,

6
0

]
-

3
99

.4
3

[5
7

,
57

]
18

03
.9

3
6
.5

7
57

19
-c

-c
44

0.
4
8

4
4

1.
81

[2
8
.0

6,
44

]
-

[4
0.

8
5,

4
4]

-
3
30

2
.5

8
[3

2,
44

]
-

64
.5

0
[4
4

,
44

]
24

.9
1

11
.0

0
44

20
-c

-c
43

0.
6
0

4
3

2.
54

[3
0
.9

9,
44

]
-

[3
9.

4
2,

4
3]

-
2
37

4
.0

4
[4
0

,
4
3]

-
10

2.
82

[4
0

,
43

]
-

14
7.

26
[4

0,
4
3]

20
-r

-c
64

0.
43

64
1.

91
[5

5.
35

,
64

]
-

[6
1
.8

0,
6
4]

-
3
32

6.
7
2

[5
6,

64
]

-
27

6.
1
5

[6
4

,
64

]
73

.3
9

73
.2

9
64

20
-r

-e
82

0.
62

80
2.

00
[6

2.
59

,
88

]
-

[7
2
.8

0,
8
2]

-
3
23

7.
9
8

[7
2,

80
]

-
60

6.
1
3

[8
0

,
80

]
38

.1
1

38
.0

0
80

20
-r

c-
c

96
0.

41
96

2.
37

[9
6
,

96
]

0.
9

[9
6,

9
6]

46
0.

30
1
.1

4
[9

6,
96

]
6.

4
8

6.
4
2

[9
6
,

96
]

6
.2

3
6
.1

7
96

20
-r

c-
e

1
00

0.
46

10
0

1.
0
9

[1
00

,
1
0
0]

88
.7

8
[9

0
,

1
00

]
-

29
2
.9

8
[1

00
,

10
0
]

6.
92

6
.8

7
[1

0
0,

10
0]

4.
70

4.
6
5

1
00

21
-c

-c
62

0.
4
8

6
2

2.
25

[4
1
.8

0,
64

]
-

[4
4
,

64
]

-
2
28

1.
0
4

[3
6
,
6
4

]
-

18
.0

2
[6
0

,
62

]
-

5
8.

44
[6

0,
6
2]

21
-r

-e
85

0.
59

85
1.

74
[5

9.
52

,
1
00

]
-

[7
5
.2

5,
8
8]

-
3
57

2.
9
8

[4
9
,
8
8

]
-

15
12

.1
1

[8
5

,
85

]
9
40

.5
5

12
8
.9

4
85

23
-c

-e
80

0.
6
0

8
0

2.
49

[5
8
.1

5,
80

]
-

[5
8.

1
5,

8
0]

-
2
69

8
.3

1
[8
0

,
8
0]

0.
8
4

0.
78

[8
0

,
80

]
1.

3
1

1
.2

5
80

23
-r

-c
88

0.
42

88
1.

83
[8

8,
88

]
32

93
.1

6
[8

4,
8
8]

-
30

4
2.

55
[8

8,
88

]
21

8.
07

21
7.

97
[8

8,
8
8]

8.
9
7

8
.9

0
88

24
-c

-e
84

0.
7
9

8
4

2.
50

[7
8
.4

,
84

]
-

[7
8.

4
0,

8
4]

-
3
56

7
.0

8
[8
4

,
8
4]

14
.0

7
1
3.

98
[8
4

,
84

]
11

.0
5

10
.9

7
84

24
-r

-e
1
12

0
.5

2
11

2
1.

57
[9

1.
05

,
11

2
]

-
[1

0
1,

11
2]

-
1
81

9
.7

4
[1

0
8,

11
2]

-
4
.7

6
[1
1
2

,
11

2]
95

5.
94

3.
60

1
12

24
-r

c-
c

72
0.

7
3

71
4.

06
[6

9.
58

,
8
8]

-
[6

9
.5

8,
72

]
-

14
.1

3
[6
8
,

71
]

-
22

45
.1

7
[7
0

,
7
0

]
19

0
.0

3
1
89

.8
6

70
25

-c
-c

56
0.

60
56

2.
92

[3
7
.3

3,
56

]
-

[3
7.

83
,

56
]

-
6
94

.2
6

[3
5
,

5
6]

-
76

4.
5
0

[5
6

,
56

]
44

.8
5

38
.6

2
5
6

25
-r

-e
10

6
0.

96
10

4
3.

14
[7

6
.1

1,
1
2
0]

-
[9

5.
73

,
10

8
]

-
35

3
3.

88
[5
8
,
1
0
8

]
-

60
.5

8
[1
0
4

,
10

4
]

28
8.

19
2
88

.0
4

1
04

25
-r

c-
e

92
0.

71
92

2
.2

5
[6

6.
99

,
10

0]
-

[8
3
.6

0,
96

]
-

26
3
6.

83
[6
0
,
9
7

]
-

9
0.

45
[9
2

,
92

]
1
13

.7
6

11
3
.6

3
9
2

26
-r

-c
10

3
0.

53
10

3
2.

58
[9

5
.2

6,
1
2
8]

-
[1

0
0.

18
,

10
3]

-
34

0
9.

09
[8
4
,
1
0
4

]
-

27
46

.8
6

[1
0
1

,
10

3
]

-
10

7
.0

6
[1

0
1,

10
3]

27
-c

-c
8
4

0.
49

84
2.

18
[8

3.
23

,
8
4]

-
[6

4.
72

,
8
4]

-
2
67

2
.8

4
[8

4,
84

]
1.

91
1.

85
[8
4

,
84

]
1.

80
1
.7

5
8
4

27
-c

-e
6
8

0.
72

68
6.

27
[4

2.
04

,
6
8]

-
[4

2.
04

,
6
8]

-
1
42

9
.8

6
[3
1
,

68
]

-
1
.7

6
[6
8

,
68

]
33

.2
3

1
.3

6
6
8

27
-r

c-
c

1
0
0

0
.7

7
10

0
5
.3

0
[1

00
,

10
0]

72
1.

2
5

[8
5.

34
,

10
0
]

-
29

1
5.

17
[1

00
,

10
0]

39
4.

35
39

4.
19

[1
00

,
1
00

]
71

.1
7

71
.0

6
10

0
27

-r
c-

e
84

0.
7
9

8
4

2.
70

[5
9.

52
,

1
0
0]

-
[6

4.
29

,
8
8]

-
12

02
.7

0
[4
2
,
8
8

]
-

2
06

6.
04

[8
4

,
8
4]

57
6.

56
54

.8
84

29
-r

c-
e

11
6

0.
7
2

1
16

1.
69

[9
7.

71
,

12
4]

-
[1

09
.7

5
,

1
16

]
-

22
14

.7
1

[1
1
6

,
11

6]
6
54

.5
8

65
4.

40
[1
1
6

,
11

6]
8
.6

0
8.

53
11

6
30

-c
-c

96
0
.6

5
96

3
.7

6
[8

3
.7

8
,

96
]

-
[8

3.
78

,
96

]
-

18
27

.6
4

[9
6

,
96

]
2.

30
2.

22
[9
6

,
9
6]

3.
22

3.
1
4

96

A
ve

ra
ge

81
.1

7
0.

58
80

.9
7

2
.4

4
[6

8.
69

,
8
4.

83
]

-
[7

2.
42

,
8
1.

63
]

-
20

1
3.

71
[6

9.
7
7,

8
1.

70
]

-
42

1
.6

9
[8

0
.7

0,
80

.9
3]

-
48

.0
1

[8
0
.7

0,
80

.9
3
]

a
C

P
U

A
M

D
R

y
ze

n
37

00
X

-
4x

3
.6

G
H

z,
4
x
4
.4

G
H

z,
1
6

th
re

ad
s;

R
A

M
32

G
B

;
b

es
t

re
su

lt
s

ov
er

30
ru

n
s

b
C

P
U

A
M

D
R

y
ze

n
37

00
X

-
4x

3.
6

G
H

z,
4x

4.
4

G
H

z,
16

th
re

ad
s;

R
A

M
32

G
B

;
C

P
L

E
X

12
.1

;
3
60

0
se

c
ti

m
e

li
m

it
c

C
P

U
In

te
l

C
or

e
i7

1
27

00
F

-
4x

3.
6

G
H

z,
8x

4.
9

G
H

z,
2
0

th
re

ad
s;

R
A

M
32

G
B

;
G

u
ro

b
i

1
0.

0;
36

0
0

se
c

ti
m

e
li

m
it

d
C

P
U

In
te

l
C

or
e

i7
12

70
0F

-
4
x
3.

6
G

H
z,

8x
4.

9
G

H
z,

2
0

th
re

a
d

s;
R

A
M

32
G

B
;

O
R

-T
o
ol

s
C

P
-S

A
T

9.
6;

36
0
0

se
c

ti
m

e
li

m
it

85



From the results displayed in Table 17, we see that inequalities (47) are very
effective in improving the performance of the models, both CP1 and MILP .
Given this, we will always consider these inequalities for the next experiments.

Table 17 reveals that the CP approach matches (or improves in the case
of instance 24-rc-c) all the best-known heuristic solutions and outperforms the
MILP method, both in terms of quality and times. Additionally, we observe how
the CP1+(47) improves several lower bounds and closes all but three instances.

To better highlight the differences between the MILP and the CP meth-
ods, we report in Figure 15 their percentage optimality gaps, calculated as
100 · UB−LB

UB , and in Figure 16 their required time to find the best solution
(Secbst). Figure 15 shows that the CP1 model clearly leads to lower optimality
gaps than the MILP model with a time limit of 3600 seconds, the latter also
demonstrating scalability issues on larger instances as remarked by its linearly
increasing trend (dashed line). Whereas Figure 16 shows that the CP1 model
is substantially faster in retrieving the best heuristic solution. These results
suggest that the Constraint Programming-based approach has great potential
for the PDSTSP-c problem.

Figure 15: The optimality gap in percentage for the MILP+(47) and CP1+(47)
on small PDSTSP-c instances.
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Figure 16: The time required in seconds by the MILP+(47) and CP1+(47) to
retrieve the best heuristic solution (UB).

Table 18: Experimental results on the PDSTSP-c. Large instances.

RnR fast [22]a RnR [22]a CP1b CP1+(47)b Best
Instance UB Secbst UB Secbst [LB, UB] Sectot Secbst [LB, UB] Sectot Secbst bounds

50-r-e 120 2.45 116 20.00 [49, 140 ] - 2123.27 [116 , 128 ] - 2083.72 116
53-r-e 136 2.23 132 15.17 [68, 160 ] - 2631.50 [132, 140 ] - 3177.59 132
66-rc-e 128 3.13 124 16.61 [80, 168 ] - 393.29 [124, 132 ] - 2927.03 124
67-c-c 76 2.32 76 29.05 [68, 80 ] - 133.82 [73, 80 ] - 403.51 [73, 76]
68-rc-c 79 2.12 76 20.45 [72, 112 ] - 2488.01 [76, 76] 3089.06 3088.37 76
76-c-c 52 2.15 52 10.46 [40, 52] - 26.87 [52, 52] 379.86 31.99 52
82-c-e 64 2.63 64 18.07 [64, 64] 33.30 30.55 [64, 64] 59.21 58.42 64
82-rc-c 108 2.65 104 27.42 [100, 140 ] - 2373.65 [104, 144 ] - 3269.15 104
88-c-e 108 3.56 108 9.62 [108, 108] 51.03 50.09 [108, 108] 92.47 91.56 108
91-r-c 128 3.64 124 72.49 [116, 188 ] - 2887.23 [120, 164 ] - 3302.76 [120, 124]
99-rc-c 108 3.64 100 51.21 [80, 168 ] - 1640.06 [98, 164 ] - 2575.79 [98, 100]
101-r-c 124 3.98 120 99.71 [96, 176 ] - 3456.53 [114, 180 ] - 3338.22 [114, 120]
103-rc-c 128 4.38 124 94.25 [108, 176 ] - 1967.67 [120, 164 ] - 2147.63 [120, 124]
105-rc-e 124 5.78 120 62.71 [80, 184 ] - 903.40 [109, 132 ] - 1831.25 [109, 120]
108-rc-e 144 5.56 136 61.71 [112, 188 ] - 3088.15 [134, 188 ] - 2521.07 [134, 136]
114-rc-c 100 4.69 96 62.73 [68, 152 ] - 2591.56 [94, 148 ] - 2821.57 [94, 96]
121-rc-e 128 6.41 124 68.74 [108, 180 ] - 2865.31 [121, 160 ] - 1201.60 [121, 124]
126-r-c 161 5.89 160 120.93 [104, 228 ] - 1457.72 [151, 216 ] - 3028.00 [151, 160]
126-rc-e 148 7.38 144 71.04 [124, 196 ] - 2945.63 [136, 188 ] - 1053.63 [136, 144]
144-rc-r 132 6.52 128 172.75 [120, 188 ] - 2801.00 [122, 204 ] - 3289.31 [122, 128]
154-c-c 72 7.17 72 62.96 [68, 72] - 63.64 [68, 72] - 61.68 [68, 72]
165-r-c 176 7.61 164 280.18 [118, 292 ] - 2386.33 [140, 312 ] - 3528.39 [140, 164]
167-r-e 200 10.55 188 228.31 [72, 296 ] - 3309.32 [160, 304 ] - 2209.10 [160, 188]
173-r-c 180 8.64 164 373.43 [92, 312 ] - 2439.90 [141, 280 ] - 2184.87 [141, 164]
173-rc-r 144 9.22 133 135.20 [51, 208 ] - 2539.43 [115, 208 ] - 3556.41 [115, 133]
181-r-e 232 11.20 224 196.09 [125, 332 ] - 3252.35 [199, 348 ] - 3566.96 [199, 224]
185-c-c 96 11.26 96 61.53 [96, 96] 1279.96 1276.68 [96, 96] 622.29 619.07 96
187-rc-e 200 12.67 196 119.95 [78, 284 ] - 2464.47 [167, 288 ] - 3228.65 [167, 196]
198-c-c 64 11.38 64 94.12 [64, 68 ] - 82.40 [64, 68 ] - 155.40 64
200-r-e 224 13.88 212 368.97 [40, 324 ] - 3541.42 [162, 328 ] - 2132.93 [162, 212]

Average 129.47 6.16 124.70 100.86 [85.63, 177.73] - 1940.38 [116.00, 171.20] - 2116.19 [116.00, 124.70]

a CPU AMD Ryzen 3700X - 4x3.6 GHz, 4x4.4 GHz, 16 threads; RAM 32 GB; best results over 30 runs
b CPU Intel Core i7 12700F - 4x3.6 GHz, 8x4.9 GHz, 20 threads; RAM 32 GB; OR-Tools CP-SAT 9.6; 3600 sec time limit
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Moving to the larger instances reported in Table 18, we observe that CP1+(47)
can provide, for the first time, valid lower bounds for all instances. Furthermore,
10 over 30 bounds equal the best-known solutions, hence proving for the first
time the optimality of these solutions. In the remaining instances, the gaps be-
tween the lower bound and the heuristic solution are generally small. However,
the upper bound provided by the CP models is not competitive with respect to
that of the meta-heuristic methods. Also, the running times are larger, although
it is worth observing once again that for the RnR methods, the best results over
30 runs are provided, making the timing presented less fair.

6.3.3 PDSVRP-c

In this section, we compare the performance of the CP2, CP3, and MILP
models described in Sections 6.2.2-6.2.4 for the PDSVRP-c. Their results are
summarized in Tables 19 and 20 for the small instances, covering respectively
2 and 3 trucks, and in Tables 21-24 for the large instances, using respectively
2, 3, 4, and 5 trucks. The PDSVRP-c is first introduced in this work, so no
comparison is available with methods from other authors.

Table 19: Experimental results on the PDSVRP-c. Small instances, 2 trucks.

MILP+(47)a CP2+(47)b CP3+(47)b Best
Instance [LB, UB] Sectot Secbst [LB, UB] Sectot Secbst [LB, UB] Sectot Secbst bounds

15-r-e [92 , 92] 2654.11 745.82 [92, 92] 157.1 0.21 [92, 92] 2.49 0.45 92
15-rc-c [33, 33] 9.42 7.46 [33, 33] 0.92 0.52 [33, 33] 5.14 2.92 33
16-c-c [40, 40] 50.04 3.42 [40, 40] 6.43 0.29 [40, 40] 7.17 2.26 40
16-r-e [104, 108] - 783.12 [108, 108] 83.49 0.69 [108, 108] 5.03 1.75 108
18-c-c [44, 44] 22.76 22.72 [44, 44] 3.09 2.4 [44, 44] 7.45 5.98 44
18-r-e [92, 92] 1153.19 197.42 [92, 92] 43.36 1.57 [92, 92] 6.92 4.52 92
18-rc-c [44, 46] - 3569.88 [46, 46] 459.47 161.29 [46, 46] 401.32 45.46 46
19-c-c [34, 36] - 3220.87 [36, 36] 7.85 4.15 [36, 36] 15.41 3.84 36
20-c-c [40, 40] 907.04 5.25 [40, 40] 4.35 2.23 [40, 40] 4.26 1.75 40
20-r-c [48, 48] 2023.70 1886.70 [48, 48] 454.46 9.19 [48, 48] 62.72 43.56 48
20-r-e [63, 76] - 2707.00 [72, 72] 462.23 331.95 [72, 72] 27.42 23.27 72
20-rc-c [63, 64] - 1977.44 [58, 64] - 1.15 [64, 64] 14.57 8.09 64
20-rc-e [72, 80] - 3031.82 [64, 80] - 1.49 [80, 80] 24.93 7.82 80
21-c-c [40, 40] 59.12 8.87 [40, 40] 9.94 1.36 [40, 40] 11.6 2.01 40
21-r-e [51, 76] - 3348.26 [76, 76] 475.63 4.08 [76, 76] 82.46 9.41 76
23-c-e [44, 80] - 0.98 [42, 80] - 0.98 [80, 80] 17.85 0.67 80
23-r-c [60, 60] 1536.90 1379.17 [57, 60] - 9.64 [60, 60] 475.01 10.69 60
24-c-e [56, 60] - 505.00 [60, 60] 116.75 34.53 [60, 60] 54.04 53.77 60
24-r-e [68, 100] - 0.89 [67, 100] - 3.09 [100, 100] 68.82 35.52 100
24-rc-c [49, 52] - 42.34 [52, 52] 1350.35 25.78 [52, 52] 307.8 82.07 52
25-c-c [40, 40] 2523.46 1988.78 [40, 40] 899.8 26.8 [40, 40] 79.98 63.91 40
25-r-e [72, 92] - 693.55 [85, 88] - 35.41 [88, 88] 175.75 44.11 88
25-rc-e [64, 80] - 239.90 [59, 76] - 80.16 [76, 76] 189.81 3.42 76
26-r-c [68, 70] - 1381.35 [65, 70] - 20.87 [70, 70] 2701.81 700.35 70
27-c-c [40, 52] - 83.87 [42, 52] - 2.32 [52, 52] 37.07 16.67 52
27-c-e [7, 68] - 6.18 [68, 68] 2741.9 0.65 [68, 68] 130.71 1.56 68
27-rc-c [64, 72] - 58.13 [64, 72] - 8.96 [72, 72] 79.95 53.96 72
27-rc-e [36, 80] - 171.86 [47, 76] - 20.22 [76, 76] 198.05 46.71 76
29-rc-e [62, 100] - 3092.20 [65, 100] - 13.71 [100, 100] 59.26 48.57 100
30-c-c [36, 64] - 2935.06 [48, 64] - 2.09 [64, 64] 39.64 2.99 64

Average [54.20, 66.17] - 1136.51 [58.33, 65.63] - 26.93 [65.63, 65.63] 176.48 44.27 65.63

a CPU Intel Core i7 12700F - 4x3.6 GHz, 8x4.9 GHz, 20 threads; RAM 32 GB; Gurobi 10.0; 3600 sec time limit
b CPU Intel Core i7 12700F - 4x3.6 GHz, 8x4.9 GHz, 20 threads; RAM 32 GB; OR-Tools CP-SAT 9.6; 3600 sec time
limit
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Table 20: Experimental results on the PDSVRP-c. Small instances, 3 trucks.

MILP+(47)a CP2+(47)b CP3+(47)b Best
Instance [LB, UB] Sectot Secbst [LB, UB] Sectot Secbst [LB, UB] Sectot Secbst bounds

15-r-e [72, 92] - 3401.20 [92, 92] 331.05 0.19 [92, 92] 4.44 0.36 92
15-rc-c [32, 32] 11.08 11.01 [32, 32] 1.43 1.27 [32, 32] 5.95 3.66 32
16-c-c [36, 36] 2.20 2.18 [36, 36] 1.21 1.17 [36, 36] 6.01 5.41 36
16-r-e [68, 108] - 2332.97 [108, 108] 290.7 1.05 [108, 108] 6.55 1.15 108
18-c-c [44, 44] 25.27 25.21 [44, 44] 3.02 1.61 [44, 44] 6.37 2.12 44
18-r-e [88, 92] - 614.09 [92, 92] 22.3 0.92 [92, 92] 12 2.1 92
18-rc-c [40, 40] 18.60 18.53 [40, 40] 5.22 5.09 [40, 40] 30.65 24.69 40
19-c-c [29, 36] - 3554.00 [36, 36] 2.26 0.86 [36, 36] 19.25 3.59 36
20-c-c [40, 40] 383.19 139.78 [40, 40] 1.9 0.72 [40, 40] 7.35 1.27 40
20-r-c [37, 37] 1202.72 582.24 [37, 37] 8.3 3.81 [37, 37] 99.17 36.74 37
20-r-e [44, 72] - 45.40 [72, 72] 443.37 7.4 [72, 72] 17.12 9.27 72
20-rc-c [48, 48] 604.42 8.91 [48, 48] 99.53 3.15 [48, 48] 94.88 26.53 48
20-rc-e [60, 68] - 595.63 [68, 68] 122.18 42 [68, 68] 45.74 8.25 68
21-c-c [36, 36] 28.87 6.92 [36, 36] 4.96 4.75 [36, 36] 16.5 7.81 36
21-r-e [34, 76] - 689.44 [76, 76] 891.56 11.3 [76, 76] 427.99 28.05 76
23-c-e [36, 80] - 3.88 [66, 80] - 0.94 [80, 80] 25.44 0.93 80
23-r-c [48, 48] 203.22 44.94 [48, 48] 20.92 14.24 [48, 48] 590.1 135.03 48
24-c-e [56, 60] - 2000.96 [60, 60] 135.61 3.35 [60, 60] 28.56 11.45 60
24-r-e [47, 100] - 8.28 [80, 100] - 1.72 [100, 100] 64.88 8.77 100
24-rc-c [41, 44] - 3456.94 [44, 44] 227.22 77.94 [44, 44] 926.73 387.43 44
25-c-c [30, 40] - 97.39 [37, 37] 70.58 31.83 [37, 37] 107.3 42.94 37
25-r-e [57, 96] - 3298.63 [59, 85] - 44.6 [85, 85] 404.43 242.54 85
25-rc-e [52, 69] - 2601.65 [65, 66] - 141.25 [66, 66] 356.83 61.26 66
26-r-c [56, 56] 180.88 67.14 [52, 56] - 1399.21 [55, 56] - 70.15 56
27-c-c [36, 36] 1367.86 936.48 [36, 36] 577.74 3.69 [36, 36] 121.7 39.48 36
27-c-e [8, 68] - 4.92 [68, 68] 2315.01 1.31 [68, 68] 437.75 1.71 68
27-rc-c [60, 60] 223.20 213.85 [60, 60] 6.79 6.01 [60, 60] 74.79 63.9 60
27-rc-e [28, 76] - 155.68 [56, 76] - 8.02 [76, 76] 520.4 14.61 76
29-rc-e [53, 108] - 3337.59 [72, 100] - 23.67 [100, 100] 56.98 35.42 100
30-c-c [26, 38 ] - 3182.76 [38, 38] 96.12 5.63 [38, 38] 145.11 15.99 38

Average [44.73, 61.20] 1047.95 [56.60, 60.37] - 61.62 [60.33, 60.37] - 43.09 60.37

a CPU Intel Core i7 12700F - 4x3.6 GHz, 8x4.9 GHz, 20 threads; RAM 32 GB; Gurobi 10.0; 3600 sec time limit
b CPU Intel Core i7 12700F - 4x3.6 GHz, 8x4.9 GHz, 20 threads; RAM 32 GB; OR-Tools CP-SAT 9.6; 3600 sec time
limit

Tables 19 and 20 suggest that solving the MILP is less effective than solving
the CP models, both in terms of bounds provided and computing time. The
only remarkable exception is instance 26-r-c with 3 trucks (Table 20), which is
closed by the former but not by the latters.

One can also observe that the performances of MILP degrade with the in-
creasing of the instance size, much more than that of the CP methods. After
some tests with larger instances (not reported here), and considering the anal-
ogous decision made for the PDSTSP-c in [22], we decided to not consider the
MILP for the experiments on large instances (Tables 21-24).

The results of the two CP models suggest that the 3-indices formulation
(CP3) is superior, being able to close all the instances but one. The 2-indices
model appears slower even though the quality of its upper bounds is the same of
CP3. This highlights that the weakness of the CP2 model is in the computation
of the lower bound.

The results reported in Tables 21-24 for large instances (notice that the
column Sectot has been omitted, since no optimality is proven) and a varying
number of trucks lead to the following observations. The model with 3 indices,
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which performs the best on small instances (see Tables 19 and 20), is instead
performing worse than the 2-indices model on large ones, especially in terms of
retrieved lower bounds. This might suggest that handling multiple truck tours
with the MultipleCircuit command becomes effective when tours are complex.

There are however a few exceptions where the 3-indices model is better either
in terms of lower or upper bounds. Specifically, the CP3 model appears to be
more consistent in instances with many customers and a few trucks, in which
the 2-indices model often fails to produce any feasible solution. This might
indicate that the models are approaching their natural limit.

Table 21: Experimental results on the PDSVRP-c. Large instances, 2 trucks.

CP2+(47)c CP3+(47)c Best
Instance [LB, UB] Secbst [LB, UB] Secbst bounds

50-r-e [65, 116] 206.57 [63, 120] 168.48 [65, 116]
53-r-e [77, 112] 894.09 [82, 128] 1756.80 [82, 112]
66-rc-e [72, 112] 1829.73 [73, 136] 866.28 [73, 112]
67-c-c [38, 52] 22.33 [31, 52] 827.01 [38, 52]
68-rc-c [50, 56] 3332.51 [52, 104] 3088.50 [52, 56]
76-c-c [26, 36] 20.60 [16, 40] 185.95 [26, 36]
82-c-e [32, 64] 25.41 [17, 64] 73.68 [32, 64]
82-rc-c [62, 116] 2974.84 [56, 132] 2615.62 [62, 116]
88-c-e [54, 84] 298.18 [58, 112] 49.28 [58, 84]
91-r-c [75, 152] 405.02 [75, 160] 2249.67 [75, 152]
99-rc-c [63, 96] 2083.65 [51, 144] 564.95 [63, 96]
101-rc [71, 164] 2921.49 [53, 152] 1731.45 [71, 152]
103-rc-c [69, 124] 2603.95 [52, 128] 2912.93 [69, 124]
105-rc-e [65, 136] 2170.84 [57, 148] 1383.74 [65, 136]
108-rc-e [79, 172] 1683.07 [70, 160] 831.13 [79, 160]
114-rc-c [58, 124] 3417.23 [49, 140] 411.62 [58, 124]
121-rc-e [70, 156] 647.12 [56, 152] 2088.27 [70, 152]
126-rc-e [87, 220] 3115.59 [67, 184] 1956.96 [87, 184]
126-r-c [78, 160] 2679.11 [56, 156] 1448.65 [78, 156]
144-rc-c [67, 272] 2610.83 [47, 168] 3103.46 [67, 168]
154-c-c [35, -] - [8, 72] 279.16 [35, 72]
165-r-c [88, -] - [67, 224] 3544.74 [88, 224]
167-r-e [100, -] - [74, 256] 3151.22 [100, 256]
173-r-c [85, 204] 2929.34 [59, 240] 2251.40 [85, 204]
173-rc-c [79, -] - [48, 180] 1797.98 [79, 180]
181-r-e [112, -] - [78, 252] 3388.32 [112, 252]
185-c-c [48, -] - [24, 96] 316.31 [48, 96]
187-rc-e [100, 308] 3391.71 [65, 212] 1567.38 [100, 212]
198-c-c [32, -] - [12, 64] 271.52 [32, 64]
200-r-e [105, -] - [68, 324] 2072.94 [105, 324]

Average [68.07, -] - [52.80, 150.00] 1565.18 [68.47, 141.20]

c CPU Intel Core i7 12700F - 4x3.6 GHz, 8x4.9 GHz, 20 threads; RAM 32 GB;
OR-Tools CP-SAT 9.6; 3600 sec time limit
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Table 22: Experimental results on the PDSVRP-c. Large instances, 3 trucks.

CP2+(47)c CP3+(47)c Best
Instance [LB, UB] Secbst [LB, UB] Secbst bounds

50-r-e [48, 112] 79.65 [47, 112] 411.11 [48, 112]
53-r-e [56, 96] 860.00 [51, 112] 2074.85 [56, 96]
66-rc-e [53, 108] 282.64 [38, 116] 139.49 [53, 108]
67-c-c [27, 52] 32.82 [9, 52] 353.35 [27, 52]
68-rc-c [39, 56] 756.18 [34, 104] 655.52 [39, 56]
76-c-c [18, 24] 42.28 [12, 52] 81.65 [18, 24]
82-c-e [22, 64] 21.88 [8, 64] 26.79 [22, 64]
82-rc-c [47, 80] 1727.16 [38, 128] 312.65 [47, 80]
88-c-e [36, 76] 375.27 [32, 104] 587.30 [36, 76]
91-r-c [56, 120] 3036.11 [42, 148] 726.56 [56, 120]
99-rc-c [47, 64] 2650.32 [29, 128] 196.67 [47, 64]
101-rc [52, 128] 2645.43 [36, 144] 2520.98 [52, 128]
103-rc-c [49, 96] 2229.84 [32, 136] 2332.89 [49, 96]
105-rc-e [49, 120] 877.50 [34, 132] 907.44 [49, 120]
108-rc-e [58, 184] 1969.45 [37, 160] 1273.20 [58, 160]
114-rc-c [44, 80] 1676.32 [32, 112] 466.45 [44, 80]
121-rc-e [52, 124] 2820.31 [40, 152] 1701.91 [52, 124]
126-rc-e [63, 136] 2839.24 [44, 164] 2663.93 [63, 136]
126-r-c [56, 140] 2191.71 [38, 148] 3114.44 [56, 140]
144-rc-c [50, 132] 3362.32 [35, 160] 2396.79 [50, 132]
154-c-c [24, 36] 195.44 [8, 68] 1368.67 [24, 36]
165-r-c [68, -] - [50, 212] 3120.16 [68, 212]
167-r-e [73, -] - [54, 204] 2112.65 [73, 204]
173-r-c [65, -] - [45, 212] 2004.93 [65, 212]
173-rc-c [58, 172] 2994.35 [37, 168] 2592.28 [58, 168]
181-r-e [82, -] - [55, 216] 3342.10 [82, 216]
185-c-c [32, -] - [14, 96] 1280.86 [32, 96]
187-rc-e [74, -] - [46, 212] 2849.33 [74, 212]
198-c-c [22, 36] 158.92 [8, 68] 108.97 [22, 36]
200-r-e [77, -] - [48, 252] 1817.10 [77, 252]

Average [49.90, -] - [34.43, 137.87] 1451.37 [49.90, 120.40]

c CPU Intel Core i7 12700F - 4x3.6 GHz, 8x4.9 GHz, 20 threads; RAM 32 GB;
OR-Tools CP-SAT 9.6; 3600 sec time limit
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Table 23: Experimental results on the PDSVRP-c. Large instances, 4 trucks.

CP2+(47)c CP3+(47)c Best
Instance [LB, UB] Secbst [LB, UB] Secbst bounds

50-r-e [46, 104] 649.55 [35, 112] 213.25 [46, 104]
53-r-e [50, 96] 1068.12 [38, 112] 548.64 [50, 96]
66-rc-e [41, 104] 3493.30 [34, 108] 1019.85 [41, 104]
67-c-c [21, 48] 25.68 [8, 52] 1297.51 [21, 48]
68-rc-c [32, 52] 410.57 [29, 88] 296.61 [32, 52]
76-c-c [14, 24] 44.33 [12, 56] 24.41 [14, 24]
82-c-e [18, 64] 18.15 [8, 64] 20.44 [18, 64]
82-rc-c [38, 68] 2275.00 [31, 124] 194.26 [38, 68]
88-c-e [28, 76] 76.88 [32, 108] 1177.87 [32, 76]
91-r-c [45, 96] 3019.26 [32, 156] 248.69 [45, 96]
99-rc-c [37, 68] 1058.95 [24, 120] 322.23 [37, 68]
101-rc [42, 76] 3171.49 [30, 144] 2589.25 [42, 76]
103-rc-c [39, 80] 1490.89 [26, 140] 521.14 [39, 80]
105-rc-e [39, 116] 261.16 [26, 132] 1691.38 [39, 116]
108-rc-e [46, 124] 454.82 [28, 152] 3163.13 [46, 124]
114-rc-c [35, 88] 2564.47 [26, 120] 1369.36 [35, 88]
121-rc-e [42, 104] 3185.34 [29, 144] 410.13 [42, 104]
126-rc-e [50, 132] 3362.14 [35, 164] 2600.11 [50, 132]
126-r-c [45, 116] 1094.09 [28, 140] 729.26 [45, 116]
144-rc-c [40, 128] 3013.06 [25, 144] 2451.13 [40, 128]
154-c-c [18, 40] 949.21 [8, 72] 63.77 [18, 40]
165-r-c [54, 192] 243.15 [40, 192] 3124.08 [54, 192]
167-r-e [58, 176] 3277.00 [42, 196] 1489.17 [58, 176]
173-r-c [54, 352] 3435.45 [36, 192] 3070.29 [54, 192]
173-rc-c [46, 116] 1650.91 [29, 164] 3368.14 [46, 116]
181-r-e [65, 268] 2937.67 [42, 208] 3048.86 [65, 208]
185-c-c [24, 48] 2350.91 [14, 100] 161.08 [24, 48]
187-rc-e [58, 216] 2551.50 [37, 204] 2097.96 [58, 204]
198-c-c [16, -] - [8, 68] 122.39 [16, 68]
200-r-e [60, 308] 3550.81 [38, 228] 2613.35 [60, 228]

Average [40.03, -] - [27.67, 133.47] 1334.92 [40.17, 107.87]

c CPU Intel Core i7 12700F - 4x3.6 GHz, 8x4.9 GHz, 20 threads; RAM 32 GB;
OR-Tools CP-SAT 9.6; 3600 sec time limit
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Table 24: Experimental results on the PDSVRP-c. Large instances, 5 trucks.

CP2+(47)c CP3+(47)c Best
Instance [LB, UB] Secbst [LB, UB] Secbst bounds

50-r-e [47, 100] 227.16 [30, 112] 54.55 [47, 100]
53-r-e [50, 92] 645.51 [32, 112] 667.24 [50, 92]
66-rc-e [35, 100] 487.89 [24, 120] 482.57 [35, 100]
67-c-c [18, 52] 64.31 [8, 52] 1437.96 [18, 52]
68-rc-c [28, 44] 1047.89 [23, 80] 1776.83 [28, 44]
76-c-c [12, 24] 67.04 [12, 40] 400.81 [12, 24]
82-c-e [15, 64] 17.43 [6, 64] 25.43 [15, 64]
82-rc-c [32, 68] 592.96 [24, 112] 782.49 [32, 68]
88-c-e [23, 72] 218.44 [32, 108] 109.66 [32, 72]
91-r-c [38, 88] 3122.27 [28, 124] 3272.57 [38, 88]
99-rc-c [32, 64] 597.67 [20, 108] 2532.76 [32, 64]
101-rc [36, 112] 532.65 [26, 144] 505.96 [36, 76]
103-rc-c [32, 80] 1419.11 [22, 120] 3400.80 [32, 80]
105-rc-e [33, 112] 1282.90 [21, 124] 410.79 [33, 112]
108-rc-e [39, 120] 957.98 [24, 136] 1566.66 [39, 120]
114-rc-c [30, 64] 733.92 [22, 96] 299.50 [30, 64]
121-rc-e [34, 116] 1034.38 [24, 128] 3100.10 [34, 104]
126-rc-e [41, 120] 2562.32 [29, 148] 2626.65 [41, 120]
126-r-c [37, 116] 1485.59 [24, 144] 807.31 [37, 116]
144-rc-c [34, 104] 2325.39 [22, 136] 2332.08 [34, 104]
154-c-c [15, 36] 1719.34 [6, 68] 669.42 [15, 36]
165-r-c [47, 220] 1614.09 [34, 212] 3294.70 [47, 212]
167-r-e [49, 204] 1884.33 [34, 204] 1667.48 [49, 196]
173-r-c [43, -] - [32, 196] 2657.03 [43, 192]
173-rc-c [39, 116] 2955.97 [24, 164] 3203.29 [39, 116]
181-r-e [54, 204] 3349.71 [35, 204] 2369.20 [54, 204]
185-c-c [20, 48] 1216.37 [12, 60] 2561.48 [20, 48]
187-rc-e [48, 128] 2645.47 [32, 192] 2310.65 [48, 128]
198-c-c [16, 36] 487.28 [8, 68] 118.12 [16, 36]
200-r-e [52, 288] 2545.74 [32, 216] 2152.81 [52, 216]

Average [34.30, -] - [23.40, 126.40] 1586.56 [34.60, 101.60]

c CPU Intel Core i7 12700F - 4x3.6 GHz, 8x4.9 GHz, 20 threads; RAM 32 GB;
OR-Tools CP-SAT 9.6; 3600 sec time limit

6.4 Final Remarks

This work introduces several advances for the Parallel Drone Scheduling Travel-
ing Salesman Problem with cooperative drones. We naturally extend the prob-
lem by considering multiple vehicles for delivery and introduce a valid inequality
that enhances the performance of exact methods. Notably, our research es-
tablishes that Constraint Programming approaches can achieve state-of-the-art
results for both single- and multiple-vehicle cases.

Furthermore, we underscore the significance of developing effective method-
ologies that leverage freely available software to tackle these and other combina-
torial problems. This emphasis on accessible tools is particularly crucial in the
Operations Research context, where the public sharing of code is uncommon.
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7 Conclusions

Based on our experience and the results of our contributions, we envision that
learning-based methodologies could serve as valuable tools to enhance the res-
olution of intricate combinatorial optimization problems. While part of our
contribution tackles challenges in applying supervised methodologies to such
problems, we acknowledge that such methodologies, including Reinforcement
Learning ones, have not yet reached a level of maturity to be deemed an ef-
fective resolution means. Learning methods currently lag behind traditional
state-of-the-art methodologies in terms of performance. Additionally, they pose
challenges in terms of ease of application and versatility compared to part of ex-
isting methodologies, despite demonstrating superior performance. We believe
a common pitfall contributing to sub-optimal performance and complexity in
adoption is that learning techniques have been extensively developed for prob-
lems significantly different from combinatorial ones. Closing this gap requires
further research efforts and new, modified approaches, as exemplified by our
contributions in sections 3 and 4.

Furthermore, our work introduces novel and modified scheduling problems
that may offer unique opportunities to innovate and enhance methodologies in
the context of realistic industrial scenarios. For instance, the workforce con-
straint limiting the number of simultaneously active machines in Section 5 – a
rather practical requirement – breaks the conventional concept of the critical
path, rendering well-known and effective neighborhood-based meta-heuristics
hardly applicable without cumbersome adaptations (an issue we are currently
working on). Additionally, exploring mixed problems involving the scheduling
of activities and the planning of other operations may introduce new challenges
in standard methodologies, requiring the creation of new hybrid methods that
do not increase too much the complexity for broad adoption.

Overall, we believe that our work helps in making a step forward in enriching
the repertoire of problem-solving methodologies and also contributes to the
broader understanding of adapting computational techniques to the complexity
of real-world industrial challenges.
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pher Morris, and Petar Veličković. Combinatorial optimization and rea-
soning with graph neural networks. In Proceedings of the Thirtieth Inter-
national Joint Conference on Artificial Intelligence, pages 4348–4355. In-
ternational Joint Conferences on Artificial Intelligence Organization, 2021.

[21] C. C. Murray and A. G. Chu. The flying sidekick traveling salesman
problem: Optimization of drone-assisted parcel delivery. Transportation
Research Part C: Emerging Technologies, 54:86–109, 2015.
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Acronyms

CO

Combinatorial Optimization.

CP

Constraint Programming.

FFSP

Flexible Flow Shop Scheduling.

FNN

Feedforward Neural Network.

FSP

Flow Shop Scheduling.

GNN

Graph Neural Network.

Js-IG

Job Sequencing - Iterated Greedy.

JSP

Job Shop Scheduling.

MILP

Mixed Integer Linear Programming.

ML

Machine Learning.

oTS

Oracle-based Tabu Search.

PDR

Priority Dispatching Rule.

PDR-IG

Priority Dispatching Rule - Iterated Greedy.
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PDSTSP

Parallel Drone Scheduling Traveling Salesman Problem.

PDSTSP-c

Parallel Drone Scheduling Traveling Salesman Problem with Collective
Drones.

PDSVRP-c

Parallel Drone Scheduling Vehicle Routing Problem with Collective Drones.

PG

Percentage Gap.

PN

Pointer Network.

RCPSP

Resource-Constrained Project Scheduling Problem.

RL

Reinforcement Learning.

RNN

Recurrent Neural Network.

rTRCFFSP

rooted in-Tree Resource Constrained Flexible Flow Shop Scheduling.

SPN

Self-Labeling Pointer Network.

TS

Tabu Search.

TSP

Traveling Salesman Problem.

WTA

Within Tolerance Accuracy.
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