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Load–Displacement
Characterization in Three
Degrees-of-Freedom for General
Lamina Emergent Torsion Arrays
Lamina emergent torsion (LET) joints for use in origami-based applications enables folding
of panels. Placing LET joints in series and parallel (formulating LET arrays) opens the
design space to provide for tunable stiffness characteristics in other directions while main-
taining the ability to fold. Analytical equations characterizing the elastic load–displacement
for general serial–parallel formulations of LET arrays for three degrees-of-freedom are
presented: rotation about the desired axis, in-plane rotation, and extension/compression.
These equations enable the design of LET arrays for a variety of applications, including
origami-based mechanisms. These general equations are verified using finite element anal-
ysis, and to show variability of the LET array design space, several verification plots over a
range of parameters are provided. [DOI: 10.1115/1.4046072]

Keywords: compliant mechanisms, lamina emergent mechanisms, lamina emergent torsion
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1 Introduction
Lamina emergent mechanisms (LEMs) are compliant mecha-

nisms formed from a planar material and have some or all of their
motion out of the plane [1–8]. They can be fabricated using two-
dimensional processes and rely on the compliance of flexible
members formed from the planar material to gain their motion
[9]. Apart from common benefits of compliant mechanisms such
as high precision, the absence of backlash and wear, and the
limited amount of parts [9], LEMs are characterized by a low man-
ufacturing cost, a relatively simple topology, and compactness in
the initial state. Characterization of the load–displacement behavior
of LEMs is an important step to appropriately design mechanisms
with desirable behaviors. They have been used in a variety of appli-
cations, including microelectromechanical systems [1,10] and
origami-based mechanisms [11,12]. A particularly useful LEM
for origami-based mechanisms is the lamina emergent torsion
(LET) joint. The LET joint achieves high rotational compliance
while minimizing the required footprint of the joint, allowing for
origami-like folding of panels and localized joints [13–15].
Recent studies have provided many folding and modeling tech-
niques (e.g., elastic origami models [16], truss frameworks [17],
topology optimization [18], and mechanical properties of paper
folds [19]) and applications (e.g., kinetogami [20], deformable
structures [21], and cylinders [22]) for origami-based mechanisms.
Systems of panels and low-footprint joint designs are beneficial for
applications where the function of the panels depends on the panel
size. This feature can be used to create networks of monolithic
panels and joints to obtain desired motions and functions (e.g.,
deployable devices [23–25], printed circuit boards [26], and actua-
tion origami [27–29]).
LEMs have been placed in series and parallel to facilitate desired

behaviors of systems, and work has been done to characterize the
global bending stiffness in the desired degree-of-freedom (DOF)
[30]. When LEMs are placed in series and parallel, they have
been termed lamina emergent arrays (LEAs) or compliant arrays

[31]. LEAs also have compliance in other DOFs, and motion in
these other DOFs has generally been termed parasitic and undesir-
able. Specific topological changes of joints, known as surrogate
folds for origami-based mechanisms, have been designed to
reduce the parasitic motion [32] to behave more like the kinematics
of smooth folding structures [33].
This paper describes the formulation of arrays of LET joints

(LET arrays, a subset of LEAs) suitable for origami-based mecha-
nisms in which panel-area conservation is desirable and develops
a load–displacement relationship set of analytical equations to
describe the arrays in three DOFs in the elastic region. The behavior
predicted by the theoretical approach is then verified via the finite
element analysis (FEA). An integrated simulation environment
[34], in which a MATLAB parametric script guides the computer-aided
design (CAD) geometry generations as well as the structural batch
simulations, is used to automatically test several LET arrays for
each DOF. The rest of the paper is organized as follows: Sec. 2
gives a description of LET array formulations to be studied in
this paper, Sec. 3 describes the theoretical load-deflection laws of
the LET arrays for each of the considered DOF, Sec. 4 provides a
comparison between theoretical and FEA results, and Sec. 5 sum-
marizes the work and presents concluding remarks.

2 General Lamina Emergent Torsion Arrays
Figure 1 shows the joint frame and motions considered in this

paper. We will refer to the rotation about the x-axis (Rx(γ)) as
folding (referring to the origami-based engineering nomenclature),
translation along the y-axis (Ty(y)) as extension/compression (or for
brevity, extension), and rotation about the z-axis (Rz(β)) as in-plane
rotation. LET joints were introduced as joints well-suited for high

Fig. 1 Coordinate frame and motions considered
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rotation in the desired folding motion and where some compliance
in other DOF were also observed [13]. A single LET joint was
defined as a specific formulation of four compliant torsion segments
in series and parallel. Two possible configurations were presented
as the Outside LET and the Inside LET which had the same four
torsion segments with slight topological differences resulting in dif-
ferent boundary conditions of the segments. The differing boundary
conditions affected the off-axis motion, but had no significant
effects on the desired folding motion.
Researchers, to understand these motions, have developed

models describing the load-displacement relationships for folding,
extension, and in-plane rotation for single joints. A summary of
their work is listed in Table 1. The table also shows the gaps in
the literature that are important for origami-based design and this
paper fills these gaps. Specifically, we give general equations
which account for the various boundary conditions for the three
DOF for general LET arrays with any combination of series, paral-
lel, and configuration. Figure 2 illustrates motivations for filling
these research gaps. Shown in the figure is a system of panels and
joints that uses LET arrays to fold a large area into a small
volume in the form of an origami pattern [23]. On the left is a
close-up of these panels and joints, in the middle is the unfolded
system, and on the right are details of the folded configuration. In
the side view of the folded configuration, a close-up of a LET
array is shown with displacements in the y-axis and about the x
and z axes. It is this type of behavior which this paper characterizes
to better understand how such systems of panels and joint perform.
Standard LET joints assume four torsion segments: two in series

and two in parallel. Other formulations are possible, which include
odd numbers of torsion segments. To reduce confusion when dis-
cussing LET arrays made up of torsion segments, we will drop
the term LET joints when describing the topology of the arrays.
Instead, we will refer to LET array topologies using the following
convention: SsPpc. S is the number of torsion segments in series,
P is the number of torsion segments in parallel, and c is the

configuration (whether the topology resembles an inside or
outside LET joint, when applicable). For example, the designation
2s2pi is equivalent to an inside LET joint and 2s2po is the equiva-
lent to an outside LET joint. A single torsion segment has the des-
ignation 1s1p and does not have a configuration c designation.
Figure 3 shows possible formulations of LET arrays. The 2s2p loca-
tion in the grid shows both configurations available to the 2s2p des-
ignation, with the outside LET on top and the inside LET on
bottom. The outside/inside option is only available to designations
with both even S and even P. The prototype shown in Fig. 2 indi-
cates the LET array designations used in the left detail.
General LET arrays can be used to tailor stiffness values in differ-

ent DOF while maintaining the ability to fold. For example, assum-
ing the geometry of individual segments remain the same, LET
arrays of the same S will have the same range of motion before
failure in folding but will have different folding, extension, and
in-plane rotation stiffness values, as is the case for the LET arrays
indicated in Fig. 2. Note that, for example, LET arrays with a P= 2
formulation are equivalent to two separate LET arrays with a P= 1
formulation in terms of folding but are not necessarily equivalent
in extension and in-plane rotation as the boundary conditions of
the torsion segments can be different for each case. There are unlim-
ited variations of formulating the compliant segments. This paper
focuses on the topologies depicted in Fig. 3 for any S and P.

3 Load–Displacement Characterization
Load–displacement relationships (stiffness rates) for each of the

three DOFs considered in this paper are given in this section. It is
desirable in the design of systems of panels and joints to obtain
equivalent stiffness rates, expressed as scalars, in each of the
DOF for each joint. Throughout this section, fundamental dimen-
sions are used and are labeled in Fig. 4. Torsion segments and
bending segments are also indicated in the figure, about which
will be discussed throughout the paper. lT and wT are the length

Table 1 State-of-the-art of LET joint equations

Motion

Joint Folding (Rx)
Extension/

compression (Ty)
In-plane rotation

(Rz)

Outside
LET

Eqs. (1)–(4) [13],
Eqs. (1)–(2) [35]

Eqs. (24)–(26) [13],
Eqs. (1)–(3) [36]

Eqs. (3)–(11) [35],
Eqs. (6)–(9) [36]

Inside
LET

Eqs. (5)–(7) [13] Eqs. (4)–(5) [36] Eqs. (10)–(12) [36]

Full joint
array

Eqs. (5)–(7) [31] x x

General
array

x x x

Fig. 2 Physical prototype of a system of panels and joints using LET arrays

Fig. 3 Possible serial–parallel topological formulations of LET
arrays
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and width dimensions of torsion segments, respectively. lB and wB

are the length and width dimensions of bending segments, respec-
tively. L and W are the length and width dimensions of overall
array, respectively, and are functions of the dimensions of the seg-
ments in bending and torsion. Throughout these analyses, we
assume isotropic material properties. These relationships may also
be applicable to symmetric and balanced laminate composites that
exhibit isotropic behavior, but it is likely that other considerations,
such as for coupling behavior, would be required.
While LET arrays with varying dimensions are possible, we

assume that for a particular LET array, the bending and torsion seg-
ments, separately, are of equal dimensions and therefore stiffness.
This assumption allows for simplification of the predictive
models. However, if LET arrays of varying dimensions are to be
designed, the following guidelines are suggested: (1) to avoid
unnecessary stress risers, ensure that dimensions of the torsion seg-
ments are the same along any particular row and (2) treat rows of
identical geometry as unique LET arrays and solve the displacement
of each LET array in series.

3.1 Folding. We assume that the torsional stiffness kT is the
same for each torsion bar. We assume that the bending stiffness
for each segment in bending on the outside of the array is kB and
that those on the inside of the array are twice as wide and therefore
consists of two springs. A generalized analogous spring model is
built by summing elements within rows in parallel and then the
rows in series (Fig. 5). The resulting load–displacement relationship
in folding for LET arrays is as follows:

Mx = Keq,rxγ (1)

where γ is the fold angle and Keq,rx is the stiffness rate found when
adding the springs in parallel and in series:

Keq,rx =
PkTkB

S(kT + kB) + kT
(2)

A symmetric polar moment of inertia JT equation for beam torsional
stiffness kT is given by [37]:

kT =
fJTG

lT
(3)

where f is a compensation function [37] to ensure accuracy of a
symmetric torsional stiffness JT equation:

f =
1.167z5 + 29.49z4 + 30.9z3 + 100.9z2 + 30.38z + 29.41
z5 + 25.91z4 + 41.58z3 + 90.43z2 + 41.74z + 25.21

(4)

and

JT =
2t3w3

T

7t2 + 7w2
T

(5)

where z=wT/t and G is the modulus of rigidity of the material. The
bending stiffness of the segments (Euler–Bernoulli) in bending is

kB =
EIB
lB

(6)

where E is the elastic modulus of the material and IB=wB t3/12 is
the moment of inertia of the segment in bending.

3.2 Extension/Compression. An outside LET torsion
segment has a fixed-guided boundary condition, while inside LET
torsion segment has a fixed-clamped condition. Here, we consider
LET arrays that have a mixture of fixed-guided and fixed-clamped
torsion segments, an example of which is shown in Fig. 6. The LET
array has a 3s2p designation where four segments are fixed guided
and two are fixed clamped. The differences between fixed guided
and fixed clamped, in terms of loading conditions and mechanical
responses, are discussed in Ref. [38].
To model the equivalent extension/compression spring stiffness

Ky,eq of LET arrays, we describe individual segment stiffness
rates along the rows first (adding in parallel) and then across the
rows (adding in series). Unlike the uniform distribution of stiffness
rates for LET arrays in folding, LET arrays in extension/compres-
sion have a nonuniform distribution due to the mixed boundary con-
ditions. Thus, additional row types are introduced as follows (see
Fig. 7): a boundary row is a torsion row that contains a fixed-
clamped segment, and if exists, it does so only at the transition
from panel to joint (maximum of two in an array). A regular row
is a torsion row that does not have fixed-clamped segments along
the left and right edges of the array, and if exists, it may repeat
(no maximum, but dependent on S). A bending segment row is com-
posed of only bending segments. Figure 7 shows a LET array,
which has two boundary rows, two regular rows, and five
bending segment rows (as another example, the array in Fig. 6
has one boundary and two regular rows).

Fig. 4 Representative dimensions of a 2s3p LET array

Fig. 5 Spring analogy for folding of a 3s2p LET array

Fig. 6 Extension and compression of a 3s2p LET array

Fig. 7 Spring analogy for extension and compression of a 4s3p
LET array
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The force–displacement relationship is given as follows:

Fy = Ky,eqy (7)

where y is in the direction indicated in Fig. 1, and the spring stiff-
ness Ky,eq for a LET array in extension/compression is as follows:

Ky,eq =
kboundkregkbend

nregkboundkbend + nboundkregkbend + nbendkregkbound
(8)

where kbend is the axial stiffness of bending segments:

kbend = 2PE
twB

lB
(9)

and the number of bending segment rows is as follows:

nbend = S + 1 (10)

The number of boundary rows nbound is as follows:

nbound =

0, S is even and P is even and c = o
1, S = 1, or

S > 1 and S is odd and P is even
2, S > 1 and P is odd, or

S is even and P is even and c = i

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(11)

For example, nbound of the LET array in Fig. 7 is 2 because S> 1 and
P is odd. The number of regular rows nreg is as follows:

nreg = S − nbound (12)

The boundary row force Fbound is

Fbound = kboundybound (13)

where ybound is the displacement of the boundary row and the
boundary row stiffness kbound is

kbound = nbfgk fg
∣∣
y fg=ybound

+ nbfck fc
∣∣
y fc=ybound

(14)

where yfg and yfc are the displacements of fixed-guided and
fixed-clamped segments, respectively, and the regular row force
Fr is

Fr = kregyr (15)

where the regular row stiffness kreg is

kreg = nrfgk fg
∣∣
y fg=yr

+ nrfck fc
∣∣
y fg=yr

(16)

where nbfg is the number of fixed-guided segments in a boundary
row:

nbfg =

0, P is even, or
S = 1 and P > 1 and P is odd

1, S > 1 and P is odd, or
S = 1 and P = 1

⎧⎪⎪⎨
⎪⎪⎩

(17)

For example, nbfg of the LET array in Fig. 7 is 1 because S> 1 and P
is odd. nbfc is the number of fixed-clamped segments in a boundary
row:

nbfc = P − nbfg (18)

and where nrfg is the number of fixed-guided segments in a regular
row:

nrfg =
1, P = 1
2, otherwise

{
(19)

For example, nrfg of the LET array in Fig. 7 is 2 because P > 1. nrfc is
the number of fixed-clamped segments in a regular row:

nrfc = P − nrfg (20)

The stiffness coefficient kfg of a fixed-guided beam assuming large
deflections is nonlinear. Using equations for a fixed-guided beam
from Ref. [9], a force–displacement relationship is found as follows:

Ffg =
4KT arcsin

y fg
γ fglT

3
������������
γ2fgl2T − y2fg

√
− lT (γ fg − 1)

(21)

where KT = 2γ fgKΘEIy/lT (the pseudo-rigid-body model (PRBM)
spring constant for a fixed-guided beam) and γ fg and KΘ are the
characteristic radius factor and the stiffness coefficient and are
often approximated as 0.85 and 2.65, respectively [9]. E is the mate-
rial modulus of elasticity and Iy is the area moment of inertia for the
torsion segment in bending in the y-direction of the array (tw3

T/12).
The stiffness kfg is the derivative of Eq. (21) with respect to yfg:

k fg =
∂Ffg

∂y fg
(22)

The stiffness coefficient kfc of a fixed-clamped beam assuming
large deflections is also nonlinear. The force–displacement relation-
ship is as follows:

Ffc =
KAΔlT

∂ΔlT
∂y fc

+ 2KTΘ fc
∂Θ fc

∂y fc

1 +
LT
2
∂Θ fc

∂y fc

(23)

where KA is the torsion segment axial stiffness:

KA =
EAT

γ fclT + ΔlT
(24)

where AT is the axial cross-sectional area of the torsion segment as a
function of elongation and Poisson’s ratio ν:

AT = twT

lT 1 +
ΔlT
lT

(1 − 2ν)
( )

lT + ΔlT
(25)

where ΔLT is the change in the length of the fixed-clamped beam:

ΔLT =
������������
γ2fcl2T + y2fc

√
− γ fclT (26)

and Θfc is the PRBM angle:

Θ fc = arctan
y fc
γ fclT

(27)

The kinematic coefficients are as follows:

∂ΔlT
∂y fc

=
y fc������������

γ2fcl2T + y2fc

√ (28)

and

∂Θ fc

∂y fc
=

γ fclT
γ2fcl2T + y2fc

(29)

The stiffness kfc value is the derivative of Eq. (23) with respect to
yfc:

k fc =
∂Ffc

∂y fc
(30)

If there are both regular and boundary rows, respective displace-
ments yr and yb are unknown because the stiffness values of the
rows are nonlinear. Since the rows are assumed to be springs in
series, the force is constant for each row:

Fb = Fr (31)
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and the regular row displacement can be parameterized as follows:

yr =
y − nbyb

nr
(32)

such that the displacements yr and yb can be solved for using
Eq. (31) as a function of joint displacement y. The evaluation of
the force–displacement relationship is not straightforward. Algo-
rithm 1 is presented for clarity.

Algorithm 1 Evaluating the force-displacement relationship Fy

1: Evaluate integers (Eqs. (9)–(12) and (17)–(20)
2: for all y do
3: Formulate boundary row force Fb equation (substitute (Eqs. (22) and

(30) (using Eqs. (23) and (24)–(26)) into Eq. (14)) into Eq. (13))
4: Formulate regular row force Fr equation (substitute (Eqs. 22 and 30

(using Eqs. (23) and (24)–(26)) into Eq. (16)) into Eq. (15))
5: Equate forces Fb and Fr (Eq. (31)), parameterize yr (substitute Eq. (32)
into Eq. (31)), and solve for yb

6: Evaluate row stiffness values kb and kr (Eqs. (14) and (16)) using
updated yb and yr

7: Evaluate equivalent spring stiffness Ky,eq (Eq. (8)) by using updated
row stiffness values kb and kr

8: Evaluate force Fy (Eq. (7)) by using updated equivalent spring stiffness
Ky,eq

9: return Fy

3.3 In-Plane Rotation. Different spring models are used for
in-plane rotation of LET arrays for the cases when P= 1 and P> 1.
For P= 1, moment-loaded beams are added in series. For P> 1, a
proposed analogous spring model is developed. These cases are dis-
cussed below.

3.3.1 In-Plane Rotation When P= 1. For the case where P= 1,
a moment–displacement relationship is found using a spring
analogy of beams with moments applied at the end in series [9]:

Mz = Keq,rzβ (33)

The equivalent spring stiffness rate is as follows:

Keq,rz = γKΘ
EIy
lT

1
Scθ

(34)

where γ = 0.7346, KΘ= 2.0643, and cθ= 1.5164 for this case.

3.3.2 In-Plane Rotation When P> 1. A simplified spring
model that assumes column extension/compression relative to a
neutral axis is used to approximate the torque/displacement rela-
tionship of LET arrays of P > 1. Figure 8 illustrates how a particular
LET array can be modeled as separate columns in extension and
compression. Equivalent column spring stiffness values are found
by adding rows of a column in series. A rotational displacement
load is applied about the neutral axis, and the rotational displace-
ment β causes extension/compression displacements in the
columns resulting in column forces Fi. We assume small angles
such that the columns remain vertical. These forces are multiplied
by their respective distances from the neutral axis ai and are

summed to equate to the resultant moment Mz:

Mz =
∑P
i=1

Fiai (35)

The equivalent stiffness is as follows:

Keq,rz =
∂Mz

∂β
(36)

Each LET array formulation has a left boundary column and a right
boundary column and has nrc regular columns, where

nrc = P − 2 (37)

The column forces are composed of combinations of a left boundary
column force Flbc, regular column forces Frc,i, and a right boundary
column force Frbc, resulting from displacements acting on the
equivalent spring rates klbc, krc, and krbc, respectively. The left
boundary column force Flbc is equal to the force from a fixed-guided
segment Flbcfg or the force from a fixed-clamped segment Flbcfc.
They are as follows:

Flbcfg = k fg
∣∣
y fg=ylbcfg

ylbcfg (38)

Flbcfc = k fc
∣∣
y fc=ylbcfc

ylbcfc (39)

By parameterizing ylbcfg as follows:

ylbcfg =
y1 − nlbcfcylbcfc

nlbcfg
(40)

and by equating Eqs. (38) and (39), ylbcfc can be solved for, similar
to steps 5–6 of Algorithm 1. This process is repeated for the right
column force, where

Frbcfg = k fg
∣∣
y fg=yrbcfg

yrbcfg (41)

and

Frbcfc = k fc
∣∣
y fc=yrbcfc

yrbcfc (42)

and where

yrbcfg =
y1 − nrbcfcyrbcfc

nrbcfg
(43)

Since the regular columns are composed of entirely of fixed-
clamped segments, the resulting force can be evaluated directly as
follows:

Frcfc =
1
S
k fc

∣∣∣∣
y fc=y/S

y (44)

where ylbcfg and ylbcfc are the y displacement of fixed-guided and
fixed-clamped segments, respectively, of the left boundary
column; yrbcfg and yrbcfc are the y displacement of fixed-guided
and fixed-clamped segments, respectively, of the right boundary
column; and yrcfc is the y displacement of fixed-clamped segments
of the regular column. nlbcfc is the number of fixed-clamped seg-
ments in the left boundary column:

nlbcfc =

0, S is even and P is even and c = o, or
S is even and P is odd

1, S is odd
2, S is even and P is even and c = i

⎧⎪⎪⎨
⎪⎪⎩

(45)

nlbcfg is the number of fixed-guided segments in the left boundary
column:

nlbcfg = S − nlbcfc (46)Fig. 8 Spring analogy for in-plane rotation of a 4s3p LET array
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where nrbcfc is the number of fixed-clamped segments in the right
boundary column:

nrbcfc =

0, S is even and P is even and c = o
1, S is odd
2, S is even and P is even and c = i, or

S is even and P is odd

⎧⎪⎪⎨
⎪⎪⎩

(47)

and nrbcfg is the number of fixed-guided segments in the right
boundary column:

nrbcfg = S − nrbcfc (48)

The moment arms ai are the distances from the neutral axis Cx to
the forces Fi. The neutral axis is found using

Cx =
∑P

i=1 Fixi∑P
i=1 Fi

(49)

where xi is the distance from one side of the array to a column force:

xi =
lT
2
+ wB + i − 1( ) lT + 2wB( ) (50)

and ai is given as follows:

ai = |xi − Cx| (51)

and the yi displacement for each column is given as follows:

yi = ai sin β (52)

The instantaneous spring rates (kfc and kfg) are the same as
before (Eqs. (30) and (22)). Due to the nonlinearity of the spring
rates, the neutral axis shifts as a function of displacement. Algo-
rithm 2 is a proposed numerical algorithm to determine the location
of the neutral axis, which is required to calculate the moment–
rotation relationship. The values for γ fg and γ fc are substituted in
γ fgz and γ fcz, respectively, for more accurate in-plane rotation
results.

Algorithm 2 Locating the neutral axis Cx

1: for all β do

2: Cx ←
L

2
▹ begin by assuming symmetry

3: Solve for Flbc, Frc, and Frbc

4: if S is even and P is odd then
5: Calculate Cx,new

6: δCx ← |Cx − Cx,new|
7: Cx ← (Cx,new + Cx)/2
8: while δCx > ϵ do ▹ ϵ is a predetermined convergence

(i.e., ϵ = 1e−6 m)
9: Solve for Flbc, Frc, and Frbc using Cx

10: Calculate Cx,new

11: δCx ← |Cx − Cx,new|
12: Cx ← (Cx,new + Cx)/2
13: return Cx

14: else
15: Cx ← Cx,new

16: return Cx

4 Finite Element Analysis Comparison
To verify the analytical models, several LET arrays were tested

using an integrated software framework [34], in which a MATLAB

script manages the parametric study, a SOLIDWORKS macro updates
the geometry of the LET arrays, and ANSYS APDL provides the
force/torque–deflection characteristics of each configuration via
batch mode. A routine, overseen by MATLAB, was defined to

automatically export the CAD files from SOLIDWORKS and, subse-
quently, to perform the structural batch simulations of each candi-
date. In line with the proposed theoretical models, three DOFs
were analyzed, namely Rx(γ), Ty(y), and Rz(β). For each of the
DOF, a free mesh with second-order tetrahedral elements ANSYS

SOLID187 was defined with a maximum element size of t. This
element type is particularly suitable for bending-dominated prob-
lems, where the shear locking effect is undesired due to its effect
on the bending stiffness. In all simulations, the nonlinear geometry
(NLGEOM) option was turned on. As for the employed material,
aluminum alloy 7075 (heat treated) is considered, owing to its
high strength-to-modulus ratio [9]. The Young’s modulus and Pois-
son’s ratio are, respectively, E= 71.7 GPa and ν = 0.33. Concern-
ing the boundary conditions, each LET array was fixed to the
ground at one end and guided in a pure translation (along the
y-axis) or rotation (about the x or z axes) on the other end. Since
SOLID187 elements do not have rotational DOF, MPC184 ele-
ments were used to apply kinematic constraints (spider web of
beams) between the solid model’s nodes and a master node (as
shown in Fig. 9), onto which rotational displacement loads can be
applied. Referring to Figs. 2 and 4, the tested array parameters
were lB= 2 mm; WB= 4 mm; WT= 2 mm; t= 1 mm; lT= 10 mm,
lT= 20 mm, or lT= 30 mm; S (ranging from 1 to 3); P (ranging
from 1 to 5); and c (either i or o, where applicable).
Figure 10 shows the force/torque–deflection relationships for

arrays with S= 2, lT= 10 mm and various P with the standard
γ = 0.85. The modeled and FEA results have significant differ-
ences, with the modeled values higher than the FEA in each
case, as shown in Fig. 11. For design, this may not be undesirable
when considering strength. However, when considering behavior
of systems that implement these types of arrays, more accurate pre-
dictions of the stiffness values are desired. A possible explanation
for the overestimated stiffness is the inaccurately assumed bound-
ary conditions. The fixed-guided and fixed-clamped boundary con-
ditions do not account for the compliance of the bending segments
or of the regions not modeled. Figure 12 shows an FEA strain plot
of a 2s3p LET array, indicating the regions where forces and
moments are transmitted, but whose spring models are not consid-
ered even though strain is observed. A more accurate representa-
tion of the overall deflection would include the compliance of
these segments. One way to model this compliance in the Ty and
Mz DOF is to modify the characteristic radius factor γ, effectively
softening the assumed rigid boundaries of these regions (hence, the
designated γ fg or γ fc variables in Eqs. (21), (23), and others). In
the case of the arrays in Fig. 10, increasing the effective length
of the torsion segment would decrease the array stiffness, bringing
them closer to the FEA results. A way to model the compliance of
these segments for the Mx DOF is to effectively lengthen the
bending segments so that they “extend” into these regions,
which we have done by adding 1/2wT (1/4wT to both sides),
making Eq. (14) equate to kB=E IB/(lB+ 1/2wT). By making
these modifications, the errors between the FEA and modeled
results are reduced (see Fig. 11). Table 2 lists the modified charac-
teristic radius factors (e.g., γ fg) used for the associated lT and S
values and their corresponding figures. In each row of the table,
the only geometry variation was lT. The radius factors listed in

Fig. 9 Example of finite element model—1s2p LET array
configuration
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the table were found using an optimization routine defined as
follows:

minimize
∑

Error

with respect to γ fg, γ fc, γ fgz, γ fcz

subject to 0.1 ≤ γ fg, γ fc, γ fgz, γ fcz ≤ 2.0

for each lT ∈ {1.0, 2.0, 3.0} cm

where Error is the absolute relative error of the load–displacement
FEA and modeled results for each increment, DOF, and value of
lT:

Error =
Ty,M − Ty,F

Ty,F

∣∣∣∣
∣∣∣∣ (53)

where the subscripts M and F refer to modeled and FEA results,
respectively, and Rz is substituted for Ty for the in-plane rotation
DOF. The trend shows that for shorter torsion segments, the
radius factors were increased from the standard 0.85 and that for
longer torsion segments, the factors were decreased. By using
the modified characteristic radius factors, the figures listed in
Table 2 (i.e., Figs. 13–21, representing the load–displacement rela-
tionships for all the tested configurations) suggest that accurate
stiffness estimates are achieved by using the presented model for
LET arrays.
One exception to the modified radius factors listed in Table 2 was

the case when P= 2 for the Rz DOF. The spring model presented in
Sec. 3.3.2 assumes that the columns remain vertical during loading
with the global rotation occurring as the left and right columns
extend in opposite directions. For P= 2, however, there are no
other segments in parallel to enforce vertical displacement, and so
the model overestimates the stiffness by artificially enforcing the
vertical constraint. Therefore, a separate optimization was per-
formed for the case when P= 2 for each of the lT values. The
optimal radius factors were as follows: (for lT= 10 mm)
γ fg = γ fc = 1.01, (for lT= 20 mm) γ fg = 0.53 and γ fc = 0.56, and
(for lT= 30 mm) γ fg = 0.40 and γ fc = 0.49. These values are espe-
cially useful when considering the traditional outside and inside
LET joints (which are equivalent to 2s2po and 2s2pi LET arrays,
respectively).

Fig. 10 Model and FEA load–displacement relationships for S=2, lT=10 mm, various P, and the standard γ=0.85

Fig. 11 Errors before and after (indicated with *) modifications for S=2, lT=10 mm, and various P

Fig. 12 Unmodeled segments and an FEA strain plot of a 2s3p LET array

Table 2 List of parameters, figures, and modified characteristic
radius factors

lT (cm) γ fg γ fc γ fgz γ fcz S Figure

1.0 1.29 1.06 1.18 1.16 1, 2, 3 13, 14, 15
2.0 0.74 0.73 0.64 0.82 1, 2, 3 16, 17, 18
3.0 0.61 0.64 0.48 0.80 1, 2, 3 19, 20, 21
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It can be seen that for the Ty and Rz DOF, the force/torque–
displacement relationships exhibit nonlinear behavior when S is
low and P is high (see Figs. 13, 16, and 19) for both the FEA
and modeled results. This is to be expected when considering
the nonlinear terms in Eqs. (21) and (23) for these high-stiffness
array formulations. It can also be seen that the errors are higher

for these cases, especially for the Rz DOF. A possible explanation
for this error in the Rz model is that for these stiff cases, the sim-
plifying spring models do not account for compliance at the
boundaries and at the interactions between the bending and
torsion segments. This inaccuracy in model assumptions is less
apparent in the less-stiff and linear regimes of the arrays. Other

Fig. 13 Model and FEA load–displacement relationships for S=1, lT=10 mm, various P, and modified γ values

Fig. 14 Model and FEA load–displacement relationships for S=2, lT=10 mm, various P, and modified γ values

Fig. 15 Model and FEA load–displacement relationships for S=3, lT=10 mm, various P, and modified γ values

Fig. 16 Model and FEA load–displacement relationships for S=1, lT=20 mm, various P, and modified γ values
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cases (higher S) show excellent agreement between the analytical
and FEA results.
The comparison between the FEA and modeled results veri-

fied that the models can accurately characterize general LET
arrays for elastic load–displacement behaviors. These models

represent an important tool for designers of systems that incor-
porate LET arrays to enable design of behaviors of such
systems. The equations used assume the material to remain in
the elastic region throughout the motion and are particularly
useful in exploring the design space of the formulation of the

Fig. 17 Model and FEA load–displacement relationships for S=2, lT=20 mm, various P and config, and modified γ values

Fig. 18 Model and FEA load–displacement relationships for S=3, lT=20 mm, various P, and modified γ values

Fig. 19 Model and FEA load–displacement relationships for S=1, lT=30 mm, various P, and modified γ values

Fig. 20 Model and FEA load–displacement relationships for S=2, lT=30 mm, various P and config, and modified γ values
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LET arrays. When finalizing a design, consideration of the
elastic limits is required. Equations of maximum stress of LET
joints [13,39] can be applied to determine the stresses of LET
arrays.

5 Conclusion
In this paper, LET arrays were defined as torsion segments in

series and in parallel, which can be used for origami-based applica-
tions and others. The load–displacement relationships for the arrays
were characterized in three DOFs enabling the design of arrays that
consider off-axis motion.1 The proposed models were verified using
FEA for several LET array configurations resulting from an auto-
matic framework. By using the standard γ = 0.85 value, conserva-
tive stiffness estimates are available. If more accurate stiffness
estimated are desired, modified radius factors may be used. By
using these modified values, load–displacement models had good
agreement with the FEA results. Based on intuition and optimiza-
tion results, shorter torsion segments may use higher γ values and
longer torsion segments may use lower γ values. In some cases,
the nonlinear behavior of the arrays were sources of error
between the modeled and FEA results. Because the use of LET
arrays is becoming more prevalent, the analytical models presented
in this work enable their design. By using LET arrays, a designer
can tailor the stiffness behavior for folding, extension, and
in-plane rotation to realize folding and origami-based mechanisms.
The provided stiffness values can be used for multibody dynamic or
other system-modeling techniques in the design of such systems. By
providing several plots of the force/torque–displacement relation-
ships to show model verification, we have also showed the variabil-
ity of the design space available to LET arrays.
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