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Abstract
In many applied contexts, it is of interest to identify the extent to which a given
association measure changes its value as different sets of variables are included in the
analysis. We consider logistic regression models where the interest is for the effect of
a focal binary explanatory variable on a specific response, and a further collection of
binary covariates is available. We provide a methodological framework for the joint
analysis of the full set of coefficients of the focal variable computed across all the
models obtained by adding or removing predictors from the set of covariates. The result
is obtained by applying a specific log-hybrid linear expansion of the joint distribution
of the variables that implicitly comprises all the regression coefficients of interest.
In this way, we obtain a method that allows one to verify, in a flexible way, a wide
range of scientific hypotheses involving the comparison of multiple logistic regression
coefficients both in nested and in non-nested models. The proposed methodology is
illustrated through a test bed example and an empirical application.
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1 Introduction

In models for binary response variables, logistic regression coefficients are commonly
used to measure the association between the response variable and a collection of
explanatory variables; see, for instance, Chapter 5 of Agresti (2012). In this context,
a lot of attention has been given to the problem of how the association between the
response variable and a specific variable of interest changes its strength as different
sets of explanatory variables are added or removed. Here, we attack this problem in
the case where the explanatory variables are also binary.

Broadly speaking, a measure of association is said to be collapsible over a given
set of variables if it does not change its value when such variables are marginalized
over. Collapsibility is typically exploited to reduce dimensionality. This is especially
useful when the variables are categorical and the cross-classified contingency table
is sparse with a large number of sampling zeros, because collapsibility allows one
to work with a lower dimensional, and thus less sparse, table. A formal approach
to this problem requires to consider various definitions of collapsibility, and Guo
and Geng (1995) provided conditions for both simple and strong collapsibility of
logistic regression coefficients; see also Whittemore (1978), Asmussen and Edwards
(1983), Wermuth (1987), and Didelez et al. (2010). Collapsibility implies the equal-
ity of parameters between nested models and, thus, a related problem concerns the
comparison of parameters of different models either nested (Ducharme and Lepage
1986; Greenland and Mickey 1988; Clogg et al. 1992, 1995; Greenland et al. 1999)
or non-nested (Efron 1984; Vuong 1989; Royston and Thompson 1995).

More generally, in contexts such as mediation analysis and causal inference, it
is of interest to quantify how much the value of an association measure is affected
or, equivalently, distorted, by the removal of some variables from the analysis (Cox
and Wermuth 2003; Wermuth and Cox 2008; Xie et al. 2008). Within this framework,
specific results concerning logistic regression coefficients can be found in Stanghellini
and Doretti (2019), Wang (2021), Raggi et al. (2023), and references therein; see also
Greenland et al. (1999) for a discussion on the distinction between non-collapsibility
and confounding, with special attention to the identification of causal effects.

We consider the case where the main interest is for the effect of a focal binary
variable X on a binary response Y and, furthermore, a vector Z M = (Z j ) j∈M of
m = |M | additional binary explanatory variables has been measured. In this setting,
for any given subvector Z D = (Z j ) j∈D of covariates, with D ⊆ M , the logistic
regression model with response Y and vector of predictors (X , Z D) can be regarded as
anANOVA-like expansion of the conditional logit of Y given (X , Z D). The coefficient
βD

X of X in this expansion encodes the effect of X on Y when the variables in Z D

take the reference, zero, level, or any other level if the interactions between X and
the components of Z D can be neglected (effect of X on Y adjusted for Z D). Thus,
dependingonwhich covariates are selected as predictors by the choice of D ⊆ M , there
are 2m different logistic regression models and, accordingly, 2m different coefficients
βD

X . For example, β∅
X encodes the effect of X on Y in the regression model with

no covariates (unadjusted effect) whereas βM
X encodes the effect of X in the model

including all the covariates (fully adjusted effect). Note that if D ⊆ E then the model
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of βD
X is nested in that of βE

X , but if neither D ⊆ E nor E ⊆ D then βD
X and βE

X belong
to non-nested models.

In this paper, we provide a framework for the joint analysis of the logistic regression
coefficients βD

X , D ⊆ M , which will be conveniently referred to as focal regression
coefficients. Remarkably, in our approach, no logistic regression model needs to be
explicitly fitted, because we rely on a specific log-hybrid linear expansion of the joint
distribution of the variables (La Rocca and Roverato 2019; Roverato 2017) which
results in a collection of log-hybrid linear parameters.

It is worth remarking the novelty of our approach with respect to the existing
literature. The available results on collapsibility and on the comparison of parameters
allow one to deal with more than one parameter for each model, but they have been
developed for the comparison of two selected models. Our approach focuses on a
single coefficient, but it enables us to analyze the behavior of such parameter across
the full collection ofmodels obtained by adding or removing any subset of explanatory
variables. From a computational viewpoint, a single log-hybrid linear model needs to
be fitted, implicitly comprising all the regression coefficients of interest. For this
paper, this was effectively done using R (R Core Team 2023). Finally, although our
interest lies in logistic regression coefficients, we also state our results in terms of odds
ratios, because odds ratios are fundamental measures of association in categorical data
analysis and, thus, they confer wider generality to our framework and facilitate the
comparison with the literature.

The rest of the paper is organized as follows. The problem considered is described
in Sect. 2 and then motivated by two applications in Sect. 3 (one based on a classic
dataset and the second one analyzing cardiovascular disease data). In Sect. 4 we review
the main features of the log-hybrid linear parameterization, whereas Sect. 5 presents
the results that allow us to use the log-hybrid linear parameters to deal with the logistic
regression coefficients of interest. The specific cases comprising one focal variable
and up to two additional explanatory variables are detailed in Sect. 6, using the first
application of Sect. 3 as an illustrative example, then Sect. 7 advances the second
application of Sect. 3. Some additional technical details on the relationships existing
between alternative parameterizations of binary data are provided in Appendix A,
while the proofs of the results in Sect. 5 are deferred to Appendix B.

2 Preliminaries and notation

We are interested in the effect of a focal binary variable X on a binary response Y ,
defined as the coefficient of X in the logistic regression of Y on X and, possibly, other
predictors selected from a binary vector Z M = (Z j ) j∈M of covariates. If there are
m covariates, we let M = {1, 2, . . . , m} and also write Z M as Z1:m , that is, we use
1: m as a short hand for {1, 2, . . . , m}. Then, without loss of generality, we denote the
two levels of each variable by 0 and 1, and we consider 0 as the reference level for all
predictors. Finally, we assume that the joint distribution of (Y , X , Z M ) is positive, that
is, pr(X = x, Y = y, Z M = zM ) > 0 for all (x, y, zM ) ∈ {0, 1}m+2; note that this
assumption rules out dummy variables (binary variables representing the presence or
absence of each of the three or more levels of a categorical variable).
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We first consider the case where no covariate is included in the analysis, so that the
logistic regression model can be written as

logit pr(Y = 1 | X = x) = β∅
0 + β∅

X x, x ∈ {0, 1}, (1)

where logit(π) = log(π/(1 − π)), 0 < π < 1, while β∅
0 = logit pr(Y = 1 | X = 0)

and β∅
X is the effect of X on Y when adjusting for no covariates (as indicated by the

superscript empty set symbol); see Section 5.1 of Agresti (2012). The coefficient β∅
X

equals the logarithm of the odds ratio, or cross-product ratio,

ORXY = pr(X = 1, Y = 1) pr(X = 0, Y = 0)

pr(X = 1, Y = 0) pr(X = 0, Y = 1)
, (2)

which is a well known measure of dependence for binary variables with the property
that X and Y are marginally independent (in symbols X⊥⊥Y ) if and only if ORXY = 1
(equivalently β∅

X = logORXY = 0); see Section 2.2 of Agresti (2012).
We next introduce a covariate Z j , with j ∈ M , and assume j = 1, without loss of

generality, so that the logistic regression model becomes (Agresti 2012, Section 5.4.1)

logit pr(Y = 1 | X = x, Z1 = z1) = β
{1}
0 + β

{1}
X x + β

{1}
Z1

z1 + β
{1}
X Z1

xz1, (3)

where (3) holds for all possible values of the predictors (for x and z1 varying in {0, 1});
this latter fact is true in every logistic regression model and, thus, not explicitly stated
again in the following. The logistic regression coefficients in (3) are denoted by the
superscript {1}, which indicates that they are computed in the model that also includes
Z1 as a predictor: this is necessary, because (in general) the coefficients in (1) do not
take the same values as those in (3), that is, both β∅

0 �= β
{1}
0 and β∅

X �= β
{1}
X .

If we rewrite (3) by grouping the terms with and without x , we obtain

logit pr(Y = 1 | X = x, Z1 = z1) =
(
β

{1}
0 + β

{1}
Z1

z1
)

+
(
β

{1}
X + β

{1}
X Z1

z1
)

x, (4)

which is a version of (1) with coefficients depending on z1: if z1 = 0, they are β
{1}
0

and β
{1}
X ; if z1 = 1, they are β

{1}
0 + β

{1}
Z1

and β
{1}
X + β

{1}
X Z1

. Similarly, letting j = 2, we
find

logit pr(Y = 1 | X = x, Z2 = z2) =
(
β

{2}
0 + β

{2}
Z2

z2
)

+
(
β

{2}
X + β

{2}
X Z2

z2
)

x, (5)

where (in general) both β
{2}
0 �= β

{1}
0 and β

{2}
X �= β

{1}
X . Moreover, if we consider both

Z1 and Z2 as predictors in the logistic regression model, we obtain

logit pr(Y = 1 | X = x, Z1:2 = z1:2) =
(
β

{1,2}
0 + β

{1,2}
Z1

z1 + β
{1,2}
Z2

z2 + β
{1,2}
Z1Z2

z1z2
)

+
+

(
β

{1,2}
X + β

{1,2}
X Z1

z1 + β
{1,2}
X Z2

z2 + β
{1,2}
X Z1Z2

z1z2
)

x, (6)
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which gives rise to four distinct instances of (1) as z1 and z2 vary in {0, 1}.
We focus on the case where z1 = z2 = 0, so that (1), (4), (5) and (6) simplify to

logit pr(Y = 1 | X = x) = β∅
0 + β∅

X x,

logit pr(Y = 1 | X = x, Z1 = 0) = β
{1}
0 + β

{1}
X x,

logit pr(Y = 1 | X = x, Z2 = 0) = β
{2}
0 + β

{2}
X x,

logit pr(Y = 1 | X = x, Z1:2 = 0) = β
{1,2}
0 + β

{1,2}
X x .

Our interest here is for the value of the coefficients β∅
X , β

{1}
X , β

{2}
X and β

{1,2}
X , which

represent the effect of X on Y at different depths of marginalization over Z1 and Z2,
when conditioning on their reference levels, or any other level if Z1 and Z2 have null
interactions with X . As formalized below in wider generality, these coefficients are
conditional log odds ratios.

For every D ⊆ M and zD ∈ {0, 1}|D|, the conditional odds ratio between X and Y
given Z D = zD can be computed as

ORXY |Z D=zD = pr(X = 1, Y = 1 | Z D = zD) pr(X = 0, Y = 0 | Z D = zD)

pr(X = 1, Y = 0 | Z D = zD) pr(X = 0, Y = 1 | Z D = zD)
,

(7)

which becomes (2) when D = ∅. It is well-established that X and Y are conditionally
independent given Z D , denoted by X⊥⊥Y | Z D , if and only if the conditional odds
ratio (7) is equal to 1 for every zD ∈ {0, 1}|D|; see Section 2.3.4 of Agresti (2012).

When the covariates in Z D are included in the analysis, for some D ⊆ M , we
compactly write the logistic regression model, for any E ⊆ D, as

logit pr(Y = 1 | X = x, Z E = 1, Z D\E = 0) =
∑

E ′⊆E

βD
Z E ′ +

∑
E ′⊆E

βD
X Z E ′ x, (8)

where Z E = 1 means that Zi = 1 for every i ∈ E (similarly for Z D\E = 0) and we
use the convention βD

Z∅ = βD
0 . For E = ∅, the equality in (8) simplifies to

logit pr(Y = 1 | X = x, Z D = 0) = βD
0 + βD

X x,

whereas, for E �= ∅, if βD
X Z E ′ = 0 for all non-empty E ′ ⊆ E , it takes the form

logit pr(Y = 1 | X = x, Z E = 1, Z D\E = 0) =
∑

E ′⊆E

βD
Z E ′ + βD

X x,

which covers the case where X and the components of Z M have null interactions. Our
interest is for the relationship existing among the coefficients βD

X , D ⊆ M .
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The coefficients βD
X , D ⊆ M , are conditional log odds ratio, according to the

following identity:

βD
X = logORXY |Z D=0 for every D ⊆ M . (9)

The identity (9) is well-known and given, among others, in Sections 5.3 and 9.5 of
Agresti (2012). However, it represents a central point of our work and therefore, for
the sake of completeness, we formally derive it as (A8) in Appendix A, where we also
provide a more formal review of logistic regression, including a formula to compute
logistic regression coefficients from cell probabilities.

3 Motivating examples

This section introduces two motivating examples to emphasize the interest in
comparing logistic regression coefficients across different models.

3.1 Titanic data

The first example we consider is a set of data on the tragic sinking of Titanic in 1912,
where there is an interest in studying the impact that the travelling class had on the
survival of passengers. It can be regarded as a classic, which makes it ideal for illustra-
tive purposes, and it exists in several versions, of which we consider the one known as
titanic3 (obtained from http://hbiostat.org/data courtesy of the Vanderbilt University
Department of Biostatistics). For instance, the same set of data was recently analyzed
by Yin et al. (2022) using models based on relative risk parameters. It consists of four
variables collected on 1046 passengers: sur, survival (0: no, 1: yes); class, travelling
class (0: first or second, 1: third); sex (0: male, 1: female); age (0: ≥ 25 years, 1: < 25
years). Note that we dichotomized age and class, and coded the variables so that the
coefficient of class (the focal variable) will measure the association between travelling
in third class and survival (sur = 1) for elderly males (when including age and sex
as predictors).

We consider four different logistic regression models, obtained by combining the
reference levels of sex and age:

logit pr(sur = yes | class) = β∅
0 + β∅ class (10)

logit pr(sur = yes | class,male) = βsex
0 + βsex class (11)

logit pr(sur = yes | class,≥ 25) = β
age
0 + βage class (12)

logit pr(sur = yes | class,male,≥ 25) = β
sex,age
0 + βsex,age class (13)

where the focal coefficient βD in Eq. (10)–(13) represents the effect of class on sur
at the depth of marginalisation over sex and age specified by D ⊆ {sex, age}; note
that, for the sake of readability, we dropped the subscript class from βD

class and the
curly brackets in the specification of D.
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Table 1 Titanic data. MLE (ASE) of the four focal coefficients

β∅ βsex βage βsex,age

−1.211 (0.133) −0.472 (0.194) −1.270 (0.186) −0.331 (0.254)

The Maximum Likelihood Estimate (MLE) of the focal coefficient βD is given
in Table 1, together with its Asymptotic Standard Error (ASE) from the observed
Fisher information matrix, for the four different choices of D (models); note that
the MLE of βD equals the log odds ratio between class and sur computed from
their conditional proportions given the variables in D take their reference level. The
estimated effect of travelling in third class on survival is always negative, but its value
varies considerably across models, in particular when sex is included as a predictor. In
Sect. 6.3, we will use log-hybrid linear parameters to carry out a comparison between
the four focal coefficients of this example.

3.2 National march cohort data

Our second example represents a case where a partition of the set of covariates is
appropriate. Indeed, sometimes, we can distinguish between pure context variables,
or backgroundvariables, and intermediate variables that are explanatorywith respect to
the final outcome, but might be responses with respect to the focal variable. Mediation
analysis is a relevant example, where the focal variable represents a treatment, or an
exposure, the background variables are known as confounders, and the intermediate
variables, called mediators, are able to capture and channel the indirect effect of the
treatment, or exposure, on the final outcome (VanderWeele 2015).

As a representative example, we consider a set of data from the observational
Swedish National March Cohort (NMC): a population of 33, 327 individuals inter-
viewed in 1997, on the occasion of a fund raising event, and followed from that year
to 2004, through the Swedish patient registry (Sjölander et al. 2009). The NMC data
comprise six variables: pac, self-reported physical activity level (0: high-level exer-
ciser, 1: low-level exerciser) considered as a treatment; bmi , body mass index (0:
≥ 30, 1: < 30) and sle, sleeping problems (0: yes, 1: no) considered as mediators or
intermediate variables; sex (0: male, 1: female) and age (0:≥ 50, 1:< 50) considered
as pure context variables; cvd, cardiovascular disease events (0: no event, 1: at least
one event) considered as the final outcome, or response variable. Variables bmi , sle,
age and sex have been dichotomized so that level 0 identifies subjects with adverse
conditions for cardiovascular diseases. Conversely, the adverse condition of variable
pac corresponds to level 1, so that its regression coefficient will measure the associ-
ation between a lack of physical activity and the insurgence of cardiovascular disease
events.

Low-level exercisers are expected to have a higher risk of cardiovascular diseases
both for a direct adverse effect given by the lack of physical activity and for an indirect
adverse effect given by theworsening that the lack of physical activity can give in terms
of body mass index and sleeping problems. Then, the main interest in this application
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becomes twofold: (i) studying the overall effect of physical activity (pac) on the
adverse outcome (cvd) regardless of information on bmi and sle; (ii) distinguishing
between the direct effect of pac and the indirect effect channelled by bmi and sle
(Pearl 2001; Schwartz et al. 2011). This should be done considering variables age and
sex as confounders, useful to adjust the treatment effect to the population of interest
(and make it amenable to causal interpretation).

We therefore consider regression models at different depths of marginalization
over the intermediate variables bmi and sle, but always including sex and age as
predictors. In these models, all interaction terms, in particular those involving pac,
are non-significant, so that the effect of physical activity can be interpreted regardless
of the value of the other explanatory variables. Nevertheless, to fix ideas, we write:

logit pr(cvd = 1 |pac,male, ≥ 50) = β∗
0 + β∗ pac (14)

logit pr(cvd = 1 |pac,male, ≥ 50, bmi ≥ 30) = β
∗,bmi
0 + β∗,bmi pac (15)

logit pr(cvd = 1 |pac,male, ≥ 50, sle = yes) = β
∗,sle
0 + β∗,sle pac (16)

logit pr(cvd = 1 |pac,male,≥50, bmi≥30, sle = yes)=β
∗,bmi,sle
0 + β∗,bmi,slepac (17)

where * stands for sex, age (always included as predictors with reference level for
elderly male). The focal coefficient β∗ = βsex,age in (14) represents the overall effect
of pac on cvd, adjusted for sex and age, while the same coefficient in the other
regression equations can be interpreted as the direct effect of pac on cvd for elderly
males with high body mass index (15), sleeping problems (16) and both of them (17).

The differences between the direct effects in Eqs. (15)–(17) and the overall effect in
equation (14) account both for the indirect effects that flow through the two mediators
(individually and as a whole) and for the non-collapsibility of odds ratios, as discussed
byRaggi et al. (2023); one should not expect these differences to vanish if themediators
are independent of the focal variable. With this limitation in mind, regardless of the
causal model specification and related interpretation, Sect. 7 shows how the log-hybrid
parameterization can be employed to decompose the treatment effect with respect to
the inclusion of mediators.

4 The log-hybrid linear parameterization

The framework proposed in this paper to enable the comparison of logistic regression
coefficients across different models, that is, conditional odds ratios at different depths
of marginalization, relies on expressing the quantities of interest in terms of a parame-
terization, called the log-hybrid linear parameterization, introduced by La Rocca and
Roverato (2019). We recall in this section the essential features of this parameteriza-
tion, andwe refer to Appendix A for additional details, including a formula to compute
log-hybrid linear parameters from cell probabilities.

In the log-hybrid linear parameterization, the set of variables {X , Y } ∪ {Zi }i∈M

needs to be partitioned into two disjoint subsets: a set of core variables that should
always be included in the analysis, and a set of peripheral variables that may ormay not
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be included in the analysis. This partition affects the interpretation of the parameters
and, to start with, we partition the variables into {X , Y } and {Zi }i∈M . With this choice,
using the notation of Appendix A, the log-hybrid linear parameters can be written as
ϕ

{X ,Y }
A∪D with A ⊆ {X , Y } and D ⊆ {Zi }i∈M . In fact, since we do not need the full set of

parameters, but only those with A = {X , Y }, we can simplify the notation and denote
the collection of parameters of interest as ϕXY

XY Z D
, D ⊆ M .

In greater generality,we partition the variables into {X , Y }∪{Zi }i∈C and {Zi }i∈M\C ,
whereC ⊂ M . In this way, the log-hybrid linear parameterswe consider can bewritten
as ϕ

{X ,Y }∪{Zi }i∈C
A∪B∪D with A ⊆ {X , Y }, B ⊆ {Zi }i∈C and D ⊆ {Zi }i∈M\C . Furthermore,

since we are only interested in the parameters with A = {X , Y } and B = ∅, we can
denote the collection of parameters of interest as

ϕ
XY ZC
XY Z D

, D ⊆ M \ C .

Clearly, letting C = ∅, we recover the parameters ϕXY
XY Z D

, D ⊆ M as a special case.
La Rocca and Roverato (2019) have shown that there exists a one-to-one relation-

ship between the log-hybrid linear parameters and the cell probabilities of (X , Y , Z M ).
More specifically, such relationship is a smooth bijection and, thus, the log-hybrid
linear parameterization is a valid reparameterization of the joint distribution of
(X , Y , Z M ). This implies that reliable algorithms for the computation of MLEs are
available (Lang 1996) under linear constraints on the log-hybrid linear parameters.
The corresponding log-hybrid linear models are useful both to achieve parametric
parsimony, by setting higher-order interactions to zero, and to express the equality of
focal coefficients, using the results in Sect. 5. Furthermore, standard asymptotic theory
can be applied so that, for instance, the asymptotic distribution of MLEs is normal
and likelihood ratios are asymptotically chi-squared distributed; see also Chapter 6 of
Roverato (2017).

The reason why the log-hybrid linear parameterization is germane to the setting
we consider is that, for every D ⊆ M\C , the parameter ϕ

XY ZC
XY Z D

is computed from
the distribution of (X , Y , ZC , Z D). For instance, letting for simplicity C = ∅, the
parameter with D = ∅, denoted by ϕXY

XY , is computed from the distribution of (X , Y ),
while the parameter with D = M , denoted by ϕXY

XY Z M
, is computed from the distri-

bution of (X , Y , Z M ). Hence, different log-hybrid linear parameters are associated to
distributions at different depths of marginalization over Z M and thus, as shown in the
next section, to logistic regression coefficients in models including different, possibly
non-nested, sets of covariates.

We remark that, for categorical variables, parameter values typically depend on
the way variables are coded. This is also true for the log-hybrid linear parameters,
which may change their value if the 0 and 1 labels are swapped. Hence, if we denote
by Z̄ D = 1 − Z D the label swapped version of Z D , for a given D ⊆ M , so that
pr(Z j = 1) = pr(Z̄ j = 0), for every j ∈ D, then the parameters ϕXY

XY Z D
and ϕXY

XY Z̄ D
will typically not be equal. On the other hand, the log-hybrid linear parameters were
originally introduced to parameterize regression graph models (Cox and Wermuth
1996; Drton 2009) because there is a one-to-one correspondence between the inde-
pendencies implied by this family of graphical models and the vanishing of certain
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log-hybrid linear parameters: this correspondence holds no matter the way variables
are coded.

5 Links between different depths of marginalization

We show in this section that each focal parameter βD
X , with D ⊆ M , can be written

as a linear combination of certain log-hybrid linear parameters. In this way, we obtain
an explicit representation of the relationship existing between βD

X and the “nested”
coefficients βD′

X , D′ ⊂ D. Furthermore, any linear combination of regression coeffi-
cients can be written as a linear combination of log-hybrid linear parameters for which
standard inferential procedures are available. A relevant example is provided by the
difference βE

X −βD
X , with D, E ⊆ M , which enables the comparison of any two focal

regression coefficients belonging to either nested or non-nested models.
As a refinement of our analysis, we restrict our attention to the coefficients βC∪D

X ,
D ⊆ M\C , for a certain C ⊂ M . In this way, we tailor our framework to the case
where the components of ZC should always be included in the model, whereas the
components of Z M\C may or may not be. This case is crucial to mediation analysis:
ifC is a minimal sufficient adjustment set, while M \C is a set of candidate mediators,
the vector ZC should always be conditioned upon, in order for the effect of X on Y to
admit a causal interpretation, while the vector Z D , with D ⊆ M\C , should only be
conditioned upon to compute the corresponding direct effect, provided that identifying
conditions aremet; see for instance Pearl (2012).We call themodel specified by D = ∅
the base model (representing the minimal model we are interested in) and note that
letting C = ∅ returns the unrefined analysis.

We state below three results linking logistic regression coefficients at different
depths of marginalization and log-hybrid linear parameters with different sets of core
variables. The proofs of these results can be found in Appendix B, while their practical
application to data analysis will be illustrated in the next two sections. The starting
point is the following basic result concerning the log-hybrid linear parameterization.

Lemma 1 Let X, Y and the components of Z M = (Zi )i∈M be binary random variables
with positive joint probability distribution. Then, for every D ⊆ M, it holds that

ϕ
XY |Z D=1
XY =

∑
D′⊆D

ϕXY
XY Z D′ ,

where ϕ
XY |Z D=1
XY is the log-hybrid linear parameter ϕXY

XY computed from the condi-
tional probability distribution of X and Y given Z D = 1 (their marginal distribution
when D = ∅).

Proof See Appendix B. �

Lemma1 leads to the following theorem,which links logistic regression coefficients

and log-hybrid linear parameters. Recall that βD
X is the coefficient of X in the logistic

regression model with Y as response variable and the components of Z D , together
with X , as predictors.
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Theorem 1 In the setting of Lemma 1, for every D ⊆ M, it holds that

βD
X = logORXY |Z D=0 =

∑
D′⊆D

ϕXY
XY Z̄ D′ , (18)

where Z̄ D′ is the label swapped version of Z D′ (for all D′ ⊆ D).

Proof See Appendix B. �

The relevance of Theorem 1 stems from the fact that it provides a way to carry out

joint statistical inference on the coefficients of X in different, possibly non-nested,
logistic regression models. We clarify this issue by means of an example. Let D and
E be two distinct, but otherwise arbitrary, subsets of M . Then, the corresponding
coefficients βD

X and βE
X belong to the logistic regression models with the components

of Z D and Z E , respectively, as additional predictors. The twomodels are nested if either
D ⊂ E or E ⊂ D, but they are non-nested otherwise.Now,Eq. (18) establishes a linear
relationship between the coefficients βD

X , βE
X and the terms ϕXY

XY Z̄ F
, F ⊆ D ∪ E ⊆ M ,

which implies that the difference βE
X − βD

X can be written as a linear combination of
ϕ-terms. Since the ϕ-terms in (18) belong to the log-hybrid linear expansion of the
cell probabilities of (X , Y , Z̄ M ), we can apply standard inferential methods to carry
out both estimation and testing on βE

X − βD
X . The same holds true for any other linear

combination of focal coefficients, because it can be immediately expressed as a linear
combination of ϕ-terms.

More specifically, from standard inferential methods we can compute the MLEs
of the parameters of the relevant log-hybrid linear model and then obtain their joint
asymptotic normal distribution. From the latter, we can exploit Theorem 1 (or Theo-
rem 3 below) to compute the estimate of any linear combination of focal coefficients,
together with its asymptotic normal distribution.

Another implication of (18) is that any coefficient βD
X can be written as a linear

combination of the corresponding coefficients in all nested logistic regression models,
with the addition of the term ϕXY

XY Z̄ D
. We state this fact in the following result, whose

application and interpretation will be clarified in Sect. 6, where the cases with one and
two covariates will be analyzed in detail.

Theorem 2 In the setting of Lemma 1, for every D ⊆ M, it holds that

βD
X =

∑
D′⊂D

(−1)|D\D′|−1βD′
X + ϕXY

XY Z̄ D
, (19)

or, equivalently,

logORXY |Z D=0 =
∑

D′⊂D

(−1)|D\D′|−1 logORXY |Z D′=0 + ϕXY
XY Z̄ D

. (20)

where Z̄ D is the label swapped version of Z D.

Proof See Appendix B. �
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The ϕ-terms in (18) are computed with X and Y as the sole core variables. If
the components of a vector of covariates ZC , with C ⊆ M , are added to the core
variables, a generalization of (18) still holds, which leads to a direct and parsimonious
link between βC and βC∪D for D ⊆ M \ C . We state this link in the following result,
which will be applied and discussed in Sect. 7, and remark that for C = ∅ it coincides
with (18).

Theorem 3 In the setting of Lemma 1, let C ⊂ M. Then, for every D ⊆ M \ C, it
holds that βC

X = logORXY |ZC =0 = ϕ
XY ZC
XY and

βC∪D
X = βC

X +
∑

∅�=D′⊆D

ϕ
XY ZC

XY Z̄ D′ , (21)

or, equivalently,

logORXY |ZC =0,Z D=0 = logORXY |ZC =0 +
∑

∅�=D′⊆D

ϕ
XY ZC

XY Z̄ D′ , (22)

where Z̄ D′ is the label swapped version of Z D′ (for all D′ ⊆ D).

Proof See Appendix B. �

Although our main interest is for logistic regression coefficients, in Theorem 1, as

well as in Theorem 2 and Theorem 3, the results are also given in terms of conditional
log odds ratios. This choice is motivated by the fact that odds ratios are fundamental
measures of association in categorical data analysis, and thus they facilitate both the
comparison with the literature and the extension of our results to other parameteriza-
tions, such as the log-linear parameterization; see Appendix A. In this perspective, we
like to recall that (functions of) the odds ratios are the only measures of association
that do not depend on the marginal distributions (Edwards 1963; Altham 1970) and
the relationship between conditional independence and vanishing conditional log odds
ratios is straightforward.

Finally, we find it useful to relate the material described in this section with the
collapsibility of odds ratios, and thus of logistic regression coefficients. It is well-
established that, for every non-empty D ⊆ M , a sufficient condition for the equality
βD

X = β∅
X to hold true is that either (i) Y⊥⊥Z D | X or (ii) X⊥⊥Z D | Y (Whittemore

1978; Guo and Geng 1995; Didelez et al. 2010). Additional insight can be obtained
from Theorem 3 of La Rocca and Roverato (2019), where it is shown that conditions
(i) and (ii) above are both sufficient to have ϕXY

XY Z̄ D′ = 0 for every non-empty D′ ⊆ D.

In other words, with the exception of ϕXY
XY , all the remaining ϕ-terms in (18) are equal

to zero; see also Theorem 6.3 in Roverato (2017). In this way, when either (i) or (ii)
hold, Eq. (18) simplifies to βD

X = ϕXY
XY = β∅

X , which returns the well-known result.
As shown in Sect. 6.2 below, the results on collapsibility can be exploited to simplify

the relationships among parameters given inEq. (19) and (20) of Theorem2.Moreover,
additional simplifications not implied by collapsibility are possible, because La Rocca
andRoverato (2019) andRoverato (2017), in Theorem6.5, have shown that a sufficient
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condition for ϕXY
XY Z̄ D

to vanish is that there exists a partition D1 ∪ D2 = D, with

D1 ∩ D2 = ∅, such that Z D1 and Z D2 are conditionally independent given X and Y .
More specifically, if Z D1⊥⊥Z D2 | (X , Y ), then ϕXY

XY Z̄ D′ = 0 for every D′ ⊆ D such

that both D′ ∩ D1 �= ∅ and D′ ∩ D2 �= ∅.

6 Specific cases with up to two covariates

In this section we illustrate the application of the results in Sect. 5 to the specific cases
of models including the focal variable X and either one or two additional explanatory
variables.

6.1 One covariate case

We illustrate here the casewhere only one additional explanatory variable Z1 is consid-
ered and, thus, we compare the logistic regression model in (1) with that given in (4).
We remark that this is, in fact, a well-understood problem that has been investigated
from different viewpoints. For instance, conditions for the equality β

{1}
X = β∅

X to hold
true follow from the results on collapsibility of Guo and Geng (1995) andWhittemore
(1978), whereas a statistical test on hypotheses concerning the difference β

{1}
X − β∅

X
can be found in Ducharme and Lepage (1986).

Here, we notice that when D = {1} Eq. (19) of Theorem 2 becomes

β
{1}
X = β∅

X + ϕXY
XY Z̄1

, (23)

thereby highlighting the role played by the log-hybrid linear parameters in this case.
Clearly, β{1}

X − β∅
X = ϕXY

XY Z̄1
, so that β{1}

X = β∅
X if and only if ϕXY

XY Z̄1
= 0. Hence, the

comparison of the two focal coefficients can be based on the MLE ϕ̂XY
XY Z̄1

of ϕXY
XY Z̄1

.

Furthermore, as clarified by Sect. 6.2 below, this interpretation of the parameter ϕXY
XY Z̄1

remains unchangedwhen additional explanatory variables are introduced in themodel,
due to the upper compatibility property of the log-hybrid parameterization.

Finally,we recall that Eq. (23) is closely related toEq. (5) of Stanghellini andDoretti
(2019), where β∅

X is written as the sum of β
{1}
X and other three terms, which can thus

be regarded as a decomposition of −ϕXY
XY Z̄1

; see also Wang (2021). The relevance of
such a decomposition has to do with the interpretation of the relationship existing
between the two models, because it involves only terms that are computed on the joint
distribution of the three variables, without requiring the computation of the marginal
distribution of X and Y .

123



L. La Rocca et al.

6.2 Two covariate case

In the case where D = {1, 2}, Eq. (19) of Theorem 2 becomes

β
{1,2}
X = −β∅

X + β
{1}
X + β

{2}
X + ϕXY

XY Z̄1 Z̄2
, (24)

which provides an expansion of the coefficient β{1,2}
X of (6) into (i) the coefficient β∅

X

from (1), computed on the marginal distribution of X and Y , (ii) the coefficient β
{1}
X

from (4), computed on the marginal distribution of X , Y and Z1, (iii) the coefficient
β

{2}
X from (5), computed on the marginal distribution of X , Y and Z2, and finally (iv)

the term ϕXY
XY Z̄1 Z̄2

computed on the full joint distribution of the four variables.

The expansion of β
{1,2}
X in (24), properly combined with (18) from Theorem 1, can

be exploited to verify a wide range of scientific hypotheses, in a flexible way. For
example, one can compare the focal coefficients of both nested models, by means of
a difference such as

β
{1,2}
X − β

{2}
X = ϕXY

XY Z̄1
+ ϕXY

XY Z̄1 Z̄2
,

and non-nested models, by means of a difference such as

β
{1}
X − β

{2}
X = ϕXY

XY Z̄1
− ϕXY

XY Z̄2
.

Furthermore, if ϕXY
XY Z̄1 Z̄2

= 0 then (24) simplifies to

β
{1,2}
X = −β∅

X + β
{1}
X + β

{2}
X , (25)

which shows how the coefficients of smaller logistic regression models contribute to
form the value of β{1,2}

X . It is worth remarking that this equation provides a relationship
between logistic regression coefficients that cannot be obtained from the application
of the results on collapsibility, and that implies, for example, both

β∅
X − β

{1}
X = β

{2}
X − β

{1,2}
X and β∅

X − β
{2}
X = β

{1}
X − β

{1,2}
X ; (26)

that is, removing Z1 from the model has the same impact on the coefficient of X
whether Z2 is present or not in the model and, symmetrically, the same is true if Z2 is
removed instead. In addition, if ϕXY

XY Z̄1
also vanishes, we see from (23) that β∅

X = β
{1}
X ,

and thus (25) becomes

β
{1,2}
X = β

{2}
X .

Finally, we recall that the equality ϕXY
XY Z̄1 Z̄2

= 0 is implied by any of the conditions

Z1⊥⊥Z2 | (X , Y ), X⊥⊥Z1:2 | Y and Y⊥⊥Z1:2 | X , whereas the equality ϕXY
XY Z̄1

= 0

123



On the comparison of regression...

Table 2 Titanic data. Saturated model. MLE (ASE) of the log-hybrid linear parameters of interest and
related focal coefficients

ϕsur ,class ϕsur ,class,sex ϕsur ,class,age ϕsur ,class,sex,age

−1.211 (0.133) 0.739 (0.142) −0.059 (0.130) 0.200 (0.120)

β∅ βsex βage βsex,age

−1.211 (0.133) −0.472 (0.194) −1.270 (0.186) −0.331 (0.254)

is implied by any of the conditions X⊥⊥Z1 | Y and Y⊥⊥Z1 | X . However, these
are sufficient conditions, and the vanishing of any ϕ-term, as well as of any linear
combination of ϕ-terms, can be directly verified with standard inferential procedures
relying on the asymptotic normal distribution of the MLEs of the log-hybrid linear
parameters.

6.3 Illustrative example with the Titanic data

The log-hybrid linear parameters with core variables class and sur are estimated
without constraints from the joint distribution of the variables sur , class, sex and age
of the Titanic data introduced in Section 3.1; the results are reported in Table 2. Note
that sex and age are label swapped, before estimation, so that the results in Sect. 5 can
be applied. Indeed, Table 2 also includes the estimated coefficients in Eqs. (10)–(13)
obtained from Theorem 1:

β̂∅ = ϕ̂sur ,class,

β̂sex = ϕ̂sur ,class + ϕ̂sur ,class,sex ,

β̂age = ϕ̂sur ,class + ϕ̂sur ,class,age,

β̂sex,age = ϕ̂sur ,class + ϕ̂sur ,class,sex + ϕ̂sur ,class,age + ϕ̂sur ,class,sex,age,

where the hat denotesMLEs and, for the sake of readability, we dropped the superscript
sur , class common to all ϕ-terms. Recall that the above displayed β-terms are the
focal regression coefficients at different depths of marginalization over age and sex ,
which represent the quantities of interest in our analysis.

Single log-hybrid linear parameters or sums of them can be interpreted as covariate-
specific modifiers of the focal coefficient of the base model. Parameter ϕsur ,class,sex is
defined as thefirst order sex-specificmodifier: it is significant, and thus the contribution
of variable sex is shown to be important to this extent. Similarly, ϕsur ,class,age is the
first order age-specific modifier: it is non-significant, and thus variable age seems to
be negligible as a modifier of the focal parameter. Let us now consider the second
order modifier defined as

β̂sex,age − β̂∅ = ϕ̂sur ,class,sex + ϕ̂sur ,class,age + ϕ̂sur ,class,sex,age,
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Table 3 Titanic data. Reducedmodel.MLE (ASE) of the log-hybrid linear parameters of interest and related
focal coefficients

ϕsur ,class ϕsur ,class,sex ϕsur ,class,age ϕsur ,class,sex,age

−1.211 (0.133) 0.755 (0.141) −0.042 (0.129) 0

β∅ βsex βage βsex,age

−1.211 (0.133) −0.456 (0.193) −1.253 (0.185) −0.498 (0.238)

related to the inclusion of both variables sex and age. The estimate of this modifier
accounting for both sex and age is 0.880 (0.216) and thus, it is significant.

Using a stepwise procedure, based on the hierarchical principle, we verify whether
the saturated log-hybrid model can be simplified by the inclusion of zero constraints.
A reduced model with ϕsur ,class,sex,age = 0 is fitted, since this is the highest non-
significant interaction term. The resulting model provides an acceptable fit (likelihood
ratio test statistic equal to 2.69 on 1 degree of freedom, p-value = 0.10) and the
parameter estimates are included in Table 3. The immediate simplification is that the
second order modifier is additive:

β̂sex,age − β̂∅ = ϕ̂sur ,class,sex + ϕ̂sur ,class,age, (27)

that is, it is the sum of the first order modifiers for sex and age; its estimate is
0.713 (0.197) and thus it remains significant.

As shown in (25), the simplification given by (27) provides a nice interpretation of
the focal parameter estimate of the model including both sex and age: it becomes a
linear combination of the focal parameter estimates in the two nested models,

β̂sex,age = −β̂∅ + β̂sex + β̂age,

so that both β̂∅ − β̂sex = β̂age − β̂sex,age and β̂∅ − β̂age = β̂sex − β̂sex,age, similarly
to (26), which means that removing sex or age from the linear predictor has the same
impact on the focal parameter regardless of the depth of marginalization.

In the reduced model, the greatest contribution to the focal parameter still comes
from the inclusion of sex , whereas ϕsur ,class,age again results to be non-significant.
Then, we procedewith the stepwise procedure and compare the reducedmodel defined
by ϕsur ,class,age = ϕsur ,class,sex,age = 0 with the saturated model. We remark that
such a comparison is equivalent to testing the joint hypothesis

βage = β∅ and βsex,age = βsex , (28)

which expresses the null impact of removing age on the focal parameter at any depth
of marginalization. In this specific case, the empirical evidence is against such a
simplification (likelihood ratio test statistic equal to 28.21 on 2 degree of freedom,
p-value ≈ 0). Note that (28) simultaneously involves the coefficients of four different
logistic regression models and, when verified, would represent a weaker assumption
than collapsibility of the focal coefficient with respect to age.
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We conclude that, despite the age-specific modifier ϕsur ,class,age seems to be neg-
ligible in terms of its impact on the estimate of the focal parameter, the model with
ϕsur ,class,age = ϕsur ,class,sex,age = 0 does not provide an adequate fit, and thus the
modelwithϕsur ,class,sex,age = 0 is selected. FormTable 3, one can see that the greatest
impact on the focal parameter is provided by the positive estimate of the sex-specific
modifier ϕsur ,class,sex , which considerably reduces the negative impact of travelling
in third class on the survival probability for male passengers. Conversely, including
covariate age in the predictor slightly increases the negative effect of the travelling
class on the survival probability for passengers over 25 years old. When both covari-
ates sex and age are included, the estimate of their second order modifier in Eq. (27)
is additive and obtained by summing the first order modifiers that are, respectively,
positive and negative for sex and age. The resulting sum is positive and can be inter-
preted as an attenuation of the inclusion of sex on the effect of travelling in third class
for male passengers if they are over 25 years old.

In the end, positive (negative) log-hybrid linear parameter estimates, as well as pos-
itive (negative) sums of some of them, increase (reduce) the effect of the focal variable
on the probability of success of the response at different depths ofmarginalization over
the covariates, with reference to their baseline level; in this specific application with
reference to sex = male and age ≥ 25.

This illustrative example was discussedwith a dual purpose. Firstly, to show that the
log-hybrid linear parameterization effectively enables the comparison of coefficients
across different logistic regressionmodels. Secondly, to illustrate how zero constraints
on log-hybrid linear parameters can be used to test hypotheses of interest on the focal
parameter at different depths of marginalization.

7 Application to NMC data

In this section a log-hybrid linear model is applied for the analysis of the NMC data
introduced in Sect. 3.2. The interest lies in studying the effect of a treatment, physical
activity (pac), on the insurgence of cardiovascular disease events (cvd), by considering
biological sex (sex) and age (age) of the respondents as confounders, and their body
mass index (bmi) and sleeping problems (sle) as possible mediators. In a logistic
regression setting, the focal parameter is represented by the coefficient of pac and
the intent is to study how this parameter can be influenced by the inclusion of bmi
and/or sle in the linear predictor. The substantive hypothesis is that physical activity
has a twofold effect on the risk of cardiovascular disease events: a direct effect and an
indirect effect induced by the increase of body mass index and sleeping problems in
low level exercisers.

The above question can be approached by fitting a log-hybrid linear model to the
joint distribution of the full set {cvd, pac, age, sex, bmi , sle} of variables and by
exploiting the results provided in this paper to decompose and compare coefficients
in multiple logistic regression models. In this analysis, the base model includes the
treatment pac and the confounders sex and age, while the variables bmi and sle play
the role of mediators, and thus they are used with swapped labels (as required by our
results in Sect. 5). Given the large dimension of the parameter space (26−1) a reduced
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Table 4 NMC data. Selected model. MLE (ASE) of the log-hybrid linear parameters of interest, related
focal coefficients and corresponding modifiers (with respect to the baseline model)

D ϕcvd,pac,Z̄ D
β∗,D β∗,D − β∗

∅ −0.019 (0.148) −0.019 (0.148) 0

{bmi} 0.349 (0.207) 0.330 (0.254) 0.349 (0.207)

{sle} 0.277 (0.263) 0.258 (0.301) 0.277 (0.263)

{bmi, sle} 0 0.607 (0.361) 0.626 (0.330)

log-hybrid linear model is selected using a backward stepwise procedure where non-
significant parameters are iteratively constrained to zero. The selected model includes
33 non-zero log-hybrid linear parameters and provides a satisfactory fit with a value of
the log-likelihood ratio test equal to 36.28 on 30 degrees of freedom (p-value=0.20).
Although in this reduced model some parameter estimates provide a p-value greater
than 0.05, it has been verified that more parsimonious models with additional zero
constraints are not adequate in terms of likelihood ratio test.

Table 4 collects the estimates of the log-hybrid linear parameters ϕcvd,pac,Z̄ D

required to obtain the estimates of the logistic regression coefficients β∗,D , with
D ∈ {bmi, sle} and * standing for {sex, age}. A simplified notation is used as in
Sect. 6.3 such that ϕcvd,pac,Z̄ D

stands for ϕ
cvd,pac,∗
cvd,pac,Z̄ D

, β∗,D stands for β
∗,D
pac and D

is omitted when equal to ∅. The estimates in the third column of Table 4 represent a
measure of the overall effect β∗ of the treatment and of its three direct effects β∗,bmi ,
β∗,sle, and β∗,bmi,sle, which partially or fully constrain bmi and sle to their refer-
ence levels. The estimate of β∗ suggests that the overall effect of the physical activity
is non-significant to explain the probability of adverse cardiovascular events. Direct
effects are estimated to be positive across models, supporting the hypothesis that a low
physical activity increases the probability of adverse event when high bodymass index
and/or sleeping problems occur. The highest estimated direct effect is β∗,bmi,sle. By
using Theorem 3, this parameter results as a linear combination of the overall effect
and of the direct effects in nested models,

β∗,bmi,sle = −β∗ + β∗,bmi + β∗,sle, (29)

because ϕcvd,pac,bmi,sle = 0 in the selected model.
From the application of Theorem 3, which handles the case where the base model

not only includes the focal variable, the differences between the various indirect effects
and the overall effect are obtained as

β∗,D − β∗ =
∑

D′⊆D:D′ �=∅
ϕcvd,pac,Z̄ D

, D ⊆ {bmi, sle}.

These differences are modifiers of the focal parameters, as discussed in Sect. 6.3, and
account, in the present mediation context, for the indirect effects of the treatment on
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the disease. Under the selected model, these differences reduce to

β∗,bmi − β∗ = ϕcvd,pac,bmi , (30)

β∗,sle − β∗ = ϕcvd,pac,sle, (31)

β∗,bmi,sle − β∗ = ϕcvd,pac,bmi + ϕcvd,pac,sle (32)

and the corresponding estimates are collected in the last column of Table 4. Since
β̂∗ is close to zero, the estimates of these differences approximately equal the direct
effect estimates. However, as discussed in Raggi et al. (2023), it would be incautious
to conclude that the direct and indirect effects have a comparable magnitude in this
specific application, because the differences in (30)-(32) may embed residual effects
due to the non-collapsibility of the odds ratio.

Appendix A Parameterizations of interest

The probability distribution of a binary random vector is naturally parameterized
by a cross-classified probability table, that is, by the collection of cell probabilities.
However, submodels of interest are identified by nonlinear, multiplicative, constraints
on the probabilities and, therefore, alternative parameterizations have been introduced
in such a way that relevant submodels are characterized by the vanishing of certain
parameters. Here, we review the main features of three such parameterizations, as
required for this paper, with special attention to their connection with the odds ratio as
well as to the relationships linking one parameterization with the other. Specifically,
we present log-linear parameters, logistic regression coefficients, and log-hybrid linear
parameters, in three distinct subsections, after a brief common introduction.

Because of the different roles played by variables in the three parameterizations
we consider, it is convenient, in this section, to use a slightly different notation from
the rest of the paper, and we represent all the variables in a single random vector
YV = (Y1, Y2, . . . , Yv) indexed by the set V = {1, 2, . . . , v}. We remark, however,
that the notation used in the rest of the paper can immediately be recovered by setting
Y = Y1, X = Y2 and Z = (Y3, Y4 . . . , Yv). Without loss of generality, we assume that
the levels of the variables are labelled by 0 and 1, so that the probability distribution
of YV is characterized by the collection of probabilities pr(YV = yV ), yV ∈ {0, 1}|V |,
which can be equivalently written as

pr(YD = 1, YV \D = 0), D ⊆ V , (A1)

where YD = 1 means Yi = 1 for every i ∈ D, and similarly for YV \D = 0. Note that
each D ⊆ V can be identified with the set of variables {Yi }i∈D , whenever this proves
useful.

Möbius inversion formula is a well-known combinatorial tool that we extensively
exploit in the derivation of results. We formally state it in the following proposition,
and we refer to Roverato (2017) for a proof and more details on its application to the
theory of categorical data.
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Proposition A.1 (Möbius inversion formula) Let θ = (θD)D⊆V and ω = (ωD)D⊆V

be two real vectors indexed by the subsets of a finite set V . Then, it holds that

ωD =
∑

D′⊆D

θD′ if and only if θD =
∑

D′⊆D

(−1)|D\D′| ωD′ ,

where the identities are intended for all D ⊆ V .

A.1 Log-linear parameters

In data analysis settings where all the variables are on an equal footing, it is common to
apply log-linear models, which rely on a parameterization obtained from a log-linear
expansion of the cell probabilities. We denote the log-linear parameters by λ, and
recall that there exist different ways, although substantially equivalent, to compute the
parameter values.

We follow Chapter 9 of Agresti (2012) and apply the corner point constraint with
zero reference level so as to obtain

log pr(YD = 1, YV \D = 0) =
∑

D′⊆D

λD′, for every D ⊆ V .

Hence, the application of Möbius inversion gives immediately the formula for the
computation of log-linear parameters from cell probabilities:

λD =
∑

D′⊆D

(−1)|D\D′| log pr(YD′ = 1, YV \D′ = 0), for every D ⊆ V . (A2)

In turn, letting D = {i, j} with i �= j , the latter identity can be used to show that

λ{i, j} = logORYi Y j |YV \{i, j}=0 . (A3)

A.2 Logistic regression coefficients

Logistic regression is a method widely applied when the analysis requires to regress
a binary variable, say Y1, on a vector of explanatory variables, say YV \{1}. It relies on
expressing the logit

logit pr(Y1 = 1 | YV \{1} = yV \{1}) = log
pr(Y1 = 1, YV \{1} = yV \{1})
pr(Y1 = 0, YV \{1} = yV \{1})

(A4)

as the following function of the values yV \{1} taken by the explanatory variables:

logit pr(Y1 = 1 | YV \{1} = yV \{1}) =
∑

E⊆V \{1}
βE

∏
i∈E

yi .
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We refer to Chapter 5 of Agresti (2012) for more information. Since our variables can
only take the values zero and one, the above displayed equation can be written in the
form

logit pr(Y1 = 1 | YE = 1, YV \(E∪{1}) = 0) =
∑

E ′⊆E

βE ′ , for every E ⊆ V \ {1},

and, in this way, we can readily apply Möbius inversion to show that the logistic
regression coefficients can be computed as

βE =
∑

E ′⊆E

(−1)|E\E ′| logit pr(Y1 = 1 | YE ′ = 1, YV \(E ′∪{1}) = 0), (A5)

for every E ⊆ V \ {1}. As shown, for instance, by Section 9.5 of Agresti (2012),
there exists a close relationship between log-linear parameters and logistic regression
coefficients, which we can formalize in our notation as

βE =
∑

E ′⊆E

(−1)|E\E ′| log
pr(Y1 = 1, YE ′ = 1, YV \(E ′∪{1}) = 0)

pr(Y1 = 0, YE ′ = 1, YV \(E ′∪{1}) = 0)
(A6)

=
∑

D⊆E∪{1}
(−1)|(E∪{1})\D| log pr(YD = 1, YV \D = 0) = λE∪{1}, (A7)

for every E ⊆ V \ {1}, where the equality in (A6) follows from (A5) by applying
(A4), the first equality in (A7) follows from the fact that, for every E ′ ⊆ E , the two
terms of the sum in (A7) indexed by D = E ′ and D = E ′ ∪ {1} add app to the term
of the sum in (A6) indexed by E ′, and the second equality in (A7) follows from (A2).
In particular, letting E = { j} with j �= 1, and using (A3), we find

β{ j} = logORY1Y j |YV \{1, j}=0 . (A8)

A.3 Log-hybrid linear parameters

The log-hybrid linear parameterization is more recent: it was first introduced by La
Rocca and Roverato (2019); see also Roverato (2017). It depends on a predefined par-
tition of the variables into two disjoint groups indexed by the subsets T and U of V ,
that is, formally, on writing V = T ∪ U with T ∩ U = ∅. Informally, this parameteri-
zation relies on the idea that log-hybrid linear parameters are computed conditionally
with respect to the variables in YU and marginally with respect to variables in YT , in a
sense to be clarified below. In this way, the log-hybrid linear parameterization extends
the log-linear parameterization and, indeed, coincides with the latter in the case where
U = V , so that T = ∅. On the other hand, if U = ∅ and T = V , then the log-
hybrid linear parameterization coincides with the log-mean linear parameterization
introduced by Roverato et al. (2013).

Two steps are required to compute the log-hybrid linear parameters from the cell
probabilities. The first step is the construction of a collection of probabilities, indexed
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by the subsets of V , computed from the distribution of specific subvectors of YV .
Concretely, every D ⊆ V uniquely identifies the subvector YU∪D = YU∪(D∩T ) of YV

or, in other words, the distribution of YV marginalized over the variables YT \D . Then,
every D ⊆ V can be associated with the probability of the event {YD = 1, YU\D = 0},
thus obtaining the collection of probabilities

pr(YD = 1, YU\D = 0), D ⊆ V . (A9)

It is shown in La Rocca and Roverato (2019) that (A9) is a one-to-one transformation
of the collection of cell probabilities in (A1), and therefore a valid parameterization of
the distribution of YV . Specifically, there is a linear transformation between (A1) and
(A9), and it is straightforward to compute one from the other; we refer to Chapter 6
of Roverato (2017) for details.

The second step amounts to computing the log-hybrid parameters from (A9) as

ϕU
D =

∑
D′⊆D

(−1)|D\D′| log pr(YD′ = 1, YU\D′ = 0), for every D ⊆ V , (A10)

and thus, also in this case, we can apply Möbius formula to obtain the inverse
transformation

log pr(YD = 1, YU\D = 0) =
∑

D′⊆D

ϕU
D′ , for every D ⊆ V ,

which we call the log-hybrid linear expansion for YD with respect to YU .
Remarkably, the computation of ϕU

D in (A10) is based on the marginal distribution
of YU∪D and, therefore, it satisfies upward compatibility: its value does not change if
more variables are included in the analysis, or if some variables are removed and YV

is replaced by a subvector YS such that U ∪ D ⊆ S. In particular, when D ⊆ U the
application of (A10) amounts to computing the log-linear parameters in (A2) on the
marginal distribution of YU , so that (A3) gives rise to

ϕU
{i, j} = logORYi Y j |YU\{i, j}=0 if {i, j} ⊆ U ; (A11)

see also Proposition 8.7.5 in La Rocca and Roverato (2019). Furthermore, for every
W ⊆ V \ (U ∪ D), it follows directly from (A10) and the fact that every non-empty
subset has the same number of even and odd subsets, that

ϕ
U |YW =0
D = ϕU∪W

D if D �= ∅, (A12)

where ϕ
U |YW =0
D is the log-hybrid linear parameter ϕU

D computed from the conditional
probability distribution of YU∪D given YW = 0 (its marginal distribution if W = ∅).

123



On the comparison of regression...

Appendix B Proofs

B.1 Proof of Lemma 1

The result is trivially true when D = ∅ and thus in the following we assume that
D �= ∅. Then, we note that, when computing ϕXY

XY = ϕ
{X ,Y }
{X ,Y } , formula (A10) can

equivalently be written as

ϕXY
XY =

∑
A⊆{X ,Y }

(−1)|{X ,Y }\A| log pr(X = 1{X∈A}, Y = 1{Y∈A}),

where 1{X∈A} is the indicator function that takes value 1 if X ∈ A and 0 otherwise, and

similarly for 1{Y∈A}. Accordingly, the parameter ϕ
XY |Z D=1
XY is computed in the same

way, but with respect to the conditional distribution of X and Y given Z D = 1, that
is, we have

ϕ
XY |Z D=1
XY =

∑
A⊆{X ,Y }

(−1)|{X ,Y }\A| log pr(X = 1{X∈A}, Y = 1{Y∈A} | Z D = 1).

We will use this equality at the end of the proof.
We now consider an arbitrary non-empty subset D ⊆ M and, for every A ⊆ {X , Y },

we let ϕ
XY [D]
A = ∑

D′⊆D ϕXY
A∪D′ , where we identify D with {Zi }i∈D and D′ with

{Zi }i∈D′ . We have to show that ϕXY [D]
XY = ϕ

XY |Z D=1
XY . If we write the log-hybrid linear

expansion for (Y , X , Z D) with respect to (X , Y ), we obtain

log pr(X = 1{X∈A}, Y = 1{Y∈A}, Z D = 1) =
∑

F⊆{X ,Y }∪D

ϕXY
F

=
∑

A⊆{X ,Y }

∑
D′⊆D

ϕXY
A∪D′

=
∑

A⊆{X ,Y }
ϕ

XY [D]
A ,

for every A ⊆ {X , Y }. Hence, we can apply the Möbius inversion formula from
Proposition A.1 to obtain the desired result:

ϕ
XY [D]
XY =

∑
A⊆{X ,Y }

(−1)|{X ,Y }\A| log pr(X = 1{X∈A}, Y = 1{Y∈A}, Z D = 1) (B1)

= log
pr(X = 1, Y = 1, Z D = 1) pr(X = 0, Y = 0, Z D = 1)

pr(X = 1, Y = 0, Z D = 1) pr(X = 0, Y = 1, Z D = 1)
(B2)

= log
pr(X = 1, Y = 1 | Z D = 1) pr(X = 0, Y = 0 | Z D = 1)

pr(X = 1, Y = 0 | Z D = 1) pr(X = 0, Y = 1 | Z D = 1)
(B3)

=
∑

A⊆{X ,Y }
(−1)|{X ,Y }\A| log pr(X = 1{X∈A}, Y = 1{Y∈A} | Z D = 1), (B4)
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where in (B2) we have explicitly written the four terms of the sum (B1), while (B3)
is obtained by dividing twice both the numerator and the denominator in (B2) by
pr(Z D = 1), and the step from (B3) to (B4) can be seen as the inverse of the step from
(B1) to (B2); it follows from (B4) that ϕXY [D]

XY = ϕ
XY |Z D=1
XY as required.

B.2 Proof of Theorem 1

The first equality in (18), that is βD
X = logORXY |Z D=0, is a well-established result,

which is shown for instance in (A8) of Appendix A. We prove below the second
equality.

Equation (A11) implies ϕXY
XY = logORXY and, therefore, we have

ϕ
XY |Z D=zD
XY = logORXY |Z D=zD

for every zD ∈ {0, 1}|D|. (B5)

Then, it follows immediately fromLemma 1 that
∑

D′⊆D ϕXY
XY Z̄ D′ = ϕ

XY |Z̄ D=1
XY , which

is clearly equivalent to
∑

D′⊆D ϕXY
XY Z̄ D′ = ϕ

XY |Z D=0
XY . The latter equality, togetherwith

(B5), implies
∑

D′⊆D ϕXY
XY Z̄ D′ = logORXY |Z D=0, which is the second equality in (18).

B.3 Proof of Theorem 2

We apply Möbius inversion formula (Proposition A.1) to the statement of Theorem 1,
written as

logORXY |Z D=0 =
∑

D′⊆D

ϕXY
XY Z̄ D

for every D ⊆ M,

so as to obtain, for every D ⊆ M ,

ϕXY
XY Z̄ D

=
∑

D′⊆D

(−1)|D\D′| logORXY |Z D′=0

=
∑

D′⊂D

(−1)|D\D′| logORXY |Z D′=0 + logORXY |Z D=0

and, therefore,

logORXY |Z D=0 = −
∑

D′⊂D

(−1)|D\D′| logORXY |Z D′=0 + ϕXY
XY Z̄ D

=
∑

D′⊂D

(−1)|D\D′|−1 logORXY |Z D′=0 + ϕXY
XY Z̄ D

,

which establishes (20).
We deduce (19) from (20) by replacing the log odds ratios with logistic regression

coefficients, according to the well-known identity (A8) of Appendix A.
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B.4 Proof of Theorem 3

The equalities βC
X = logORXY |ZC =0 = ϕ

XY ZC
XY follow from (A8) and (A11) in

Appendix A. Then, for all C ⊆ M , and D ⊆ M \C , we think of logORXY |ZC =0,Z D=0
as logORXY |Z D\C =0 computed from the conditional probability distribution of
X , Y and Z D given ZC = 0. This enables us to express logORXY |Z D=0 as∑

D′⊆D ϕ
XY |ZC =0
XY Z̄ D′ , which equals

∑
D′⊆D ϕ

XY ZC

XY Z̄ D′ by (A12). We obtain (21) and (22)

by recalling the initial equalities.
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