
26/12/2024 20:39

A nonlinearity lagging method for non-steady diffusion equations with nonlinear convection terms /
Mezzadri, F.; Galligani, E.. - In: ADVANCES IN COMPUTATIONAL MATHEMATICS. - ISSN 1019-7168. -
45:3(2019), pp. 1185-1220. [10.1007/s10444-018-9652-2]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

A nonlinearity lagging method for non-steady diffusion equations

with nonlinear convection terms

F. Mezzadri ∗ 1 and E. Galligani †1

1Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, via P.
Vivarelli 10/1, building 26, I-41125, Modena

Received: date / Accepted: date

Abstract

We analyze an iterative procedure for solving nonlinear algebraic systems arising from the discretization
of nonlinear, non-steady reaction-convection-diffusion equations with non-constant (and, in general,
nonlinear) velocity terms. The basic idea underlying the procedure consists in lagging the diffusion
and the velocity terms of the discretized system, which is thus partly linearized. After analyzing the
discretized system and proving some results on the monotonicity of the operators and on the uniqueness
of the solution, we prove sufficient conditions that ensure the convergence of this lagged method. We also
describe the inner iteration and show how the weakly nonlinear systems arising at each lagged iteration
can be solved efficiently. Finally, we analyze numerically the entire solution process by several numerical
experiments.

Keywords: Nonlinear diffusion equations, Lagged Diffusivity Method, Finite differences
MSC2010: 65H10,65M06,65M22

1 Introduction

In many important problems and applications, it is often necessary to solve systems of nonlinear algebraic
equations

F (u) = 0,

where F : Ω ∈ Rn → Rn is a continuously differentiable mapping and u ∈ Rn is the unknown vector. These
systems can arise, for instance, from the discretization of a differential operator by finite differences or by
finite elements schemes. In these cases, the systems are usually large and the Jacobian matrix is often not
available or hard to compute.

In this and in other situations where a strong nonlinearity is present, methods relying on a linearization
of nonlinear terms can be of interest. For instance, in the context of denoising in image analysis (e.g. see [15]
and [2]), a lagged diffusivity fixed point iteration was introduced in [21]. As the name suggests, in this study
the diffusivity term was linearized by “lagging” its dependence on u. The convergence of this procedure in
this field has then been analyzed in [3].

While these papers focused on the specific field of image restoration (and on specific forms of diffusivity, like
that of Perona-Malik [13]), more recent contributions have proposed the lagged diffusivity method for solving
systems descending from entire classes of diffusion problems. Several cases have been analyzed, providing
proofs of the convergence of the procedure under some smoothness assumptions. The main advantage of

∗francesco.mezzadri@unimore.it
†emanuele.galligani@unimore.it

1

these techniques is that, at each lagging iteration, they linearize (al least partially) the nonlinear algebraic
system, thus simplifying the computation of its Jacobian matrix. The most recent contribution [11] dealt
with systems arising from general non-steady diffusion equations containing reaction and convection terms as
well. The reader is referred to [11] also for a review of other papers on this topic.

In this paper, we proceed along this line of thought, but we consider a yet more general case. Indeed,
none of the existing papers on this topic analyzed the case of convection with a non-constant velocity term.
We, on the other hand, aim at solving systems arising from general non-steady diffusion equations with
nonlinear velocity terms. This is actually a really interesting situation, which can occur in several practical
problems. Moreover, this generalization is interesting also on a mathematical perspective, since it deeply
modifies both the properties of the discretized system and the convergence of the algorithm. Indeed, in the
general nonlinear case, the very idea underlying the lagged procedure must be changed since also the velocity
term has to be lagged if ṽ depends on u. Finally, a non-constant velocity term also modifies the existence
of the solution and the monotonicity of F (u), since terms that disappear in case of constant ṽ cannot be
eliminated anymore.

We take into account all these issues and analyze a lagged procedure applied to the system F (u) = 0,
where F (u) arises from a finite difference discretization of a non-steady reaction-convection-diffusion equation
with nonlinear velocity terms. As mentioned earlier, in this procedure both diffusivity and velocity terms
are lagged. This means that, starting from an initial iterate u(0), we compute the next iterate u(1) as the
solution of the weakly nonlinear algebraic system where diffusivity and velocity are evaluated at u = u(0).
Then, in the following iteration, u(1) is used to evaluate the diffusivity and the velocity terms, allowing us to
find the new iterate u(2), and so on until a stopping criterion is satisfied. Notwithstanding also the velocity
term is lagged, we still refer to this procedure as the Lagged Diffusivity Method (LDM) for uniformity with
previous works.

We also prove that, when some assumptions hold, F (u) is monotone, the solution of the nonlinear algebraic
system F (u) = 0 is unique and the LDM converges. We focus our analysis on the more general non-steady
case, but we provide a few remarks on the stationary case as well.

Then, on a more operational point of view, we illustrate how to choose starting vectors and tolerances
of all the iterative procedures in an efficient way. This is of fundamental importance in order to achieve a
fast implementation, since we have to carry out three nested iterative procedures at each time level. Indeed,
the lagging procedure transforms the nonlinear system into a sequence of weakly nonlinear systems, each of
which is solved, in this paper, by the simplified Newton’s method, which, in turn, requires solving a linear
system at each iteration, for example by an iterative linear solver. Finally, we introduce several numerical
experiments to study the behavior of the algorithm as the velocity term, the inner linear solver or other
parameters of the procedure are changed.

The paper is structured as follows. In Section 2 we introduce some assumptions on the smoothness of the
involved functions and describe the discretization of the differential problem, illustrating how F (u) is made.

After some initial remarks, in Section 3 we then prove some lemmas needed in the successive analysis,
devoting particular attention to the analysis of terms dependent on ṽ. We then characterize the existence of
at least a solution to F (u) = 0. Lastly, we prove that, under some hypotheses, F (u) is monotone and that
the solution of F (u) = 0 is unique.

Then, in Section 4 we describe the LDM and prove the convergence of the procedure. We also provide a
few remarks on the application of the method to stationary problems.

In Section 5 we describe the solution process, describing how we solve the weakly nonlinear systems arising
at each iteration of the LDM and how starting vectors and tolerances of all the iterative procedures can be
chosen efficiently. The resulting algorithm is reported in Appendix.

Finally, Section 6 is devoted to the numerical experiments and Section 7 concludes this work.

2

2 The differential problem and finite difference discretization

Consider the general non-steady reaction-convection-diffusion equation. In a two-dimensional diffusion
medium Ω with boundary ∂Ω and closure Ω̄, the differential problem reads

∂u

∂t
= ∇ · (σ∇u)− ṽ · ∇u− αu− g + s (x, y) ∈ Ω, t > t0

u(x, y, t0) = u0(x, y) (x, y) ∈ Ω̄, t = t0 ≥ 0 (1)

u(x, y, t) = u1(x, y, t) (x, y) ∈ ∂Ω, t > t0

where t0 is the initial time, u = u(x, y, t) is the density function, σ = σ(x, y, u) > 0 is the diffusion coefficient,
ṽ = ṽ(x, y, u, t) is the velocity vector, α = α(x, y) ≥ 0 is the absorption term, −g = −g(x, y, u) is the rate of
change of the reaction and s = s(x, y) is the source term.

Let (x, y) ∈ Ω and let û be in a neighborhood of a solution. We assume that the following smoothness
assumptions hold.

1. The functions α and s are continuous in their variables and σ and g are continuous in û and continuously
differentiable in (x, y);

2. there exist two positive constants σmin and σmax such that 0 < σmin ≤ σ(x, y, û) ≤ σmax (σ uniformly
bounded in x, y and û). Moreover, α(x, y) ≥ αmin ≥ 0;

3. for fixed (x, y) ∈ Ω, σ is locally Lipschitz continuous in û (uniformly in x, y) with constant Λ > 0;

4. for fixed (x, y) ∈ Ω, the function g is continuously differentiable in û and uniformly monotone in û
(uniformly in x, y) with constant c > 0 [14, p. 30].

These are the standard smoothness assumptions which are considered also when the velocity term is constant.
However, if ṽ = (ṽ1, ṽ2)T is variable, we need to add some assumptions on the smoothness of ṽ as well. These
assumptions reflect those made on σ. Indeed, in the general, nonlinear case, ṽ is lagged like the diffusivity
term and similar assumptions are thus needed in the following analysis. We then require that:

5. the functions ṽ1 and ṽ2 are continuous in their variables;

6. there exist two positive constants ṽ1max
and ṽ2max

such that |ṽ1| < ṽ1max
and |ṽ2| < ṽ2max

. We call
ṽmax := max(ṽ1max

, ṽ2max
);

7. for fixed (x, y) ∈ Ω, ṽ1 and ṽ2 are locally Lipschitz continuous in û (uniformly in x, y) with constant
Λṽ1 > 0 and Λṽ2 > 0 respectively. We call Λṽ := max(Λṽ1 ,Λṽ2).

2.1 Space discretization

For simplicity, let Ω be a 2D bounded rectangular domain. Let us superimpose to Ω̄ a grid Ω̄h = Ωh ∪ ∂Ωh of
mesh points (xi, yj), i = 0, . . . , N + 1, j = 0, . . . ,M + 1, defined by

xi+1 = xi + h, i = 0, . . . , N yj+1 = yj + h j = 0, . . . ,M,

where h is the mesh size along x and y (considered uniform).
Space discretization is performed by approximating the space derivatives in (1) by finite difference methods.

Committing a discretization error O(h2) and denoting by ui,j(t) the grid function that approximates the
solution u(xi, yj , t) at the mesh points (xi, yj) of Ω̄h, i = 0, . . . , N + 1, j = 0, . . . ,M + 1, the right hand side
of (1) can be written as

∆x[σ(xi, yj , ui,j(t))∇xui,j(t)] + ∆y[σ(xi, yj , ui,j(t))∇yui,j(t)]− ṽ1(xi, yj , ui,j(t), t)δxui,j(t)−
− ṽ2(xi, yj , ui,j(t), t)δyui,j(t)− α(xi, yj)ui,j(t)− g(xi, yj , ui,j(t)) + s(xi, yj , t),

(2)

3

where we denote forward finite differences (in x and in y respectively) by ∆x, ∆y, backward finite differences
by ∇x, ∇y and central finite differences by δx, δy. For compactness of notation, in the following we also
denote σ(xi, yj , ui,j(t)) by σ(ui,j), ṽ1(xi, yj , ui,j(t), t) by ṽ1(ui,j , t) and ṽ2(xi, yj , ui,j(t), t) by ṽ2(ui,j , t).

Equation (2) can then be easily written as

B̂i,jui,j−1(t) + L̂i,jui−1,j(t)− D̂i,jui,j(t) + R̂i,jui+1,j(t) + T̂i,jui,j+1(t)− g(xi, yj , ui,j(t)) + s(xi, yj , t), (3)

where

L̂i,j = Li,j + L̃i,j , B̂i,j = Bi,j + B̃i,j , R̂i,j = Ri,j + R̃i,j , T̂i,j = Ti,j + T̃i,j , D̂i,j = Di,j + D̃i,j ,

with

Li,j =
1

h2
σ(ui,j), Bi,j =

1

h2
σ(ui,j), Ri,j =

1

h2
σ(ui+1,j), Ti,j =

1

h2
σ(ui,j+1), Di,j = Li,j +Bi,j +Ri,j + Ti,j ,

L̃i,j =
ṽ1(ui,j , t)

2h
, B̃i,j =

ṽ2(ui,j , t)

2h
, R̃i,j = −L̃i,j T̃i,j = −B̃i,j , D̃i,j = α(xi, yj).

We can write (3) more conveniently in matrix form. In this regard, we order the mesh points Pk = (xi, yj),
i = 1, . . . , N , j = 1, . . . ,M , by row lexicographic ordering (i.e. k = (j−1)N+i, for i = 1, . . . , N , j = 1, . . . ,M)
and write the vector u(t) containing all the ui,j(t) at internal mesh points. For compactness, we also define
µ := NM .

We then write the first five terms of (3) as a matrix-vector product −A(u(t))u(t) plus a vector b(u(t)) ∈ Rµ
which contains terms coming from the Dirichlet boundary conditions. In particular, A(u(t)) ∈ Rµ×µ is a block
tridiagonal matrix. The M diagonal blocks are tridiagonal matrices of order N of elements {−L̂i,j , D̂i,j ,−R̂i,j}.
Its lower- and upper-diagonal blocks are instead diagonal and are made of the elements {−B̂i,j} and {−T̂i,j},
respectively. Moreover, it is irreducible and, if

h < min

{
2σi,j(ui,j)

|ṽ1(ui,j , t)|
,

2σi,j(ui,j)

|ṽ2(ui,j , t)|

}
, ∀(xi, yj) ∈ Ωh (4)

holds, it is irreducibly diagonally dominant [20, p.23] with positive diagonal elements and non positive
off-diagonal elements. In this case, A(u(t)) is, thus, a non-singular M-matrix [20, p.91]. The vector b(u(t))
can instead be easily obtained by applying the boundary conditions to the terms depending on u(t) in (3).

Regarding the other terms, we collect reaction terms in the nonlinear mapping G(u) ∈ Rµ of components
Gk(u) = Gk(uk) = g(xi, yj , uk), with i = 1, . . . , N , j = 1, . . . ,M and k = (j− 1)N + i. The mapping G(u) is
diagonal [12, p. 11] since its k-th component, k = 1, . . . , µ, depends (in u) only on the k-th component uk of
u. Finally, we write source terms in the vector s(t) ∈ Rµ of components sk(t) = s(xi, yj , t), with i = 1, . . . , N ,
j = 1, . . . ,M and k = (j − 1)N + i.

We thus write (3) for i = 1, . . . , N , j = 1, . . . ,M in the form

−A(u(t))u(t) + b(u(t))−G(u(t)) + s(t) (5)

and (1) is replaced by the system of ordinary differential equations

du(t)

dt
= −A(u(t))u(t) + b(u(t))−G(u(t)) + s(t)

u(x, y, t0) = u0(x, y), (x, y) ∈ Ω̄.
(6)

2.2 Time discretization

Passing to time discretization, let us introduce a time spacing ∆t and define a series of time levels tn = n∆t+t0,
n = 0, 1, Calling sn := s(tn) and denoting by un the approximation of u(tn) solution of (6) at t = tn, we
write the well-known θ-method (e.g. see [6])

un+1 − un

∆t
=θ
[
−A(un+1)un+1 + b(un+1)−G(un+1) + s(n+1)

]
+

+(1− θ) [−A(un)un + b(un)−G(un) + sn] ,

(7)

4

for n = 0, 1, . . . and with 0 ≤ θ ≤ 1. In particular, in the following we consider an implicit time discretization
(hence, we consider cases where θ 6= 0). The use of an explicit scheme would, indeed, easily require an
extremely short time step. For instance, it is easy to verify that the problems later analyzed in the numerical
experiments would need a time-step as small as ∆t = 10−6 for the explicit method to converge. This, of
course, greatly reduces efficiency. The advantages of an implicit time discretization come, however, at the
cost of a nonlinearity in the discretized system, which we will later handle by the lagging procedure.

Let us then write more compactly the nonlinear system arising from the discretization. Calling I the
µ× µ identity matrix, we collect the known terms in a vector w = wn ∈ Rµ defined as

w = [I −∆t(1− θ)A(un)]un + ∆t(1− θ) [b(un)−G(un)] + ∆t
[
θsn+1 + (1− θ)sn

]
.

At each time level n = 0, 1, . . ., the vector un+1 is thus given by the solution of the nonlinear algebraic system

F (u) = [I + τA(u)]u− τ [b(u)−G(u)]−w = 0, (8)

where τ := θ∆t.

3 Uniform monotonicity of F (u) and uniqueness of the solution of
F (u) = 0

Thus, in (8) we obtained the nonlinear algebraic system F (u) = 0 that we aim to solve by the lagged
diffusivity method. In the first part of this section, we assume that a solution exists and introduce some
preliminary lemmas used in the following. We then better characterize the existence of at least one solution
by exploiting the smoothness assumptions at the beginning of Section 2. Lastly, we study the monotonicity
of the operator F (u) and the uniqueness of the solution of F (u) = 0.

3.1 Initial remarks

It is convenient to split the matrix A(u) in

A(u) = A1(u) + Ã(u) + D̃,

where A1(u) is a block tridiagonal matrix of row elements {−Bi,j ,−Li,j , Di,j ,−Ri,j ,−Ti,j} with the same

structure as A(u) and D̃ is the diagonal matrix of diagonal elements {D̃i,j}. Finally, Ã(u) is the block

tridiagonal matrix whose lower- and upper-diagonal blocks are diagonal matrices of the elements {−B̃i,j}
and {−T̃i,j}, respectively. Its diagonal blocks are instead tridiagonal matrices of elements {−L̃i,j , 0,−R̃i,j}.

We then further split A1(u) and Ã(u) in

A1(u) = Ax1(u) +Ay1(u) Ã(u) = Ãx(u) + Ãy(u)

where Ax1(u) and Ãx(u) are block diagonal matrices whose diagonal blocks are tridiagonal with row elements
{−Li,j , Dx

i,j ,−Ri,j} (with Dx
i,j = Li,j +Ri,j) and {−L̃i,j , 0, R̃i,j} respectively. Ay1(u) is the block tridiagonal

matrix where the sub-, main and super-diagonal blocks are diagonal matrices of diagonal elements −Bi,j ,
Dy
i,j and −Ti,j respectively, with Dy

i,j = Bi,j + Ti,j . Finally, Ãy(u) has the same structure of Ay1(u) and the

diagonal matrices have diagonal elements −B̃i,j , 0 and −T̃i,j respectively.
It is useful to split also b(u) in a similar way. We thus write

b(u) = b1(u) + b̃(u),

where b1(u) and b̃(u) contain, respectively, terms dependent on the diffusivity and on the velocity term. We
then further split these two vectors in

b1(u) = bx1(u) + by1(u), b̃(u) = b̃
x
(u) + b̃

y
(u)

5

where bx1(u) and b̃
x
(u) contain the contributions u1(x0, yj , t) and u1(xN+1, yj , t), j = 1, . . . ,M and by1(u)

and b̃
y
(u) contain the contributions u1(xi, y0, t) and u1(xi, yM+1, t), i = 1, . . . , N .

Finally, given two grid functions u, v in Ω̄h, in the following we make use also of the l2(Ωh) discrete inner
product

〈u,v〉 = h2
N∑
i=1

M∑
j=1

ui,jvi,j

and of its associated norm ‖ · ‖h.

3.2 Preliminary lemmas on Ã(u)

Lemma 1. Let {ui,j}, {vi,j} and {wi,j} be three grid functions defined at mesh points (xi, yj) of a grid
Ω̄h, i = 0, ...N + 1, j = 0, ...,M + 1, and satisfying the Dirichlet boundary conditions ui,j = u1(xi, yj , t)
∀(xi, yj) ∈ ∂Ωh and t > 0. Then:

〈
Ã(u) ·w − b̃(u),v

〉
= h2

N∑
i=1

M∑
j=1

vi,j
[
ṽ1(ui,j)δxwi,j + ṽ2(ui,j)δywi,j

]
. (9)

Proof. Let us split the inner product in 〈Ã(u) ·w− b̃(u),v〉 = 〈Ãx(u) ·w− b̃
x
(u),v〉+ 〈Ãy(u) ·w− b̃

y
(u),v〉.

By definition of discrete l2(Ωh) inner product and by the form of Ãx(u) and of b̃
x
(u), with simple algebraic

passages we find〈
Ãx(u) ·w − b̃

x
(u),v

〉
= h2

N∑
i=1

M∑
j=1

(
− ṽ1(ui,j)

2h
wi−1,j +

ṽ1(ui,j)

2h
wi+1,j

)
vi,j .

Then, collecting terms, by definition of central finite-difference quotients we get〈
Ãx(u) ·w − b̃

x
(u),v

〉
= h2

M∑
j=1

N∑
i=1

ṽ1(ui,j)
(wi+1,j − wi−1,j

2h

)
vi,j = h2

M∑
j=1

N∑
i=1

ṽ1(ui,j)δx(wi,j)vi,j .

We find a similar relationship by proceeding analogously for the term containing Ãy. Using these results in
(9) and collecting terms, we finally prove the lemma.

Corollary 1. Expressions analogous to (9) can be obtained also when vi,j satisfies homogeneous Dirichlet

boundary conditions for 〈Ã(u) ·w − b̃(u),v〉 and for 〈Ã(u) · v,v〉.

Proof. The proofs follow Lemma 1 without relevant modifications. Regarding 〈Ã(u) · v,v〉, however, we also
need to consider that, since v is null on ∂Ωh, we have

M∑
j=1

N−1∑
i=1

ṽ1(ui,j)vi+1,j =

M∑
j=1

N∑
i=1

ṽ1(ui,j)vi+1,j ;

M∑
j=1

N∑
i=2

ṽ1(ui,j)vi−1,j =

M∑
j=1

N∑
i=1

ṽ1(ui,j)vi−1,j

and analogous expressions for terms in ṽ2(ui,j)vi,j±1.

Lemma 2. Let {ui,j} be a grid function defined at mesh points (xi, yj) of a grid Ω̄h, i = 0, . . . , N + 1,
j = 0, . . . ,M+1, such that {ui,j} satisfies the Dirichlet boundary conditions ui,j = u1(xi, yj , t) ∀(xi, yj) ∈ ∂Ωh
and t > 0. Moreover, let the backward difference quotients ∇xui,j and ∇yui,j be bounded. Then, denoting by
ṽmax the bound on the velocity variable (see point 6, Section 2),〈

Ã(u) · u− b̃(u),u
〉
≥ − ṽmax

h
‖u‖2h −

h3ṽmax

2

[M∑
j=1

N+1∑
i=1

(∇xui,j)2 +

N∑
i=1

M+1∑
j=1

(∇yui,j)2

]
. (10)

6

Proof. By δxui,j = (∇xui+1,j +∇xui,j)/2 (and similarly for δyui,j), we can write

〈
Ã(u) · u− b̃(u),u

〉
=h2

N∑
i=1

M∑
j=1

ui,j
[
ṽ1(ui,j)δxui,j + ṽ2(ui,j)δyui,j

]
=
h2

2

N∑
i=1

M∑
j=1

ui,j

[
ṽ1(ui,j)

(
∇xui+1,j +∇xui,j

)
+ ṽ2(ui,j)

(
∇yui,j+1 +∇yui,j

)]
≤

≤h
2

2

N∑
i=1

M∑
j=1

[
|ui,j ||ṽ1(ui,j)|

(∣∣∇xui+1,j

∣∣+
∣∣∇xui,j∣∣)+ |ui,j ||ṽ2(ui,j)|

(∣∣∇yui,j+1

∣∣+
∣∣∇yui,j∣∣)].

By the boundedness of ṽ and by the inequality ab ≤ (a2 + b2)/2 with a, b real numbers, we can further
evaluate〈
Ã(u) · u− b̃(u),u

〉
≤hṽmax

4

N∑
i=1

M∑
j=1

[
4|ui,j |2 + h2

∣∣∇xui+1,j

∣∣2 + h2
∣∣∇xui,j∣∣2 + h2

∣∣∇yui,j+1

∣∣2 + h2
∣∣∇yui,j∣∣2] ≤

≤hṽmax

N∑
i=1

M∑
j=1

|ui,j |2 +
h3ṽmax

2

[M∑
j=1

N+1∑
i=1

(∇xui,j)2 +

N∑
i=1

M+1∑
j=1

(∇yui,j)2

]
.

Changing sign to the right-hand side of the equation and by definition of ‖u‖h norm, we finally prove the
lemma.

3.3 Existence of at least one solution to the discretized system

We now introduce a sufficient condition for the existence of at least one solution to the discretized system (8).
We notice that we can put ourselves in this condition by a suitable choice of the discretization parameters h
and τ .

Theorem 1. Let {ui,j} be a grid function defined at mesh points (xi, yj) of a grid Ω̄h, i = 0, . . . , N + 1,
j = 0, . . . ,M+1, such that {ui,j} satisfies the Dirichlet boundary conditions ui,j = u1(xi, yj , t)∀(xi, yj) ∈ ∂Ωh
and t > 0. Moreover, let the backward difference quotients ∇xui,j and ∇yui,j be bounded and let σmin, ṽmax

and αmin be the bounds on diffusivity, velocity and absorption terms defined at the beginning of Section 2. If

h ≤ 2σmin/ṽmax and
1

τ
+ αmin + c >

ṽmax

h
,

then there exists at least one solution to system (8). Furthermore, all solutions belong to a ball of radius ρ
with

ρ =
τ‖G(0)‖h + ‖w‖h

1− τṽmax

h + ταmin + τc

Proof. Let us consider 〈F (u),u〉. We can write

〈F (u),u〉 = 〈[I + τA(u)]u− τ [b(u)−G(u)]−w,u〉 =

= 〈u,u〉+ τ〈A(u)u− b(u),u〉+ τ〈G(u)−G(0),u〉+ 〈τG(0)−w,u〉

where
〈A(u)u− b(u),u〉 = 〈A1(u)u− b1(u),u〉+ 〈Ãu− b̃(u),u〉+ 〈D̃u,u〉.

Many of these terms can be easily evaluated. Indeed, 〈u,u〉 = ‖u‖2h by definition, and

〈D̃u,u〉 = h2
N∑
i=1

M∑
j=1

αi,ju
2
i,j ≥ αmin‖u‖2h

7

by the lower bound and the non-negativity of α. Moreover,

〈G(u)−G(0),u〉 ≥ c‖u‖2h
by the uniform monotonicity of g in u and

〈τG(0)−w,u〉 = τ〈G(0),u〉 − 〈w,u〉 ≥ −τ‖G(0)‖h‖u‖h − ‖w‖h‖u‖h

by the Cauchy-Schwarz inequality.
Regarding the other terms, we instead rely on other evaluations. Thus, by [11, Lemma 1], we easily find

〈A1(u) · u− b(u),u〉 ≥ h2σmin

[M∑
j=1

N+1∑
i=1

(∇xui,j)2 +

N∑
i=1

M+1∑
j=1

(∇yui,j)2

]
,

while Lemma 2 directly provides〈
Ã(u) · u− b̃(u),u

〉
≥ − ṽmax

h
‖u‖2h −

h3ṽmax

2

[M∑
j=1

N+1∑
i=1

(∇xui,j)2 +

N∑
i=1

M+1∑
j=1

(∇yui,j)2

]
.

Therefore, combining all these evaluations,

〈F (u),u〉 ≥‖u‖2h −
τ ṽmax

h
‖u‖2h + τ

(
h2σmin −

h3ṽmax

2

)[M∑
j=1

N+1∑
i=1

(∇xui,j)2 +

N∑
i=1

M+1∑
j=1

(∇yui,j)2

]
+

+ ταmin‖u‖2h + c‖u‖2h − τ‖G(0)‖h‖u‖h − ‖w‖h‖u‖h.

Since h ≤ 2σmin/ṽmax by hypothesis, σmin − hṽmax/2 ≥ 0 and we can further evaluate from above by
canceling out the term with backward quotients. We also notice that this condition on the step h of the space
discretization implies that condition (4) is satisfied as well and A(u) is then an M-matrix.

Collecting ‖u‖h, we finally have

〈F (u),u〉 ≥
(
‖u‖h −

τ ṽmax

h
‖u‖h + ταmin‖u‖h + c‖u‖h − τ‖G(0)‖h − ‖w‖h

)
‖u‖h

and, since the second hypothesis implies 1− τ ṽmax/h+ ταmin + τc > 0,

‖u‖h > ρ :=
τ‖G(0)‖h + ‖w‖h

1− τṽmax

h + ταmin + τc
implies 〈F (u),u〉 > 0.

This evidently means that no solution to F (u) = 0 can lie outside {u | ‖u‖h ≤ ρ}.
The existence of at least one solution follows then by [8, Lemma 4.3]. Another proof, based on the

invariance of the degree of a mapping under a homotopy [12, p. 156], is provided in [9, Theorem 2.1], which
considers that 〈H(u, δ),u〉 > 0 when ‖u‖h > ρ for all δ in [0, 1], where H(u, δ) = δF (u) + (1− δ)u.

The condition h < 2σmin/ṽmax, often implying h small, is evidently in competition with the condition
1− τ ṽmax/h+ ταmin + τc > 0, which is harder to satisfy as h gets smaller. It is however important to notice
that a small step in the space grid can be compensated by an equally small step in time. Thus, in line of
principle, both conditions can always be satisfied by acting on the size of space and time grids.

Finally, it is also possible to provide a bound to the backward difference quotients of a solution of (8) at
each mesh point (xi, yj) ∈ Ω̄ by proceeding similarly to [9, Lemma 2.2]. We denote this bound by β. It is
then convenient to define the ball Bρ,β to which all solutions must belong.

Definition 1. Let u : Ω̄h → R be a grid function satisfying the Dirichlet boundary conditions on ∂Ωh for
t > t0 and let the hypotheses of Theorem 1 be satisfied. We say that u belongs to Bρ,β if

‖u‖h ≤ ρ (11)

|∇xui,j | ≤ β, |∇yui,j | ≤ β, for i = 1, . . . , N, j = 1, . . . ,M. (12)

8

3.4 Monotonicity analysis

Before studying the monotonicity of F (u) we need a last lemma, which relies on the bound β to the finite
difference quotients of the grid functions in Bρ,β .

Lemma 3. Let u, v and w be three grid functions belonging to Bρ,β. Then,∣∣∣〈(Ã(u)− Ã(w)
)
· v − b̃(u) + b̃(w),u− v

〉∣∣∣ ≤ βΛṽ

[
‖u− v‖2 + ‖u−w‖2

]
. (13)

Proof. Since u− v is null on the boundary, we can apply Corollary 1 with u− v instead of v. We have〈(
Ã(u)− Ã(w)

)
· v − b̃(u) + b̃(w),u− v

〉
=
〈
Ã(u) · v − b̃(u),u− v

〉
−
〈
Ã(w) · v − b̃(w),u− v

〉
=

=h2
N∑
i=1

M∑
j=1

{
(ui,j − vi,j)

[
δx(vi,j)(ṽ1(ui,j)− ṽ1(wi,j)) + δy(vi,j)(ṽ2(ui,j)− ṽ2(wi,j))

]}
.

Therefore, by the triangle inequality,∣∣∣〈(Ã(u)− Ã(w)
)
· v − b̃(u) + b̃(w),u− v

〉∣∣∣ ≤
≤h2

N∑
i=1

M∑
j=1

{
|ui,j − vi,j |

[
|δxvi,j | |ṽ1(ui,j)− ṽ1(wi,j)|+ |δyvi,j | |ṽ2(ui,j)− ṽ2(wi,j)|

]}
.

Next, by definition of backward and central finite-difference quotients and by boundedness of backward
finite-difference quotients (12) in Bρ,β , we can write

|δxvi,j | =
∣∣∣∣12(∇xvi+1,j +∇xvi,j)

∣∣∣∣ ≤ 1

2
(|∇xvi+1,j |+ |∇xvi,j |) ≤ β.

Furthermore, by Lipschitz continuity of every component of the velocity vector ṽ, we have

|ṽ1(ui,j)− ṽ1(wi,j)| ≤ Λṽ1 |ui,j − wi,j | ≤ Λṽ|ui,j − wi,j |.

Identical evaluations apply, respectively, to |δyvi,j | and to |ṽ2(ui,j)− ṽ2(wi,j)|.
Therefore, combining these results,∣∣∣〈(Ã(u)− Ã(w)

)
· v − b̃(u) + b̃(w),u− v

〉∣∣∣ ≤
≤h2

N∑
i=1

M∑
j=1

{
|ui,j − vi,j |

[
βΛṽ|ui,j − wi,j |+ βΛṽ|ui,j − wi,j |

]}
= 2h2βΛṽ

N∑
i=1

M∑
j=1

|ui,j − vi,j | |ui,j − wi,j |

Since, for a, b real numbers, ab ≤ (a2 + b2)/2, we finally get

∣∣∣〈(Ã(u)− Ã(w)
)
· v − b̃(u) + b̃(w),u− v

〉∣∣∣ ≤ h2βΛṽ

N∑
i=1

M∑
j=1

|ui,j − vi,j |2 + h2βΛṽ

N∑
i=1

M∑
j=1

|ui,j − wi,j |2,

which, by definition of discrete l2(Ωh) norm, becomes:∣∣∣〈(Ã(u)− Ã(w)
)
· v − b̃(u) + b̃(w),u− v

〉∣∣∣ ≤ βΛṽ

[
‖u− v‖2 + ‖u−w‖2

]
.

9

Theorem 2. Let u∗ ∈ Bρ,β be a solution of the nonlinear system F (u) = 0. If

h <
2σmin

ṽmax
and αmin +

1

τ
+ c >

β2Λ2

2σmin − hṽmax
+
ṽmax

h
+ 2βΛṽ, (14)

then F (u) is uniformly monotone in Bρ,β and the solution u∗ of (8) is unique.

Proof. To prove that F (u) is uniformly monotone in Bρ,β , we must show that there exists a positive scalar γ
satisfying

〈F (u)− F (v),u− v〉 ≥ γ〈u− v,u− v〉 ∀u,v ∈ Bρ,β . (15)

To this end, let us analyze 〈F (u)− F (v),u− v〉. By the definition of F (u) in (8), adding and subtracting
A(u)v and rearranging terms, we can write

1

τ
〈F (u)− F (v),u− v〉 =

=

〈(
A(u) +

I

τ

)
(u− v),u− v

〉
+
〈

(A(u)−A(v))v − b(u) + b(v) + G(u)−G(v),u− v
〉
.

By the splittings of A(u) and of A(v), the right-hand side of the previous equation becomes〈
A1(u)(u− v),u− v

〉
+

〈(
D̃ +

I

τ

)
(u− v),u− v

〉
+
〈

(A1(u)−A1(v))v − b1(u) + b1(v),u− v
〉

+

+
〈
Ã(u)(u− v),u− v

〉
+
〈

(Ã(u)− Ã(v))v − b̃(u) + b̃(v),u− v
〉

+
〈
G(u)−G(v),u− v

〉
.

We can make evaluations analogous to those in Theorem 1 for most of these terms, obtaining:

• 〈A1(u) · (u− v),u− v〉 ≥ h2σmin

[∑M
j=1

∑N+1
i=1 (∇x(ui,j − vi,j))2 +

∑N
i=1

∑M+1
j=1 (∇y(ui,j − vi,j))2

]
;

•
〈(
D̃ + I

τ

)
(u− v),u− v

〉
≥
(
αmin + 1

τ

)
‖u− v‖2h;

•
〈
G(u)−G(v),u− v

〉
≥ c‖u− v‖2h.

Proceeding as in Lemma 2 and by Lemma 3, we then have, respectively

〈
Ã(u)(u− v),u− v

〉
≥ − ṽmax

h
‖u− v‖2h −

h3ṽmax

2

M∑
j=1

N+1∑
i=1

|∇x(ui,j − vi,j)|2 +

N∑
i=1

M+1∑
j=1

|∇y(ui,j − vi,j)|2
 ;

〈
(Ã(u)− Ã(v))v − b̃(u) + b̃(v),u− v

〉
≥ −βΛṽ

[
‖u− v‖2 + ‖u− v‖2

]
= −2βΛṽ‖u− v‖2.

Lastly, proceeding as in [11, Theorem 1], we obtain

〈(
A1(u)−A1(v)

)
· v − b(u) + b(v),u− v

〉
≥− h2βΛφ

2

M∑
j=1

N+1∑
i=1

|∇x(ui,j − vi,j)|2 +

N∑
i=1

M+1∑
j=1

|∇y(ui,j − vi,j)|2
−

− βΛ

φ
‖u−w‖2h,

where φ is an arbitrary positive parameter.
Thus, considering all previous inequalities and collecting terms, we can write

1

τ
〈F (u)− F (v),u− v〉 ≥

(
h2σmin −

h2βΛφ

2
− h3ṽmax

2

) M∑
j=1

N+1∑
i=1

(∇x(ui,j − vi,j))2 +

N∑
i=1

M+1∑
j=1

(∇y(ui,j − vi,j))2

+

(
αmin +

1

τ
− βΛ

φ
− ṽmax

h
− 2βΛṽ + c

)
‖u− v‖2h.

10

Since φ is an arbitrary, positive parameter, we now choose it in a suitable way. In particular, we choose

φ =
1

βΛ
(2σmin − hṽmax) ,

which implies

h2σmin −
h2βΛφ

2
− h3ṽmax

2
= 0.

We here exploit that φ is positive by the hypothesis h < 2σmin/ṽmax, which implies 2σmin − hṽmax > 0. With
this choice of φ, we get

1

τ
〈F (u)− F (v),u− v〉 ≥

(
αmin +

1

τ
− β2Λ2

2σmin − hṽmax
− ṽmax

h
− 2βΛṽ + c

)
‖u− v‖2h.

Thus, we have obtained an equation in the form of (15) and monotonicity holds if

γ =

(
αmin +

1

τ
− β2Λ2

2σmin − hṽmax
− ṽmax

h
− 2βΛṽ + c

)
is larger than zero. This happens when

αmin +
1

τ
+ c >

β2Λ2

2σmin − hṽmax
+
ṽmax

h
+ 2βΛṽ,

proving the first part of the theorem.
The uniqueness of the solution follows then directly. Indeed, suppose that two distinct solutions u∗ and û

to the system F (u) = 0 exist in Bρ,β . We would have

〈F (u∗)− F (û),u∗ − û〉 ≥ γ‖u∗ − û‖2h > 0 for u∗ 6= û,

contradicting F (u∗) = F (û) = 0.

As a final remark, we also notice that the monotonicity conditions mirror those in Theorem 1. In particular,
if the monotonicity conditions are satisfied, the conditions of Theorem 1 are satisfied as well. Then, Theorem
2 can also be seen as a sufficient condition for the existence and the uniqueness of the solution.

4 The lagged diffusivity method and convergence analysis

4.1 The lagged diffusivity method

The basic idea of the method consists in linearizing (8) by setting up an iterative procedure where diffusivity
and velocity are lagged. In order to do this, chosen a starting vector u(0), at the (ν + 1)-th iteration we
consider the diffusivity and the velocity terms dependent on the solution u at the ν-th iteration, u(ν). This
means that, at each lagged iteration, instead of having the nonlinear terms A(u) and b(u), we have A(u(ν))
and b(u(ν)). A weak nonlinearity is, however, still present due to the nonlinear mapping G(u).

Hence, we compute the new iterate u(ν+1) as the solution of the weakly nonlinear system

F ν(u) =
[
I + τA(u(ν))

]
u− τ

[
b(u(ν))−G(u)

]
−w = 0. (16)

Here, I + τA(u) is certainly nonsingular ∀u ∈ Rµ if condition (4) is satisfied, since it implies that A(u) is a
nonsingular M-matrix.

System (16) can be solved approximately by an iterative method. The lagged iterate is accepted when
the residual

F ν(u(ν+1)) =
[
I + τA(u(ν))

]
u(ν+1) − τ

[
b(u(ν))−G(u(ν+1))

]
−w (17)

11

satisfies a stopping criterion ∥∥∥F ν(u(ν+1))
∥∥∥ ≤ εν+1, (18)

where ‖ · ‖ denotes the Euclidean norm and εν is a given tolerance such that εν → 0 for ν → ∞. In the
following, we refer to (18) as lagged acceptability condition. When it is satisfied, we find u(ν+1) and the outer
iteration can be restarted: the computed u(ν+1) is used to evaluate diffusivity and velocity to find u(ν+2) by
the new lagged iteration, and so on.

In the following, we choose the solution at the previous time level as starting vector of the lagged diffusivity
method, which is we set u(0) = un to initialize the LDM iteration at the (n+ 1)-th time level. At the first
time level, we instead use the initial condition. Tolerances are then defined starting from the norm of the
initial residual, ‖F (u(0))‖. Indeed, we define ε1 by multiplying the initial residual by a positive constant
smaller than 1, e.g.

ε1 = 0.1‖F (u(0))‖,

and we build a sequence of εν+1, ν = 1, 2, . . . such that εν → 0 for ν →∞ simply by setting

εν+1 =
εν
2
, ν = 1, 2,

The lagged diffusivity procedure is then stopped when

εν+1 ≤ ε̄ (19)

is satisfied, where ε̄ is a given tolerance. As a consequence of computing εν+1 by halving ε1 ν times, condition
(19) is satisfied after

ν∗ =
⌈
log2

(ε1
ε̄

)⌉
iterations, where d·e denotes the ceiling function.

4.2 Convergence analysis

We now analyze the convergence of the algorithm presented in the previous subsection. In this regard, let us
first better characterize the solutions of the weakly nonlinear systems arising at each lagged iteration. In
particular, if we solve (16) inexactly, the approximate solution u(ν+1) solves

F ν(u) = r(ν+1) with ‖r(ν+1)‖ ≤ εν+1,

where r(ν+1) := F ν(u(ν+1)) is the residual at the (ν + 1)-th iteration.
Assuming that the hypotheses of Theorem 1 are satisfied, let us analyze 〈F ν(u)− r(ν+1),u〉. We have

〈F ν(u)− r(ν+1),u〉 = 〈u,u〉+ τ〈A(u(ν))u− b(u(ν)),u〉+ τ〈G(u)−G(0),u〉+ 〈τG(0)−w − r(ν+1),u〉,

hence

〈F ν(u)− r(ν+1),u〉 ≥
(
‖u‖h −

τ ṽmax

h
‖u‖h + ταmin‖u‖h + c‖u‖h − τ‖G(0)‖h − ‖w‖h − ‖r(ν+1)‖h

)
‖u‖h,

where ‖r(ν+1)‖h = h‖r(ν+1)‖ ≤ hεν+1. Then, if we define

ρν+1 :=
τ‖G(0)‖h + ‖w‖h + hεν+1

1− τṽmax

h + ταmin + τc
,

we get 〈F ν(u) − r(ν+1),u〉 > 0 when ‖u‖h > ρν+1. Therefore, for all ν = 0, 1, . . ., the solution u(ν+1) of
F ν(u)− r(ν+1) = 0 belongs to {u|‖u‖h ≤ ρν+1}. It is also interesting to notice that ρν+1 can be expressed
as

ρν+1 =
τ‖G(0)‖h + ‖w‖h

1− τṽmax

h + ταmin + τc
+

hεν+1

1− τṽmax

h + ταmin + τc
= ρ+ εν+1ρ0,

12

with ρ0 := h
1− τṽmax

h +ταmin+τc
. This will be useful in the analysis of convergence and it implies that ρ ≤ ρν+1

for all ν = 0, 1,
Proceeding similarly with regard to the bound on backward difference quotients, it is possible to write

βν+1 = β + εν+1β0. We then have u(ν+1) ∈ Bρν+1,βν+1
for ν = 0, 1,

Theorem 3. Let u∗ ∈ Bρ,β be the solution of the nonlinear system F (u) = 0 defined in (8) with A(u)
non-singular and G(u) diagonal mapping. We assume that the smoothness conditions and the hypotheses of
Theorem 2 are satisfied.
Starting from an arbitrary u(0), let u(ν+1) be the solution of system (16) with residual F ν(u(ν+1)) satisfying
(18), with εν → 0 for ν →∞.
Then, the sequence {u(ν)} converges to u∗.

Proof. Let us consider F (u∗) = 0 and the lagged acceptability condition (18), satisfied by u(ν+1):[
I + τA(u∗)

]
u∗ − τ

[
b(u∗)−G(u∗)

]
−w = 0;[

I + τA(u(ν))
]
u(ν+1) − τ

[
b(u(ν))−G(u(ν+1))

]
−w = F ν(u(ν+1)).

Then, let us subtract the second equation from the first one, divide by τ and cancel out constant terms,
obtaining[

I

τ
+A(u∗)

]
u∗ −

[
I

τ
+A(u(ν))

]
u(ν+1) − b(u∗) + b(u(ν)) + G(u∗)−G(u(ν+1)) = −F ν(u(ν+1))

τ
.

At this point, we add and subtract the same term A(u∗)u(ν+1) and rearrange terms, similarly to what done
at the beginning of Theorem 2. If we then take the inner product of both sides with u∗ − u(ν+1), we get〈
− 1

τ
F ν(u(ν+1),u∗ − u(ν+1)

〉
=

〈[
I

τ
+A(u∗)

](
u∗ − u(ν+1)

)
+
[
A(u∗)−A(u(ν))

]
u(ν+1) − b(u∗) + b(u(ν))+

+ G(u∗)−G(u(ν+1)),u∗ − u(ν+1)

〉
.

Next, we consider the splittings of A(u) and of A(u∗). The right-hand side of the previous equation thus
becomes〈

A1(u∗)
(
u∗ − u(ν+1)

)
,u∗ − u(ν+1)

〉
+
〈
Ã(u∗)

(
u∗ − u(ν+1)

)
,u∗ − u(ν+1)

〉
+

+

〈(
D̃ +

I

τ

)(
u∗ − u(ν+1)

)
,u∗ − u(ν+1)

〉
+
〈[
A1(u∗)−A1(u(ν))

]
u(ν+1) − b1(u∗) + b1(u(ν)),u∗ − u(ν+1)

〉
+

+
〈[
Ã(u∗)− Ã(u(ν))

]
u(ν+1) − b̃(u∗) + b̃(u(ν)),u∗ − u(ν+1)

〉
+
〈
G(u∗)−G(u(ν+1)),u∗ − u(ν+1)

〉
.

We can now use the previously introduced lemmas and theorems to evaluate all these terms. Thus, we find
that the previous expression is larger than or equal to(

h2σmin −
h2βν+1Λφ

2
− h3ṽmax

2

) N∑
i=1

M∑
j=1

[∣∣∣∇x (u∗i,j − u(ν+1)
i,j

)∣∣∣2 +
∣∣∣∇y (u∗i,j − u(ν+1)

i,j

)∣∣∣2]+

+

(
αmin +

1

τ
− ṽmax

h
− βν+1Λṽ + c

)∥∥∥u∗ − u(ν+1)
∥∥∥2

h
−
(
βν+1Λ

φ
+ βν+1Λṽ

)∥∥∥u∗ − u(ν)
∥∥∥2

h
,

where φ is an arbitrary, positive parameter. Choosing φ = 1
βν+1Λ (2σmin − hṽmax) (which is positive by the

hypothesis h < 2σmin/ṽmax), the first term of the previous expression vanishes and we get

−1

τ

〈
F (u(ν+1)),u∗ − u(ν+1)

〉
≥
(
αmin +

1

τ
− ṽmax

h
− βν+1Λṽ + c

)
−

−
(

β2
ν+1Λ2

2σmin − hṽmax
+ βν+1Λṽ

)
‖u∗ − u(ν)‖2h.

13

We now rewrite the previous inequality by evaluating from above the term on the left-hand side. Since the
iterate u(ν+1) must satisfy condition (18) and since it must belong to Bρν+1,βν+1 (implying

∥∥u∗ − u(ν+1)
∥∥ ≤

2ρν+1 since ρ ≤ ρν+1), we have〈
−1

τ
F ν(u(ν+1)),u∗ − u(ν+1)

〉
≤ 1

τ

∥∥∥Fν(u(ν+1))
∥∥∥
h

∥∥∥u∗ − u(ν+1)
∥∥∥
h
≤ 1

τ
εν+1

∥∥∥u∗ − u(ν+1)
∥∥∥
h
≤ 2ρν+1

τ
εν+1,

hence

2ρν+1

τ
εν+1 ≥

(
αmin +

1

τ
− ṽmax

h
− βν+1Λṽ + c

)
‖u∗ − u(ν+1)‖2h −

(
β2
ν+1Λ2

2σmin − hṽmax
+ βν+1Λṽ

)
‖u∗ − u(ν)‖2h.

For compactness, let us then collect the coefficient of the first term of the right-hand side of the previous
inequality in

ζ = αmin +
1

τ
− ṽmax

h
− βν+1Λṽ + c.

Using the relation βν+1 = β+ εν+1β0 and comparing this equation with the definition of γ in the monotonicity
condition, it can be noticed that γ > 0 (which is satisfied by hypothesis) implies that also ζ is positive if

β0 ≤
1

εν+1

(
β +

1

Λṽ

β2Λ2

2σmin − hṽmax

)
(20)

holds true. Assumption (20) is nonetheless plausible since the tolerance εν → 0 for ν → ∞. Therefore,
inequality (20) is certainly satisfied from a certain lagging iteration. Moreover, operatively we could grant
that (20) is satisfied also at the first lagging iterations by setting ε0 sufficiently small.
Thus assuming ζ > 0, we can divide both sides by ζ without changing sign to the inequality. Rearranging
terms, we get

2ρ

τζ
εν+1 +

1

ζ

(
β2
ν+1Λ2

2σmin − hṽmax
− βν+1Λṽ

)∥∥∥u∗ + u(ν)
∥∥∥2

h
≥
∥∥∥u∗ − u(ν+1)

∥∥∥2

h
. (21)

We can then make further considerations on ζ. Indeed, again remembering assumption (20) and γ > 0, we
have

ζ = αmin +
1

τ
− ṽmax

h
− (β + εν+1β0)Λṽ + c >

β2Λ2

2σmin − hṽmax
− βΛṽ. (22)

Thus

1

ζ

(
β2
ν+1Λ2

2σmin − hṽmax
− βν+1Λṽ

)
<

(
β2Λ2

2σmin − hṽmax
− βΛṽ

)−1(
β2
ν+1Λ2

2σmin − hṽmax
− βν+1Λṽ

)
.

Since εν → 0 for ν →∞, we also have

lim
ν→∞

β2
ν+1Λ2

2σmin − hṽmax
− βν+1Λṽ = lim

ν→∞

(β + εν+1β0)2Λ2

2σmin − hṽmax
− (β + εν+1β0)Λṽ =

β2Λ2

2σmin − hṽmax
− βΛṽ.

So, since the inequality in (22) holds in strict sense, we can assume that there exists an integer ν0 such that

1

ζ

(
β2
ν+1Λ2

2σmin − hṽmax
− βν+1Λṽ

)
< 1 ∀ν > ν0.

Thus, defining

γ̂ =
1

ζ

(
β2
ν+1Λ2

2σmin − hṽmax
− βν+1Λṽ

)
and ζ̂ =

2ρ

τζ
,

14

proceeding iteratively from a ν0 such that γ̂ < 1, by (21) we get∥∥∥u∗ − u(ν+1)
∥∥∥2

h
≤ γ̂r

∥∥∥u∗ − u(ν)
∥∥∥2

h
+ ζ̂

r∑
j=1

γ̂r−jεν0+j , r = 1, 2, (23)

Finally, since εν → 0 for ν →∞, by the Toeplitz lemma [12, p. 399] we have

lim
ν→∞

∥∥∥u∗ − u(ν)
∥∥∥2

h
= 0.

Then, the sequence {u(ν)} converges to the solution u∗ of the system F (u) = 0.
Thus, the previous theorem proves the convergence of the method when it is applied to solving the

nonlinear systems arising from a finite-difference discretization of the differential problem (1). It is nonetheless
important to highlight that the lagged diffusivity method is applied to the discretized system, irrespectively
of the used discretization. Thus, it can be applied, in principle, also when other discretization techniques
(i.e. finite element or finite volume discretizations) are used. However, it is important to remark that the
presented proofs of convergence rely on monotonicity properties which FD operators satisfy.

4.3 Remarks on the stationary case

In case we are studying a steady reaction-convection-diffusion equation, discretization has to be performed
only along space. Using the finite difference schemes employed in the non-steady case, space discretization
leads to an expression similar to (5). The only difference is that we do not have time dependence. Therefore,
after space discretization, we do not have a system of ordinary differential equations like (6), but we get
directly the nonlinear algebraic system

F (u) = A(u)u− b(u) + G(u)− s = 0. (24)

We can then introduce the lagging iteration: with F (u) as in (24), the new iterate u(ν+1) of the lagged
iteration is given by the solution of the weakly nonlinear system

F ν(u) = A(u(ν))u− b(u(ν)) + G(u)− s = 0. (25)

If A(u) is nonsingular, system (25) can be solved approximately by a convergent iterative method and the
lagged iterate is accepted when the residual

F ν(u(ν+1)) = A(u(ν))u(ν+1) − b(u(ν)) + G(u(ν+1))− s (26)

satisfies a stopping criterion ∥∥∥F ν(u(ν+1))
∥∥∥ ≤ εν+1, (27)

where εν is a given tolerance such that εν → 0 for ν →∞.
Conditions of monotonicity and convergence in stationary case can be found proceeding as done in

Theorems 2 and 3.

5 Solution process

In this section we analyze more in detail the solution process. In this regard, we describe inner and outer
solvers and how to set their initialization and stopping criteria efficiently.

As described in Section 4.1, at each LDM iteration we must solve the weakly nonlinear system (16), which
we do approximately by an iterative procedure that is stopped when the lagged acceptability condition (18)
is satisfied. We choose to solve (16) by the simplified Newton’s method [12, p. 182]. We are thus left with
three solution levels at each time step:

15

1. we use the lagged diffusivity method to linearize the nonlinear algebraic systems (8);

2. we use the simplified Newton’s method to solve the weakly nonlinear algebraic system (16) arising at
each lagged iteration. The method is stopped when the lagged acceptability condition (18) is satisfied;

3. we use an iterative linear solver to solve the linear system arising at each simplified Newton’s iteration.
In the following, the tolerance of the linear solver is chosen so that (16) is solved by an inexact Newton’s
method [4, 5].

Having already described the lagged diffusivity method in Section 4.1, let us proceed to the analysis of the
solution of the weakly nonlinear system (16).

5.1 Solution of the weakly nonlinear system

Let us introduce a second superscript k to account for the Newton iteration. Thus, u(ν+1,k+1) denotes u at
the (k + 1)-th simplified Newton iteration of the (ν + 1)-th lagged iteration. Choosing as starting vector the
solution at the previous lagged iteration, u(ν), the (k + 1)-th simplified Newton iteration, k = 0, 1, . . ., of the
(ν + 1)-th lagged iteration consists in finding ∆u(k+1) = u(ν+1,k+1) − u(ν+1,k) solution of the linear system

F ′ν(u(ν))∆u = −F ν(u(ν+1,k)), (28)

with
F ′ν(u(ν)) = I + τA(u(ν)) + τG′(u(ν)) (29)

Jacobian matrix of F ν(u) evaluated at u(ν+1,0) = u(ν) and G′(u(ν)) Jacobian matrix of G(u). Remembering
that the criterion of acceptability of the lagged iteration is given by (18) with F ν(u(ν+1)) as in (17), the
simplified Newton iteration is stopped when ‖F ν(u(ν+1,k+1))‖ ≤ εν+1 is satisfied. Denoting by kend the number
of Newton iterations needed for satisfying the acceptability criterion (18), we define u(ν+1) ≡ u(ν+1,kend).

More conveniently, we can rewrite (28) by using the definition of ∆u(k+1) at lagging iteration ν + 1 and
of F ′ν(u(ν)) in (29). Rearranging terms, we indeed find

F ′ν(u(ν))u(ν+1,k+1) =
[
I + τA(u(ν))

]
u(ν+1,k) + τG′(u(ν))u(ν+1,k) − F ν(u(ν+1,k)).

Then, replacing F ν(u(ν+1,k)) by its definition in (16) and canceling out opposite terms, we find that at the
(k + 1)-th simplified Newton iteration, k = 0, 1, . . ., u(ν+1,k+1) is the solution of the linear system

F ′ν(u(ν))u = τG′(u(ν))u(ν+1,k) − τG(u(ν+1,k)) + τb(u(ν)) + w, k = 0, 1, (30)

Thus, now we have to solve a linear system at each Newton iteration. This can be done approximately
by an iterative method. This helps increasing the computational efficiency, especially in case of systems of
large dimensions. Let us then introduce a third superscript j. At the (j + 1)-th iteration of the linear solver,
j = 0, 1, . . ., we have a residual rj+1 given by

rj+1 = F ′ν(u(ν))u(j+1) − τG′(u(ν))u(ν+1,k) + τG(u(ν+1,k))− τb(u(ν))−w, (31)

where u(j+1) ≡ u(ν+1,k+1,j+1) denotes the solution of (30) at the (j + 1)-th linear iteration of the (k + 1)-th
Newton iteration of the (ν + 1)-th lagged iteration. In the following, the starting vector of the linear iterative
solver is given by the solution of the previous simplified Newton iteration, i.e. u(ν+1,k+1,0) = u(ν+1,k).

Choosing a suitable stopping condition of the linear solver, we can set up an inexact Newton procedure.
In this regard, we choose a forcing term σ̂, 0 < σ̂ < 1, and define the tolerance ε̂(k+1) of the linear solver at
the (k + 1)-th Newton iteration as

ε̂(k+1) = σ̂‖F ν(u(ν+1,k))‖. (32)

We then stop the linear solver when the norm of rj+1, j = 0, 1, . . ., satisfies

‖rj+1‖ ≤ ε̂(k+1). (33)

16

Denoting by jend the number of iterations needed to the linear solver for satisfying the stopping condition
(33), we define u(ν+1,k+1) ≡ u(ν+1,k+1,jend).

Finally, we provide a few operative remarks on the choice of the arbitrary parameters of the procedure.
The choice of the prescribed tolerance ε̄ is connected to the desired accuracy, as we can observe that the
value of the final residual is ultimately related to it. Regarding ε0 and σ̂, values excessively small or large
may reduce efficiency, but their choice is, nonetheless, not problematic. In all our experiments, we fixed
ε0 = σ̂ = 0.1.

5.2 A correction of the initialization of starting vectors

Starting vectors and stopping criteria of the used iterative procedures can be summarized as follows:

Method

Lagged diffusivity method

Simplified Newton’s method

Iterative linear solver

Starting vector

u(0) = un

u(ν+1,0) = u(ν)

u(ν+1,k+1,0) = u(ν+1,k)

Tolerance

ε̄

εν+1 = 1
2
εν

ε̂(k+1) = σ̂‖F ν(u(ν+1,k))‖

The starting vectors determine also the initialization of tolerances. For instance, at the first Newton
iteration of the (ν + 1)-th lagged iteration, the tolerance of the linear solver is ε̂(1) = σ̂‖F ν(u(ν+1,0))‖ =
σ̂‖F ν(u(ν))‖. We can also easily notice that all tolerances are initialized at σ̂‖F 0(u(0))‖ = σ̂‖F (u(0))‖ = ε1
at the first lagged iteration.

If we do not apply any correction, however, it can happen that the initial tolerance of the linear solver,
ε̂(1), become smaller than σ̂εν+1 [11, Sec. 5.2]. Being εν+1 the tolerance of the simplified Newton’s method,
ε̂(1) would thus be smaller than what could possibly be required by an inexact Newton’s method, leading to
an increase in computational cost with no foreseeable improvement to accuracy.

Then, we apply a correction on the initialization of the tolerance of the linear solver. In this way, we avoid
solving too exactly the linear system and we reduce computational cost and numerical difficulties. This can
be easily done by imposing σ̂εν+1 as the minimum tolerance of the linear solver. Following [11], we thus set

ε̂(1) = max
(
σ̂‖F ν(u(ν))‖, σ̂εν+1

)
. (34)

6 Numerical experiments

In this section, we solve various problems by a Fortran implementation of the LDM. We are concerned with
how the method behaves with a nonlinear velocity term and we consider several possible choices of ṽ:

ṽ1 =

[
c1e
−u2

c2u

]
ṽ2 =

[
sin((1− x+ c1u)π)
cos((1− y + c2u)π)

]
ṽ3 =

[
(1 + t)2 sin((1− x+ c1u)π)
t3 cos((1− y + c2u)π)

]
ṽ4 =

[
c1xye

− t2

u2+1

c2
(ln(tu+2))2

]
,

(35)

with c1 and c2 real constants. These choices represent different possible situations: indeed, ṽ1 depends only
on u, ṽ2 depends on u, x and y but it is constant in time, while ṽ3 and ṽ4 depend on t as well. All these
choices evidently satisfy the initial smoothness assumptions (for u finite).

17

We start our analysis by verifying the effectiveness of the lagged diffusivity method. In this regard, we
choose, for example, the following test problems:

Problem 1 u∗ = (1 + x− y)3t σ = 0.4 + 0.5u g = 100e0.5u

Problem 2 u∗ = 2(t+ 1)[(x− 0.5)2 + (y − 0.5)2] σ = 0.01 + 0.5u2 g = 5u ln(1 + u).

Problem 1 represents a situation where σmin and g are quite large, while in Problem 2 we have the opposite
situation. Also the monotonicity constant of g is smaller in this latter case. Thus, Problem 2 represents a
situation which is potentially more critical for the monotonicity of F (u) and for convergence.

Finally, it appears suitable to introduce also a test problem motivated by situations which could occur in
real-world applications. In this regard, consider, for instance, all those cases where velocity is produced by an
external force F . This is, for example, the case of the Smoluchowski diffusion equation, which describes the
flow of ions dissolved in a liquid in presence of an electric field that pulls the ions in a given direction. In this
case, the velocity can be written as the quotient between the force of the field and a term ζ (called viscous
drag, which accounts for the friction) and may be nonlinear (see, e.g., [1]). Conceptually similar situations
may arise also in chemical-mechanical frameworks. For instance, consider all those processes where the
material which is diffusing has a larger (or smaller) viscous drag and/or causes reactions that form substances
characterized by a higher friction. The velocity produced by the same force, thus, may be nonlinear with
concentration. Finally, we can find similar situations also in plastic compounding, which consists in mixing
additives to a molten polymer. If we add a plasticizer, the viscosity of the polymer is reduced. Thus, if the
polymer is mixed by applying a fixed force F , the velocity of the fluid is larger where the concentration of the
plasticizer is higher. The opposite situation may arise, on the other hand, if additives that increase viscosity
(e.g. fillers) are used.

Let us then build a test problem which can constitute a simplified model of these situations. Assume, that
a specie b is diffusing in a medium a. The starting concentration of b in the domain is zero and, as b diffuses,
the medium is mixed, with a velocity produced by an external force F . Supposing that b has a large viscosity,
the parameter accounting for the viscous drag, η, will be larger where the concentration of b is higher. For
instance, assume that η increases quadratically as the concentration of b increases (in any case, it is easy
to modify the problem and consider different dependence laws). Then, calling η0 the value of η where the
concentration of b is zero, the velocity may be expressed as

ṽ1 =
1

η0 + κu2
F1; ṽ2 =

1

η0 + κu2
F2,

with κ > 0 and with F1 and F2 representing the components of the force along the axes x and y, respectively.
Notice that we have here performed some simplifying assumptions, such as that F1, F2 are constant in the
points of the domain. If this does not hold true (like, for instance, in case of a mechanical mixing, where we
would likely have turbulences and we may stir the medium along a circumference) we can nonetheless adapt
the formulation by considering F1 and F2 as dependent on x, y.

Then, we further assume that a reaction between b and the diffusion medium occurs and that its rate is
proportional to the concentration of b itself. Finally, we may consider a linear diffusivity, in accordance with
the formulation of common mass diffusivities and so to analyze also a case where only the velocity term is
nonlinear.

Fixing a solution (for instance, the same as that of Problem 1) and choosing some parameters, let us then
solve the test problem

Problem 3 u∗ = (1 + x− y)3t σ = 1 g = 2u ṽ1 =
c1

2 + u2
4 ṽ2 =

c2
2 + u2

4.

For all problems, we choose the domain Ω to be the square [0, 1]× [0, 1], which we discretize by a uniform
grid of N × N points. We also set the initial time t0 = 0, the final time tf = 1 and θ = 0.5. When not
otherwise specified, we set N = 250 and ∆t = 0.1.

18

6.1 Verification of the method and analysis of the linear solvers

Let us solve the test problems considering all the forms of ṽ introduced in (35) with c1 = c2 = 1, α = 0 and
different inner linear solvers: the Arithmetic Mean (AM) method [17] with ω = 1, the BiConjugate Gradient-
stabilized method with parameter l (BiCGstab(l)) [19] and the GMRES method [18]. The implementation of
the GMRES follows [7][p. 45], which uses Givens rotations and re-orthogonalization. We choose to consider
these solvers because, being ṽ 6= 0, the coefficient matrix of the linear systems arising at each Newton
iteration cannot be symmetric, thus preventing the use of a conjugate gradient method. Depending on the
problem, the non-symmetry can then be more or less significant, and it is thus interesting to compare the
AM method, which is known to be well suited for solving strongly non-symmetric systems [16], and Krylov
solvers such as BiCGstab(l) and GMRES. Moreover, since we here aim especially at analyzing the behavior
of the algorithm, we do not apply any preconditioner. Preconditioning techniques can, nonetheless, be easily
employed if higher efficiency is required.

We stop the lagging iteration when εν+1 ≤ ε̄ = 10−4, while starting vectors and stopping criteria of all
the iterative procedures are chosen as described in Section 5. We also set a maximum number of Newton
iterations kmax = 500 for each lagging iteration and a maximum number of linear iterations jmax = 10, 000
for each Newton iteration.

The results are reported in Table 1 and are referred to the last time level, except for ttot, which denotes
the whole time required to compute the solution from t0 to tf . By νend, kend and jend we denote, respectively,
the total number of lagged, Newton and linear solver iterations at the last time level. Finally, res0 denotes
the Euclidean norm of the initial residual, res denotes the Euclidean norm of the final residual and errh and
err2 denote the global error in l2(Ωh) and in relative Euclidean norm respectively.

ṽ Lin. Solver res0 res errh err2 νend kend jend ttot

ṽ1

AM 91, 961 1.42 · 10−5 2.19 · 10−4 1.04 · 10−4 27 27 7, 759 400.9
BiCG(1) 91, 961 1.34 · 10−5 2.19 · 10−4 1.04 · 10−4 27 27 1, 119 61.6
BiCG(2) 91, 961 1.36 · 10−5 2.19 · 10−4 1.04 · 10−4 27 27 511 58.5
BiCG(4) 91, 961 1.30 · 10−5 2.19 · 10−4 1.04 · 10−4 27 27 250 65.8
GMRES 91, 961 1.39 · 10−4 2.19 · 10−4 1.04 · 10−4 27 27 1, 762 1, 460

ṽ2

AM 91, 810 1.40 · 10−5 1.85 · 10−4 8.78 · 10−5 27 27 7, 604 375.0
BiCG(1) 91, 810 1.37 · 10−5 1.85 · 10−4 8.78 · 10−5 27 27 1, 207 61.4
BiCG(2) 91, 810 1.32 · 10−5 1.85 · 10−4 8.78 · 10−5 27 27 531 62.0
BiCG(4) 91, 810 1.29 · 10−5 1.85 · 10−4 8.78 · 10−5 27 27 242 65.1
GMRES 91, 810 1.38 · 10−4 1.85 · 10−4 8.78 · 10−5 27 27 1, 771 1, 447

ṽ3

AM 91, 795 1.60 · 10−5 6.29 · 10−4 2.98 · 10−4 27 27 7, 854 371.2
BiCG(1) 91, 795 1.46 · 10−5 6.29 · 10−4 2.98 · 10−4 27 27 1, 244 68.5
BiCG(2) 91, 795 1.35 · 10−5 6.29 · 10−4 2.98 · 10−4 27 27 585 75.7
BiCG(4) 91, 795 1.32 · 10−5 6.29 · 10−4 2.98 · 10−4 27 27 289 72.8
GMRES 91, 795 1.51 · 10−4 6.29 · 10−4 2.98 · 10−4 27 27 1, 893 1, 575

ṽ4

AM 91, 814 1.36 · 10−5 1.09 · 10−4 5.15 · 10−5 27 27 7, 544 364.4
BiCG(1) 91, 814 1.36 · 10−5 1.09 · 10−4 5.15 · 10−5 27 27 1, 149 62.7
BiCG(2) 91, 814 1.29 · 10−5 1.09 · 10−4 5.15 · 10−5 27 27 516 60.7
BiCG(4) 91, 814 1.27 · 10−5 1.09 · 10−4 5.15 · 10−5 27 27 255 65.4
GMRES 91, 814 1.36 · 10−4 1.09 · 10−4 5.15 · 10−5 27 27 1, 667 1, 380

Table 1: Linear solver comparison for variable ṽ; results for different ṽ for Problem 1 with α = 0.

We are able to compute the correct solution in all cases. Indeed, irrespective of the problem and of the
used inner linear solver, the algorithm always converges and global errors never exceed 10−3. The choice of

19

ṽ Lin. Solver res0 res errh err2 νend kend jend ttot

ṽ1

AM 7, 510 1.85 · 10−5 3.65 · 10−3 4.69 · 10−3 23 23 4, 720 192.3
BiCG(1) 7, 510 1.77 · 10−5 3.65 · 10−3 4.69 · 10−3 23 23 1, 754 114.4
BiCG(2) 7, 510 1.73 · 10−5 3.65 · 10−3 4.69 · 10−3 23 23 891 111.8
BiCG(4) 7, 510 1.78 · 10−5 3.65 · 10−3 4.69 · 10−3 23 23 458 112.6
GMRES 7, 510 1.92 · 10−4 3.65 · 10−3 4.69 · 10−3 23 23 2, 307 1, 677

ṽ2

AM 7, 514 2.44 · 10−5 5.21 · 10−3 6.69 · 10−3 23 23 5, 307 227.6
BiCG(1) 7, 514 1.81 · 10−5 5.21 · 10−3 6.69 · 10−3 23 23 1, 842 100.1
BiCG(2) 7, 514 1.82 · 10−5 5.21 · 10−3 6.69 · 10−3 23 23 952 116.8
BiCG(4) 7, 514 1.82 · 10−5 5.21 · 10−3 6.69 · 10−3 23 23 461 120.0
GMRES 7, 514 2.09 · 10−4 5.21 · 10−3 6.69 · 10−3 23 23 2, 345 1, 672

ṽ3

AM 7, 527 1.98 · 10−4 7.15 · 10−3 9.17 · 10−3 23 23 8, 595 297.9
BiCG(1) 7, 527 5.24 · 10−5 7.15 · 10−3 9.17 · 10−3 23 23 3, 458 121.3
BiCG(2) 7, 527 4.99 · 10−5 7.15 · 10−3 9.17 · 10−3 23 23 1, 717 133.5
BiCG(4) 7, 527 4.61 · 10−5 7.15 · 10−3 9.17 · 10−3 23 23 864 152.4
GMRES 7, 527 7.75 · 10−4 7.15 · 10−3 9.17 · 10−3 23 23 3, 752 2, 450

ṽ4

AM 7, 508 1.96 · 10−5 3.49 · 10−3 4.48 · 10−3 23 23 5, 245 225.2
BiCG(1) 7, 508 1.36 · 10−5 3.49 · 10−3 4.48 · 10−3 23 23 2, 435 112.0
BiCG(2) 7, 508 1.71 · 10−5 3.49 · 10−3 4.48 · 10−3 23 23 1, 100 119.2
BiCG(4) 7, 508 1.68 · 10−5 3.49 · 10−3 4.48 · 10−3 23 23 614 161.9
GMRES 7, 508 2.17 · 10−4 3.49 · 10−3 4.48 · 10−3 23 23 2, 958 2, 113

Table 2: Linear solver comparison for variable ṽ; results for different ṽ for Problem 2 with α = 0.

Lin. Solver res0 res errh err2 νend kend jend ttot
AM 30, 295 1.80 · 10−5 6.49 · 10−4 3.07 · 10−4 25 25 22, 186 1, 078

BiCG(1) 30, 295 1.76 · 10−5 6.49 · 10−4 3.07 · 10−4 25 25 611 47.6
BiCG(2) 30, 295 1.75 · 10−5 6.49 · 10−4 3.07 · 10−4 25 25 317 48.5
BiCG(4) 30, 295 1.73 · 10−5 6.49 · 10−4 3.07 · 10−4 25 25 148 52.2
GMRES 30, 295 1.80 · 10−4 6.49 · 10−4 3.07 · 10−4 25 25 1, 187 1, 537

Table 3: Results for Problem 3 with various inner solvers

the linear solver is nonetheless important, as we can see looking at jend and at the total time ttot. Indeed, we
see that the AM method requires many more iterations than the BiCGstab(l). Time ttot is higher as well: for
instance, in Problem 1 when we use the BiCGstab(1) as linear solver, the LDM computes the solution in less
than one fifth of the time required when the AM is used. The difference is yet more remarkable for Problem
3. This had to be expected: indeed, setting c1 = c2 = 1, ṽ remains quite small. Thus, the Jacobian is weakly
non-symmetric and the AM method is thus slower than the other analyzed linear solvers.
In the BiCGstab(l) method, we also notice that large values of l lead to a reduction of the number of linear
iterations but not to a reduction of the computational time, which rather tends to increase for l > 2. This is
due to the increased computational cost of each iteration of the BiCG-stab(l) method. Since the BiCGstab(1)
(which is equivalent to the Bi-CGSTAB in [22]) can efficiently solve all the analyzed problems, increasing l is
thus not needed. In the following, we thus focus on the AM and on the BiCG-stab(1) methods.

Let us then see what happens as c1 and c2 are increased, leading to a more non-symmetric Jacobian
matrix. We restrict our analysis to choices of c1 and c2 which satisfy the condition h < 2σmin/ṽmax within
the discretization used in the above experiments. This condition, moreover, ensures that the AM method

20

converges (see [16]) since it implies that A(u) is an M-matrix.
For instance, let us consider Problem 1 (which is more suitable for this analysis, since σmin is larger) and

ṽ = ṽ4. Taking into account that both ṽ1 and ṽ2 attain larger values when t is small, it is easy to verify that
h < 2σmin/ṽmax is satisfied if c1 < 200 and c2 < 96 at t = 0. We thus consider these two values as thresholds
for the choice of c1 and c2. In Table 4 we report the results computed for different choices of c1 and c2.

c1 c2 Lin. Solver res0 res errh err2 jend ttot

10 10
AM 91, 829 1.33 · 10−5 1.00 · 10−3 4.74 · 10−4 6, 935 297.4

BiCG(1) 91, 829 9.60 · 10−6 1.00 · 10−3 4.74 · 10−4 1, 075 74.2

50 50
AM 91, 903 1.32 · 10−5 2.93 · 10−3 1.39 · 10−3 4, 856 153.3

BiCG(1) 91, 903 1.34 · 10−5 2.93 · 10−3 1.39 · 10−3 2, 041 126.0

190 90
AM 91, 441 1.32 · 10−5 4.45 · 10−3 2.10 · 10−3 3, 525 123.8

BiCG(1) 91, 441 1.30 · 10−5 4.45 · 10−3 2.10 · 10−3 2, 957 128.1

50 95
AM 92, 248 1.21 · 10−5 3.17 · 10−3 1.50 · 10−3 3, 795 118.8

BiCG(1) 92, 248 1.36 · 10−5 3.17 · 10−3 1.50 · 10−3 2, 625 147.4

195 95
AM 91, 454 1.31 · 10−5 4.49 · 10−3 2.12 · 10−3 3, 438 111.2

BiCG(1) 91, 454 1.09 · 10−5 4.49 · 10−3 2.12 · 10−3 2, 897 133.6

Table 4: Results for different choices of c1 and c2 for Problem 1 with ṽ = ṽ4 and α = 0.

We notice that, as expected, the AM method gets faster and faster as c1 and c2 increase, which is when
the Jacobian gets more non-symmetric. Even more, being ṽ variable and dependent on t, the non-symmetry
of the Jacobian vary at different time levels. As mentioned above, with ṽ = ṽ4 the Jacobian gets less
non-symmetric at t increases, since t damps the values of ṽ. So, we expect the AM method to become less
efficient as t increases. Eventually, when t is large, the BiCGstab(1) should become competitive also when c1
and c2 are large. In order to confirm this, let us then see what happens for different choices of c1 and c2. The
results are reported in Table 5, 6 and 7 and represented in Figures 1, 2 and 3.

Computational time at different time levels
Lin. Solver 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

AM 29.3 32.3 35.1 36.4 35.6 38.2 38.2 37.8 40.2 41.1
BiCG(1) 4.2 5.1 5.3 6.0 6.1 6.3 7.3 7.5 7.2 7.7

Table 5: Computational time at different time levels. Problem 1 with c1 = c2 = 1, ṽ = ṽ4 and α = 0.

Computational time at different time levels
Lin. Solver 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

AM 4.5 5.2 7.1 9.0 10.1 12.4 14.5 17.3 18.5 20.1
BiCG(1) 8.5 10.1 11.5 15.8 15.3 17.2 16.9 18.3 16.4 17.2

Table 6: Computational time at different time levels. Problem 1 with c1 = 50, c2 = 95, ṽ = ṽ4 and α = 0.

In Table 5 and in Figure 1 we consider a weakly non-symmetric case, where we set c1 = c2 = 1. In this
case, the Jacobian is always almost symmetric and the BiCG-stab is evidently faster at any time level.

In Table 6 and in Figure 2 we instead set c1 = 50 and c2 = 95. Non-symmetry is thus much more relevant,
and we see that at the beginning the algorithm using the AM as linear solver is twice as fast as the one using

21

Computational time at different time levels
Lin. Solver 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

AM 4.3 4.9 7.1 9.6 11.3 11.5 12.8 14.8 16.3 18.5
BiCG(1) 9.6 8.9 9.8 11.8 13.4 13.1 15.9 16.1 15.8 18.9

Table 7: Computational time at different time levels. Problem 1 with c1 = 195, c2 = 95, ṽ = ṽ4 and α = 0.

the BiCG-stab(1). However, the difference gets smaller as t increases, until, for t > 0.8, the BiCG-stab(1)
prevails. The total time required for computing the solution from t = 0 to t = 1 is however smaller when
using the AM method, as already seen in Table 4. Choosing t = 1 as final time, the AM thus prevails.

This is even more true for the case c1 = 195 and c2 = 95, whose results are reported in Table 7 and in
Figure 3. Here the AM method tends to be faster also at terminal time levels.

22

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time level

0

5

10

15

20

25

30

35

40

45

T
im

e
 f

o
r

ti
m

e
 l
e

v
e

l

AM
BiCG-stab(1)

(a) Domain

0 0.2 0.4 0.6 0.8 1

Time

0

50

100

150

200

250

300

350

400

T
o

ta
l
ti
m

e

AM
BiCG-stab(1)

(b) Plot of u∗
1 at final time t = 1

Figure 1: Computational time at different time levels and trend of total computational. Problem 1 with c1 = c2 = 1,
ṽ = ṽ4 and α = 0.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time level

4

6

8

10

12

14

16

18

20

22

T
im

e
 f

o
r

ti
m

e
 l
e

v
e

l

AM
BiCG-stab(1)

(a) Domain

0 0.2 0.4 0.6 0.8 1

Time

0

50

100

150

T
o

ta
l
ti
m

e

AM
BiCG-stab(1)

(b) Plot of u∗
1 at final time t = 1

Figure 2: Computational time at different time levels and trend of total computational. Problem 1 with c1 = 50,
c2 = 95, ṽ = ṽ4 and α = 0.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time level

4

6

8

10

12

14

16

18

20

T
im

e
 f

o
r

ti
m

e
 l
e

v
e

l

AM
BiCG-stab(1)

(a) Domain

0 0.2 0.4 0.6 0.8 1

Time

0

20

40

60

80

100

120

140

T
o

ta
l
ti
m

e

AM
BiCG-stab(1)

(b) Plot of u∗
1 at final time t = 1

Figure 3: Computational time at different time levels and trend of total computational. Problem 1 with c1 = 195,
c2 = 95, ṽ = ṽ4 and α = 0.

23

6.2 Effect of discretization, α and initialization of linear solver and tolerances

We complete the analysis of the algorithm by summarizing some results that show what happens varying the
discretization, changing the initialization and/or stopping criteria of the linear solvers and when α is different
from zero.

In the following, when not otherwise specified, we consider Problem 1 with ṽ = ṽ4, c1 = c2 = 50, α = 0
and we again set N = 250 and ∆t = 0.1. With this choice, the Jacobian presents a significant non-symmetry,
which, however, is not so big as to make the AM method more efficient than the BiCGstab(l), as we can see
in Table 4. The following results have thus been obtained using the BiCGstab(1) as inner linear solver.

Let us start by considering the liner solver itself and see what happens if we modify initializations and
stopping criteria. The results are reported in Table 8. In the second column of the table, we declare which
initialization of the stopping criterion of the linear solver is used. No bound on ε̂(k+1) denotes that we are
using (32) to define the tolerance of the linear solver at the first Newton iteration, while ε̂(k+1) ≥ σ̂εν+1

indicates that we are using the tolerance in (34). Finally, ε̂(k+1) ≥ σ̂ε̄ denotes an intermediate case, where
the bound on the tolerance of the linear solver at the first Newton iteration is given in a non-dynamical way
by using ε̄.

u(ν+1,k+1,0) Bound on stop jend res errh err2 rel.

0
No bound on ε̂(k+1) 36, 842 9.67 · 10−8 2.93 · 10−3 1.39 · 10−3

ε̂(k+1) ≥ σε̄/2 35, 127 4.63 · 10−6 2.93 · 10−3 1.39 · 10−3

ε̂(k+1) ≥ σεν+1 32, 230 1.33 · 10−5 2.93 · 10−3 1.39 · 10−3

u(ν+1,k)
No bound on ε̂(k+1) 3, 840 3.14 · 10−9 2.93 · 10−3 1.39 · 10−3

ε̂(k+1) ≥ σε̄/2 3, 393 2.03 · 10−6 2.93 · 10−3 1.39 · 10−3

ε̂(k+1) ≥ σεν+1 2, 041 1.34 · 10−5 2.93 · 10−3 1.39 · 10−3

Table 8: Effect of starting vectors and stopping criterion of the linear solver

Global errors do not change in all analyzed cases: indeed, some differences could be spotted only if we
considered two more decimal digits. However, different choices of initializations and stopping criteria deeply
influence the efficiency of the algorithm, here represented by the total number on linear iterations required to
compute the solution at the last time level, jend. Indeed, since we use always the same linear solver, jend is a
better indicator than, e.g., ttot, which is less reproducible.

We notice that jend is ten times larger when the starting vector of the linear solver is initialized by zero
instead of by the solution at the previous Newton iteration, u(ν+1,k). This is consistent with what happens
for constant ṽ and also with what we expected: indeed, the choice u(ν+1,k+1,0) = u(ν+1,k) was made in order
to choose a starting vector closer to the solution.

Analogously, we notice that we achieve a consistent reduction of the computational cost with no loss in
accuracy if we apply the initialization of the tolerance of the linear solver described in Section 5.2. Indeed,
jend is reduced by about 20% when u(ν+1,k+1,0) = 0 and by almost 50% when u(ν+1,k+1,0) = u(ν+1,k), with
no increase of global errors.

Passing to the analysis of the discretization, let us set u(ν+1,k+1,0) = u(ν+1,k) and ε(k+1) ≥ σεν+1 and let
us change the number N of points in which the space domain is discretized. In this regard, we also note
that, since c1 = c2 = 50, the condition h < 2σmin/ṽmax holds only for N > 104. We get the results in Table
9, where EOC denotes the experimental order of convergence.

We notice that global errors decrease as N increases. On the other hand, also the initial residual res0

increases, leading to higher number of lagged iterations and, thus, of linear iterations, with jend that roughly
doubles when N is doubled. The increase in computational times is, then, steeper, since increasing N
means increasing also the order of all the matrices involved, thus making the entire solution process more
complicated.

Passing to time discretization, Table 10 reports the results obtained as ∆t is varied.

24

N res0 res errh err2 rel. EOC νend kend jend ttot
125 16, 668 1.58 · 10−5 5.80 · 10−3 2.77 · 10−3 0.98 24 24 1, 019 27.1
250 91, 903 1.34 · 10−5 2.93 · 10−3 1.39 · 10−3 0.99 27 27 2, 041 126.0
500 514, 995 1.67 · 10−5 1.47 · 10−3 6.93 · 10−4 - 29 29 4, 717 840.6

Table 9: Effect of space discretization

∆t res0 res errh err2 rel. νend kend jend tlast ttot
2 · 10−1 332, 033 1.18 · 10−5 2.94 · 10−3 1.39 · 10−3 29 29 2, 325 15.37 65.78

10−1 91, 903 1.34 · 10−5 2.93 · 10−3 1.39 · 10−3 27 27 2, 041 13.17 126.0
10−2 1, 000 1.55 · 10−5 1.97 · 10−3 9.33 · 10−4 20 20 1, 207 8.84 715.4
10−3 10.18 9.40 · 10−6 4.22 · 10−4 2.00 · 10−4 14 14 160 1.90 1, 686.0

Table 10: Effect of time discretization

Also in this case, global errors decrease as ∆t is reduced. Moreover also res0 decreases with ∆t, implying
that also the times required for computing the solution at each time level get smaller (e.g. see tlast, which
refers to the time needed for computing the solution at the last time level). However, a smaller ∆t implies
that we also need more time levels in order to compute the solution from t0 to tf . Thus, the total time
ttot increases as ∆t is reduced. However, we cannot arbitrarily increase the size of the time step, since
the conditions in Theorems 1 and 2 are eventually not satisfied for excessively large time steps (if h is not
increased as well).

For completeness, we finally see what happens when α is not zero. The results are reported in Table 11.

α res0 res errh err2 rel. νend kend jend
0 332, 033 1.18 · 10−5 2.94 · 10−3 1.39 · 10−3 29 29 2, 325
10 91, 908 1.34 · 10−5 2.78 · 10−3 1.31 · 10−3 27 27 2, 030
100 91, 952 1.15 · 10−5 1.87 · 10−3 8.86 · 10−4 27 27 1, 860

x2 + y2 91, 904 1.06 · 10−5 2.92 · 10−3 1.38 · 10−3 27 27 2, 133
10/(10−3 + x+ y)2 92, 079 1.32 · 10−5 2.34 · 10−3 1.11 · 10−3 27 27 1, 438

log2(x2 + y) 91, 904 1.34 · 10−5 2.89 · 10−3 1.37 · 10−3 27 27 2, 105

Table 11: Results for α 6= 0

We see that α does not have a significant effect on the results, as we expected: indeed, it only acts on the
diagonal elements, strengthening (due to its sign) the diagonal dominance of A(u). The first three rows of
Table 11 show that, however, a larger α can have the effect of reducing the complexity of the problem (since
jend decreases as α increases) and, possibly, also the global errors. This happens also when α is variable: e.g.
α = 10/(10−3 + x+ y)2 leads to α ∈ [104, 4.998] in the domain we are considering and jend is smaller than in
the cases where α is smaller. However, when α is variable it is harder to evaluate the effect of α itself, since
its value can vary consistently in different parts of the domain.

6.3 Discretization of the convective term and convection-dominated problems

Up to now, we have considered the solution of systems arising from space discretizations where the convective
term is discretized by central finite differences. This choice is convenient in the analysis of the algorithm and
it also makes so that we have the discretization of the convective term has the same order of accuracy as
the discretization of the diffusion term (i.e., O(h2)). However, as remarked in Section 2.1, it also has the
shortcoming that A(u) is an M-matrix only if h satisfies (4). Evidently, satisfying this condition requires

25

smaller and smaller values of h as the problem gets more convection-dominated, with important consequences
on the convergence theorems. Moreover, in convection-dominated problems, it is especially desirable that
A(u) be an M-matrix so to be able to use the AM method, which, as seen in the previous subsections, is
particularly well-suited to solve systems with non-symmetric matrices.

Considering other discretizations of the convective term, it is nonetheless easy to notice that A(u) is
an M-matrix for any choice of h if we instead employ the upwind discretization, at the cost, however, of
reducing the order of accuracy to O(h). Thus, we here consider this alternative discretization in order to show
numerically its behavior and to provide an useful framework for convection-dominated problems. Further
information on this case (referred to the case of constant velocity term) can be also found in [10].

Let us then consider, for instance, Problem 1 with ṽ = ṽ4. In Table 12, we report the results obtained
with different discretizations as the value of c1 and c2 increases. Observe that, in all analyzed cases, condition
(4) is not respected, as c1 and c2 exceed the threshold values reported in Section 6.1 (which are 200 and 96,
respectively).

c1, c2 Discretization Lin. Solver res0 res errh err2 rel. jend ttot

500, 500

Central FD

AM - - - - - -

BiCG(1) 93, 250 1.32 · 10−5 5.06 · 10−3 2.40 · 10−3 6, 213 435.2

BiCG(2) 93, 250 1.26 · 10−5 5.06 · 10−3 2.40 · 10−3 1, 751 184.3

BiCG(4) 93, 250 1.36 · 10−5 5.06 · 10−3 2.40 · 10−3 762 181.6

Upwind

AM 100, 015 1.42 · 10−5 6.17 · 10−3 2.92 · 10−3 1, 546 82.6

BiCG(1) 100, 015 1.37 · 10−5 6.17 · 10−3 2.92 · 10−3 2, 322 110.4

BiCG(2) 100, 015 1.43 · 10−5 6.17 · 10−3 2.92 · 10−3 1, 012 110.4

BiCG(4) 100, 015 1.27 · 10−5 6.17 · 10−3 2.92 · 10−3 481 115.5

2000, 2000

Central FD

AM - - - - - -

BiCG(1) - - - - - -

BiCG(2) 103, 953 1.24 · 10−5 5.47 · 10−3 2.59 · 10−3 1, 761 179.1

BiCG(4) 103, 953 1.16 · 10−5 5.47 · 10−3 2.59 · 10−3 773 178.2

Upwind

AM 129, 319 1.63 · 10−5 6.56 · 10−3 3.11 · 10−3 914 72.1

BiCG(1) 129, 319 7.63 · 10−6 6.56 · 10−3 3.11 · 10−3 2, 131 117.7

BiCG(2) 129, 319 1.39 · 10−5 6.56 · 10−3 3.11 · 10−3 874 103.2

BiCG(4) 129, 319 7.03 · 10−6 6.56 · 10−3 3.11 · 10−3 463 116.7

50000, 50000

Central FD

AM - - - - - -

BiCG(1) - - - - - -

BiCG(2) - - - - - -

BiCG(4) - - - - - -

Upwind

AM 1.35 · 106 1.12 · 10−5 6.71 · 10−3 3.18 · 10−3 1, 122 78.6

BiCG(1) 1.35 · 106 1.07 · 10−5 6.71 · 10−3 3.18 · 10−3 2, 558 131.9

BiCG(2) 1.35 · 106 1.19 · 10−5 6.71 · 10−3 3.18 · 10−3 1, 142 111.7

BiCG(4) 1.35 · 106 8.60 · 10−6 6.71 · 10−3 3.18 · 10−3 548 133.5

Table 12: Comparison of discretizations by finite differences and upwind scheme for Problem 1 with ṽ = ṽ4.

As we expected, the algorithms employing central finite differences on the convective term incur in
difficulties as convection becomes more dominant. The AM method, in particular, immediately fails.
Algorithms using BiCGstab(l) method work better (especially when l is quite large), but they ultimately
fail as convection becomes more dominant. Moreover, also when they work, they are less efficient than the

26

corresponding algorithm employing the upwind discretization. On the other hand, if the discretization is
performed by an upwind scheme, the AM method always converges without presenting any problem (on the
contrary, the algorithm gets faster with larger values of ṽ). This was to be expected, since the Jacobian is
now an M-matrix, as required by the convergence of the AM method.

7 Conclusions

We have presented an iterative procedure which solves nonlinear steady and non-steady reaction-convection-
diffusion equations with a variable velocity term. We have discretized the partial differential problems and
proved that the LDM applied to the resulting nonlinear algebraic systems converges when some assumptions
are satisfied. In this context, we have also studied the uniform monotonicity of the finite-difference operator,
which is crucial for the uniqueness of the solution and for the convergence of the LDM itself.

We have then described the solution of the weakly-nonlinear algebraic systems generated by the LDM
and provided some details over the implementation of the entire procedure.

Finally, we have provided several numerical experiments showing the behavior of the LDM in a variety of
situations. We have showed that the LDM can successfully compute the solution of all the considered test
problems. We have also pointed out that the choice of the linear inner solver affects the efficiency of the
method: indeed, the fastest linear solver depends on the non-symmetry of the coefficient matrix of the linear
system, which, in turn, is determined by the velocity term ṽ. We have then showed that efficiency is affected
also by other factors, including the refinement of the discretization and the choice of starting vectors and
stopping criteria.

27

A The algorithm

Algorithm 1 Lagged diffusivity procedure

Require: initial condition u|0 in t = 0; a tolerance ε̄
1: for n = 1, 2, . . . do Time step
2: Initialize solution vector for lagged iteration: u(0) = u|n−1

3: Initialize lagged tol.: ε1 = ε0‖F (u(0))‖
4: for ν = 0, 1, . . . do Lagged iteration
5: Initialize linear solver tol.: ε̂(1) = max

(
σ̂
∥∥F ν(u(ν))

∥∥ , σ̂εν+1

)
6: for k = 0, 1, . . . do Simpl. Newton iteration
7: for j = 0, 1, . . . do Linear solver iteration
8: Compute (j + 1)-th iterate u(ν+1,k+1,j+1) for solving (30)
9: Compute residual rj+1 as in (31)

10: if ‖rj+1‖ ≤ ε̂(k+1) then return

11: j = j+1
12: end for
13: Compute Newton residual F ν(u(ν+1,k+1))
14: if

∥∥F ν(u(ν+1,k+1))
∥∥ ≤ εν+1 then return

15: Update linear solver tol.: ε̂(k+1) = σ̂
∥∥F ν(u(ν+1,k+1))

∥∥
16: k = k+1
17: end for
18: Update vectors and matrices: find F ν+1(u(ν+1))
19: ν = ν + 1
20: εν+1 = 0.5εν
21: if εν+1 ≤ ε̄ then return

22: end for
23: n = n+ 1
24: end for

28

References

[1] Ben, Y., Chang, H.: Nonlinear Smoluchowski slip velocity and micro-vortex generation. J. Fluid Mech.
461, 229–238 (2002)

[2] Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear
diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992)

[3] Chan, T.F., Mulet, P.: On the convergence of the lagged diffusivity fixed point method in total variation
image restoration. SIAM J. Numer. Anal. 36(2), 354–367 (1999)

[4] Dembo, R., Eisenstat, S., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19, 400–408
(1982)

[5] Eisenstat, S., Walker, H.: Globally convergent inexact Newton methods. SIAM J. Optimiz. 4, 393–422
(1994)

[6] Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. John Wiley & and Sons, New York (1966)

[7] Kelley, C.: Iterative Methods for Linear and Nonlinear Equations. Frontiers in Applied Mathematics.
SIAM, Philadelphia (1995)

[8] Lions, J.L.: Quelques Méthodes De Résolution Des Problémes Aux Limites Non Linéaires. Collection
Études Mathématiques. Dunod, Paris (1969)

[9] Meyer, G.H.: The numerical solution of quasilinear ellipting equations. In: G. Byrne, C. Hall (eds.)
Numerical solution of systems of nonlinear algebraic equations. Academic Press (1973)

[10] Mezzadri, F., Galligani, E.: On the lagged diffusivity method for the solution of nonlinear finite difference
systems. Algoritms 10(88) (2017)

[11] Mezzadri, F., Galligani, E.: A lagged diffusivity method for reaction–convection–diffusion equations with
Dirichlet boundary conditions. Appl. Numer. Math. 123, 300–319 (2018)

[12] Ortega, J., Rheinboldt, W.: Iterative Solution of Nonlinear Equations in Several Variables. Computer
Science and Applied Mathematics. Academic Press inc. (1970)

[13] Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE T. Pattern. Anal.
12(7), 629–639 (1990)

[14] Roub́ıček, T.: Nonlinear Partial Differential Equations with Applications. ISNM International Series of
Numerical Mathematics. Birkhauser Verlag, Basel-Boston-Berlin (2005)

[15] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D
60, 259–268 (1992)

[16] Ruggiero, V., Galligani, E.: An iterative method for large sparse linear systems on a vector computer.
Comput. Math. Appl. 20(1), 25–28 (1990)

[17] Ruggiero, V., Galligani, E.: A parallel algorithm for solving block tridiagonal linear systems. Comput.
Math. Appl. 24, 15–21 (1992)

[18] Saad, Y., Schultz, M.: GMRES a generalized minimal residual algorithm for solving nonsymmetrical
systems. SIAM J. Sci. Statist. Comput. 7, 856–869 (1986)

[19] Sleijpen, G.L.G., Fokkema, D.R.: Bicgstab(l) for linear equations involving unsymmetric matrices with
complex spectrum. Electron. T. Numer. Ana. 1, 11–32 (1993)

29

[20] Varga, R.: Matrix Iterative Analysis, 2nd edn. Springer, Berlin (2000)

[21] Vogel, C., Oman, M.: Iterative methods for total variation denoising. SIAM J. Sci. comput. 17(1),
227–238 (1996)

[22] van der Vorst, H.: Bi-CGSTAB: A fast and smoothly convergent variant to the Bi-CG for the solution of
nonlinear systems. SIAM J. Statist. Comput. 13, 631–644 (1992)

30

	Introduction
	The differential problem and finite difference discretization
	Space discretization
	Time discretization

	Uniform monotonicity of F(u) and uniqueness of the solution of F(u)= 0
	Initial remarks
	Preliminary lemmas on (u)
	Existence of at least one solution to the discretized system
	Monotonicity analysis

	The lagged diffusivity method and convergence analysis
	The lagged diffusivity method
	Convergence analysis
	Remarks on the stationary case

	Solution process
	Solution of the weakly nonlinear system
	A correction of the initialization of starting vectors

	Numerical experiments
	Verification of the method and analysis of the linear solvers
	Effect of discretization, and initialization of linear solver and tolerances
	Discretization of the convective term and convection-dominated problems

	Conclusions
	The algorithm

