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The study of “structured” optical waves has precipitated a marked improvement in our

understanding of the classical and quantum properties of light in recent decades. Numerous

methods now allow experimenters to control the angular momentum content, and radial

distributions of optical waves. Recently, wave structuring techniques developed for optical

beams have been applied to the generation and shaping of electron beams with increasing

success. The adaptation of photon structuring techniques to electron beams has led to a

wealth of promising potential applications in imaging, nanofabrication and the study of

fundamental phenomena. Here, we discuss recent progress in the emerging field of electron

beam shaping, and explore the unique attributes that distinguish electron beams from their

photonic analogues.

I. PHOTON WAVES

Throughout its orbit around our solar system, a comet’s tail invariably points away from the

sun. As early as the seventeenth century, this observation led Johannes Kepler to conjecture that

sunlight might carry linear momentum. Only in 1905 did John Henry Poynting develop the first

theory describing the momentum density of electromagnetic waves1. Almost simultaneously, Al-

bert Einstein proposed that light might be comprised of quantized packets of energy. Shortly there-

after, these energy packets, now known as photons2, were understood to carry quantized momenta

p = ~k as well, where ~ and k denote the reduced Planck constant and photon wavevector. Today,

optical linear momentum is a well-understood phenomenon, that explains countless physical ob-

servations, from radiation pressure to Compton scattering. The study of optical linear momentum

in media remains active, and this work has recently culminated in a solution to the long-standing

Abraham-Minkowski dilemma3.

Less commonly recognized is the fact that light can carry angular momentum in addition to

its linear momentum. This follows from the definition of angular momentum, j = r × p. In the

paraxial regime, the optical angular momentum carried by a beam of light has two sources4: spin

angular momentum (SAM), s; and orbital angular momentum (OAM), `, so that j = s+`. Optical

SAM is directly associated with the circular polarization of light, and represents a form of intrinsic

angular momentum, since its magnitude is independent of the position about which it is measured.

SAM is therefore intimately linked to the vectorial (polarization) structure of a beam5. A beam
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of circularly polarized light necessarily carries SAM, and upon interacting with a small particle,

will cause it to rotate about its centre. The mechanical properties of SAM were first explored by

Beth6, who demonstrated exchanges of angular momentum between circularly polarized light and

a doubly refracting plate.

Apart from its mechanical effects, optical SAM has drawn interest on fundamental grounds7. In

particular, an apparent paradox arises in the interaction between circularly polarized optical plane

waves and massive particles8. Since plane waves are non-localized9, they represent non-paraxial

beams, and therefore their angular momenta cannot be unambiguously separated into SAM and

OAM components. Despite their ambiguous SAM content, however, plane waves do impart a

well-defined SAM onto particles with which they interact. This peculiar circumstance can be

explained by noting that the only portion of the plane wave that is relevant to the interaction is

that which overlaps with the absorbing particle. For the purpose of the interaction, the plane wave

can therefore be considered to be a localized and truncated beam, for which the shape and size

matches that of the particle, so that its description falls within the paraxial regime, resulting in an

unambiguous effective beam SAM10.

By contrast to SAM, OAM is associated with the transverse phase profile of a beam, rather

than its polarization. Optical OAM can be divided into intrinsic OAM, `int, and extrinsic OAM,

`ext
11. Whereas intrinsic OAM is constant for a particular beam, extrinsic OAM varies depending

on the axis about which it is measured. When a beam carrying OAM interacts with a small parti-

cle, its extrinsic OAM induces the particle’s rotation about the beam axis, while its intrinsic OAM

causes the particle to rotate about an axis through its centre12, in a manner resembling the me-

chanical effect of SAM13,14. An OAM-carrying beam is described by a “wavefunction” containing

a corkscrew (helical) phase exp(i`ϕ), where ` is an integer, and ϕ is the azimuthal angle in the

plane transverse to the beam axis15. Such beams therefore have twisted spiral phase fronts (associ-

ated with so-called optical vortices), whose cophasal surfaces form `-helices during propagation,

and therefore possess nonzero transverse wavevectors. Beams possessing well-defined OAMs are

known as “twisted beams”. Any OAM-carrying beam contains at least one phase singularity, a

point of undefined phase in the plane transverse to the beam propagation axis16.

The scales associated with features of the optical field tied to OAM and SAM are quite com-

parable. For SAM, the electric field of a circularly polarized optical beam rotates once after prop-

agating by exactly one wavelength. Similarly, an OAM-carrying beam’s cophasal surfaces will

experience one full twist after ` wavelengths of propagation17. Despite their mechanical and spa-
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tial similarities, spin and orbital angular momenta represent independent degrees of freedom for

paraxial optical fields in vacuum or isotropic media. Still another independent degree of freedom

required to fully characterize the fields’ transverse phase and intensity distributions is the mode

radial parameter18. The radial index p associated with Laguerre-Gauss (LG) modes, which are

solutions to the paraxial wave equation, was recently shown to be quantized in the single-photon

regime19, and should not be confused with the beam waist or related parameters.

Indeed the SAM, OAM and radial parameters all represent quantum indices that can be assigned

to individual photons. Specifically, single photons can exist in SAM eigenstates, in which they

carry spin angular momenta sz = s~ about their propagation direction, can occupy OAM eigen-

states, in which they carry orbital angular momenta `z = `~ about their propagation direction20,

and can also exist in radial mode eigenstates, in which they are characterized by well-defined

radial indices p (for LG19, Walsh21,22 or related modes), where s = ±1 and ` = 0,±1,±2, . . .

and p = 0, 1, 2, . . . are the spin, azimuthal and radial indices. To unambiguously describe the

quantum state of a single photon, one therefore must provide information about each of these

parameters, in addition to the photon wavevector k. Consequently, a single photon possessing

well-defined indices s, `, p and a well-defined wavevector is an excitation of the electromagnetic

field, produced by the action of a creation operator a†k;s,p,` on a vacuum state state |0〉, such that

|k; s, p, `〉 = a†k;s,p,` |0〉23. More generally, an arbitrary single-photon nonseparable state may be

described by a superposition of s, `, p and k eigenstates, in which case it may be ascribed a

“wavefunction” |Ψ〉 =
∑

k;s,p,` c
p,`
k,s|k; s, p, `〉, where cp,`k,s is a complex constant. Beams whose

constituent photons are described by “wavefunctions” with carefully controlled coefficients cp,`k,s

are said to be structured. Innumerable examples of such beams exist, including, for example, a

category of modes known as radial vector beams, which are characterized by only two nonzero

coefficients, c`=1
s=1 = c`=−1s=−1 = 1/

√
2, whose radial indices p and wavevectors are identical. Radial

vector beams possess radially-oriented linear polarizations in the plane transverse to their propa-

gation direction, and have found promising applications in near-field microscopy and lithography,

where tight focusing of optical beams is required24.

Despite their usual independence in vacuum and isotropic media, SAM, OAM and radial in-

dices can be coupled within media in general, and even in vacuum under tight focusing condi-

tions25. For example, a Gaussian beam with radial index p = 0 and flat phase front ` = 0 can be

converted into a superposition of modes with nonzero p values, each carrying one unit of OAM,

by passing through a spiral phase plate26. Exchanges of angular momentum between the SAM
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Figure 1: An example of structured light. a Composite image showing transverse distributions of po-
larisation and intensity associated with a structured photon beam constructed from an equal superposition
of the single photon states |k; s = 1, p = 2, ` = 1〉 and |k; s = −1, p = 1, ` = −3〉, where |k; s, p, `〉
represents a Laguerre-Gauss (LG) mode propagating along a direction indicated by the wavevector k, with
spin, radial and azimuthal parameters respectively denoted s, p and `. Arrows on the polarization ellipses
displayed in the figure indicate polarization handedness. b Schematic illustrating the transverse intensity,
phase and polarization distributions associated with the two component single photon states that give rise to
the pattern displayed in part a. Together, the intensity and phase distributions carry all information conveyed
by the ` and p transverse indices, and these are therefore combined in the same ket, with the spin index s

specified separately.

and OAM spaces have also been demonstrated in inhomogenous birefringent materials, such as

the photonic27 and plasmonic28 q-plates, and liquid crystal droplets29. The manipulation of po-

larization, radial and azimuthal indices has sparked great interest in quantum and classical optics,

leading to applications in coronagraphy30, superdense coding31 and quantum information32. Only

recently, however, have optical structuring techniques been applied to the generation and shaping

of electron beams.
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II. ELECTRON WAVES

Since the existence of matter waves was first proposed by de Broglie in 1924, numerous experi-

ments have demonstrated the remarkable correspondence between the wavelike behaviours of mat-

ter and light. Electron waves in particular have drawn attention in fields from electron microscopy

to nanofabrication. The similarities between electron and light waves, now verified theoretically

and in countless experiments, suggest that photons’ quantum indices can be applied just as well

to specifying the states of electrons33. However, important distinctions exist between electron and

photon waves. Whereas electrons possess a rest mass, me, a charge e, and obey fermionic statis-

tics, photons are massless, neutral bosons. A related point of contrast is that the nonrelativistic

(relativistic) wavelike behaviours of electrons and light are prescribed by the Pauli-Schrödinger

(Dirac34) and Maxwell equations.

Free electrons carry linear momentum given by the de Broglie wave relation as ~k = 2π~/λ,

where λ is the electron wavelength. Electron wavelengths can be significantly shorter than even

those associated with X-rays. This has motivated the development of electron microscopy tech-

niques that exploit short electron wavelengths to achieve sub-angstrom resolutions unattainable by

standard optical microscopes. More generally in the non-relativistic limit, the linear momentum

density of the electron wavefunction ψ(r, t) is given by P = P0 +Ps, where P0 = ~= (ψ∗∇ψ),

Ps = ~/4∇ × (ψ∗σψ), σ is the Pauli vector, and =(·) denotes the imaginary part of its argu-

ment. The momentum density arising from Ps is always oriented azimuthally, and so makes no

net contribution to the overall linear momentum of the beam. The reason for separating the linear

momentum density into P0 and Ps components in this way becomes apparent when evaluating the

electron angular momentum J =
∫

(r×P) d3r. The two momentum density terms P0 and Ps are

found respectively to produce a coordinate-dependent OAM L =
∫

(r×P0) d
3r, and a coordinate

independent spin angular momentum, S =
∫

(r × Ps) d
3r. This spin is found to be quantized:

S = ~σ/2 37. From this discussion, it can be seen that electron spin is inextricably linked to the

linear momentum distribution in the transverse plane, and hence can act as an important structural

parameter for electron wavefunctions7.

It may be somewhat surprising to find that the electron spin and photon SAM spaces have the

same dimensionality, given that the electron is a fermion, and the photon a boson. This can be

explained with an appeal to special relativity, which suggests that a photon’s longitudinal polar-

ization must experience infinite length contraction, since the photon travels at the speed of light.
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Therefore, despite being a spin-1 particle, the photon can effectively access only two (transverse)

degrees of freedom, producing the observed correspondence between light and electron waves, in

this regard.

When bound to atomic nuclei, electrons possess OAM in addition to their spin. Perhaps more

surprisingly, however, even free electrons can be made to carry OAM upon propagation33. This

occurs due to the presence of transverse components of the electron linear momentum P0. As

with OAM-carrying photon beams, such electron wavefunctions possess spiral phase structures,

their wavefunctions containing phase terms exp (i`ϕ). The similarities between the descriptions

of electron wavefunctions and photon beams arise from the spinless free particle Schrödinger

equation (SFSE), i~ ∂tψ(r; t) = −~2/(2me)∇2ψ(r; t). When the SFSE is solved with the

ansatz ψ(r; t) = ψ(r) exp (−iEt/~), one obtains the expression (∇2 + k2e)ψ(r) = 0, where

k2e := 2meE/~2. This formula is functionally identical to the optical wave equation, so that the

transverse electron wavefunctions obtained from it will inevitably match the transverse modes of

the electric field associated with photon beams. When solved in cylindrical coordinates r, ϕ, z, this

form of the SFSE gives rise to a family of Bessel beam solutions, for which the time-independent

wavefunctions are given by ψ(r) ∝ J`(k⊥r) exp (i(k‖z + `ϕ))38, and which have well-studied

photonic analogues39. As can be discerned from their field distributions, Bessel modes are diffrac-

tionless, non-normalizable, and therefore unphysical solutions to the SFSE and the optical wave

equation. If it is assumed that the mode longitudinal wavenumber, k‖, is much larger than the

transverse wavenumber, k⊥ =
√
k2e − k2‖ , the SFSE reduces to a form analogous to the optical

paraxial wave equation. The resulting expression possesses solutions in the form of LG modes,

introduced earlier for photon beams. Such modes have transverse wavefunctions |p, `〉 at any given

axial position z, which in the position representation are expressed as ψLG
p,` (r, ϕ; z) := 〈r, ϕ, z|p, `〉,

and have been extensively studied40.

Any electron wavefunction possessing phase terms exp (i`ϕ) and exp (ik‖z), such as Bessel

and LG modes, will carry OAM ~` and linear momentum ~k‖ per electron, oriented along

its propagation direction. Such wavefunctions have linear momentum densities P`(r) =

~
(
`/rϕ+ k‖ z

)
ρ`(r), and probability current densities j`(r) = P`/me, whereϕ and z denote the

azimuthal and axial unit vectors, and ρ`(r) := |ψ(r)|2. Since electrons carry charge, the presence

of an azimuthal probability current produces an effective loop of charge current about the propa-

gation axis41. This supplements the charge current already present from the intrinsic SAM of the

electron wavefunction. These spin and OAM-induced charge currents respectively produce mag-
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netic moments s geµB and `µB, where µB = e~/(2me) is the electron Bohr magneton, s = ±1/2

is the electron spin index, and ge ' 2.002 is the electron g-factor34. These magnetic moments

allow interactions between the electron wavefunction and external magnetic fields, which can-

not occur for analogous photon beams. Just as remarkably, the OAM carried by twisted electron

beams has even been shown to give rise to electric and magnetic fields associated with these beams

themselves, which differ significantly from the fields associated with electron beams carrying no

OAM35.

As with photon beams, an additional radial parameter is required in order to fully specify the

transverse field distributions of electron wavefunctions. This parameter can be discrete or contin-

uous, depending on the mode to which the electron belongs. Bessel modes possess continuous

radial parameters k⊥, whereas LG modes possess discretized radial indices p. In either case, the

radial parameter dictates the quantization condition for the transverse component of the electron

wavefunction’s energy; as k⊥ or p increase, so does the transverse energy carried by the electron

wavefunction42,43. The radial index-dependence of the electron transverse energy is an important

consideration in electron/magnetic field interactions and plays a crucial role in electron/electron

interactions as well36.

Together, the radial, azimuthal and spin indices can be used to confer spatial structure on an

electron wavefunction, and, along with linear momentum, can unambiguously specify the states of

individual electrons. Recently, great progress has been made in efforts to produce electron beams

with tailored structure, by controlling these parameters.
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Figure 2: Electron structural features associated with angular momentum. a Schematic displaying the
spin-dependent transverse linear momentum distributions respectively associated with spin-up (s = 1/2)
and spin-down (s = −1/2) electron beams. The electron spin gives rise to a vanishing net transverse linear
momentum. b Cophasal surfaces associated with an electron wavepacket carrying OAM ` = 1. Intensity
is indicated by colour, with yellow (red) denoting the regions of highest (lowest) transverse probability. c
Classical (Bohmian) trajectories of individual electrons propagating in a Laguerre-Gauss mode character-
ized by an azimuthal index ` = 1. Colours are used to indicate the phases associated with each electron
trajectory.

III. EXPERIMENTAL GENERATION OF STRUCTURED ELECTRON WAVES

Structured electron beam generation was first reported by Uchida and Tonomura in 2010 44,

using spiral phase plates consisting of spontaneously stacked graphite thin films to impart OAM

onto incident electron beams. Spiral phase plates are produced by inducing azimuthally and uni-

formly increasing “optical” thicknesses t(r, ϕ) around the axis of optically dense materials45. If

the optical thickness of a material can be made to increase by ` de Broglie wavelengths over one

full rotation about the phase plate’s axis,
∮
∇t(r, ϕ) · dϕ = λ`, the plate will imprint a helical

phase exp (i`ϕ) on any incident electron wavefunction. While the stacked graphite films used to

structure the azimuthal phases of electron wavefunctions were found to produce structured beams
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of reasonable quality, the approach taken in this work could not readily be generalized to produce

beams with |`| 6= 1, since it depended upon the isolation of spontaneously stacked graphite films,

which could not be produced at will or in customized configurations by an experimenter.

A second seminal study was carried out shortly thereafter, demonstrating the conferral of

OAM to electron beams by using amplitude holograms constructed from 100-nm-thick platinum

foil46. This investigation came on the heels of earlier work, which in 2009 also proposed the

use of such holograms for structured electron beam generation47. This technique benefits from

greater versatility, and can allow for the generation of electron beams with high OAM con-

tent. Amplitude holograms are constructed by simulating the intensity pattern Iint(r, ϕ) pro-

duced from the interference of reference ψref(r, ϕ) and desired target ψt(r, ϕ) wavefunctions,

such that Iint(r, ϕ) = |ψref(r, ϕ) + ψt(r, ϕ)|2, and by designing a mask with thickness function

t(r, ϕ) = t0 Θ [Iint(r, ϕ)], where Θ[·] denotes the Heaviside function, and t0 is the optical thick-

ness of the mask48. When an electron beam is made incident on such a hologram, a series of

diffracted beams are produced, each carrying a different OAM.

For three years, the holographic generation of structured electron beams was only possible

using the amplitude masks described above. In 2014 however, a new class of holographic mask,

already widely used in photon optics and known as the phase hologram, was reported to achieve

electron beam shaping by directly imprinting controllable phases onto electron wavefunctions,

resulting in unprecedented high efficiencies and low absorption losses49,50. This technique was

shown to produce high quality electron Bessel38 and LG beams, with various azimuthal parameters

`.

Following this early work, a number of studies explored applications of holographic masks

to the generation of electron beams with high OAM, some having achieved values up to 200~

per electron51,52. In a dramatic demonstration of the effectiveness of phase holograms, one study

reported the successful generation of electron Airy beams53, and observed their unusual transverse

“acceleration” and “self-healing” properties.

In addition to the spiral phase plate and holographic techniques, a number of alternative ap-

proaches also allow for electron beam shaping. One study reported the generation of electron

beams with helical phase fronts by manipulating aberrations associated with the corrector lenses of

an electron microscope54, achieving generation efficiencies of 32%. Another demonstrated twist-

ing of electron beams using a simulated magnetic monopole constructed from a thin, nanoscale

magnetic needle55. This latter strategy benefits from an unusually high conversion efficiency, with

10



as many as 90% of incident electrons converted to a single OAM state. An additional advantage

distinguishing this magnetic needle method from other electron beam shaping techniques is its

independence from the acceleration voltage applied to incident electrons. A variety of distinct

strategies therefore exist to generate electrons with structured azimuthal phases. By contrast, little

work has been done, as yet, on structuring electron beams’ radial parameters. Electron spin has

also received relatively little attention in this regard, despite also being an important structural

parameter. This is largely due to the challenge of generating spin-polarized free electron (SPFE)

beams; indeed, the generation of SPFEs was thought to be disallowed by Pauli, whose view was

later echoed by Bohr in his statement that56, “it is impossible to observe the spin of the electron,

separated fully from its orbital momentum, by means of experiments based on the concept of clas-

sical particle trajectories.” Recently, however, a strategy has been proposed to produce SPFEs

by passing an unpolarized electron beam through a magnetic phase grating57. Another approach

has also been proposed to address this challenge, employing complementary and topologically

charged electric and magnetic fields in order to couple electron spin and orbital angular momen-

tum degrees of freedom, producing a spin-polarized, OAM-carrying electron beam58. When this

beam is phase flattened, a spin-polarized Gaussian electron wavefunction is recovered, with theo-

retical efficiencies and degrees of polarization of up to 50% and 97.5%, respectively.
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Figure 3: Electron structuring techniques. a SEM image of a spontaneously-stacked graphite sheet, used
as a spiral phase plate by Uchida and Tonomura44 to impart OAM on an incident electron beam. b SEM
image of an amplitude hologram applied to the generation of twisted electron beams by Verbeeck et al.46

c SEM image of an ultra-thin needle designed by Béché et al.55 to simulate a magnetic monopole, capable
of imparting OAM on incident electron plane waves. d SEM image of the first electron phase hologram,
designed and fabricated by Grillo et al.49 e Schematic of the structured electron beams emerging from an
electron phase hologram. The spreading of various diffraction orders can be observed to occur rapidly upon
propagation, and the distinct transverse profiles associated with five different diffracted orders are shown in
the bottom inset.

IV. OUTLOOK

Much theoretical work has been done with a view to applying the unique properties of elec-

tron beams to various measurement schemes, and to the study of fundamental physics. For

example, a thorough treatment of the interaction between electron beams and magnetic fields

was reported in 2012 41, showing how the radial intensity and charge current distributions of

LG and Bessel electron beams are altered by their propagation through regions containing dif-

ferent magnetic field configurations. It was found that electron Bessel beams take the form

ψBessel ∝ J|`−α|(k⊥r) exp i(`ϕ− k‖z) when propagating along a line of magnetic flux propor-

tional to the flux parameter α, so that changes in its magnitude lead to changes in the order of

the beam’s transverse mode. Additional theoretical studies have since explored the possibility of

imparting OAM onto electron beams by means of photon-electron interactions59. Electric and

magnetic field effects may provide a promising avenue for the shaping of electron beams in the

future. The magnetic field sensitivity exhibited by electron beams might also be exploited for

magnetic field sensing in materials science60. Further still, recent work has proposed the potential

application of structured electron beams to the selective excitation of atomic states, via a transfer
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Figure 4: Structured electron beams and their interaction with uniform magnetic fields. a Transverse
intensity and charge current distributions associated with electron states |p = 2, ` = 1〉 and |p = 1, ` = −3〉
in the absence of any external magnetic fields, where |p, `〉 denotes an LG mode with radial and azimuthal
parameters p and `. The size and orientation of the arrows show the respective magnitude and direction
of the local charge current density, while the probability density is indicated by colour. b Intensity and
charge current distributions associated with the electron wavefunctions shown in part a, in the presence of a
uniform external magnetic field. The beams displayed in parts a and b are plotted so as to possess identical
beam waists for ease of comparison.

of intrinsic electron OAM to electrons in individual atoms61,62. Since this intrinsic OAM transfer is

likely to be significantly less efficient in the case of photon/atom interactions, structured electron

beams therefore represent a possible avenue toward the exploration of truly novel physical effects.

Structured electron beams have also been considered as potential tools in the study of polar-

ization radiation (PR) and related phenomena. PR arises from the movement of electrons within

spatially inhomogenous media, which induces a polarization current density in the materials. The

magnitude of the PR produced by an electron is proportional to its angular momentum. Observa-

tion of PR has proven elusive, however, due to the small magnitude of the electron intrinsic spin.

This limitation could be overcome by using structured electron waves with high OAM values63.

Further, a recent theoretical study exploring the exotic features of certain structured fermion

beams in the relativistic regime demonstrated that such beams could behave as if under the influ-

ence of "virtual forces", even in the total absence of external potentials64. This suggests that struc-

tured electron beams could in principle be used to simulate the effects of potentials and forces on

electrons and other fermions. Remarkably, this study also revealed that certain tailored structures

imparted on fermion beams can cause these beams’ constituent particles to experience controllable

time dilation and length contraction effects. This observation indicates a host of experimental pos-
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sibilities, including applications in which decaying particles might have their lifetimes extended

to a controllable degree via these relativistic effects.

Advances in beam structuring have already paved the way to major developments in many

areas. As a new and rapidly advancing field, electron beam shaping holds a wealth of potential for

the study of hitherto inaccessible physical phenomena, and the development of novel and exciting

applications in electron microscopy and related areas65,66.
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