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Abstract 27 

Owing to the antimicrobial and insecticide properties, the use of natural compounds like essential oils and their active 28 

components has proven to be an effective alternative to synthetic chemicals in different fields ranging  from drug delivery to 29 

agriculture and from nutrition to food preservation. Their limited application due to the high volatility and scarce water 30 

solubility can be expanded by using crystal engineering approaches to tune some properties of the active molecule by 31 

combining it with a suitable partner molecule (coformer). However, the selection of coformers and the experimental effort 32 

required for discovering cocrystals are the bottleneck of cocrystal engineering. This study explores the use of chemometrics 33 

to aid the discovery of cocrystals of active ingredients suitable for various applications. Partial Least Squares–Discriminant 34 

Analysis is used to discern cocrystals from binary mixtures based on the molecular features of the coformers.  For the first 35 

time, by including failed cocrystallization data and considering a variety of chemically diverse compounds, the proposed 36 

method resulted in a successful prediction rate of 8385% for the test set in the model validation phase and of 6274% for the 37 

external test set. 38 

 39 
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 81 

1. Introduction 82 

In the last few decades, the use of agrochemicals and food preservatives has grown exponentially as a direct consequence of 83 

the rapid increase of the world population [1,2]. Owing to their potential adverse effects on both human health and 84 

environment [2–4], alternative strategies based on the use of more sustainable chemicals have been proposed to support the 85 

food system. Being able to exert antimicrobial, insecticidal, and antioxidant properties [5,6], essential oils (EOs) and their 86 

active components have been used as green substitutes of synthetic chemicals to extend the shelf-life of foodstuff and in pests 87 

control [7–9]. These compounds are Generally Recognized As Safe (GRAS) by the Food and Drug Administration (FDA) 88 

[10], however, despite their appealing properties, their use is limited by their high volatility and poor stability [7,9,11,12].  89 

In fact, physicochemical properties of materials play a key role in determining whether a chemical is suitable for a specific 90 

purpose, thus strongly affecting its field of application. Scientists have always desired to obtain materials with target 91 

properties, and crystal engineering is one of the most interesting approaches to synthesize a great variety of crystalline 92 

materials for applications in various fields, ranging from pharmaceuticals to agrochemicals, and from nutraceuticals to 93 

cosmetics [13–16]. The basic idea of crystal engineering is related to the possibility of controlling the crystal structure of 94 

molecules and, therefore, the properties of the resulting solids. Polymorphism, vitrification and cocrystallization are some of 95 

the available strategies to modify the intrinsic properties of molecules without the need of synthetic modifications [17–21]. 96 

Cocrystals are multicomponent crystalline solid materials in which the constituents (i.e., coformers) are bound in a well-97 

defined stoichiometric ratio [22,23] via non-covalent interactions (e.g., hydrogen bonds, halogen bonds, π–π stacking) within 98 

the same crystal structure. Cocrystallization allows for the combination of the desired molecule of interest with properly 99 

selected partner molecules, paving the way to an array of potential materials with enhanced properties [19,24,25]. Within this 100 

frame of reference, cocrystals based on the active components of EOs have been proposed as active ingredients for food 101 

packaging, agrochemical and pharmaceutical applications [7,19,26,27]. 102 

Despite the great advantages offered by cocrystallization, the proper degree of complementarity between the two partner 103 

molecules required to obtain crystalline materials with the desired properties is not easy to assess [28–31]. In this context, the 104 

selection of coformers and the great effort required for both the systematic experimental screening and careful characterization 105 

of the products derived from the combination of all the possible coformer pairs represent the major bottleneck of cocrystal 106 

engineering. Computational techniques represent a powerful tool to reduce the experimental effort required for the discovery 107 

of new cocrystals, enabling to evaluate beforehand whether a cocrystal can be obtained starting from pre-selected coformers. 108 
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These in silico strategies can be based on the calculation of a variety of parameters useful to predict the formation of a 109 

cocrystal, such as lattice energy [32], solubility [33], hydrogen bond propensity along with the quantitation of molecular 110 

interaction energy [29,30], and molecular complementarity [34]. 111 

Despite the massive efforts spent to develop a method to predict cocrystal formation, at present none of the proposed strategies 112 

has proven to be both totally reliable and easy to apply. 113 

Chemometrics could play a pivotal role in cocrystal discovery: up to now only few Machine Learning methods have been 114 

proposed in predicting cocrystal formation, enabling the screening of new cocrystals once a supervised model is properly 115 

trained and validated. In the study proposed by Devogelaer et al., information of successful cocrystallization experiments was 116 

directly taken from the Cambridge Structural Database (CSD) [35] and Artificial Neural Networks (ANN) were used to predict 117 

the formation of new cocrystals [36]. Similarly, Wang et al. relied on a consensus method based on multiple Random Forest 118 

algorithms, in which the successful cocrystallization dataset was integrated with randomly generated failed cocrystallization 119 

data [37]. These approaches are reported in the literature as network-based methods. Additional studies were based on the use 120 

of successful and unsuccessful cocrystallization datasets obtained from experimentation, literature, and/or the CSD for 121 

screening specific classes of coformers. Within this framework, Przybyłek et al. used Multivariate Adaptive Regression 122 

Splines to predict the formation of dicarboxylic and phenolic acid-based cocrystals [38,39], whereas Wicker et al. focused on 123 

variously substituted benzoic acids and benzamides using a Support Vector Machine algorithm [24]. Vriza et al. used an 124 

ensemble one-class classification method to aid the discovery of π–π cocrystals, thus giving a great contribution in enriching 125 

one of the most under-represented classes of cocrystals in the CSD [40]. Most recently, Mswahili et al. developed a cocrystal 126 

screening method based on ANN by using both successful and unsuccessful experimental cocrystallization data retrieved from 127 

the literature and a plethora of molecular descriptors calculated using Mordred [41,42]. 128 

In the frame of a research activity dealing with the synthesis of new functional cocrystals based on the active constituents of 129 

EOs and other GRAS molecules to broaden their applicability in the industrial field [7,19], we propose a chemometric 130 

approach to aid the discovery of new cocrystalline materials. 131 

For the first time, a training set based on the results of failed (binary mixtures, BM) and successful (cocrystal, CC) 132 

cocrystallization experiments was used for the computation of a Quantitative Structure–Property Relationship-like (QSPR) 133 

model based on Partial Least Squares–Discriminant Analysis (PLS–DA), after preliminary exploratory analysis by Principal 134 

Component Analysis (PCA). The PLS-DA approach, with respect to network-based methods offers the advantages of having 135 
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only one parameter to optimize, i.e., the model dimensionality, and the direct interpretation of the importance of descriptors 136 

in classification, while highlighting their interplay (by inspection of weights and loadings plots). 137 

The effectiveness of the study relies on the use of compounds belonging to different chemical classes and a reduced number 138 

of 1D, 2D, and 3D molecular descriptors of various nature (e.g., constitutional, geometric, physical, topological, and surface 139 

area-based descriptors) [24,38,39,43], enabling the high-throughput screening of novel cocrystalline materials and offering 140 

maximum flexibility and effectiveness at a minimum computational and experimental cost. 141 

 142 

2. Experimental Procedures 143 

2.1. Mechanochemical protocol and class assignation 144 

All the molecules in the dataset were chosen among the list of GRAS molecules drawn up by the FDA [10]. Selected pair of 145 

molecules among the chosen ones were assigned either to the CC class or to the BM class. Pairs of molecules in the dataset 146 

for which a cocrystal structure was already described in literature were individuated in the Cambridge Structural Database 147 

(CSD) [35] with the Cambridge Crystallographic Data Centre (CCDC) software ConQuest [44] and visualized with Mercury 148 

[45]. They are reported in Section 3 of the Supplementary Material, together with their unique CSD refcode and the reference 149 

to the original publications. 150 

Cocrystallization for all the pairs with no known structure in literature was instead attempted with the following 151 

mechanochemical protocol. All the reagents employed were commercially available and used as such in all the experiments. 152 

Equimolar amounts of each reagent were directly mixed in an agate mortar and subjected to manual grinding for 10-15 153 

minutes, without using any solvent. The resulting powder samples were collected in closed vials. Assignation to CC or BM 154 

classes was performed by comparing the Powder X-ray Diffraction (PXRD) pattern of the ground sample with those of the 155 

pure reagents. Possible occurrence of polymorphic transitions for the reagents was excluded by comparing the experimental 156 

PXRD data after milling with the calculated pattern of all the known crystalline forms of the reagents. The occurrence of new 157 

peaks, unexplained by the presence of unreacted reagents, was taken as indication that cocrystallization had occurred and the 158 

sample was assigned to the CC class. In case no additional peaks appeared in the PXRD pattern the sample was instead 159 

classified as a BM. 160 

 161 

 162 
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2.2. Powder X-ray diffraction 163 

Typically, PXRD data were collected on a Rigaku Smartlab XE diffractometer in θ-θ Bragg-Brentano geometry with Cu Kα 164 

radiation. The samples were placed on glass supports and exposed to radiation (1.5° ≤ 2θ ≤ 50°) at a scan rate of 10°/min. The 165 

diffracted beam was collected on a 2D Hypix 3000 solid state detector. 5° radiant soller were used as a compromise for high 166 

flux and moderate peak asymmetry at low angles. Beam stopper and anti-scatterer air component were used to mitigate the 167 

profile at low angle. In some rare cases, the data were collected on a Thermo Fisher Scientific ARL X’TRA diffractometer in 168 

θ-θ Bragg-Brentano geometry with Cu Kα radiation (3° ≤ 2θ ≤ 30° at a scan rate of 5°/min, or 3° ≤ 2θ ≤ 40° at a scan rate of 169 

0.3°/min). 170 

 171 

3. Computational Methods 172 

3.1. Molecular descriptors calculation 173 

For each molecule 31 molecular descriptors were calculated (Table S1). A theoretical background for the less known 174 

descriptors is given in Section 4 of the Supplementary Material. 175 

The molecular weight, the number of atoms, the number of bonds, the number of hydrogen bond donor sites and the number 176 

of hydrogen bond acceptor sites were calculated with FLAP software (Fingerprint for Ligand and Protein) [46] at pH 7.0, 177 

using the 3D structures of all molecules in SDF format as input (downloaded from the PubChem database). The number of 178 

rotatable bonds, the number of rings, the hydrophobicity (accounted as the number of hydrophobic centers), the logP 179 

(logarithm of octanol/water partition coefficient), the molecular volume, the total molecular dipole moment (based on point 180 

charge distribution in the molecule), and its components along the axes (using the principal axes of the molecular graph) were 181 

then calculated for the same structures using Sybyl 8.1 [47] (www.tripos.com) and taking in consideration the protonation 182 

state of molecules. The same software was also used to estimate the strain energy of the molecule without performing any 183 

geometry optimization. This energy term relies on an electrostatic calculation from atomic charges using the internal Tripos 184 

force field [48]. For the estimation of molecular volume and dipole moment, a specific SPL script was employed. The 185 

calculated volume is enclosed in a water-accessible surface computed at a repulsive interaction energy of 0.20 kcal/mol with 186 

a water probe. A custom Python script was used to automatically calculate the Solvent Accessible Surface Area (SASA) in 187 

PyMol 2.0 [49], with the dot density parameter set to 4. The number of heteroatoms, the number of valence electrons, and the 188 

indexes 0χ, 0χn, 0χv, αHK, 1κα, LabuteASA, SMR_VSA, PEOE_VSA, and TPSA were obtained running a Python 3.7 code with 189 
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the open-source cheminformatics toolkit RDKit Q4 2013 [50]. The average isotropic polarizability αiso, the polarizability 190 

anisotropy Δα, and the Molecular Electrostatic Potential (MEP) were calculated with Gaussian 16 [51] following the in vacuo 191 

Density-Functional Theory optimization of all the molecules, employing the hybrid functional B3LYP and the People double-192 

z basis set 6-31+g(d,p). 193 

Postprocessing of the MEP to extract critical points at a given electron density isosurface was performed with a custom Python 194 

3.6.1 script on a three-dimensional map (cube format) with a sampling density of 6 points/Bohr along the three directions. 195 

The MEP was analyzed at an electron density isosurface of 0.002 a.u. with a tolerance of 0.001 a.u., meaning that only MEP 196 

values corresponding to regions of space with electron density in the 0.001–0.003 a.u. range were considered. A first set of 197 

critical points was identified comparing MEP values of each cube point with those of its 6 nearest neighbors. A point was 198 

considered a local minimum if the number of nearest neighbors with higher MEP was greater or equal to a given integer (4). 199 

Likewise, a point was considered a local maximum if the number of nearest neighbors with lower MEP was greater or equal 200 

to the same integer. This first step yielded a large number of candidate critical points encompassing a wide range of MEP 201 

values. Since our focus was on identifying the regions of the molecules likely to be involved in strong hydrogen bonds within 202 

the cocrystal, in a second step this first set of points was filtered based on the MEP values of the global minimum and 203 

maximum. This was done as follows: for each local minimum (maximum), the ratio between its MEP value and that of the 204 

global minimum (maximum) was computed, and the point was kept only if the ratio exceeded a given threshold (0.1). In this 205 

way, only points corresponding to shallow critical points were discarded. This step allowed to identify the MEP isosurface 206 

regions corresponding to hydrogen bond donors and acceptors. However, due to the rugged character of the MEP map, 207 

multiple critical points of the same type could appear in close proximity. To univocally map a given region of the isosurface 208 

to a MEP value, critical points close to each other (below a distance threshold of 1.0 Bohr) were merged iteratively, keeping 209 

only the lower MEP point for minima and higher MEP point for maxima. The algorithm then provided the final set of MEP 210 

critical points at the given electron density isosurface. 211 

 212 

3.2. Data analysis 213 

The entire data analysis was carried out in MATLAB R2019a environment (Mathworks, Natick, Massachusetts, USA) with 214 

the aid of the. PLS_Toolbox 8.7.1 (Eigenvector Research Inc., Washington, USA) chemometric package. 215 
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 was used to carry out preprocessing, Principal Component Analysis (PCA) and PLS–DA computation, and to split the original 216 

dataset into calibration and test set. The proper number of latent variables (LVs) to be retained was evaluated by running a 217 

homemade MATLAB routine. 218 

 219 

 220 

3.2.1. Data preprocessing 221 

Each sample was described by m = 31 variables (Table S1): the absolute value of the difference between difference in absolute 222 

value of the molecular descriptors of the two partner molecules was calculated, thus obtaining the predictor matrix X (181 × 223 

31). The class membership was binary encoded (1: belonging to the class; 0: otherwise) in a dummy matrix Y (181 × 2) with 224 

each column representing one of the two modelled classes. The dataset was split in two subsets by using the Kennard-Stone 225 

samplingDuplex algorithm [52]: 8070% of the data were used as calibration set, Xcal (146 127 × 31) and Ycal (146 127 × 2), 226 

whereas the remaining 2030% were used as test set, Xtest (35 54 × 31) and Ytest ((3554 × 2). The calibration set and the test set 227 

are reported in Table S2 and Table S3, respectively. 228 

Before carrying out both exploratory multivariate data analysis and the computation of the supervised model, the calibration 229 

matrix Xcal was preprocessed column-wise by performing mean centering and scaling to unit variance. Mean centering was 230 

applied on the response matrix Ycal to ensure the stability of the model. 231 

 232 

3.2.2. Exploratory multivariate data analysis 233 

PCA [53–55] was carried out preliminarily on the calibration set Xcal to assess the distribution of the samples and to check for 234 

potential data structures. Reduction of data dimensionality is carried out through the linear combination of the original 235 

variables in a set of orthogonal ones, i.e., Principal Components (PCs), which identify the direction of maximum variance. 236 

This is summarized in the decomposition equation: 237 

𝑿𝐜𝐚𝐥 = 𝑻𝑷𝐓 + 𝑬 238 

where T and P represent, respectively, the coordinates of the samples projected in the reduced space, i.e., the scores, and the 239 

weights each original variable has on a given PC, i.e., the loadings. The deviations from the model are accounted in the error 240 

matrix E. 241 

 242 
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3.2.3. Supervised pattern recognition 243 

PLS–DA [56,57] was used to discriminate pairs of partner molecules whose combination forms CCs from the ones giving 244 

BMs. PLS–DA is based on PLS regression [58]. Briefly, this supervised technique decomposes the predictor matrix Xcal and 245 

the dependent variables matrix Ycal in a PCA-like way and imposes inner linear relationships between the Xcal and the Ycal 246 

scores as follows: 247 

𝑼 = 𝒃𝑻 248 

where T and U, are the Xcal and the Ycal scores, respectively. This is accomplished by rotating the Latent Variable (LV) space 249 

of Xcal through a weight matrix W in a way that maximizes the covariance between T and U. The PLS regression model is 250 

summarized as: 251 

𝒀𝐜𝐚𝐥 = 𝑿𝐜𝐚𝐥𝑩+ 𝑬 252 

where E is the error matrix and B is the pseudo-regression coefficient matrix expressed according to the following equation: 253 

𝑩 = 𝑾(𝑷𝑇𝑾)−1 diag(𝒃)𝑸 254 

where P and Q are the Xcal and the Ycal loadings, respectively. 255 

In this case, the dependent variables in the Ycal matrix are defined as dummy variables, one for each modelled class, taking 256 

values of 1 if the sample belongs to the class and 0 otherwise. Current implementation of PLS–DA may differ on the basis of 257 

how the classification rule is defined. In this work, a pure discriminant rule (samples are assigned univocally to only one 258 

category) was applied, and thus a sample is assigned to the class for which the predicted response ŷ is the highest (i.e., Ŷ 259 

values are continuous and not dummy as they were codified). 260 

The proper number of LVs was chosen according to the maximum Non-Error classification Rateaccuracy (NERACC%; i.e., 261 

the percentage of samples correctly assigned to the respective class) in leave-more-out cross validation, adopting a Venetian 262 

blinds cancellation scheme with 10 splits (blind thickness: 1). This operation was carried out by running a custom MATLAB 263 

routine. The performance of the classification model was evaluated both on the calibration and the test sets in terms of 264 

NERACC% as well as showing the confusion matrix. In addition, the sensitivity (SEN%, i.e., the percentage of samples within 265 

a class that were correctly assigned to their class) was calculated for both classes. 266 

The importance of each predictor was estimated in terms of Variable Importance in Projection (VIP score) [56]. The VIP 267 

score of the jth variable in the X space is defined as the component-wise sum of its PLS weight wj on the fth component 268 

multiplied by the fraction of variance of the Y explained by that component, according to the following equation: 269 
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𝑉𝐼𝑃𝑗
2 =

1

𝑆𝑆𝑌tot𝐹
∑𝑤𝑗𝑓

2 𝑆𝑆𝑌𝑓𝐽

𝐹

𝑓=1

 270 

where J is the number of variables in the X space and F is the number of LVs that were retained. Since: 271 

∑𝑉𝐼𝑃𝑗
2

𝐽

𝑗=1

= 𝐽 272 

the proposed threshold for determining whether a variable could be considered important is set to 1.. 273 

Finally, the predictive capability of the model was evaluated on an external set of N = 58 binary combinations of partner 274 

molecules. An overview of the involved samples is reported in Table S4 along with their estimated ŷ values. 275 

The number of entries in the BM and CC classes for training, test, and external validation sets is reported in Table 1. 276 

 277 

Table 1. Number of CC and BM samples in the calibration, test, and external validation set. The last column reports the total 278 

number N of samples per set. 279 

 CC BM N 

Calibration set 71 56 127 

Test set 30 24 54 

External validation set 31 27 58 

 280 

4. Results and Discussion 281 

The cocrystallization experiments were carried out mechanochemically by manual neat grinding of the two substances. This 282 

method was selected among many possible others due to its simplicity and promptness, allowing us to screen several molecular 283 

pairs in a standardized way [21,59]. The classification as BM or CC was assessed by PXRD patterns (available in Section 3 284 

of the Supplementary Material). Cocrystals already present in the CSD were also included in our dataset. 285 

 286 

4.1. Data analysis 287 

Data handling prior to analysis can affect the way the model is trained, thus having consequences on its interpretation. 288 

Since samples are the result of the combination of two partner molecules, each one described by its own set of descriptors, 289 

the concatenation strategy, i.e., listing the descriptors of the first coformer followed by those of the second coformer, was 290 
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discarded due to the lack of commutation between the two sets of descriptors. In fact, the order in which the molecular 291 

descriptors are listed represents an a priori decision on which compound is acting as molecule of interest or partner molecule. 292 

In our case this would be sub-optimal since many of the molecules in our dataset could assume both roles. Therefore, in order 293 

to address the problem described above a commutative strategy capable of avoiding the production of indeterminate forms 294 

should be chosen. Considering that in the dataset many constitutional molecular descriptors were characterized by a few non-295 

zero values, the calculation of both products and ratios between the descriptors was discarded since additional zero values or 296 

indeterminate forms could be generated. Also, the division is non-commutative. 297 

In order to combine the two partner molecules without imposition on their role, the absolute value of the difference difference 298 

in absolute value between the molecular descriptors of the partner molecules was calculated and used to describe each binary 299 

combination [38,39], giving maximum flexibility to the model. The information achieved is still relevant and easily 300 

interpretable since it is related to the dissimilarity between the descriptors. In fact, the differences in absolute valueabsolute 301 

value of the differences between descriptors for each case are the elements of the Manhattan distance [60], one of the possible 302 

indexes to account for the dissimilarity between cases in a multivariate way. 303 

In the present study, the use of basic linear modelling methods was preferred with respect to non-linear modelling, such as 304 

ANN [61,62], to keep the calculations as simple as possible, and to ensure a certain degree of interpretability of the results. 305 

Furthermore, the number of samples is too limited to ensure proper tuning of the ANN hyperparameters. 306 

For a fruitful discussion, samples and variables are reported in the text according to their identification number as follows: i) 307 

samples are written in plain text; ii) variables are underlined. The key is available in Tables S1–S3. 308 

 309 

4.1.1. Exploratory multivariate data analysis 310 

After data preprocessing, PCA was used in an exploratory way to assess the presence of potential data structures in the 311 

calibration set. 312 

Four PCs were retained explaining 67% of the variance. As shown in the score plots (Figure 1), a mild segregation separation 313 

was present in the PC 3 2 vs. PC 4 3 score plot, with the groups separated by the bisecting line of the II and the III IV quadrant. 314 

In addition, most of the CC samples occupied the III quadrant of the PC 2 vs. PC 3 score plot and were, in general, less 315 

scattered than BM samples. 316 

 317 
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 318 

 319 

Figure 1. Scores of the samples on the first 4 PCs: PC 1 vs. PC 2 (left), PC 2 vs. PC 3 (center), PC 3 vs. PC 4 (right). The 320 

fraction of variance explained by a given component is reported as a percentage value in parenthesis on the corresponding 321 

axis. Samples are marked according to their class (empty magenta diamonds: cocrystals; black cyan circles: binary mixtures). 322 

 323 

As for the loading plots depicted in Figure S12, it can be observed that PC 1 explains the features related both to differences 324 

in molecular dimensions (e.g., 1, 2, 3, 9, 16, 29) and connectivity (23, 24, 25, 26). PC 2 considers the dissimilarities in the 325 

electronic properties (e.g., 6, 7, 19, 22, 30) of the two partner molecules as well as the difference in their number of 326 

heteroatoms (27). PC 3 accounts for more specific features, such as differences in molecular complexity (21), molecular 327 

refractivity (31), and energy (15). Lastly, PC 4 considers the dissimilarity in: i) component of the dipole along the x axis (11), 328 

ii) total dipole (14) and iii) minimum of the MEP surface (20). Regarding the samples belonging to the CC class, these 329 

compounds were characterized by partner molecules with a similar behavior in terms of molecular complexity (21) and 330 

octanol/water partition coefficient (10). 331 
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 332 

Figure 2. Loading plots related to the PCA decomposition. PC 1 vs. PC 2 (top-left), magnification of the PC 1 vs. PC 2 (top-333 

right), PC 2 vs. PC 3 (bottom-left), PC 3 vs. PC 4 (bottom-right). The fraction of variance explained by a given component is 334 

reported as a percentage value in parenthesis on the corresponding axis. 335 

 336 

4.1.2. Supervised pattern recognition 337 

The relationship between the class membership and the variables was exploited by means of PLS–DA. Four Six LVs were 338 

retained according to maximum NERACC% in cross validation. The PLS–DA model captured the 6372% and 6469% of the 339 

variance of the Xcal and Ycal, respectively. The values of the predicted response ŷ in cross validation related to CC samples are 340 

plotted in Figure 2S1. 341 

 342 
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 343 

Figure 2: ŷ in cross validation for the CC samples. The dashed horizontal line shows the hard classification threshold of 0.50, 344 

halfway between the codified 0 (BM) and 1 (CC). Samples are marked according to their class (empty diamonds: cocrystals; 345 

black circles: binary mixtures). 346 

 347 

A summary of the performance of the obtained model is reported in the confusion matrix (Table 12), whereas a graphical 348 

representation of the estimated and predicted values ŷ for the CC class is reported in Figure S2. As reported in Table 12, all 349 

the BM samples belonging to the test set were correctly classified except for one 5 samples, whereas only 5 3 out of 25 30 350 

CC samples were wrongly assigned to the BM class, obtaining a NERACC% of 8385%. Similarly, a high NERACC% of 92% 351 

was obtained when the samples belonging to the calibration set were predicted by the model. The achieved results are 352 

extremely satisfactory, allowing for the a priori selection of the partner molecules required for the synthesis of novel 353 

cocrystals. 354 

 355 

Table 12. Confusion matrix of the calibration and the test sets for the PLS–DA model. The second-last line shows the SEN% 356 

for the modelled classes and last line shows the NERACC% for the calibration and the test sets. 357 

 Calibration set Test set 

 Predicted as Predicted as 

 CC BM CC BM 

True CC 7166 5 2027 53 

True BM 75 6351 15 919 

SEN% 93% 91% 90% 79% 
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NERACC% 92% 8385% 

 358 

The distribution of the samples in the reduced space of the LVs can be observed by inspecting the score plot (Figure 3), 359 

whereas information regarding suspicious and/or influential samples can be retrieved by the squared residuals Q vs. 360 

Hotelling’s T2 and the residuals vs. leverage plots (Figure 4). 361 

 362 

 363 

 364 

Figure 3. Distribution of the samples in the score space (LV 1 vs. LV 2). The fraction of variance explained by a given 365 

component is reported as a percentage value in parenthesis on the corresponding axis. Samples are marked according to their 366 

class (empty magenta diamonds: cocrystals; black cyan circles: binary mixtures). 367 

 368 
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 369 

Figure 4. Reduced squared residuals Q vs. reduced Hotelling’s T2 plot, the dashed horizontal and vertical lines show the 370 

amplitude of the 95% confidence interval for both parameters (top). Residuals of CC samples vs. leverage plot, the dashed 371 

vertical line shows the leverage limit (bottom). Samples are marked according to their class (empty magenta diamonds: 372 

cocrystals; black cyan circles: binary mixtures). 373 

 374 

The maximum separation in the score space was provided by the first two LVs, with the CC samples well groupedlocated 375 

mainly at negative scores both on LV 1 and LV 2, especially in the III quadrant. By contrast, BM samples were more scattered 376 

and localized mostly on positive scores on LV 1. 377 

A peculiar behavior was observed for samples (40) and (47): sample 40 showed Hotelling’s T2 value outside the 95% 378 

confidence interval, whereas sample 47 showed both high Hotelling’s T2 and high squared residuals Q together with high 379 

leverage in the Ycal space. These CC samples were obtained by pairing fatty acids (lauric acid, 40, and palmitic acid, 47) with 380 

low-molecular weight coformers, i.e., pyrazine and nicotinamide, respectively. The variables responsible for this behavior 381 

were related to the discrepancy in molecular dimensions between the two partner molecules. 382 
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Another BM sample, i.e., the limonene/ascorbic acid (108), was characterized by high leverage and high Hotelling’s T2 value, 383 

due to different behavior in terms of hydrogen bond propensity and octanol/water partition coefficient. A similar behavior 384 

was observed also by two additional non-influential BM samples based on ascorbic acid paired with cinnamaldehyde (89) 385 

and menthone (121). 386 

Finally, also the tartaric acid/pyrazine (63) and the adipic acid/hexamethyleneamine (12) CC samples showed Hotelling’s T2 387 

values outside the 95% confidence interval and the latter resulted in having the highest residuals among CC samples. 388 

Nevertheless, all these anomalous samples were correctly assigned in cross validation, and the variables with high contribution 389 

(not shown) on their Hotelling’s T2 and high squared residuals Q were characterized by low PLS weights. 390 

On the other hand, one not anomalous CC sample and two not anomalous BM samples, namely carveol/isonicotinamide (20), 391 

eugenol/pyrazine (103), geraniol/menthol (106), respectively, were characterized by very high residuals in absolute value, 392 

thus being misclassified. This behavior can be ascribed to the fact that their features were inversely related to their respective 393 

class. Also, the BM sample urea/hexamethylenetetramine (132) was misclassified: its features did not align with those of the 394 

other samples; in fact, this sample hold high Q squared residuals. A peculiar behavior was observed for samples 27 and 29. 395 

Sample 27 showed squared residual Q outside the 95% confidence interval, whereas sample 29 showed both high Hotelling’s 396 

T2 and high squared residuals Q together with high leverage in the Ycal space. These CC samples were obtained by pairing 397 

fatty acids (lauric acid, 27, and palmitic acid, 29) with a low-molecular weight coformer, i.e., nicotinamide. The variables 398 

responsible for this behavior can be related to the discrepancy in molecular dimensions between the two partner molecules. 399 

The adipic acid/hexamethylenetetramine (11) CC sample was characterized by high leverage and high Hotelling’s T2 value, 400 

due to different behavior in terms of ruotable bonds and number of rings present in the structure. A similar behaviour, in terms 401 

of difference in the number of rings, was observed also by two additional non-influential BM samples based on 402 

hexamethylenetetramine paired with limonene (96) and menthone (103). In addition, these samples held high squared 403 

residuals Q and, therefore, were characterized by features that did not align with the ones of the other samples. 404 

Finally, the ferulic acid/pyrazine (22) CC sample showed Hotelling’s T2 values outside the 95% confidence interval due to 405 

the different behaviour of the partner molecules in terms of molecular weight, connectivity, surface area, and electronic 406 

properties, i.e., isotropic and anisotropic polarizability and number of valence electrons. 407 

Suspicious samples 22 (ferulic acid/pyrazine, CC) and 103 (menthone/hexamethylenetetramine, BM) appeared also to have 408 

high residuals in absolute value and were wrongly assigned to their class in cross validation. Along with them, also three not 409 

anomalous CC samples and one not anomalous BM samples, namely cinnamaldehyde/4-hydroxybenzoic acid (17), 410 
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carvacrol/nicotinamide (60), thymol/tetramethylpyrazine (68) and eugenol/pyrazine (92), respectively, were misclassified. In 411 

fact, their features were inversely related to their respective class. Nevertheless, the exclusion of the samples discussed above 412 

from the calibration set would not have produced any difference in terms of rotation of the LV space due to their low leverage. 413 

The correlation between class membership, coded in the Ycal, and the predictors contained in the Xcal space can be observed 414 

in the PLS weights plot (Figure S3). The variables involved in the discrimination are those whose weights follow the 415 

discriminant direction: BM samples reach positive values of LV 1 and LV 2 in the Ycal loading space (not shown), whereas it 416 

is the opposite for CC samples. Therefore, it can be inferred that significant differences in descriptors related to polarizability, 417 

exposed surface, and volume, such as atom and bond count (2, 3), molecular volume (9), octanol-water partition coefficient 418 

(10), heteroatom count (27), topological polar surface area (22) are likely to prevent the formation of a cocrystal. 419 

Information regarding the contribution of each predictor involved in the discrimination of the modelled classes can be inferred 420 

by inspecting the pseudo-regression coefficients and the VIP score plots, reported in Figure 5. The latter parameter denotes 421 

the relative importance of each predictor of the Xcal space in the PLS–DA model in explaining the class membership encoded 422 

in the Ycal and may guide variable selection. Generally, a variable can be considered important with a VIP score > 1; by 423 

contrast, a VIP score significantly lower than 1 indicates that a given variable is a good candidate for exclusion. According to 424 

the negative sign of the pseudo-regression coefficients related to CC class,Therefore, it can be statedinferred that significant 425 

differences in descriptors related to polarizability and exposed surface, such as atom and bond count (2, 3), octanol-water 426 

partition coefficient (10), topological polar surface area (22) and heteroatom count (27) are likely to prevent the formation of 427 

a cocrystal. It should be noted that this consideration agrees with what has emerged earlier from unsupervised modelling, and 428 

it is largely in agreement with widely applied rules of thumb in crystal engineering. 429 

 430 
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 431 

Figure 5. Pseudo-regression coefficients plot for the CC class (top). VIP scores related to each variable included in the Xcal 432 

space for the CC class, the significance threshold of 1 is depicted as a dashed horizontal line (bottom). Both plots report the 433 

variable identification number on the x axis. 434 

 435 

The variables that contributed most to the PLS weights were characterized by a VIP score > 1. AFinally, a reduced PLS–DA 436 

model based only on the important variables in agreement with the VIP scores was computed because of its ease of 437 

interpretation. A 4 LVs model was calculated according to the maximum NERACC% in cross validation obtaining a 438 

classification performance very similar to that achieved by including all descriptors. The weights plot of the reduced model 439 

is provided in Figure 6, in which the weights of the variables involved in the discrimination are located on the positive and 440 

negative sides of the first LV. 441 

 442 
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 443 

Figure 6. PLS weights of the variables for LV 1 vs. LV 2 of the reduced model. 444 

  445 

Despite the interpretation of the correlation pattern among the variables being not so straightforward, some main 446 

considerations can be drawn. As a general comment, it can be stated that a good balance in the hydrogen bond propensity 447 

between the two partner molecules has to be achieved, being the difference in hydrogen bond acceptors (7) and number of 448 

heteroatoms (27) on positive PLS weights on LV 1. In addition, the coformers should have a similar behavior in terms of 449 

polarity, being the dissimilarities in polar surface area (22) and octanol/water partition coefficient (10) on positive weights on 450 

LV 1. It should be noted that this consideration agrees with what has emerged earlier from unsupervised modelling, and it is 451 

largely in agreement with widely applied rules of thumb in crystal engineering. 452 

 453 

4.2. Prediction of unknown samplesBenchmarking on an external validation set 454 

In order to evaluate the predictive capability of the model, an external set of N = 58 binary combinations of partner molecules 455 

was used. An overview of the involved samples is reported in Table S4 along with their estimated ŷ values. 456 

Theis external validation set consists of 27 pairs classified experimentally as BMs and 31 pairs classified as CCs, i.e., 11 with 457 

our mechanochemistry/PXRD protocol and 20 retrieved from the CSD. The latter ones are reported in Section 3 of the 458 

Supplementary Information together with their CSD refcode and the reference to the original publications. 459 

A graphical representation of the predicted values ŷ for the CC class is reported in Figure 7, as well as the squared residuals 460 

Q vs. Hotelling’s T2 plot. Although there were some samples that did not conform to the model space, not all of them have 461 

been systematically misclassified. The confusion matrix is reported in Table 3 to summarize the results. In total, about 6274% 462 

of the predictions were in agreement with the experimental results.. 463 
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 464 

Table 3. Confusion matrix of the external validation set for the PLS–DA model. The second-last line shows the SEN% for the 465 

modelled classes and last line shows the ACC%. 466 

 External validation set 

 Predicted as 

 CC BM 

Experimental CC 29 2 

Experimental BM 13 14 

SEN% 94% 52% 

ACC% 74% 

 467 

Specifically, 26 29 CC cases out of 31 were correctly classified. On the other hand, there were 17 13 false positive results and 468 

10 14 cases in which the pairs were correctly identified as BMs. The model appears therefore to be quite conservative in 469 

discarding the possibility of cocrystallization; hence, fewer potential new materials could be overlooked. Similar behavior 470 

was observed also in the test set, meaning that the missed discovery rate does not get worse when working on completely 471 

external data, thus demonstrating the stability of the model. In addition, the fraction of misclassified CC samples (see Table 472 

2 and Table 3) does not change significantly in the external validation set with respect to the test set. 473 

As shown in Figure 7, Table 3 and Table S4, only 2 pairs of partner molecules predicted as BMs actually formed CCs, thus 474 

producing 2 false negative results. It can be stated that theseMoreover, all the 5 false negative results were borderline cases 475 

when the estimated error [63] on the prediction was taken into consideration (data not shown): in fact their ŷ value was close 476 

to the classification threshold of 0.53. The same is true for 8 6 of the false positive cases, while in the remaining 9 7 cases the 477 

model confidently classified the pairs as CCs, in contrast to our experimental results. These findings could be ascribed to the 478 

use of different preparation methods other than mechanochemical grinding. This hypothesis is somehow supported by the fact 479 

that 19 out of the 20 CCs retrieved from the CSD, then prepared with a variety of methods, were correctly identified. 480 

 481 
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 482 

Figure 7. ŷ (CC samples) for the external validation set, the dashed horizontal line shows the hard classification threshold of 483 

0.53 (left). Reduced squared residuals Q vs. reduced Hotelling’s T2 plot, the dashed horizontal and vertical lines show the 484 

amplitude of the 95% confidence interval for both parameters (right). Samples are marked according to their class (magenta 485 

diamonds: cocrystals; cyan circles: binary mixtures). 486 

 487 

5. Conclusion 488 

This study highlighted the ability of a simple PLS–DA model to predict cocrystal formation without any a priori knowledge 489 

of the specific role of the involved partner molecules. Information deriving from both successful and unsuccessful 490 

cocrystallization experiments was used. The major advantage of the proposed methodology relies on the reduction of the 491 

experimental effort required for both the synthesis and characterization of new crystalline structures. 492 

The model allows us to predict cocrystallization propensity with a 6274% of the predictions in agreement with the 493 

experimental results. Considering that the model was obtained on a training set spanning different molecular characteristics, 494 

it can be stated that it is suitable for a fairly general applicability. 495 

Indeed, once in possess of the set of chemical descriptors for the molecules of interest, it is sufficient to calculate the absolute 496 

value of their difference and perform a linear combination using the pseudo-regression coefficients to obtain a prediction on 497 

cocrystal formation. The precalculated values for the set of descriptors comprising 2193 GRAS molecules are available in the 498 

Supplementary Material. By applying the proposed methodology, seven ten new cocrystals were discovered and an additional 499 

four compounds waswere obtained by chance.  500 
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Another figure of merit of the proposed approach is the possibility of understanding through the inspection of PLS weights 501 

how the degree of similarity in terms of molecular features of the two partner molecules is correlated with the possibility of 502 

obtaining a cocrystal.  503 

On a closing note, we would like to strongly encourage scientists to report failed attempts at cocrystallization along with the 504 

technique used, as access to this information could play a pivotal role in refining predictive models, making them less sensitive 505 

to selective reporting bias. 506 
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Abstract 27 

Owing to the antimicrobial and insecticide properties, the use of natural compounds like essential oils and their active 28 

components has proven to be an effective alternative to synthetic chemicals in different fields ranging from drug delivery to 29 

agriculture and from nutrition to food preservation. Their limited application due to the high volatility and scarce water 30 

solubility can be expanded by using crystal engineering approaches to tune some properties of the active molecule by 31 

combining it with a suitable partner molecule (coformer). However, the selection of coformers and the experimental effort 32 

required for discovering cocrystals are the bottleneck of cocrystal engineering. This study explores the use of chemometrics 33 

to aid the discovery of cocrystals of active ingredients suitable for various applications. Partial Least Squares–Discriminant 34 

Analysis is used to discern cocrystals from binary mixtures based on the molecular features of the coformers.  For the first 35 

time, by including failed cocrystallization data and considering a variety of chemically diverse compounds, the proposed 36 

method resulted in a successful prediction rate of 85% for the test set in the model validation phase and of 74% for the external 37 

test set. 38 

 39 
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 41 

 42 
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 46 

 47 

 48 
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1. Introduction 81 

In the last few decades, the use of agrochemicals and food preservatives has grown exponentially as a direct consequence of 82 

the rapid increase of the world population [1,2]. Owing to their potential adverse effects on both human health and 83 

environment [2–4], alternative strategies based on the use of more sustainable chemicals have been proposed to support the 84 

food system. Being able to exert antimicrobial, insecticidal, and antioxidant properties [5,6], essential oils (EOs) and their 85 

active components have been used as green substitutes of synthetic chemicals to extend the shelf-life of foodstuff and in pests 86 

control [7–9]. These compounds are Generally Recognized As Safe (GRAS) by the Food and Drug Administration (FDA) 87 

[10], however, despite their appealing properties, their use is limited by their high volatility and poor stability [7,9,11,12].  88 

In fact, physicochemical properties of materials play a key role in determining whether a chemical is suitable for a specific 89 

purpose, thus strongly affecting its field of application. Scientists have always desired to obtain materials with target 90 

properties, and crystal engineering is one of the most interesting approaches to synthesize a great variety of crystalline 91 

materials for applications in various fields, ranging from pharmaceuticals to agrochemicals, and from nutraceuticals to 92 

cosmetics [13–16]. The basic idea of crystal engineering is related to the possibility of controlling the crystal structure of 93 

molecules and, therefore, the properties of the resulting solids. Polymorphism, vitrification and cocrystallization are some of 94 

the available strategies to modify the intrinsic properties of molecules without the need of synthetic modifications [17–21]. 95 

Cocrystals are multicomponent crystalline solid materials in which the constituents (i.e., coformers) are bound in a well-96 

defined stoichiometric ratio [22,23] via non-covalent interactions (e.g., hydrogen bonds, halogen bonds, π–π stacking) within 97 

the same crystal structure. Cocrystallization allows for the combination of the desired molecule of interest with properly 98 

selected partner molecules, paving the way to an array of potential materials with enhanced properties [19,24,25]. Within this 99 

frame of reference, cocrystals based on the active components of EOs have been proposed as active ingredients for food 100 

packaging, agrochemical and pharmaceutical applications [7,19,26,27]. 101 

Despite the great advantages offered by cocrystallization, the proper degree of complementarity between the two partner 102 

molecules required to obtain crystalline materials with the desired properties is not easy to assess [28–31]. In this context, the 103 

selection of coformers and the great effort required for both the systematic experimental screening and careful characterization 104 

of the products derived from the combination of all the possible coformer pairs represent the major bottleneck of cocrystal 105 

engineering. Computational techniques represent a powerful tool to reduce the experimental effort required for the discovery 106 

of new cocrystals, enabling to evaluate beforehand whether a cocrystal can be obtained starting from pre-selected coformers. 107 

These in silico strategies can be based on the calculation of a variety of parameters useful to predict the formation of a 108 
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cocrystal, such as lattice energy [32], solubility [33], hydrogen bond propensity along with the quantitation of molecular 109 

interaction energy [29,30], and molecular complementarity [34]. 110 

Despite the massive efforts spent to develop a method to predict cocrystal formation, at present none of the proposed strategies 111 

has proven to be both totally reliable and easy to apply. 112 

Chemometrics could play a pivotal role in cocrystal discovery: up to now only few Machine Learning methods have been 113 

proposed in predicting cocrystal formation, enabling the screening of new cocrystals once a supervised model is properly 114 

trained and validated. In the study proposed by Devogelaer et al., information of successful cocrystallization experiments was 115 

directly taken from the Cambridge Structural Database (CSD) [35] and Artificial Neural Networks (ANN) were used to predict 116 

the formation of new cocrystals [36]. Similarly, Wang et al. relied on a consensus method based on multiple Random Forest 117 

algorithms, in which the successful cocrystallization dataset was integrated with randomly generated failed cocrystallization 118 

data [37]. These approaches are reported in the literature as network-based methods. Additional studies were based on the use 119 

of successful and unsuccessful cocrystallization datasets obtained from experimentation, literature, and/or the CSD for 120 

screening specific classes of coformers. Within this framework, Przybyłek et al. used Multivariate Adaptive Regression 121 

Splines to predict the formation of dicarboxylic and phenolic acid-based cocrystals [38,39], whereas Wicker et al. focused on 122 

variously substituted benzoic acids and benzamides using a Support Vector Machine algorithm [24]. Vriza et al. used an 123 

ensemble one-class classification method to aid the discovery of π–π cocrystals, thus giving a great contribution in enriching 124 

one of the most under-represented classes of cocrystals in the CSD [40]. Most recently, Mswahili et al. developed a cocrystal 125 

screening method based on ANN by using both successful and unsuccessful experimental cocrystallization data retrieved from 126 

the literature and a plethora of molecular descriptors calculated using Mordred [41,42]. 127 

In the frame of a research activity dealing with the synthesis of new functional cocrystals based on the active constituents of 128 

EOs and other GRAS molecules to broaden their applicability in the industrial field [7,19], we propose a chemometric 129 

approach to aid the discovery of new cocrystalline materials. 130 

For the first time, a training set based on the results of failed (binary mixtures, BM) and successful (cocrystal, CC) 131 

cocrystallization experiments was used for the computation of a Quantitative Structure–Property Relationship-like (QSPR) 132 

model based on Partial Least Squares–Discriminant Analysis (PLS–DA), after preliminary exploratory analysis by Principal 133 

Component Analysis (PCA). The PLS-DA approach, with respect to network-based methods offers the advantages of having 134 

only one parameter to optimize, i.e., the model dimensionality, and the direct interpretation of the importance of descriptors 135 

in classification, while highlighting their interplay (by inspection of weights and loadings plots). 136 
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The effectiveness of the study relies on the use of compounds belonging to different chemical classes and a reduced number 137 

of 1D, 2D, and 3D molecular descriptors of various nature (e.g., constitutional, geometric, physical, topological, and surface 138 

area-based descriptors) [24,38,39,43], enabling the high-throughput screening of novel cocrystalline materials and offering 139 

maximum flexibility and effectiveness at a minimum computational and experimental cost. 140 

 141 

2. Experimental Procedures 142 

2.1. Mechanochemical protocol and class assignation 143 

All the molecules in the dataset were chosen among the list of GRAS molecules drawn up by the FDA [10]. Selected pair of 144 

molecules among the chosen ones were assigned either to the CC class or to the BM class. Pairs of molecules in the dataset 145 

for which a cocrystal structure was already described in literature were individuated in the Cambridge Structural Database 146 

(CSD) [35] with the Cambridge Crystallographic Data Centre (CCDC) software ConQuest [44] and visualized with Mercury 147 

[45]. They are reported in Section 3 of the Supplementary Material, together with their unique CSD refcode and the reference 148 

to the original publications. 149 

Cocrystallization for all the pairs with no known structure in literature was instead attempted with the following 150 

mechanochemical protocol. All the reagents employed were commercially available and used as such in all the experiments. 151 

Equimolar amounts of each reagent were directly mixed in an agate mortar and subjected to manual grinding for 10-15 152 

minutes, without using any solvent. The resulting powder samples were collected in closed vials. Assignation to CC or BM 153 

classes was performed by comparing the Powder X-ray Diffraction (PXRD) pattern of the ground sample with those of the 154 

pure reagents. Possible occurrence of polymorphic transitions for the reagents was excluded by comparing the experimental 155 

PXRD data after milling with the calculated pattern of all the known crystalline forms of the reagents. The occurrence of new 156 

peaks, unexplained by the presence of unreacted reagents, was taken as indication that cocrystallization had occurred and the 157 

sample was assigned to the CC class. In case no additional peaks appeared in the PXRD pattern the sample was instead 158 

classified as a BM. 159 

 160 

 161 

2.2. Powder X-ray diffraction 162 
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Typically, PXRD data were collected on a Rigaku Smartlab XE diffractometer in θ-θ Bragg-Brentano geometry with Cu Kα 163 

radiation. The samples were placed on glass supports and exposed to radiation (1.5° ≤ 2θ ≤ 50°) at a scan rate of 10°/min. The 164 

diffracted beam was collected on a 2D Hypix 3000 solid state detector. 5° radiant soller were used as a compromise for high 165 

flux and moderate peak asymmetry at low angles. Beam stopper and anti-scatterer air component were used to mitigate the 166 

profile at low angle. In some rare cases, the data were collected on a Thermo Fisher Scientific ARL X’TRA diffractometer in 167 

θ-θ Bragg-Brentano geometry with Cu Kα radiation (3° ≤ 2θ ≤ 30° at a scan rate of 5°/min, or 3° ≤ 2θ ≤ 40° at a scan rate of 168 

0.3°/min). 169 

 170 

3. Computational Methods 171 

3.1. Molecular descriptors calculation 172 

For each molecule 31 molecular descriptors were calculated (Table S1). A theoretical background for the less known 173 

descriptors is given in Section 4 of the Supplementary Material. 174 

The molecular weight, the number of atoms, the number of bonds, the number of hydrogen bond donor sites and the number 175 

of hydrogen bond acceptor sites were calculated with FLAP software (Fingerprint for Ligand and Protein) [46] at pH 7.0, 176 

using the 3D structures of all molecules in SDF format as input (downloaded from the PubChem database). The number of 177 

rotatable bonds, the number of rings, the hydrophobicity (accounted as the number of hydrophobic centers), the logP 178 

(logarithm of octanol/water partition coefficient), the molecular volume, the total molecular dipole moment (based on point 179 

charge distribution in the molecule), and its components along the axes (using the principal axes of the molecular graph) were 180 

then calculated for the same structures using Sybyl 8.1 [47] (www.tripos.com) and taking in consideration the protonation 181 

state of molecules. The same software was also used to estimate the strain energy of the molecule without performing any 182 

geometry optimization. This energy term relies on an electrostatic calculation from atomic charges using the internal Tripos 183 

force field [48]. For the estimation of molecular volume and dipole moment, a specific SPL script was employed. The 184 

calculated volume is enclosed in a water-accessible surface computed at a repulsive interaction energy of 0.20 kcal/mol with 185 

a water probe. A custom Python script was used to automatically calculate the Solvent Accessible Surface Area (SASA) in 186 

PyMol 2.0 [49], with the dot density parameter set to 4. The number of heteroatoms, the number of valence electrons, and the 187 

indexes 0χ, 0χn, 0χv, αHK, 1κα, LabuteASA, SMR_VSA, PEOE_VSA, and TPSA were obtained running a Python 3.7 code with 188 

the open-source cheminformatics toolkit RDKit Q4 2013 [50]. The average isotropic polarizability αiso, the polarizability 189 
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anisotropy Δα, and the Molecular Electrostatic Potential (MEP) were calculated with Gaussian 16 [51] following the in vacuo 190 

Density-Functional Theory optimization of all the molecules, employing the hybrid functional B3LYP and the People double-191 

z basis set 6-31+g(d,p). 192 

Postprocessing of the MEP to extract critical points at a given electron density isosurface was performed with a custom Python 193 

3.6.1 script on a three-dimensional map (cube format) with a sampling density of 6 points/Bohr along the three directions. 194 

The MEP was analyzed at an electron density isosurface of 0.002 a.u. with a tolerance of 0.001 a.u., meaning that only MEP 195 

values corresponding to regions of space with electron density in the 0.001–0.003 a.u. range were considered. A first set of 196 

critical points was identified comparing MEP values of each cube point with those of its 6 nearest neighbors. A point was 197 

considered a local minimum if the number of nearest neighbors with higher MEP was greater or equal to a given integer (4). 198 

Likewise, a point was considered a local maximum if the number of nearest neighbors with lower MEP was greater or equal 199 

to the same integer. This first step yielded a large number of candidate critical points encompassing a wide range of MEP 200 

values. Since our focus was on identifying the regions of the molecules likely to be involved in strong hydrogen bonds within 201 

the cocrystal, in a second step this first set of points was filtered based on the MEP values of the global minimum and 202 

maximum. This was done as follows: for each local minimum (maximum), the ratio between its MEP value and that of the 203 

global minimum (maximum) was computed, and the point was kept only if the ratio exceeded a given threshold (0.1). In this 204 

way, only points corresponding to shallow critical points were discarded. This step allowed to identify the MEP isosurface 205 

regions corresponding to hydrogen bond donors and acceptors. However, due to the rugged character of the MEP map, 206 

multiple critical points of the same type could appear in close proximity. To univocally map a given region of the isosurface 207 

to a MEP value, critical points close to each other (below a distance threshold of 1.0 Bohr) were merged iteratively, keeping 208 

only the lower MEP point for minima and higher MEP point for maxima. The algorithm then provided the final set of MEP 209 

critical points at the given electron density isosurface. 210 

 211 

3.2. Data analysis 212 

The entire data analysis was carried out in MATLAB R2019a environment (Mathworks, Natick, Massachusetts, USA) with 213 

the aid of the PLS_Toolbox 8.7.1 (Eigenvector Research Inc., Washington, USA) chemometric package. 214 

 215 

 216 

3.2.1. Data preprocessing 217 
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Each sample was described by m = 31 variables (Table S1): the absolute value of the difference between the molecular 218 

descriptors of the two partner molecules was calculated, thus obtaining the predictor matrix X (181 × 31). The class 219 

membership was binary encoded (1: belonging to the class; 0: otherwise) in a dummy matrix Y (181 × 2) with each column 220 

representing one of the two modelled classes. The dataset was split in two subsets by using the Duplex algorithm [52]: 70% 221 

of the data were used as calibration set, Xcal (127 × 31) and Ycal (127 × 2), whereas the remaining 30% were used as test set, 222 

Xtest (54 × 31) and Ytest (54 × 2). The calibration set and the test set are reported in Table S2 and Table S3, respectively. 223 

Before carrying out both exploratory multivariate data analysis and the computation of the supervised model, the calibration 224 

matrix Xcal was preprocessed column-wise by performing mean centering and scaling to unit variance. Mean centering was 225 

applied on the response matrix Ycal to ensure the stability of the model. 226 

 227 

3.2.2. Exploratory multivariate data analysis 228 

PCA [53–55] was carried out preliminarily on the calibration set Xcal to assess the distribution of the samples and to check for 229 

potential data structures. Reduction of data dimensionality is carried out through the linear combination of the original 230 

variables in a set of orthogonal ones, i.e., Principal Components (PCs), which identify the direction of maximum variance. 231 

This is summarized in the decomposition equation: 232 

𝑿𝐜𝐚𝐥 = 𝑻𝑷𝐓 + 𝑬 233 

where T and P represent, respectively, the coordinates of the samples projected in the reduced space, i.e., the scores, and the 234 

weights each original variable has on a given PC, i.e., the loadings. The deviations from the model are accounted in the error 235 

matrix E. 236 

 237 

3.2.3. Supervised pattern recognition 238 

PLS–DA [56,57] was used to discriminate pairs of partner molecules whose combination forms CCs from the ones giving 239 

BMs. PLS–DA is based on PLS regression [58]. Briefly, this supervised technique decomposes the predictor matrix Xcal and 240 

the dependent variables matrix Ycal in a PCA-like way and imposes inner linear relationships between the Xcal and the Ycal 241 

scores as follows: 242 

𝑼 = 𝒃𝑻 243 
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where T and U, are the Xcal and the Ycal scores, respectively. This is accomplished by rotating the Latent Variable (LV) space 244 

of Xcal through a weight matrix W in a way that maximizes the covariance between T and U. The PLS regression model is 245 

summarized as: 246 

𝒀𝐜𝐚𝐥 = 𝑿𝐜𝐚𝐥𝑩+ 𝑬 247 

where E is the error matrix and B is the pseudo-regression coefficient matrix expressed according to the following equation: 248 

𝑩 = 𝑾(𝑷𝑇𝑾)−1 diag(𝒃)𝑸 249 

where P and Q are the Xcal and the Ycal loadings, respectively. 250 

In this case, the dependent variables in the Ycal matrix are defined as dummy variables, one for each modelled class, taking 251 

values of 1 if the sample belongs to the class and 0 otherwise. Current implementation of PLS–DA may differ on the basis of 252 

how the classification rule is defined. In this work, a pure discriminant rule (samples are assigned univocally to only one 253 

category) was applied, and thus a sample is assigned to the class for which the predicted response ŷ is the highest (i.e., Ŷ 254 

values are continuous and not dummy as they were codified). 255 

The proper number of LVs was chosen according to the maximum accuracy (ACC%; i.e., the percentage of samples correctly 256 

assigned to the respective class) in leave-more-out cross validation, adopting a Venetian blinds cancellation scheme with 10 257 

splits (blind thickness: 1). This operation was carried out by running a custom MATLAB routine. The performance of the 258 

classification model was evaluated both on the calibration and the test sets in terms of ACC% as well as showing the confusion 259 

matrix. In addition, the sensitivity (SEN%, i.e., the percentage of samples within a class that were correctly assigned to their 260 

class) was calculated for both classes. 261 

The importance of each predictor was estimated in terms of Variable Importance in Projection (VIP score) [56]. The VIP 262 

score of the jth variable in the X space is defined as the component-wise sum of its PLS weight wj on the fth component 263 

multiplied by the fraction of variance of the Y explained by that component, according to the following equation: 264 

𝑉𝐼𝑃𝑗
2 =

1

𝑆𝑆𝑌tot𝐹
∑𝑤𝑗𝑓

2 𝑆𝑆𝑌𝑓𝐽

𝐹

𝑓=1

 265 

where J is the number of variables in the X space and F is the number of LVs that were retained. Since: 266 

∑𝑉𝐼𝑃𝑗
2

𝐽

𝑗=1

= 𝐽 267 

the proposed threshold for determining whether a variable could be considered important is set to 1.. 268 
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Finally, the predictive capability of the model was evaluated on an external set of N = 58 binary combinations of partner 269 

molecules. An overview of the involved samples is reported in Table S4 along with their estimated ŷ values. 270 

The number of entries in the BM and CC classes for training, test, and external validation sets is reported in Table 1. 271 

 272 

Table 1. Number of CC and BM samples in the calibration, test, and external validation set. The last column reports the total 273 

number N of samples per set. 274 

 CC BM N 

Calibration set 71 56 127 

Test set 30 24 54 

External validation set 31 27 58 

 275 

4. Results and Discussion 276 

The cocrystallization experiments were carried out mechanochemically by manual neat grinding of the two substances. This 277 

method was selected among many possible others due to its simplicity and promptness, allowing us to screen several molecular 278 

pairs in a standardized way [21,59]. The classification as BM or CC was assessed by PXRD patterns (available in Section 3 279 

of the Supplementary Material). Cocrystals already present in the CSD were also included in our dataset. 280 

 281 

4.1. Data analysis 282 

Data handling prior to analysis can affect the way the model is trained, thus having consequences on its interpretation. 283 

Since samples are the result of the combination of two partner molecules, each one described by its own set of descriptors, 284 

the concatenation strategy, i.e., listing the descriptors of the first coformer followed by those of the second coformer, was 285 

discarded due to the lack of commutation between the two sets of descriptors. In fact, the order in which the molecular 286 

descriptors are listed represents an a priori decision on which compound is acting as molecule of interest or partner molecule. 287 

In our case this would be sub-optimal since many of the molecules in our dataset could assume both roles. Therefore, in order 288 

to address the problem described above a commutative strategy capable of avoiding the production of indeterminate forms 289 

should be chosen. Considering that in the dataset many constitutional molecular descriptors were characterized by a few non-290 

zero values, the calculation of both products and ratios between the descriptors was discarded since additional zero values or 291 

indeterminate forms could be generated. Also, the division is non-commutative. 292 
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In order to combine the two partner molecules without imposition on their role, the absolute value of the difference between 293 

the molecular descriptors of the partner molecules was calculated and used to describe each binary combination [38,39], 294 

giving maximum flexibility to the model. The information achieved is still relevant and easily interpretable since it is related 295 

to the dissimilarity between the descriptors. In fact, absolute value of the differences between descriptors for each case are 296 

the elements of the Manhattan distance [60], one of the possible indexes to account for the dissimilarity between cases in a 297 

multivariate way. 298 

In the present study, the use of basic linear modelling methods was preferred with respect to non-linear modelling, such as 299 

ANN [61,62], to keep the calculations as simple as possible, and to ensure a certain degree of interpretability of the results. 300 

Furthermore, the number of samples is too limited to ensure proper tuning of the ANN hyperparameters. 301 

For a fruitful discussion, samples and variables are reported in the text according to their identification number as follows: i) 302 

samples are written in plain text; ii) variables are underlined. The key is available in Tables S1–S3. 303 

 304 

4.1.1. Exploratory multivariate data analysis 305 

After data preprocessing, PCA was used in an exploratory way to assess the presence of potential data structures in the 306 

calibration set. 307 

Four PCs were retained explaining 67% of the variance. As shown in the score plots (Figure 1), a mild separation was present 308 

in the PC 2 vs. PC 3 score plot, with the groups separated by the bisecting line of the II and the IV quadrant. In addition, most 309 

of the CC samples occupied the III quadrant of the PC 2 vs. PC 3 score plot and were, in general, less scattered than BM 310 

samples. 311 

 312 

 313 



13 
 
 

Figure 1. Scores of the samples on the first 4 PCs: PC 1 vs. PC 2 (left), PC 2 vs. PC 3 (center), PC 3 vs. PC 4 (right). The 314 

fraction of variance explained by a given component is reported as a percentage value in parenthesis on the corresponding 315 

axis. Samples are marked according to their class (magenta diamonds: cocrystals; cyan circles: binary mixtures). 316 

 317 

As for the loading plots depicted in Figure 2, it can be observed that PC 1 explains the features related both to differences in 318 

molecular dimensions (e.g., 1, 2, 3, 9, 16, 29) and connectivity (23, 24, 25, 26). PC 2 considers the dissimilarities in the 319 

electronic properties (e.g., 6, 7, 19, 22, 30) of the two partner molecules as well as the difference in their number of 320 

heteroatoms (27). PC 3 accounts for more specific features, such as differences in molecular complexity (21), molecular 321 

refractivity (31), and energy (15). Lastly, PC 4 considers the dissimilarity in: i) component of the dipole along the x axis (11), 322 

ii) total dipole (14) and iii) minimum of the MEP surface (20). Regarding the samples belonging to the CC class, these 323 

compounds were characterized by partner molecules with a similar behavior in terms of molecular complexity (21) and 324 

octanol/water partition coefficient (10). 325 

 326 
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Figure 2. Loading plots related to the PCA decomposition. PC 1 vs. PC 2 (top-left), magnification of the PC 1 vs. PC 2 (top-327 

right), PC 2 vs. PC 3 (bottom-left), PC 3 vs. PC 4 (bottom-right). The fraction of variance explained by a given component is 328 

reported as a percentage value in parenthesis on the corresponding axis. 329 

 330 

4.1.2. Supervised pattern recognition 331 

The relationship between the class membership and the variables was exploited by means of PLS–DA. Six LVs were retained 332 

according to maximum ACC% in cross validation. The PLS–DA model captured the 72% and 69% of the variance of the Xcal 333 

and Ycal, respectively. The values of the predicted response ŷ in cross validation related to CC samples are plotted in Figure 334 

S1. 335 

A summary of the performance of the obtained model is reported in the confusion matrix (Table 2), whereas a graphical 336 

representation of the estimated and predicted values ŷ for the CC class is reported in Figure S2. As reported in Table 2, all the 337 

BM samples belonging to the test set were correctly classified except for 5 samples, whereas only 3 out of 30 CC samples 338 

were wrongly assigned to the BM class, obtaining a ACC% of 85%. Similarly, a high ACC% of 92% was obtained when the 339 

samples belonging to the calibration set were predicted by the model. The achieved results are extremely satisfactory, allowing 340 

for the a priori selection of the partner molecules required for the synthesis of novel cocrystals. 341 

 342 

Table 2. Confusion matrix of the calibration and the test sets for the PLS–DA model. The second-last line shows the SEN% 343 

for the modelled classes and last line shows the ACC% for the calibration and the test sets. 344 

 Calibration set Test set 

 Predicted as Predicted as 

 CC BM CC BM 

True CC 66 5 27 3 

True BM 5 51 5 19 

SEN% 93% 91% 90% 79% 

ACC% 92% 85% 

 345 



15 
 
 

The distribution of the samples in the reduced space of the LVs can be observed by inspecting the score plot (Figure 3), 346 

whereas information regarding suspicious and/or influential samples can be retrieved by the squared residuals Q vs. 347 

Hotelling’s T2 and the residuals vs. leverage plots (Figure 4). 348 

 349 

 350 

Figure 3. Distribution of the samples in the score space (LV 1 vs. LV 2). The fraction of variance explained by a given 351 

component is reported as a percentage value in parenthesis on the corresponding axis. Samples are marked according to their 352 

class (magenta diamonds: cocrystals; cyan circles: binary mixtures). 353 

 354 
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 355 

Figure 4. Reduced squared residuals Q vs. reduced Hotelling’s T2 plot, the dashed horizontal and vertical lines show the 356 

amplitude of the 95% confidence interval for both parameters (top). Residuals of CC samples vs. leverage plot, the dashed 357 

vertical line shows the leverage limit (bottom). Samples are marked according to their class (magenta diamonds: cocrystals; 358 

cyan circles: binary mixtures). 359 

 360 

The maximum separation in the score space was provided by the first two LVs, with the CC samples located mainly at negative 361 

scores on LV 1. By contrast, BM samples were more scattered and localized mostly on positive scores on LV 1. 362 

A peculiar behavior was observed for samples 27 and 29. Sample 27 showed squared residual Q outside the 95% confidence 363 

interval, whereas sample 29 showed both high Hotelling’s T2 and high squared residuals Q together with high leverage in the 364 

Ycal space. These CC samples were obtained by pairing fatty acids (lauric acid, 27, and palmitic acid, 29) with a low-molecular 365 

weight coformer, i.e., nicotinamide. The variables responsible for this behavior can be related to the discrepancy in molecular 366 

dimensions between the two partner molecules. 367 
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The adipic acid/hexamethylenetetramine (11) CC sample was characterized by high leverage and high Hotelling’s T2 value, 368 

due to different behavior in terms of ruotable bonds and number of rings present in the structure. A similar behaviour, in terms 369 

of difference in the number of rings, was observed also by two additional non-influential BM samples based on 370 

hexamethylenetetramine paired with limonene (96) and menthone (103). In addition, these samples held high squared 371 

residuals Q and, therefore, were characterized by features that did not align with the ones of the other samples. 372 

Finally, the ferulic acid/pyrazine (22) CC sample showed Hotelling’s T2 values outside the 95% confidence interval due to 373 

the different behaviour of the partner molecules in terms of molecular weight, connectivity, surface area, and electronic 374 

properties, i.e., isotropic and anisotropic polarizability and number of valence electrons. 375 

Suspicious samples 22 (ferulic acid/pyrazine, CC) and 103 (menthone/hexamethylenetetramine, BM) appeared also to have 376 

high residuals in absolute value and were wrongly assigned to their class in cross validation. Along with them, also three not 377 

anomalous CC samples and one not anomalous BM samples, namely cinnamaldehyde/4-hydroxybenzoic acid (17), 378 

carvacrol/nicotinamide (60), thymol/tetramethylpyrazine (68) and eugenol/pyrazine (92), respectively, were misclassified. In 379 

fact, their features were inversely related to their respective class. Nevertheless, the exclusion of the samples discussed above 380 

from the calibration set would not have produced any difference in terms of rotation of the LV space due to their low leverage. 381 

The correlation between class membership, coded in the Ycal, and the predictors contained in the Xcal space can be observed 382 

in the PLS weights plot (Figure S3).  383 

Information regarding the contribution of each predictor involved in the discrimination of the modelled classes can be inferred 384 

by inspecting the pseudo-regression coefficients and the VIP score plots, reported in Figure 5. The latter parameter denotes 385 

the relative importance of each predictor of the Xcal space in the PLS–DA model in explaining the class membership encoded 386 

in the Ycal and may guide variable selection. Generally, a variable can be considered important with a VIP score > 1; by 387 

contrast, a VIP score significantly lower than 1 indicates that a given variable is a good candidate for exclusion. According to 388 

the negative sign of the pseudo-regression coefficients related to CC class, it can be stated that significant differences in 389 

descriptors related to polarizability and exposed surface, such as atom and bond count (2, 3), octanol-water partition 390 

coefficient (10), topological polar surface area (22) and heteroatom count (27) are likely to prevent the formation of a 391 

cocrystal. It should be noted that this consideration agrees with what has emerged earlier from unsupervised modelling, and 392 

it is largely in agreement with widely applied rules of thumb in crystal engineering. 393 
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 394 

Figure 5. Pseudo-regression coefficients plot for the CC class (top). VIP scores related to each variable included in the Xcal 395 

space for the CC class, the significance threshold of 1 is depicted as a dashed horizontal line (bottom). Both plots report the 396 

variable identification number on the x axis. 397 

 398 

Finally, a reduced PLS–DA model based only on the important variables in agreement with the VIP scores was computed 399 

because of its ease of interpretation. A 4 LVs model was calculated according to the maximum ACC% in cross validation 400 

obtaining a classification performance very similar to that achieved by including all descriptors. The weights plot of the 401 

reduced model is provided in Figure 6, in which the weights of the variables involved in the discrimination are located on the 402 

positive and negative sides of the first LV. 403 

 404 
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 405 

Figure 6. PLS weights of the variables for LV 1 vs. LV 2 of the reduced model. 406 

  407 

4.2. Benchmarking on an external validation set 408 

The external validation set consists of 27 pairs classified experimentally as BMs and 31 pairs classified as CCs, i.e., 11 with 409 

our mechanochemistry/PXRD protocol and 20 retrieved from the CSD. The latter ones are reported in Section 3 of the 410 

Supplementary Information together with their CSD refcode and the reference to the original publications. 411 

A graphical representation of the predicted values ŷ for the CC class is reported in Figure 7, as well as the squared residuals 412 

Q vs. Hotelling’s T2 plot. Although there were some samples that did not conform to the model space, not all of them have 413 

been systematically misclassified. The confusion matrix is reported in Table 3 to summarize the results. In total, about 74% 414 

of the predictions were in agreement with the experimental results. 415 

 416 

Table 3. Confusion matrix of the external validation set for the PLS–DA model. The second-last line shows the SEN% for the 417 

modelled classes and last line shows the ACC%. 418 

 External validation set 

 Predicted as 

 CC BM 

Experimental CC 29 2 

Experimental BM 13 14 

SEN% 94% 52% 
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ACC% 74% 

 419 

Specifically, 29 CC cases out of 31 were correctly classified. On the other hand, there were 13 false positive results and 14 420 

cases in which the pairs were correctly identified as BMs. The model appears therefore to be quite conservative in discarding 421 

the possibility of cocrystallization; hence, fewer potential new materials could be overlooked. In addition, the fraction of 422 

misclassified CC samples (see Table 2 and Table 3) does not change significantly in the external validation set with respect 423 

to the test set. 424 

As shown in Figure 7, Table 3 and Table S4, only 2 pairs of partner molecules predicted as BMs actually formed CCs, thus 425 

producing 2 false negative results. It can be stated that these results were borderline cases when the estimated error [63] on 426 

the prediction was taken into consideration (data not shown): in fact their ŷ value was close to the classification threshold of 427 

0.53. The same is true for 6 of the false positive cases, while in the remaining 7 cases the model confidently classified the 428 

pairs as CCs, in contrast to our experimental results. These findings could be ascribed to the use of different preparation 429 

methods other than mechanochemical grinding. This hypothesis is somehow supported by the fact that 19 out of the 20 CCs 430 

retrieved from the CSD, then prepared with a variety of methods, were correctly identified. 431 

 432 

 433 

Figure 7. ŷ (CC samples) for the external validation set, the dashed horizontal line shows the hard classification threshold of 434 

0.53 (left). Reduced squared residuals Q vs. reduced Hotelling’s T2 plot, the dashed horizontal and vertical lines show the 435 

amplitude of the 95% confidence interval for both parameters (right). Samples are marked according to their class (magenta 436 

diamonds: cocrystals; cyan circles: binary mixtures). 437 

 438 
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5. Conclusion 439 

This study highlighted the ability of a simple PLS–DA model to predict cocrystal formation without any a priori knowledge 440 

of the specific role of the involved partner molecules. Information deriving from both successful and unsuccessful 441 

cocrystallization experiments was used. The major advantage of the proposed methodology relies on the reduction of the 442 

experimental effort required for both the synthesis and characterization of new crystalline structures. 443 

The model allows us to predict cocrystallization propensity with a 74% of the predictions in agreement with the experimental 444 

results. Considering that the model was obtained on a training set spanning different molecular characteristics, it can be stated 445 

that it is suitable for a fairly general applicability. 446 

Indeed, once in possess of the set of chemical descriptors for the molecules of interest, it is sufficient to calculate the absolute 447 

value of their difference and perform a linear combination using the pseudo-regression coefficients to obtain a prediction on 448 

cocrystal formation. The precalculated values for the set of descriptors comprising 2193 GRAS molecules are available in the 449 

Supplementary Material. By applying the proposed methodology, ten new cocrystals were discovered and an additional 450 

compound was obtained by chance.  451 

Another figure of merit of the proposed approach is the possibility of understanding through the inspection of PLS weights 452 

how the degree of similarity in terms of molecular features of the two partner molecules is correlated with the possibility of 453 

obtaining a cocrystal. 454 

On a closing note, we would like to strongly encourage scientists to report failed attempts at cocrystallization along with the 455 

technique used, as access to this information could play a pivotal role in refining predictive models, making them less sensitive 456 

to selective reporting bias. 457 
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