
Available online at www.sciencedirect.com

ScienceDirect
ICT Express 4 (2018) 87–90

www.elsevier.com/locate/icte

A probabilistic matrix factorization algorithm for approximation of sparse
matrices in natural language processing

Gianmaria Tarantino⇤, Stefania Monica, Federico Bergenti

Dipartimento di Scienze Matematiche, Fisiche e Informatiche Universitá degli Studi di Parma, 43124 Parma, Italy

Received 12 February 2018; accepted 10 April 2018
Available online 16 April 2018

Abstract

This paper suggests a variation of a well-known probabilistic matrix factorization algorithm which is commonly used in data analysis and
scientific computing, and which has been considered recently to serve natural language processing. The proposed variation is meant to take benefit
from the fact that matrices processed in natural language processing tasks are normally sparse rectangular matrices with one dimension much
larger than the other, and this can be used to ensure adequate accuracy with acceptable computation time. Preliminary experiments on real-world
textual corpora show that the proposed algorithm achieves relevant improvements compared to the original one.
c� 2018 The Korean Institute of Communications and Information Sciences (KICS). Publishing Services by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction
The representation of words and documents as dense vectors

is a fundamental step for several NLP (Natural Language
Processing) tasks including information retrieval, word sense
disambiguation, and text similarity. The literature proposes
two types of methods to compute representations of words
and documents [1]: global matrix factorization methods, and
local context window methods. However, as discussed in [2],
the distinction between such types of methods is becoming
blurry since the well known method skip gram with negative
sampling [3] implicitly factorizes a word-context matrix.

Among the global matrix factorization methods, a classic
method to build dense representations of documents and words
is LSA (Latent Semantic Analysis) [4]. Briefly, LSA processes
a given corpus of textual documents by first extracting a
normalized vocabulary of terms. Then, it builds a TDM (Term-
Document Matrix) [5] whose element in position (i, j) is the
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number of occurrences of term i in document j . Finally, LSA
decomposes the produced TDM by means of SVD (Singular
Value Decomposition) [6] to reduce the size of the matrices
that need to be processed with no loss of relevant information.
Given that TDMs for real world corpora can have thousands
of rows, truncated SVD [6] is often used to further reduce the
size of matrices. Given a TDM W , its truncated SVD with rank
k  rank (W ) is built using three matrices Uk , ⌃k and Vk such
that

W = Uk⌃k V T
k , (1)

where only the largest k singular values of W are considered
to form the diagonal matrix ⌃k , and the corresponding left
and right singular vectors to form the unitary matrices Uk and
Vk . The representation of W in terms of ⌃k for a given k is
used to obtain representations of words and documents as dense
k-dimensional vectors. The choice of k influences the accuracy
of the approximation of the TDM W in terms of the correspond-
ing ⌃k .

The application of SVD to real world problems, which
require the processing of huge corpora with a good approxima-
tion, normally requires prohibitive computation time even when
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large computing infrastructures are used. The literature pro-
poses a number of algorithms to address this problem, among
which probabilistic methods are currently preferred because
they can take benefit from the features of modern computing
infrastructures. This paper proposes a probabilistic algorithm to
process real world TDMs with sufficient accuracy in a reason-
able computation time called MQRR (Mixed QR Randomized
subspace iteration with direct SVD). Such an algorithm uses
the fact that TDMs are commonly sparse rectangular to reduce
needed computation time with minor or no loss of accuracy. The
proposed algorithm is a variant of the well known RSIDSVD
(Randomized Subspace Iteration with Direct SVD) [7], and a
comparison with the performance of the original algorithm is
shown in Section 3. In detail, the preliminary experimental
results discussed in Section 3 show that MQRR achieves better
accuracy at a lower computation time than RSIDSVD.

This paper is organized as follows. Section 2 presents the
proposed MQRR algorithm focusing on the problem of com-
puting low-rank decompositions of sparse rectangular matrices.
Section 3 shows a preliminary assessment of the performance
of the proposed algorithm. Finally, Section 4 concludes the
paper and outlines planned future developments of this line of
research.

2. The proposed algorithm

Probabilistic algorithms are commonly used for low-rank
matrix approximation of large matrices. A detailed overview of
state of the art probabilistic algorithms to construct approximate
matrix decompositions is presented in [7]. Briefly, given a m⇥n
matrix A for which a low-rank approximation is required, the
basic idea of probabilistic low-rank approximation algorithms
is to perform the following two steps [7]:

1. Compute an orthonormal matrix Q whose range approx-
imates the range of A; and

2. Compute an approximate SVD factorization of A starting
from B = QT A.

In detail, the first step is performed by factorizing matrix A⌦
using QR decomposition [6], where ⌦ is a suitable n⇥l random
matrix with Gaussian distribution, and l is chosen according to
accepted approximation accuracy and computation time. The
second step is performed by first factorizing B as Ũ⌃V T ,
and then computing the requested approximated SVD of A as
U⌃V T where U = QŨ .

The outlined scheme for probabilistic low-rank approxi-
mation can be improved for matrices whose singular values
decay slowly, as assumed in the mentioned RSIDSVD. The idea
of this technique is to apply randomized sampling to matrix
Ã, defined in Proposition 1, for a small integer q , since the
following proposition holds [7]:

Proposition 1. Given a m ⇥ n real matrix A and defined
Ã :=

�
AAT

�q A, Ã has the same singular vectors of A and
the following condition holds:

8 j 2 [1..rank (A)] � j

⇣
Ã
⌘

= � j (A)2q+1 (2)

Algorithm 1 The pseudo-code of the proposed algorithm
MQRR to perform an approximate SVD of an input matrix A.

1: function MQRR(A, l)
2: input A : m ⇥ n real matrix
3: input l : integer
4: output (U,⌃ , V ): U, V unitary, ⌃ diagonal
5: ⌦ 2 N n⇥l

6: Y0  A⌦
7: Q0 R0 = QRe(Y0)
8: for j  1 to q do
9: Ỹ j  AT Q j�1

10: Q̃ j R̃ j = QR(Ỹ j )
11: Y j  AQ̃ j
12: Q j R j = QRe(Y j )
13: end for
14: Q  Q j
15: B  QT A
16: Ũ⌃V T = SVDe(B)
17: U  QŨ
18: return (U,⌃ , V )
19: end function

where [a..b] denotes the set of integers between a and b, range
boundaries included, and � j (·) denotes the j th singular value
of a matrix, counted in descending order.

Note that [8] documents that in many cases a value of
q = 1 or q = 2 is sufficient. Finally, note that randomized
sampling applied to matrix Ã is subject to rounding errors
when executed using floating-point arithmetic, so it is necessary
to orthonormalize the columns of the sample matrix after the
applications of A and AT .

The proposed algorithm focuses on improving the accuracy
of RSIDSVD when dealing with sparse rectangular matrices.
The pseudocode of the algorithm is shown in Algorithm 1,
and it follows the general scheme of RSIDSVD outlined previ-
ously. The description of the algorithm assumes the following
conventions. First, N n⇥l is used to denote the space of n ⇥ l
random matrices with standard Gaussian distribution. Then,
SVDe(X ) is used to denote the truncated SVD of matrix X at
rank(X ), which from now on will be referred to as economy-
size SVD. Finally, QRe(Y ) is used to denote the economy-size
QR factorization of the m ⇥ n matrix Y with m > n, which is a
QR decomposition of Y that uses only the first n columns of Q
and the first n rows of R.

Note that the proposed algorithm uses a full QR factorization
only at line 10, while the economy-size QR factorization is used
at lines 7 and 12. The importance of the full QR factorization at
line 10 is motivated by the following result from [6], and by the
values of the singular values of common TDMs, as exemplified
in next section.

Proposition 2. Given a generic m⇥ n matrix W , the following
condition holds for any k  rank(W ):

min
W 02Mk

kW �W 0k = �k+1(W ) (3)
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Table 1
Computation times, in seconds, for the execution of FQRR and MQRR on two
TDMs as the parameter l varies. The last two lines correspond to the time spent
for computing exact and economy-size SVD, respectively.

l CRANFIELD CISI

FQRR MQRR FQRR MQRR

10 9.1 s 3.1 s 11.3 s 3.5 s
25 9.6 s 3.1 s 12.1 s 3.5 s
50 10.3 s 3.1 s 13.6 s 3.7 s
100 11.7 s 3.5 s 16.1 s 4.0 s
200 9.7 s 3.3 s 11.5 s 4.0 s
300 9.7 s 3.3 s 12.2 s 3.9 s

SV D 4.0 s 4.8 s
SV De 2.5 s 2.6 s

where k · k is the spectral norm and Mk is the set of matrices
with rank k, and the condition is realized by W 0 obtained via
the economy-size SVD expressed in Eq. (1).

The application of at least one full QR decomposition in
Algorithm 1 ensures that matrix B at line 15 is a n ⇥ n matrix,
and therefore the economy-size SVD factorization at line 16
can lead to an approximation of the input matrix whose error is
not bounded by the l + 1 singular value of matrix W . Note that
a full QR factorization could also be applied at line 7, instead
that at line 10 but, under the assumption that m > n, it would
result in a much slower computation. The reason is that q is a
small integer, as observed previously, Y0 is an m ⇥ l matrix and
Y j is a n ⇥ l matrix.

3. Experimental results

The proposed algorithm is tested on two TDMs,1 obtained
from standard information retrieval test collections2 namely
CRANFIELD (TDM 4563 ⇥ 1398) and CISI (TDM 5544 ⇥
1460). The performance of the algorithm is compared with that
of two variations of the RSIDSVD method. The first, which will
be denoted as FQRR, is the RSIDSVD method in which all QR
factorizations are full. The second, named here EQRR, is the
RSIDSVD method in which all QR factorizations are economy-
size. All experiments were performed calling the functions mul-
tiple times, then taking the median of the measurements. The
results exposed in Table 1 are carried out using MATLAB func-
tion timeit. All experiments were performed using MATLAB
R2017b on a laptop with an Intel(R) Core(TM) i7-3615QM
2.3 GHz processor and 8 GB of RAM. The MATLAB code used
to perform experiments and to obtain results shown in Tables 1
and 2 can be downloaded at ailab.unipr.it/software/mqrr.zip.

Tables 1 and 2 report different executions of discussed
algorithms for different values of l when input matrices are the
TDMs obtained from CRANFIELD and CISI datasets. Each
row of Table 1 shows the time, in seconds, spent for the exe-
cution of FQRR and MQRR algorithms, while Table 2 shows
in its rows the spectral norm errors for the approximations of
the input matrix with the computed factorization. Experimental

1 http://scgroup20.ceid.upatras.gr:8000/tmg.
2 http://web.eecs.utk.edu/research/lsi/corpa.html.

Table 2
Spectral norm errors for the approximation of the input matrix using the factor-
ization obtained by the execution of EQRR and MQRR on two TDMs as the
parameter l varies. The last line corresponds to the spectral norm error obtained
from approximating the input matrix with the exact SVD.

l CRANFIELD CISI

EQRR MQRR EQRR MQRR

10 68.4 1.0e�11 44.6 1.0e�11
25 51.0 1.0e�11 33.8 1.0e�11
50 40.8 1.0e�11 28.1 1.0e�11
100 32.3 1.0e�11 22.0 1.0e�11
200 23.2 1.0e�11 16.9 1.0e�11
300 18.6 1.0e�11 14.0 1.0e�11

SV D 1.0e�11 1.0e�11

results in Table 1 show that, for all tested values of parameter
l, MQRR is computationally much more efficient than FQRR,
maintaining the same order of accuracy in spectral norm than
an exact SVD, as shown in Table 2. Moreover Table 1 shows
that computation times for the execution of MQRR are less
than exact SVD and comparable with economy-size SVD, both
computed using the native commands that MATLAB provides.
Finally, Table 2 shows that even small values of l, such as
l = 10, give acceptable accuracy for the execution of MQRR.
Small values of l can be preferred in order to obtain a slight
execution speed up.

Better computational efficiency is gained from the execution
of EQRR, but the large spectral norm errors reported in Table 2,
even for large values of parameter l, prevent the use of such an
algorithm when dealing with large rectangular sparse matrices.
As outlined in Section 3, this behavior depends on the values of
the singular values of the two TDMs. In fact, first note that all
considered TDMs have their 301th singular value of order 10.
But, for the case of the CISI TDM, all singular values up to the
1453th have at least order 1. Moreover, all singular values of the
CRANFIELD TDM also have at least order 1. Therefore, even
with larger value of l, the approximation obtained with EQRR
cannot be comparable with that of the MQRR since Eq. (3)
holds.

4. Conclusions
This paper proposes an algorithm to improve the perfor-

mance of the construction of dense representations of words
and documents from real world textual corpora. The TDMs
of real world corpora are typically large, and sophisticated
algorithms are needed to process them in an acceptable amount
of time without introducing unacceptable approximations. The
proposed algorithm, which is a variation of a well known
algorithm, uses the fact that TDMs are normally rectangular
sparse matrices to reduce the computation time and also to
achieve better accuracy than the original algorithm. In addition,
all matrix products in the proposed algorithm are intrinsi-
cally parallel, and it can be easily adapted to take benefit
of the parallel computation features of modern computation
infrastructures. Finally, a randomized blocked version of the
economy-size QR factorization, as described in [8], can be used
to modify the proposed algorithm to have much more benefits
in terms of execution time with no loss of accuracy.
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