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Abstract 

In this paper, the nonlinear vibrations and energy exchange of single-walled carbon nanotubes 

(SWNTs) are studied. The Sanders-Koiter theory is applied to model the nonlinear dynamics of the 

system in the case of finite amplitude of vibration. The SWNT deformation is described in terms of 

longitudinal, circumferential and radial displacement fields. Simply supported, clamped and free 

boundary conditions are considered. The circumferential flexural modes (CFMs) are investigated. 

Two different approaches based on numerical and analytical models are compared. In the numerical 

model, an energy method based on the Lagrange equations is used to reduce the nonlinear partial 

differential equations of motion to a set of nonlinear ordinary differential equations, which is solved 

by using the implicit Runge-Kutta numerical method. In the analytical model, a reduced form of the 

Sanders-Koiter theory assuming small circumferential and tangential shear deformations is used to 

get the nonlinear ordinary differential equations of motion, which are solved by using the multiple 

scales analytical method. The transition from energy beating to energy localization in the nonlinear 

field is studied. The effect of the aspect ratio on the analytical and numerical values of the nonlinear 

energy localization threshold for different boundary conditions is investigated. 
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1. Introduction 

In this paper, we are going to study the problems of the energy exchange and localization along the 

SWNT axis by considering appropriate parameters and models, where the energy transfer denotes a 

strongly non-stationary and resonant nonlinear dynamic process. 

The spatially localized excitations represent one of the most interesting phenomena in the nonlinear 

dynamics of solids and structures [1]. In particular, the spatial confinement of nonlinear vibrations 

generated by external loads can be used to develop robust shock and vibration isolation designs for 

certain classes of engineering systems [2]. Moreover, excitations of this type determine elementary 

mechanisms of many physical processes giving noticeable contributions to thermal conductivity [3].  

In the cases of discrete structures, the nonlinear dynamic processes can be studied in the framework 

of Nonlinear Normal Modes (NNMs) or Limiting Phase Trajectories (LPTs). 

The NNMs are usually applied in order to describe stationary and non-stationary, but non-resonant, 

nonlinear dynamic processes; therefore, they are not involved into energy exchange and localization 

problems, which are strongly non-stationary and resonant nonlinear dynamic processes. 

Conversely, the LPTs are applied to model strongly non-stationary and resonant nonlinear dynamic 

processes, such as energy exchange and localization, describing the maximum possible (under given 

conditions) nonlinear energy transfer between different parts of the considered system. 

Manevitch and Musienko [4] presented an analytical description of transient vibrations of a forced 

an-harmonic oscillator. They used the LPTs to describe the intensive energy exchange which causes 

two dynamical transitions by increasing the amplitude of the nonlinearity parameter. 

Manevitch et al. [5] considered the nonlinear energy exchange of two coupled oscillators subjected 

to a 1:1 resonance by means of the LPTs. They demonstrated that the most intense energy exchange 

arises when the motion of the equivalent single oscillator is close to the LPTs. 

Manevitch and Smirnov [6] described the energy exchange and transition to energy localization in 

the finite periodic Fermi-Pasta-Ulam nonlinear oscillatory chain in terms of effective particles and 

LPTs. They calculated the excitation level corresponding to non-stationary energy localizations. 

Smirnov and Manevitch [7] studied the strong energy exchange between different parts of periodic 

nonlinear Frenkel-Kontorova and Klein-Gordon lattices by considering the LPTs assumption. They 

developed an asymptotic analysis to obtain the values of the dynamic energy transitions. 

Since, in this paper, we are going to consider the strongly non-stationary, resonant dynamic process 

of the energy transfer along the SWNT axis, then the LPTs (and not the NNMs) will be considered. 

The concepts of effective particles and limiting phase trajectories have been extended also to the  

SWNTs, which are finite discrete carbon structures consisting of needle-like microtubules [8]. 
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Smirnov et al. [9] studied the localization of bending vibrations in SWNTs in terms of LPTs. They 

analysed the intensive resonant interaction of zone-boundary and nearest modes leading to loss of 

stability and effective confinement of the energy in one part of the system (localization threshold). 

Smirnov et al. [10] considered the energy exchange and localization in SWNTs for circumferential 

flexural oscillations. The origin of weak energy localization was clarified by means of LPTs. The 

analytical results were confirmed by comparisons with numerical approach and MD simulations. 

Because of their nanoscale size, it is very difficult to investigate the mechanical properties of the 

nanotubes by using experimental techniques, which require the use of high-resolution transmission 

electron microscopes. On the other hand, it was found that molecular dynamics (MD) simulations 

provide good predictions of the mechanical behaviour of CNTs under external forces, with results 

close to the experiments [11]. 

The analogies between the continuous shells and the discrete SWNTs led to a very large application 

of the elastic shell theories for the SWNT structural analysis. 

Liew and Wang [12] investigated the wave propagation in SWNTs via two different elastic shell 

theories, i.e., Love’s thin cylindrical shell theory and Cooper-Naghdi thick cylindrical shell theory, 

the last one taking into account also the shear and inertia effects. 

Wang et al. [13] studied static buckling and free vibrations of simply supported SWNTs comparing 

the results of the Donnell shallow shell theory and the simplified Flugge thin shell theory with the 

results of the exact Flugge thin shell theory, which retains all the three displacement fields. 

Silvestre [14] investigated the buckling behaviour of clamped SWNTs under external torsion using 

the Donnell shallow shell theory and the Sanders-Koiter thin shell theory in a wide range of aspect 

ratios, diameters and chiralities. 

Hu et al. [15] investigated the transverse and torsional wave propagations in SWNTs by comparing 

the results of a nonlocal elastic shell model based on the Eringen’s parameter and the results of the 

classical Donnell and Sanders thin shell theories. 

Silvestre et al. [16] used the Donnell shallow shell and Sanders-Koiter thin shell theories to study 

the buckling behaviour and relative mode shapes of axially compressed simply supported SWNTs 

presenting a small aspect ratio. 

Strozzi et al. [17] studied the low-frequency linear vibrations of SWNTs in the framework of the 

Sanders-Koiter thin shell theory. Two approaches, based on numerical and analytical models, were 

compared. Several types of SWNTs were analysed by varying aspect ratio and chirality. 

Other relevant studies on CNTs nonlinear vibrations and instability can be found in Refs. [18-28]. 

In this paper, the discrete SWNTs are modelled as continuum elastic thin circular cylindrical shells 

considering equivalent mechanical parameters, and the nonlinear dynamics of the SWNTs is studied 
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by considering the Sanders-Koiter nonlinear thin shell theory; it must be clearly pointed out that the 

present paper starts from the Sanders-Koiter linear shell theory and corresponding numerical results 

reported in Ref. [17], extending the theory and numerical results to the nonlinear field. 

A deep dissertation on the nonlinear vibrations of cylindrical shells can be found in Refs. [29-32]. 

In particular, the effect of the boundary conditions on the nonlinear vibrations of circular cylindrical 

shells has been intensely investigated in the pertinent literature in the past years. 

Kurylov and Amabili [33] studied the nonlinear vibrations of clamped-free cylindrical shells with 

geometric imperfection. The Sanders-Koiter shell theory was used to study the nonlinear dynamics. 

An energy approach based on Lagrange equations was applied to obtain the equations of motion. 

Pellicano [34] investigated the nonlinear vibrations of cylindrical shells by means of the Sanders-

Koiter shell theory. Simply supported and clamped boundary conditions were considered, as well as 

connections with rigid bodies; in the latter case, experiments were carried out. 

Amabili [35] considered the nonlinear vibrations of cylindrical shells subjected to a radial harmonic 

excitation. Simply supported shells with allowed and constrained axial displacements at the edges 

were studied. The Donnell and Novozhilov thin shell theories were applied. 

Zhang et al. [36] used the local adaptive differential quadrature method for the nonlinear vibrations 

study of simply supported, clamped and free cylindrical shells. The nonlinear equations of motion 

were formulated by means of the Goldenveizer-Novozhilov shell theory. 

Kurylov and Amabili [37] studied the geometrical nonlinear forced vibrations of cylindrical shells 

by considering the Sanders-Koiter shell theory. Simply supported and clamped boundary conditions 

were investigated. The Lagrangian approach was applied to obtain the equations of motion. 

Strozzi and Pellicano [38-39] analysed the nonlinear vibrations of functionally graded cylindrical 

shells for simply supported, clamped and free boundary conditions. The Sanders-Koiter shell theory 

was applied to describe the nonlinear dynamics of the shell subjected to a harmonic external load. 

In the present paper, the nonlinear vibrations and energy exchange of SWNTs are investigated. The 

SWNT dynamics is studied within the framework of the Sanders-Koiter theory. The circumferential 

flexural modes (CFMs) are evaluated. The SWNT deformation is described in term of longitudinal, 

circumferential and radial displacement fields. Simply supported, clamped and free boundary 

conditions are examined. Two different approaches are proposed, based on numerical and analytical 

models. In the numerical model, the three displacement fields are expanded in nonlinear field by 

using approximate linear eigenfunctions. An energy method based on the Lagrange equations is 

used to reduce the nonlinear partial differential equations of motion to a set of nonlinear ordinary 

differential equations, which is solved by using the implicit Runge-Kutta numerical method. In the 

analytical model, a reduced form of the Sanders-Koiter theory assuming small circumferential and 
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tangential shear deformations is considered. A fourth-order nonlinear partial differential equation of 

motion for the radial displacement field is derived, which allows the effect of the nonlinearity for 

the different boundary conditions to be estimated. An analytical solution of this differential equation 

of motion is obtained applying the multiple scales method. In the second part of the present paper, 

the transition from energy beating to energy localization in the nonlinear field is investigated; the 

concept of energy localization is introduced, which represents a strongly nonlinear phenomenon.  

In the case of small amplitude initial energy, a periodic energy exchange between the two halves of 

the nanotube takes place. The nonlinear oscillations of the SWNT become localized when the initial 

excitation intensity exceeds some energy threshold which depends on the length of the SWNT; the 

amplitude of the smallest initial excitation, corresponding to the energy confinement in one half of 

the nanotube axis, is called energy localization threshold. In this paper, the transition from energy 

beating to energy localization in SWNTs is investigated using numerical and analytical approaches, 

where the analytical approach is based on the LPTs concept. The effect of the SWNT aspect ratio 

on the analytical and numerical values of the energy localization threshold is investigated; different 

boundary conditions are evaluated. 
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2. Sanders-Koiter nonlinear shell theory 

First of all, it is very important to underline that the present paper starts from the results obtained in 

the linear field reported in Ref. [17], and extends these analyses to the nonlinear field. 

In Figure 1, a circular cylindrical shell having radius R, length L and thickness h is represented; a 

cylindrical coordinate system (O; x, θ, z) is considered where the origin O of the reference system is 

located at the centre of one end of the shell. In Figure 1, three displacement fields are represented: 

longitudinal u (x, θ, t), circumferential v (x, θ, t) and radial w (x, θ, t); the radial displacement field 

w is considered positive outward; (x, θ) are the longitudinal and angular coordinates of an arbitrary 

point on the middle surface of the shell; z is the radial coordinate along the thickness h; t is the time. 

 

 

Figure 1. Geometry of the circular cylindrical shell. 

(a) Complete shell; (b) cross-section of the shell surface. 

 

2.1. Displacement fields and strain-displacement relationships 

The nondimensional displacement fields ( , , )u v w  can be written in the following form [17] 

 

u
u

R
=  

v
v

R
=  

w
w

R
=  (1)  

 

where (u,v,w) are the dimensional displacement fields and R is the radius of the carbon nanotube. 
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The nondimensional middle surface strains of the shell ,0 ,0 ,0( , , )x x     are expressed as [38] 

 

2 2

2

,0

1 1

2 8
x

u w v u
   

   

      
= + + −   

      
 (2)  

22

,0

1 1

2 8

v w u v
w v 

   

     
= + + − + −  
      

 (3)  

,0x

u v w w
v  

   

    
= + + − 
    

 (4)  

 

where η = x/L is the nondimensional longitudinal coordinate of the shell and α = R/L. 

The nondimensional middle surface changes in curvature and torsion of the shell ( , , )x xk k k   
are 

given by [17] 

 

2
2

2x

w
k 




= −


 

2

2

v w
k

 

 
= −
 

 

2 3 1
 2

2 2
x

w v u
k   

   

  
= − + −

   
 (5)  

 

It should be underlined that in equations (2)-(3)-(4) the nonlinear terms are considered, while they 

are neglected in equation (5). According to the Sanders-Koiter nonlinear shell theory, the middle 

surface strains (equations 2-4) contain both linear and nonlinear terms, while the middle surface 

changes in curvature and torsion (equation 5) are linear [31]. On the other hand, according to the 

Novozhilov and Flugge-Lur’e-Byrne nonlinear shell theories, the nonlinear terms in changes in 

curvature and torsion are retained [31]. It was demonstrated that numerical results for the nonlinear 

vibrations obtained by Sanders-Koiter, Flugge-Lur’e-Byrne and Novozhilov nonlinear shell theories 

in the specific case of thin shells (as investigated in the present paper) are extremely close, see Ref. 

[32] for more details. 

 

2.2. Force and moment resultants 

The nondimensional force ( , , , , x x xN N N Q Q   ) and moment ( , , x xM M M  ) resultants are written 

in the following form [17] 

 

,0 ,0x xN  = +  ,0 ,0xN  = +  ,0

(1 )

2
x xN  




−
=  
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, , ,

(1 )
( )

2
x x x x xQ k k k  


 

−
= + +  

, , ,

(1 )

2
x x xQ k k k    


 

−
= + +  (6)  

x xM k k= +  
xM k k  = +  

(1 )

2
x xM k 

−
=  

 

 

2.3. Elastic strain energy 

The nondimensional elastic strain energy Ẽ of a cylindrical shell is expressed as follows [17] 

 

1 2

2 2 2

,0 ,0 ,0 ,0 ,02

0 0

1 22
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E d d
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 −  
= + + +  −  

−  
+ + +  

  

 

 

 (7)  

 

where the first term of the right-hand side of equation (7) is the membrane energy (also referred to 

stretching energy) and the second one is the bending energy, with β = h/R. 

 

2.4. Kinetic energy 

The nondimensional time variable τ can be defined by introducing a reference circular frequency ω0 

in the form [17] 

 

0t =
                              0 2 2(1 )

E

R


 
=

−
 (8)  

 

where t is the dimensional time variable and (E, ν, ρ) are the Young’s modulus, Poisson’s ratio and 

mass density of the cylindrical shell. 

The nondimensional velocity fields ' ' '( , , )u v w  can be obtained from the dimensional displacement 

fields ( , , )u v w  and the nondimensional time τ in the following form [17] 

 

' du
u

d
=  ' dv

v
d

=  ' dw
w

d
=  (9)  

 

The nondimensional kinetic energy T of a cylindrical shell is given by [17] 
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1 2
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  = + +   (10)  
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3. Numerical solution of the Sanders-Koiter nonlinear shell theory 

In order to obtain a numerical solution of the SWNT nonlinear dynamics, a two-steps procedure is 

considered: i) the three displacement fields are expanded by using the approximated eigenfunctions 

obtained in linear field; ii) the Lagrange equations are considered in conjunction with the nonlinear 

elastic strain energy in order to obtain a set of nonlinear ordinary differential equations of motion. 

The linear vibration analysis is reported in detail in Ref. [17]. 

 

3.1. Nonlinear vibration analysis 

In the nonlinear vibration analysis, the full expression of the nondimensional elastic strain energy Ẽ 

(7), which contains terms up to the fourth order (cubic nonlinearity), is considered. 

The three displacement fields ( , , )u    , ( , , )v    , ( , , )w    are expanded using the mode shapes 

( , ) ( , )j nU   , ( , ) ( , )j nV   , ( , ) ( , )j nW    obtained in the linear vibration analysis, in the form [38] 

 

( , )

, ,

1 1

( , , ) ( , ) ( )
uN N

j n

u j n

j n

u U f     
= =

=   

( , )

, ,

1 1

( , , ) ( , ) ( )
vN N

j n

v j n

j n

v V f     
= =

=  (11)  

( , )

, ,

1 1

( , , ) ( , ) ( )
wN N

j n

w j n

j n

w W f     
= =

=   

 

where the time laws , , , , , ,( ( ), ( ), ( ))u j n v j n w j nf f f    are unknown functions (step i). 

The mode shapes ( , ) ( , )j nU   , ( , ) ( , )j nV   , ( , ) ( , )j nW    are known functions expressed in terms of 

Chebyshev polynomials and harmonic functions [17], where the index j is used for ordering the 

modes with increasing associated natural frequency and the index n indicates the number of nodal 

diameters; since these mode shapes respect exactly the boundary conditions, then also expansions 

(11) respect exactly the boundary conditions. 

Moreover, the time synchronicity is now relaxed since for each mode j and for each component 

( , , )u v w  different time laws ( )f   are allowed (the linear modes are now decoupled by considering 

the nonlinear time laws). 
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3.2. Lagrange equations 

Expansions (11) are inserted into the expressions of elastic strain energy Ẽ (7) and kinetic energy T

(10); then, the nondimensional Lagrange equations of motion for free vibrations can be expressed in 

the form 

 

'
0

i i

d T E

d q q

  
+ = 

  
 

max[1, ]i N  (12)  

 

where the maximum number of degrees of freedom Nmax depends on the number of vibration modes 

considered in the expansions (11). 

The nondimensional lagrangian coordinates '( , )i iq q  can be written as 

  

i
i

q
q

R
=  ' i

i

dq
q

d
=  

max[1, ]i N  (13)  

 

where the nondimensional lagrangian coordinates iq  correspond to the previous nondimensional 

modal coordinates , , , , , ,( ( ), ( ), ( ))u j n v j n w j nf f f   . 

By substituting the vector functions ( )i iF q E q=    and '' '( )i iMq d T q d=    into equation (12), 

where M  denotes the mass matrix, we obtain 

 

'' ( ) 0i iMq F q+ =  max[1, ]i N  (14)  

 

Introducing the vector function 
1

, ( )x i iF M F q−=  in the equation (14), the nondimensional Lagrange 

equations of motion for free vibrations can be expressed in the following form 

 

''

, 0i x iq F+ =  max[1, ]i N  (15)  

 

Using the Lagrange equations (15), a set of nonlinear ordinary differential equations is obtained; 

these equations must be completed with suitable modal initial conditions on the displacements and 

velocities (step ii). This system of nonlinear equations of motion is solved numerically by using the 

implicit Runge-Kutta method with suitable accuracy, precision and number of steps. 
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4. Analytical solution of the Sanders-Koiter nonlinear shell theory 

In order to obtain an analytical solution of the SWNT nonlinear dynamics, a two-steps procedure is 

considered: i) a reduced form of the Sanders-Koiter nonlinear theory is developed, and a nonlinear 

partial differential equation of motion is obtained for the radial displacement field; ii) the Galerkin 

method is considered in order to obtain a set of nonlinear ordinary differential equations of motion. 

The linear vibration analysis is reported in detail in Ref. [17]. 

 

4.1. Nonlinear vibration analysis 

In the present section, the reduced form of the Sanders-Koiter linear shell theory developed in Ref. 

[17] is extended to the nonlinear field. The nonlinear expansions of the nondimensional longitudinal 

ũ, circumferential ṽ and radial w̃ displacement fields can be written as [17] 

 

0( , , ) ( , ) ( , ) cos( )U Uu n       = +   

( , , ) ( , )sin( )v V n     =  (16)  

0( , , ) ( , ) ( , ) cos( )w W W n       = +   

 

where 0U and 0W describe the axisymmetric component of the longitudinal and radial displacement. 

By neglecting the nondimensional middle surface circumferential normal strain of equation (3) 

 

22

,0

1 1
0

2 8

v w u v
w v 

   

     
= + + − + − =  
      

 (17)  

 

and the nondimensional middle surface tangential shear strain of equation (4) 

 

,0 0x

u v w w
v  

   

    
= + + − = 
      

(18)  

 

the nondimensional longitudinal and circumferential displacement fields can be written as functions 

of the nondimensional radial displacement field in the following form 
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1
( , ) ( , )V W

n
   = −  

2

( , )
( , )

W
U

n

  
 




= −


 

(19)  
2

2

0

2

( , ) ( 1) ( , )

4

U n W

n

    

 

  + 
= −  

  

 

2

2 2 2 2

0 2

1 ( , )
( , ) ( 1) ( , )

4

W
W n W

n

 
    



  
 = − − +  

   

 

 

and the nonlinear partial differential equation of motion for the nondimensional radial displacement 

field ( , )W   is written in the following form (step i) 

 

2 2 2 2 2 2 2 2 2 2 2 4

2 2 2 2 2 2 2 2

( 1) ( 1)( 1 )

12( 1) 6( 1) ( 1)

W n n n n W W
W

n n n n

    

   

 − − − +  
+ − − +

 + +  +  
 

 

2 2
4 4 2 4 2 4 2 4 2 2 2

2 2 4 2 2 2 2 2 2

(12 ) ( 1) 2 ( 1)

12 ( 1) 2 ( 1) ( 1)

n W n W W n W W
W W

n n n n n n

  

    

    +  −   −  
 + + + +   

+  +   +       

 

(20)  
2 2

2 2 2 2 2 2 4

2 2 2 2 2

( 1)
2

2 ( 1) 2 ( 1)

n W W W W W W
W

n n n n

 

       

    −      
− + +     

+         +    

 

2 2 2 3 4 3 2

2 2 2 2 2 2
2 2 0

W W W W W W W W W W

              

             
+ + + =   

                  
 

 

 

4.2. Galerkin procedure 

Assuming that the solution of nonlinear equation (20) under simply supported boundary conditions 

is represented as follows (discretization method) [17] 

 

1 2( , ) ( )sin( ) ( )sin(2 )W f f     = +  (21)  

 

we can get the equations of motion for the modal amplitudes 1 2,f f  by using the Galerkin method. 

As the result, we obtain a set of two nonlinear ordinary differential modal equations for 1 2,f f  (step 

ii) 
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4 4 2 4 ' ' 4 4 2 2 2 2 2 4

2 1 2 1

1 1
( ) 4 ( 1) ( ) ( ) ( ) 3 2 ( 1) 3( 1)

2 8
f n f f f n n            + − + + − + −      

 

' 2 4 4 2 2 2 2 2 4 ' 2 ''

1 1 2 1

1 1
( ) ( ) 4 5 ( 1) ( 1) ( ) ( )

4 8
f f n n f f        + + − + − +    

 

 2 4 4 2 4 2 4 4 2 2 2 2 2 4

2 14 ( ) 4 ( 1) ( ) 3 2 ( 1) 3( 1)f n f n n          + − + + − + − +     

(22)  
4 4 2 2 2 2 2 4 '' 4 4 3

1 2 2 1

1 1
( ) ( ) 8 5 ( 1) 2( 1) ( ) ( )

2 2
f f n n f f          + − + − +    

2 2 2 2 4 4 2 2 2 2 2 2 2 4 2 ''

1 2 1( 1) 2 ( ) ( ) 5 2( 1) ( ) ( )n f f n n n f             − − + − − + + + +      

4 4 2 4 2 2 2 2 2 2 2 2 2 4

1

1
( ) ( 12) 2 ( 1) ( 1) ( 1) 0

12
f n n n n n n         + + − + − + − =   

 

 

4 4 2 4 ' ' 4 4 2 2 2 2 2 4

1 1 2 2

1 1
( ) 4 ( 1) ( ) ( ) ( ) 4 5 ( 1) ( 1)

2 4
f n f f f n n            + − + + − + −      

 

' 2 4 4 2 2 2 2 2 4 ' 2

1 2 2 1 2

1 1
( ) ( ) 48 8 ( 1) 3( 1) ( ) ( ) ( )

8 4
f f n n f f f         + + − + − +    

 

4 4 2 2 2 2 2 4 '' '' 2 4 4 2 4

1 2 1

1
8 5 ( 1) 2( 1) ( ) ( ) 2 ( ) 4 ( 1)

8
n n f f f n           + − + − + + − +     

(23)  

2 4 4 2 2 2 2 2 4 4 4 3 2 2 2 2

2 2( ) 48 8 ( 1) 3( 1) 8 ( ) ( 1) 4f n n f n            + − + − − − − +     

4 4 2 2 2 2 2 2 2 4 2 ''

1 2 22 ( ) ( ) 5 2( 1) (4 ) ( )f f n n n f         − − + + + +    

4 4 2 4 2 2 2 2 2 2 2 2 2 4

2

1
( ) 16 ( 12) 8 ( 1) ( 1) ( 1) 0

12
f n n n n n n         + + − + − + − =   

 

where 
' ( ) ( ) /i if df d  =  and 

'' 2 2( ) ( ) /i if d f d  = . 

This system of nonlinear equations of motion is solved analytically by applying the asymptotic 

expansion and the multiple scales method, see Ref. [10] for more details. 

In this paper, the analytical solution is provided only for the simply supported boundary conditions. 

The analytical solution also for the clamped-clamped and free-free boundary conditions is reported 

in detail in Ref. [10]. 
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5. Transition from energy beating to energy localization in SWNTs 

In this section, the phenomenon of energy localization in SWNTs is introduced. The dynamical 

system is conservative (no damping); as an initial condition, a localized energy in one half of the 

carbon nanotube is given, and it is checked if the energy remains localized forever; different initial 

excitation amplitudes are considered. 

The energy localization is a strongly nonlinear phenomenon, which depends on the amount of the 

energy provided to the carbon nanotube. Indeed, when the initial energy is quite small, a resonant 

interaction of two CFMs having close frequencies takes place and the initial localized energy (initial 

condition) is immediately destroyed, with a periodic redistribution of the energy along the SWNT 

axis; the time scale of this energy redistribution is inversely proportional to the natural frequencies 

difference of the CFMs. This process can be interpreted as the beat between two effective particles, 

each one containing about one half of the SWNT axis: in the case of small amplitude initial energy, 

a periodic energy exchange between the two halves of the carbon nanotube takes place [6]. 

When the amplitude of the initial energy is large enough, the nonlinearity preserves the energy 

localization in the initially excited part of the SWNT [7]. The low-frequency nonlinear oscillations 

of the SWNTs become localized if the amplitude of the initial energy exceeds a certain threshold, 

which depends on the SWNT length (for the same chirality). This localization is due to the intensive 

nonlinear resonant interaction of the two nonlinear normal modes that leads initially to the loss of 

their stability (intended as single nonlinear normal mode stability). The further development of the 

resonant interaction (when the energy is increased) leads to the confinement of the vibration energy 

in one half only of the nanotube. In this case, the beating phenomenon and the energy exchange are 

generally locked and the total energy is trapped in the initial excitation domain. The amplitude of 

the smallest initial excitation, corresponding to the energy confinement in one half of the SWNT 

axis, is called “energy localization threshold” [10]. 

In this section, the transition from energy beating to energy localization is investigated by using 

numerical and analytical approaches; the results are then compared with Molecular Dynamics (MD) 

simulations, for validation. 
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5.1. Numerical method 

Considering the lagrangian coordinates ( )jf   of the expansions (11) and assuming the modal initial 

conditions 1 2(0) (0) (0)f f f= = , the amplitude of the initial excitation (0)X  can be written as [10] 

 

2

1 22

(0)
(0) ( )

2

f
X  


= +  (24)  

 

where the natural small parameter ε denotes the relative difference between the nondimensional 

natural frequencies of the two lowest CFMs 
1 2( , )   [10] 

 

2 1

1

 




−
=  (25)  

 

It should be highlighted that in the present paper the initial velocities are taken equal to zero (the 

modal initial conditions are imposed only on the displacements). 

Once obtained the value of the modal initial conditions on the displacements to which corresponds 

the energy localization on the carbon nanotube axis loc(0)f , by substituting this value in equation 

(24) it is possible to achieve the value of the localization threshold loc(0)X  as 

 

2

loc
loc 1 22

(0)
(0) ( )

2

f
X  


= +  

(26)  

 

where the localization threshold loc(0)X represents the amplitude of the initial external excitation

(0)X  which involves the complete energy localization in one half of the SWNT. 

In Figure 2, the time evolution of the total energy distribution along the axis of a simply supported 

SWNT is reported, the aspect ratio is L/R = 20, the numerical method and equation (24) are used for 

obtaining results: for such carbon nanotube, the numerical value of the energy localization threshold 

is equal to loc(0) 0.14593X = . 

In Figure 2(a), the amplitude of initial excitation is (0) 0.080X =  (lower than the energy threshold), 

and a periodic energy exchange between the two halves of the SWNT axis takes place. It should be 

noted that the initial excitation domain (τ = 0) corresponds to the second half of the nanotube axis 



Nonlinear vibrations and energy exchange of single-walled carbon nanotubes. Circumferential flexural modes 

18 

 

(0.5 ≤ η ≤ 1) (localized initial energy); the time evolution shows that the localization is promptly 

lost and the energy spreads on the first half as well. 

In Figure 2(b), the amplitude of initial excitation is (0) 0.160X = (higher than the energy threshold), 

and an energy localization in the second half of the SWNT axis (initial excitation domain) is given; 

in this case, the time evolution shows that the energy never flows toward the first half of the carbon 

nanotube, and a perfect confinement of energy is manifested. 

 

(a) (b) 

 
 

Figure 2. Time evolution of the total energy distribution along the axis of a simply supported SWNT; L/R = 20; 

numerical method; equivalent parameters of Table 1; energy localization threshold 
loc(0) 0.14593X = . (a) Initial 

excitation amplitude (0) 0.080X = (no localization). (b) Initial excitation amplitude (0) 0.160X = (energy localization). 
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5.2. Analytical method 

Applying the asymptotic expansion and multiple scales analytical method to the general solutions 

(22-23), the following two equations of motion can be obtained [10] 

 

2 2 2 *1
1 1 1 3 2 1 4 2 1 0i a a a


     




+ + + =


 

(27)  
2 2 2 *2

1 2 3 2 1 2 2 2 4 1 2 0i a a a


       



+ + + + =


 

 

where ( 1 ,
2 ) denote the nondimensional complex amplitudes of the two nonlinear normal CFMs,   

( *

1 , *

2 ) are the correspondent complex conjugate amplitudes, ãj are nondimensional coefficients 

depending on SWNT mechanical parameters and 1  is the lower nondimensional natural frequency. 

The energy integral of equations (27) corresponds to the nondimensional Hamiltonian function [10] 

 

( )
2 4 4 2 2 2 *2 *2 2

1 2 1 1 2 2 3 1 2 4 1 2 1 2H a a a a         = + + + + +  (28)  

 

The nondimensional complex amplitudes (
1 2,  ) define the occupation number integral as [9] 

 

2 2

1 2(0)X  = +  (29)  

 

which describes the initial excitation level, similarly to equation (24) of the numerical approach, 

representing a first integral of equation (27). 

The linear combination of the nonlinear normal CFMs 
1 2( , )   defines two new variables 1 2( , ),   

called “effective particles”, which are written in the following form [9] 

 

( )1 1 2

1

2
  = +  ( )2 1 2

1

2
  = −  (30)  

 

and are related to the occupation number integral (0)X in the form [9] 

 

2 2

1 2(0)X  = +  (31)  
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In particular, the effective particles 
1 2( , )  describe the nonlinear dynamics and energy exchange 

of the two halves of the SWNT similarly to some groups of particles in the discrete one-dimensional 

oscillatory chain [6]. 

Really, by considering the energy distribution along the SWNT axis, one can see that such a linear 

combination of normal CFMs describes an energy concentration in a certain region of the SWNT, 

while the other part of the SWNT has a lower energy density; therefore, these regions can be seen 

as elementary blocks, identified as “effective particles”, which demonstrate behaviour similar to a 

system of two weakly coupled oscillators [6]. 

The occupation number integral (0)X  (29) allows the phase space of the SWNT to be reduced up 

to the 2 dimensions (Θ, Δ), where the first variable Θ defines the relative amplitude of the effective 

particles and the second one Δ corresponds to the phase shift between them; therefore, the effective 

particles 
1 2( , )  can be expressed in terms of the amplitude Θ and phase shift Δ as follows [10] 

 

/2

1 (0) cos( ) iX e − =   /2

2 (0) sin( ) iX e =   (32)  

 

Substituting the equations (29), (30), (32) into the equation (28), the nondimensional Hamiltonian 

function H  takes the following expression in terms of the angular variables Θ and Δ [10] 

 

( ) ( )( ) 2

0 4

(0)
( , ) 8 1 cos( )sin(2 ) (0) 2 2cos ( ) cos(2 ) 3 cos(4 )

16

X
H a X a  = −   +  −  −  +


 

(33)

 ( ) ( ) ( ) 2 22

3 2 12cos ( )cos(4 ) cos(2 ) 3 4 cos( )sin(2 ) 1 4 cos( )sin(2 ) 1a a a   −  + +   − +   +


 

 

In Figure 3, two phase portraits describing the total energy vs. the Hamiltonian variables (Θ, Δ) are 

shown, the same SWNT of Figure 2 is considered, results are obtained by considering the analytical 

method and Hamiltonian function (33): for such carbon nanotube, the analytical value of the energy 

localization threshold is equal to loc(0) 0.14283X = . 

In Figure 3(a), the same initial excitation amplitude (0) 0.080X =  of Figure 2(a) is applied (lower 

than energy threshold); two steady states (Δ = 0, Θ = π/4) and (Δ = π , Θ = π/4) are present, which 

correspond to the nonlinear normal CFMs 1 2( , ),  respectively (stationary points); the values (Θ = 

0) and (Θ = π/2) describe the energy concentration on the effective particles 1 2( , ),  respectively. 
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The phase trajectories surrounding the stationary points 
1 2( , )   describe the nonlinear dynamics of 

the SWNT; the phase trajectories maximally distant from the stationary points are called “Limiting 

Phase Trajectories” (LPTs). 

In this phase portrait, the motion along the LPTs describes the energy exchange between the two 

effective particles 1 2( , ),  which corresponds to the energy beating between the two halves of the 

SWNT axis. 

In particular, the lower effective particle 1 ( 0= ) corresponds to the first half (0 ≤ η ≤ 0.5) of the 

SWNT axis; the upper effective particle 
2 ( / 2= ) corresponds to the second half (0.5 ≤ η ≤ 1) 

of the SWNT axis. 

By supposing that the initial excitation domain (τ = 0) corresponds to the upper effective particle 

2  (localized initial energy), from Figure 3(a) it can be seen that, in the case of small amplitude 

initial energy, a periodic energy exchange between the two effective particles (each one contains 

about one half of the SWNT axis) takes place; in this specific dynamic state, the energy distribution 

along the SWNT axis is the most non-uniform one (energy beating phenomenon between the two 

parts of the SWNT). 

In Figure 3(b), the same initial excitation amplitude (0) 0.160X =  of Figure 2(b) is applied (higher 

than energy threshold); the steady state (Δ = π , Θ = π/4) is present, which corresponds to the higher 

frequency nonlinear normal CFM
2 (second initial stationary point); two additional steady states (Δ 

= 0, Θ = 3π/16) and (Δ = 0, Θ = 5π/16) arise, as the result of the instability of the lower frequency 

nonlinear normal CFM 1  (first initial stationary point), which are called '

1  and ''

1 , respectively; 

the two effective particles 1 ( 0= ) and 
2 ( / 2= ) are still present. 

By supposing that the initial excitation domain (τ = 0) corresponds to the upper effective particle 

2 (localized initial energy), from Figure 3(b) it can be seen that in the case of high amplitude initial 

energy, a complete energy localization in the upper effective particle (initial excitation domain) is 

present, which corresponds to the second half of the nanotube axis: any limiting phase trajectory, 

starting from the upper effective particle 
2  (initial excitation), cannot reach the lower one 1 . 

In this specific dynamic state, the energy distribution along the SWNT axis is the most uniform one 

(energy localization phenomenon in the initial excited part of the SWNT): the beating phenomenon 

and energy exchange are locked, where the total energy is trapped in the initial excitation domain. 

It is to be reminded that the amplitude of the smallest initial excitation, corresponding to the energy 

confinement in one half of the SWNT axis, is called “energy localization threshold” [10]. 
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(a) (b) 

 

 

 

 

 

 

 

 

 

 

Figure 3. Total energy vs. the Hamiltonian variables (Θ, Δ); simply supported SWNT; L/R = 20; analytical method; 

equivalent parameters of Table 1; energy localization threshold 
loc(0) 0.14283X = . (a) Initial excitation amplitude 

(0) 0.080X = (no localization). (b) Initial excitation amplitude (0) 0.160X = (energy localization). 
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5.3. Molecular Dynamics (MD) simulations 

In order to verify the results of the numerical and analytical approaches on the nonlinear transition 

from energy beating to energy localization in SWNTs, Molecular Dynamics (MD) simulations were 

performed; realistic inter-atomic potential functions were considered for the calculation of the total 

potential energy of the system; force fields containing the energies of the covalent C-C bonding, 

valence and torsion angle deformation, Van-der-Waals interaction were applied. 

The MD simulations were divided into subsequent stages. At the first stage, the SWNT was kept at 

approximately 400K in order to obtain a high-temperature structural relaxation. At the second stage, 

the temperature of the SWNT was decreased with a constant rate down to approximately 1K with a 

subsequent low-temperature structural relaxation. The third stage dealt with the SWNT deformation 

according to the analytical solution (21) with subsequent structural relaxation (initial conditions on 

the displacements); the second version of the initial conditions consisted in the determination of the 

initial velocities of atoms at zero initial displacements. After these stages, the external fields were 

turned off allowing free SWNT oscillations. In accordance with the analytical description (21), the 

atoms at the SWNT edges were fixed against radial displacements in order to respect the imposed 

simply supported boundary conditions.  

In Figure 4, the time evolution of the total energy distribution along the axis of a simply supported 

SWNT is shown, the nanotube is the same of Figure 2, different values of the oscillation amplitude 

(initial excitation) are considered; the SWNT is divided into 60 elementary rings (1 ≤ Z ≤ 60), each 

of them containing 40 carbon atoms. 

When the initial excitation is lower that the value of localization threshold, Figure 4(a), a periodic 

energy exchange between the two halves of the SWNT axis takes place (energy beating). 

When the initial excitation is higher that the value of localization threshold, Figure 4(b), an energy 

localization takes place in one half of the SWNT axis (initial excitation domain). 

Therefore, the MD simulations confirm the results of the numerical and analytical approaches in the 

nonlinear field, see Ref. [10] for more details on the MD simulations techniques and inter-atomic 

potential functions. 
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(a) (b) 

 
 

Figure 4. Time evolution of the total energy distribution along the axis of a simply supported SWNT; L/R = 20; MD 

simulations; equivalent parameters of Table 1; energy localization threshold 
loc(0) 0.14593X = . (a) Initial excitation 

amplitude (0) 0.130X = (no localization). (b) Initial excitation amplitude (0) 0.160X = (energy localization). 
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6. Numerical results 

The mechanical parameters of the SWNT analysed in this paper are shown in Table 1. 

In Table 2, comparisons between natural frequencies obtained using the Sanders-Koiter continuum 

thin shell theory and MD simulations [11] are reported. 

A nonlinear convergence analysis is carried out for the numerical method in order to select the 

correct number of axisymmetric and asymmetric modes; different nonlinear modal expansions and 

boundary conditions are analysed. 

The analytical and numerical values of the nonlinear energy localization threshold are estimated for 

different aspect ratios of the SWNT; the influence of the boundary conditions is investigated. 

 

Young’s modulus E [TPa] 5.5 

Poisson’s ratio ν 0.19 

Mass density ρ [kg/m3] 11700 

Thickness h [nm] 0.066 

Radius R [nm] 0.786 

Table 1. Mechanical parameters of the SWNT [17]. 
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Natural frequency (THz) Difference % 

L = 5.614 nm SKT – Present model MDS – Ref. [11]  

first mode 0.0827 0.0793 4.34 

second mode 0.4741 0.4486 5.68 

third mode 1.1854 1.1139 6.42 

fourth mode 2.0565 1.9134 7.48 

fifth mode 3.0082 2.7802 8.20 

L = 14.16 nm SKT – Present model MDS – Ref. [11]  

first mode 0.0142 0.0138 3.25 

second mode 0.0828 0.0794 4.26 

third mode 0.2241 0.2138 4.81 

fourth mode 0.4297 0.4069 5.61 

fifth mode 0.6808 0.6414 6.15 

L = 23.96 nm SKT – Present model MDS – Ref. [11]  

first mode 0.0047 0.0046 2.17 

second mode 0.0290 0.0282 2.84 

third mode 0.0803 0.0778 3.21 

fourth mode 0.1551 0.1495 3.74 

fifth mode 0.2541 0.2441 4.10 

Table 2. Natural frequencies of the clamped-free SWNT with radius R = 0.339 nm and different lengths L. 

Comparisons between Sanders-Koiter shell theory (SKT) and Molecular Dynamics Simulations (MDS). 

 

In Table 2, comparisons between the natural frequencies of a clamped-free SWNT with radius R = 

0.339 nm and different lengths L obtained by using the Sanders-Koiter continuum thin shell theory 

and MD simulations are reported; these comparisons allow the classical continuum thin shell theory 

applied in the present work to be validated in the linear field by means of MD simulations results 

retrieved from the pertinent literature [11]. 
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6.1. Nonlinear convergence analysis 

The first step of the nonlinear analysis for the numerical approach is the convergence check in terms 

of the modal expansions (11); it is carried out on SWNTs with L/R = 20 and different boundary 

conditions, in order to select the correct number and type of vibration modes providing an accurate 

result in nonlinear field. 

An initial two-mode approximation involves: i) the resonant modes (1,2) and (2,2) for the simply 

supported and clamped boundary conditions; ii) the resonant modes (0,2) and (1,2) for the free-free 

boundary conditions. The convergence is then checked by adding suitable modes to the resonant 

ones, i.e., asymmetric modes with higher wave numbers (quadratic and cubic nonlinearities) and 

axisymmetric modes (quadratic nonlinearities). 

The convergence is reached with a 24 dof model (Tables 3-8), described in the following, which is 

assumed as reference model; the percentage root mean square time domain error (ERRORRMS%) is 

adopted as convergence parameter, which is expressed by the following formula: 

 

( ) ( )
2

24

RMS

240

1
ERROR % 100

max( ( ))

T

nq q
d

T q

 




− 
=  

 
  (34)  

 

where: ( )nq   denotes the sum of the radial time histories of the resonant modes; 24max( ( ))q   is the 

maximum value of parameter 24 ( )q  ; T is a suitably long nondimensional time ( 2000T = ). 

In Figures 5-6 and Tables 3-4, the convergence analysis for the numerical method in the case of 

simply supported boundary conditions is reported. Time histories and energy distributions obtained 

by considering nonlinear modal expansions with different degrees of freedom are compared for the 

aspect ratio L/R = 20. The corresponding energy localization threshold is loc(0) 0.14593X = and the 

modal expansion with 24 dof is assumed as the reference (ERRORRMS% = 0). 

In Figure 5 and Table 3 the initial excitation amplitude (0) 0.140X =  is considered (lower than the 

threshold, loc(0) (0)X X ). All the considered models converge to a nonlinear behaviour which is 

very similar to the 24 dof modal expansion with a right energy beating. 

In Figure 6 and Table 4 the initial excitation amplitude (0) 0.150X =  is considered (higher than the 

threshold, loc(0) (0)X X ). The 8 dof model shows a nonlinear behaviour very different from the 

24 dof one, with a wrong energy beating; conversely, models from 14 to 22 dof converge to a 

nonlinear behaviour very similar to the 24 dof modal expansion, with an energy localization. 
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From the previous analyses, it can be observed that 16-22-24 dof expansions behave quite similarly 

and the smallest expansion able to predict the dynamics with acceptable accuracy is the 16 dof 

model (ERRORRMS% = 5÷6). The main weakness of 8 dof model is the insufficient number of 

asymmetric and axisymmetric modes, which are very important for properly modelling the bending 

deformation – asymmetric modes (1,4),(2,4) – and the circumferential stretching – axisymmetric 

mode (2,0) – during the modal vibration. A similar behaviour has been obtained for the 

convergence analysis of nonlinear amplitude-frequency curves of FGM circular cylindrical shells, 

see Ref. [38], where it was confirmed that, in nonlinear field, the axisymmetric modes play a role of 

primary importance. 

 

 

(j,n) (1,2) (2,2) (3,2) (1,4) (2,4) (3,4) (1,0) (2,0) (3,0) ERRORRMS% 

8 dof model u, v, w u, v, w – – – – u, w – – 14.01 

14 dof model u, v, w u, v, w – u, v, w u, v, w – u, w – – 8.93 

16 dof model u, v, w u, v, w – u, v, w u, v, w – u, w u, w – 4.70 

22 dof model u, v, w u, v, w u, v, w u, v, w u, v, w u, v, w u, w u, w – 1.89 

24 dof model u, v, w u, v, w u, v, w u, v, w u, v, w u, v, w u, w u, w u, w  

Table 3. Convergence analysis. Numerical method. Nonlinear modal expansions (11). ERRORRMS% in time domain. 24 

dof model reference. Simply supported boundary conditions. Aspect ratio L/R = 20. Initial amplitude
loc(0) (0)X X . 

 

 

(j,n) (1,2) (2,2) (3,2) (1,4) (2,4) (3,4) (1,0) (2,0) (3,0) ERRORRMS% 

8 dof model u, v, w u, v, w – – – – u, w – – 82.22 

14 dof model u, v, w u, v, w – u, v, w u, v, w – u, w – – 12.75 

16 dof model u, v, w u, v, w – u, v, w u, v, w – u, w u, w – 5.68 

22 dof model u, v, w u, v, w u, v, w u, v, w u, v, w u, v, w u, w u, w – 2.51 

24 dof model u, v, w u, v, w u, v, w u, v, w u, v, w u, v, w u, w u, w u, w  

Table 4. Convergence analysis. Numerical method. Nonlinear modal expansions (11). ERRORRMS% in time domain. 24 

dof model reference. Simply supported boundary conditions. Aspect ratio L/R = 20. Initial amplitude loc(0) (0)X X . 
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Case Time history Energy distribution 
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Figure 5. Convergence analysis. Numerical method. Nonlinear modal expansions (11). Simply supported boundary 

conditions. Aspect ratio L/R = 20. 
loc(0) (0)X X  “▬”, 8 dof. “▬”, 14 dof. “▬”, 16 dof. “▬”, 22 dof. “▬”, 24 dof. 
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Case Time history Energy distribution 
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Figure 6. Convergence analysis. Numerical method. Nonlinear modal expansions (11). Simply supported boundary 

conditions. Aspect ratio L/R = 20. 
loc(0) (0)X X  “▬”, 8 dof. “▬”, 14 dof. “▬”, 16 dof. “▬”, 22 dof. “▬”, 24 dof. 
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In Figures 7-8 and Tables 5-6, the convergence analysis for the numerical method in the case of 

clamped-clamped boundary conditions is reported. Time histories and energy distributions obtained 

by considering different expansions are compared for the aspect ratio L/R = 20. The corresponding 

energy localization threshold is loc(0) 0.17020X =  and the modal expansion with 24 dof is assumed 

as the reference (ERRORRMS% = 0). 

In Figure 7 and Table 5 the initial excitation amplitude (0) 0.160X =  is considered (lower than the 

threshold, loc(0) (0)X X ). All models converge to a nonlinear behaviour very similar to the 24 dof 

model, with an energy beating. 

In Figure 8 and Table 6 the initial excitation amplitude (0) 0.180X =  is considered (higher than the 

threshold, loc(0) (0)X X ). The 8 dof model shows a nonlinear behaviour very different from the 

24 dof one, with a wrong energy beating; conversely, the higher-order models from 14 to 22 dof 

converge to a nonlinear behaviour very similar to the 24 dof model, with an energy localization. 

Similarly to the case of simply supported boundary conditions, from the previous analyses it can be 

observed that, also in the case of clamped edges, the 16-22-24 dof expansions behave quite 

similarly and the smallest expansion able to predict the dynamics with acceptable accuracy is the 16 

dof model (ERRORRMS%= 5÷6). 
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(j,n) (1,2) (2,2) (3,2) (1,4) (2,4) (3,4) (1,0) (2,0) (3,0) ERRORRMS% 

8 dof model u, v, w u, v, w – – – – u, w – – 15.64 

14 dof model u, v, w u, v, w – u, v, w u, v, w – u, w – – 9.41 

16 dof model u, v, w u, v, w – u, v, w u, v, w – u, w u, w – 4.82 

22 dof model u, v, w u, v, w u, v, w u, v, w u, v, w u, v, w u, w u, w – 2.01 

24 dof model u, v, w u, v, w u, v, w u, v, w u, v, w u, v, w u, w u, w u, w  

Table 5. Convergence analysis. Numerical method. Nonlinear modal expansions (11). ERRORRMS% in time domain. 24 

dof model reference. Clamped-clamped boundary conditions. Aspect ratio L/R = 20. Initial amplitude
loc(0) (0)X X . 

 

 

(j,n) (1,2) (2,2) (3,2) (1,4) (2,4) (3,4) (1,0) (2,0) (3,0) ERRORRMS% 

8 dof model u, v, w u, v, w – – – – u, w – – 85.48 

14 dof model u, v, w u, v, w – u, v, w u, v, w – u, w – – 13.71 

16 dof model u, v, w u, v, w – u, v, w u, v, w – u, w u, w – 5.92 

22 dof model u, v, w u, v, w u, v, w u, v, w u, v, w u, v, w u, w u, w – 2.76 

24 dof model u, v, w u, v, w u, v, w u, v, w u, v, w u, v, w u, w u, w u, w  

Table 6. Convergence analysis. Numerical method. Nonlinear modal expansions (11). ERRORRMS% in time domain. 24 

dof model reference. Clamped-clamped boundary conditions. Aspect ratio L/R = 20. Initial amplitude
loc(0) (0)X X . 
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Case Time history Energy distribution 
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Figure 7. Convergence analysis. Numerical method. Nonlinear modal expansions (11). Clamped-clamped boundary 

conditions. Aspect ratio L/R = 20. 
loc(0) (0)X X  “▬”, 8 dof. “▬”, 14 dof. “▬”, 16 dof. “▬”, 22 dof. “▬”, 24 dof. 
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Case Time history Energy distribution 
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Figure 8. Convergence analysis. Numerical method. Nonlinear modal expansions (11). Clamped-clamped boundary 

conditions. Aspect ratio L/R = 20. 
loc(0) (0)X X  “▬”, 8 dof. “▬”, 14 dof. “▬”, 16 dof. “▬”, 22 dof. “▬”, 24 dof. 
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In Figures 9-10 and Tables 7-8, the convergence analysis for the numerical method in the case of 

free-free boundary conditions is reported. Time histories and energy distributions obtained by 

considering different expansions are compared for the aspect ratio L/R = 20. The corresponding 

energy localization threshold is loc(0) 0.07065X =  and the modal expansion with 24 dof is assumed 

as the reference (ERRORRMS% = 0). 

In Figure 9 and Table 7 the initial excitation amplitude (0) 0.060X =  is considered (lower than the 

threshold, loc(0) (0)X X ). All models converge to a nonlinear behaviour very similar to the 24 dof 

model, with an energy beating. 

In Figure 10 and Table 8 the initial excitation amplitude (0) 0.080X =  is considered (higher than the 

threshold, loc(0) (0)X X ). The 8 dof model shows a nonlinear behaviour very different from the 

24 dof one, with a wrong energy beating; conversely, the higher-order models from 14 to 22 dof 

converge to a nonlinear behaviour very similar to the 24 dof model, with an energy localization. 

Similarly to the case of simply supported and clamped boundary conditions, it can be observed that, 

also in the case of free edges, the 16-22-24 dof expansions behave quite similarly and the smallest 

expansion able to predict the dynamics with acceptable accuracy is the 16 dof model (ERRORRMS% 

≈ 5). 
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(j,n) (0,2) (1,2) (2,2) (0,4) (1,4) (2,4) (0,0) (1,0) (2,0) ERRORRMS% 

8 dof model u, v, w u, v, w – – – – u, w – – 12.42 

14 dof model u, v, w u, v, w – u, v, w u, v, w – u, w – – 8.37 

16 dof model u, v, w u, v, w – u, v, w u, v, w – u, w u, w – 4.58 

22 dof model u, v, w u, v, w u, v, w u, v, w u, v, w u, v, w u, w u, w – 1.78 

24 dof model u, v, w u, v, w u, v, w u, v, w u, v, w u, v, w u, w u, w u, w  

Table 7. Convergence analysis. Numerical method. Nonlinear modal expansions (11). ERRORRMS% in time domain. 24 

dof model reference. Free-free boundary conditions. Aspect ratio L/R = 20. Initial amplitude
loc(0) (0)X X . 

 

 

(j,n) (0,2) (1,2) (2,2) (0,4) (1,4) (2,4) (0,0) (1,0) (2,0) ERRORRMS% 

8 dof model u, v, w u, v, w – – – – u, w – – 79.08 

14 dof model u, v, w u, v, w – u, v, w u, v, w – u, w – – 11.82 

16 dof model u, v, w u, v, w – u, v, w u, v, w – u, w u, w – 5.40 

22 dof model u, v, w u, v, w u, v, w u, v, w u, v, w u, v, w u, w u, w – 2.27 

24 dof model u, v, w u, v, w u, v, w u, v, w u, v, w u, v, w u, w u, w u, w  

Table 8. Convergence analysis. Numerical method. Nonlinear modal expansions (11). ERRORRMS% in time domain. 24 

dof model reference. Free-free boundary conditions. Aspect ratio L/R = 20. Initial amplitude
loc(0) (0)X X . 
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Case Time history Energy distribution 
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Figure 9. Convergence analysis. Numerical method. Nonlinear modal expansions (11). Free-free boundary conditions. 

Aspect ratio L/R = 20. loc(0) (0)X X  “▬”, 8 dof. “▬”, 14 dof. “▬”, 16 dof. “▬”, 22 dof. “▬”, 24 dof. 
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Case Time history Energy distribution 
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Figure 10. Convergence analysis. Numerical method. Nonlinear modal expansions (11). Free-free boundary conditions. 

Aspect ratio L/R = 20. loc(0) (0)X X  “▬”, 8 dof. “▬”, 14 dof. “▬”, 16 dof. “▬”, 22 dof. “▬”, 24 dof. 
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From all the three convergence analyses, it can be deduced that the 16 dof models (Tables 3-8) 

provide satisfactory results with minimal computational effort; therefore, in the following the 16 dof 

models of Figures 5-10 will be used. 

The main result of the present convergence analysis is the following: using an insufficient modal 

expansion leads to a wrong nonlinear behaviour; in particular, the energy localization phenomenon 

can be lost. 

The previous considerations suggest that the following 16 dof model should be used for studying 

the resonant circumferential flexural modes (j,n), (j+1,n): 

 

• modes (j,n), (j+1,n), (j,2n), (j+1,2n), (j,0), (j+1,0) for the longitudinal displacement field u 

• modes (j,n), (j+1,n), (j,2n), (j+1,2n) for the circumferential displacement field v 

• modes (j,n), (j+1,n), (j,2n), (j+1,2n), (j,0), (j+1,0) for the radial displacement field w 

 

with j = 1 in the case of simply supported and clamped-clamped SWNTs, j = 0 in the case of free-

free SWNTs, and n = 2 (circumferential flexural modes). 

After selecting these modes, the longitudinal and radial expansions of equations (11) are reduced to 

a six-term model, while the circumferential expansion is reduced to a four-term model; the resulting 

nonlinear system has therefore a total number of 16 dof. 
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6.2. Energy localization threshold 

In this section, analytical and numerical estimations of the nonlinear energy localization threshold 

are compared for different boundary conditions. The comparisons are carried out in the specific 

interval of aspect ratios λ = 20÷90, since for the aspect ratios λ < 20 and λ > 90 the present analysis 

is not valid (the assumptions of the reduced Sanders-Koiter shell theory are not applicable, see Ref. 

[17] for more details). 

In the case of simply supported boundary conditions (Figure 11), the correspondence between the 

analytical and numerical methods is very good for the whole interval of aspect ratios. A fast 

increment of the localization threshold in the lower region of aspect ratios λ = 20÷40 is found. The 

localization threshold increment is monotonic with L/R, reaching an horizontal asymptote at λ ≈ 70. 

 

 

 

 

Figure 11. Effect of the aspect ratio on the amplitude of the localization threshold for the SWNT with simply 

supported boundary conditions of Table 1. “--”, analytical method (RSKT); “-■-”, numerical method (CSKT). 
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In the case of clamped-clamped boundary conditions (Figure 12), the correspondence between the 

analytical and numerical methods is good for the whole interval of aspect ratios. The localization 

threshold increases with L/R up to λ = 35, where the frequency ratios ω3,2/ω1,2 and ω2,2/ω1,2 

approach the unity (λ = 30: ω2,2/ω1,2 = 1.032, ω3,2/ω1,2 = 1.118; λ = 40: ω2,2/ω1,2 = 1.012, ω3,2/ω1,2 = 

1.044) and a 1:1:1 weak internal resonance takes place. Then, there is a localization threshold 

decrement up to λ = 40, which is followed by a maximum of localization threshold at λ ≈ 50, where 

the frequency ratios ω3,2/ω2,2 and ω2,2/ω1,2 approach the unity (λ = 45: ω2,2/ω1,2 = 1.009, ω3,2/ω2,2 = 

1.021; λ = 55: ω2,2/ω1,2 = 1.004, ω3,2/ω2,2 = 1.008) and a 1:1:1 strong internal resonance takes place. 

The localization threshold decreases with L/R from λ = 55, achieving an horizontal asymptote at λ ≈ 

80. 

 

 

 

 

Figure 12. Effect of the aspect ratio on the amplitude of the localization threshold for the SWNT with clamped- 

clamped boundary conditions of Table 1. “--”, analytical method (RSKT); “-■-”, numerical method (CSKT). 
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In the case of free-free boundary conditions (Figure 13), the correspondence between the analytical 

and numerical methods is good for the whole interval of aspect ratios. A very slow increment of the 

localization threshold in the lower region of aspect ratios λ = 20÷50 is found. A jump of the 

localization threshold is located at λ = 55, where the frequency ratios ω3,2/ω2,2 and ω2,2/ω1,2 

approach the unity (λ = 50: ω2,2/ω1,2 = 1.0015, ω3,2/ω2,2 = 1.0061; λ = 60: ω2,2/ω1,2 = 1.0010, 

ω3,2/ω2,2 = 1.0036) and a 1:1:1 strong internal resonance takes place. The localization threshold 

increment is then monotonic with L/R. 

 

 

 

 

Figure 13. Effect of the aspect ratio on the amplitude of the localization threshold for the SWNT with free- 

free boundary conditions of Table 1. “--”, analytical method (RSKT); “-■-”, numerical method (CSKT). 
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For all the boundary conditions, the results of the analytical and numerical methods are in perfect 

agreement for λ ≥ 70, since the effect of the boundary conditions can be neglected far from the 

edges. 

In the case of free-free boundary conditions, the value of the localization threshold at λ = 90, Xloc ≈ 

0.146, is lower than the corresponding value for the other two boundary conditions, Xloc ≈ 0.170: in 

the free-free boundary conditions, the combination of resonant modes (0,2) and (1,2) is considered, 

where the uniform vibration mode (0,2) with j = 0 longitudinal half-waves loses its stability at a 

relatively low energy level; on the other hand, in the simply supported and clamped-clamped 

boundary conditions, the resonant modes (1,2) and (2,2) with j = 1 and j = 2 longitudinal half-waves 

are considered, which lose their stability at a relatively high energy level. 
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7. Conclusions 

In this paper, the nonlinear vibrations and energy exchange of SWNTs are studied. The Sanders-

Koiter theory is applied to model the nonlinear dynamics of the system. Simply supported, clamped 

and free boundary conditions are considered. The CFMs are analysed. Two different approaches are 

developed, based on numerical and analytical models. A nonlinear convergence analysis is carried 

out for the numerical method to select the correct number of axisymmetric and asymmetric modes 

providing the effective nonlinear behaviour of the SWNTs. For all the studied boundary conditions, 

an insufficient modal expansion leads to a wrong nonlinear behaviour. On the other hand, the 16 dof 

expansion containing four asymmetric and two axisymmetric modes describes the correct nonlinear 

behaviour with the minimal computational effort. In this nonlinear convergence analysis, it is well 

confirmed the fundamental role of the higher-order asymmetric and axisymmetric modes for 

properly modelling the bending deformation and circumferential stretching of the mode vibration. 

The influence of the aspect ratio on the analytical and numerical values of the energy localization 

threshold is investigated in nonlinear field. For all the considered boundary conditions, the results of 

the analytical and numerical methods almost coincide at the high aspect ratios, since the boundary 

conditions effect can be neglected far from the edges. Moreover, a good correspondence between 

the results of the two approaches is found for the intermediate interval of the aspect ratios, where a 

maximum of the localization threshold in the case of clamped edges and a jump of the localization 

threshold in the case of free edges take place, which are related to internal resonances. Eventually, 

for the free boundary conditions the energy localization threshold at high aspect ratios is lower than 

the correspondent value for the other boundary conditions; indeed, in the case of free-free edges the 

uniform vibrational mode presenting zero longitudinal half-waves loses its stability at relatively low 

energy level. The present paper, which is devoted to the CFMs, could represent a framework also in 

the study of the nonlinear vibrations and energy exchange of the beam-like modes (BLMs) and the 

radial breathing (axisymmetric) modes (RBMs). 
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