
Discrete Applied Mathematics 118 (2002) 13–24

A lower bound for the non-oriented two-dimensional bin
packing problem

Mauro Dell’Amicoa ; ∗, Silvano Martellob, Daniele Vigob
aDISMI, Universit�a di Modena e Reggio Emilia, via Allegri 15, I-42100 Reggio Emilia, Italy

bDEIS, Universit�a di Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy

Received 1 February 2000; received in revised form 1 January 2001; accepted 4 June 2001

Abstract

Given a set of rectangular items, and an unlimited number of identical rectangular bins, we
consider the problem of allocating, without overlapping, all the items to the minimum number of
bins. We assume that the items may be rotated by 90

◦
. The problem is strongly NP-hard, and has

several industrial applications. No speci3c lower bound is known for it. We present a lower bound
which explicitly takes into account the possible item rotation. The bound is embedded into an
exact branch-and-bound algorithm. The average performance is evaluated through computational
experiments. ? 2002 Elsevier Science B.V. All rights reserved.

Keywords: Cutting and packing; Lower bound; Branch-and-bound

1. Introduction

Given a set of n rectangular items, each characterized by width wj and height hj
(j=1; : : : ; n), and an unlimited number of identical rectangular bins, having width W
and height H , the general two-dimensional bin packing problem is to allocate, with-
out overlapping, all the n items to the minimum number of bins. Variants arise in
practical contexts, according to speci3c technological requirements. In this paper, we
consider the case where rotation of the items by 90◦ is allowed, known as Non-Oriented
Two-Dimensional Bin Packing Problem and denoted as 2BP|R|F in the typology in-
troduced by Lodi et al. [9]. The problem arises in several practical contexts: cutting
of wood, metal or glass from standardized stock pieces when the items to be cut have
no texture or decoration, packing of box bases on shelves or truck beds, and so on.

∗ Corresponding author.
E-mail addresses: dellamico@unimo.it (M. Dell’Amico), smartello@deis.unibo.it (S. Martello),

dvigo@deis.unibo.it (D. Vigo).

0166-218X/02/$ - see front matter ? 2002 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(01)00253 -0

14 M. Dell’Amico et al. / Discrete Applied Mathematics 118 (2002) 13–24

The problem is NP-hard in the strong sense, as it generalizes the well-known one-
dimensional bin packing problem. Heuristic algorithms for 2BP|R|F have been
presented by Bengtsson [2], El-Bouri et al. [6] and Lodi et al. [9]. Surveys on cutting
and packing problems have been given by DyckhoG and Finke [4] and Dowsland and
Dowsland [3], and an annotated bibliography by DyckhoG et al. [5].
Apart from the trivial continuous lower bound, which does not take into account

the possibility of rotating the items, to our knowledge no speci3c lower bound is
known for 2BP|R|F (while lower bounds for the case where rotation is not allowed
have been given by Martello and Vigo [11] and by Fekete and Schepers [7]). The
main results that we present here are a speci3cally tailored relaxation and a new
lower bound on the corresponding solution value. Since our relaxation is based on
decomposition of the items into squares, these results are also useful in the spe-
cial cases where the problem is to pack squares (see, e.g., [1,8]). In the next sec-
tion, we describe the relaxation, discuss some implementation details and introduce
the lower bound. In Section 3, we show how a branch-and-bound algorithm from
the literature can be adapted to our problem. The performances of the bound and
of the exact algorithm are evaluated in Section 4 through computational
experiments.
In the following, we will assume, without loss of generality, that all input data are

positive integers and that bins and items are given in “horizontal” orientation, i.e., that
W ¿H and wj¿ hj for j=1; : : : ; n. We further assume, in order to ensure feasibility,
that wj6W and hj6H for j=1; : : : ; n.

2. Lower bounds

The only known lower bound for 2BP|R|F is the obvious continuous lower bound:

LBC =



∑n

j=1 wjhj
WH


 : (1)

It has been proved by Martello and Vigo [11] that the absolute worst-case performance
of LBC is 1

4 , both in the case where rotation of the items is allowed and in the case
it is not. In the same paper, several lower bounds are given for the case where no
rotation is allowed (denoted as 2BP|O|F, where ‘O’ stands for ‘oriented’). Such results,
however, are not valid for our less constrained problem.
A valid lower bound for 2BP|R|F comes from the following relaxation. Given an

instance of the problem, we replace each item by a number of square items obtained
by appropriately cutting it: for the resulting instance, there is no diGerence between
allowing 90◦ rotation or not. The cutting is obtained through the following procedure
which, at each inner iteration, cuts from the current (horizontal) wj × hj rectangle
the maximum number of hj × hj squares, and rotates by 90◦ the residual (vertical)
rectangle, if any. Squares of size one are not produced, as they are of no use in the
subsequent lower bound computations.

M. Dell’Amico et al. / Discrete Applied Mathematics 118 (2002) 13–24 15

(a) (b)

Fig. 1. (a) cutting produced by CUTSQ; (b) cutting with minimum number of squares.

procedure CUTSQ:
JSQ := ∅;
for j := 1 to n do

S := ∅;
while hj ¿ 1 do

k := �wj=hj�;
add k squares of size hj to S;
wj :=wj − khj;
swap wj and hj

end while;
JSQ := JSQ ∪ S

end for
end.

The number of squares produced by CUTSQ is pseudo-polynomial in the worst
case, although, in practical applications, it results to be reasonably small (see the
computational experiments of Section 4). We also observe that the procedure produces,
at each iteration, the largest possible square(s). This is useful, since the lower bound
introduced below has, in general, a better performance when large items have to be
packed. A diGerent possible objective could be to produce squares with high average
area, i.e., to minimize the number of resulting squares. The two objectives determine
diGerent solutions, as shown by the example in Fig. 1, where the rectangle to be cut
has size 70× 60.
Let m= |JSQ| be the number of resulting squares, de3ne M = {1; : : : ; m}, and let

lj (j∈M) be the resulting edge sizes.

De�nition 1. Given an integer value q, 06 q6 1
2H , let (see Fig. 2 for an illustration)

S1 = {j∈M : lj ¿W − q}; (2)

S2 = {j∈M : W − q¿ lj ¿ 1
2W}; (3)

16 M. Dell’Amico et al. / Discrete Applied Mathematics 118 (2002) 13–24

Fig. 2. The item subsets of De3nition 1.

S3 = {j∈M : 1
2W ¿ lj ¿ 1

2H}; (4)

S4 = {j∈M : 1
2H¿ lj¿ q}: (5)

Lemma 2. Let

L̃= |S2|+max

{⌈∑
j∈S3\ RS3 lj
W

⌉
;

⌈
|S3 \ RS3|
� W
�H=2+1��

⌉}
; (6)

where RS3 is the set of the largest items of S3 that can be packed into the bins that
pack the items of S2. A valid lower bound on the number of bins needed for packing
the items of S1 ∪ S2 ∪ S3 is then |S1|+ L̃.

Proof. Remind that W ¿H , and observe that, by de3nition: (i) each item of S1 ∪ S2
requires a separate bin; (ii) no item of S3 can be packed into a bin containing an
item of S1; (iii) no item of S3 can be packed over an item of S2. Moreover, at most
one item of S3 can be packed besides an item of S2, since for an item j of S2 we
have H¿ lj ¿W=2; hence, H ¿W=2 (if S2 is not empty). Set RS3 can thus be easily
determined as follows. Assume that the bins packing the items of S2 are sorted by a
non-increasing value of the residual horizontal space W − lj: assign to the next bin
the largest item of S3 that 3ts, stopping as soon as no such item exists. Observe that
the resulting set RS3 also has the largest possible cardinality. Both values in the ‘max’
term of (6) are thus valid lower bounds on the number of bins needed for the items
of S3 \ RS3. The thesis follows from observation (i) above.

M. Dell’Amico et al. / Discrete Applied Mathematics 118 (2002) 13–24 17

We illustrate Lemma 2 through a numerical example. Let n=15, l1 = l2 = 18, l3 =
l4 = 12, l5 = · · ·= l9 = 11, l10 = · · ·= l15 = 7, W =23, H =20, and q=6. We have
S1 = {1; 2}, S2 = {3; 4}, S3 = {5; : : : ; 9}, S4 = {10; : : : ; 15}, and RS3 = {5; 6}. Hence, L̃=2
+max{
33=23�;
3=2�}=4. Observe that the value |S1|+ L̃ is independent of the value
of q. Note also that, if the items are sorted by non-increasing size, set RS3 can be easily
determined in O(m) time.

Theorem 3. Given an integer value q, 06 q6 1
2H; consider sets S1; : : : ; S4 de<ned by

(2)–(5). A valid lower bound on the optimal solution value is

L(q) = |S1|+ L̃

+max

{
0;

⌈∑
j∈S2∪S3∪S4 l

2
j − (WHL̃−∑

j∈S23 lj(H − lj))
WH

⌉}
; (7)

where S23 = {j∈ S2 ∪ S3: lj ¿H − q} (see again Fig. 2).

Proof. Consider the relaxed instance that includes only the items in S1 ∪ S2 ∪ S3 ∪ S4.
We know from Lemma 2 that |S1|+ L̃ is a lower bound on the number of bins needed
for the items in S1∪S2∪S3. Let |S1|+ L̃+� (where � is a non-negative integer) be the
optimal number of bins needed for the items in S1 ∪ S2 ∪ S3. Consider now an item of
S4, and observe that it cannot be packed in a bin containing an item of S1, nor above
an item of S23. The total area of the L̃ + � bins that is available for these items is
thus WH (L̃+�), decreased by the unavailable area due to the items in S23 (including
the items area) and by the area of the items in (S2 ∪ S3) \ S23. A lower bound on the
number of additional bins needed for the items in S4 is thus

B=max

{
0;

⌈∑
j∈S4 l

2
j − (WH (L̃+ �)− H∑

j∈S23 lj −
∑

j∈(S2∪S3)\S23 l
2
j)

WH

⌉}
;

so an overall lower bound for the instance is |S1|+ L̃+ �+ B. The thesis follows by
algebraic manipulation.

For the previous numerical example we obtain L(6)= 2 + 4+ 0=6 (while the con-
tinuous lower bound gives LBC =
1835=460�=4).

Corollary 4. A valid lower bound for 2BP|R|F is

LB= max
06q6 1

2H

{L(q)} (8)

and can be computed in O(m) time (plus O(m logm) for the item sorting).

Proof. The validity of the bound is immediate from Theorem 3. In order to analyze
the time complexity, we 3rst show that only values of q equal to distinct lj values

18 M. Dell’Amico et al. / Discrete Applied Mathematics 118 (2002) 13–24

need be considered. Given a value q1¡H=2 not equal to any lj value, let la be the
smallest lj value such that q1¡la. Let us consider what happens when the threshold
q increases from q1 to la. Any q value satisfying q16 q6 la induces the same sets
S3 and S4 induced by q1, and may only cause some items to move from S2 to S1. Let
q2 be the smallest value satisfying q1¡q26 la and causing one item, say i, to move
from S2 to S1, i.e., li=W − q2 + 1 (we assume, for the sake of simplicity, that this is
the unique square of size li). Set RS3 induced by q2 (see Lemma 2) is the same induced
by q1, since any item of S3 has size greater than the residual horizontal space (q2− 1)
in the bin that packs item i. It follows that, on increasing the threshold from q1 to q2,
the ‘max’ term in (6) does not change, hence L̃ decreases by 1. Compare now L(q1)
and L(q2): the quantity |S1|+ L̃ is the same, while the variation in the third term of (7)
is non-negative. Indeed: (a) if item i was not in set S23 induced by q1 then S23 does not
change and the variation in the ‘
 �’ term is −l2i =(WH) + 1¿ 0; (b) if item i was in
set S23 induced by q1 then the variation is −l2i =(WH) + 1 − li(H − li)=(WH)¿ 0.
We have thus proved that L(q2)¿L(q) for any q satisfying q16 q6 q2: by it-
erating for higher values q3; q4; : : :6 la, one can conclude that the highest bound
is produced by la. Hence the claim, since only distinct lj values produce diGerent
sets S4.
Once the items are sorted by non-increasing size, the computation of L(l Rm) from

scratch (where Rm is the largest index value such that l Rm6H=2) needs O(m) time. For
each subsequent lj value (by decreasing j), one only needs to update the sets and the
summations needed to compute L̃ and L(lj). Whenever the threshold increases from
lj−1 to lj: (a) some item may leave S4; (b) some (large) item may move from S2
to S1 and, possibly, leave S23; (c) concerning RS3, for each item that moves from S2
to S1, the corresponding (small) residual is no longer available, hence the item of S3
currently matched with such residual (if any) leaves RS3. It follows that the computation
for all lj values can be performed in overall O(m) time.

Lower bound LB dominates the continuous lower bound, see (1), computed over the
relaxed instance. Indeed,

Corollary 5. L(0)¿
∑j∈M l
2
j =(WH)�.

Proof. For q=0 we have S1 = ∅, S2∪S3∪S4 =M and S23 = ∅. It follows that L(0)= L̃+
max{0;
∑j∈M l

2
j =(WH)− L̃�}.

However, LB does not dominate the continuous lower bound LBC computed over
the original instance, since procedure CUTSQ disregards all unit squares. It is then
convenient to set LB to the maximum of the two values. The computational experiments
of Section 4 show that LB is considerably better than LBC.

It is also interesting to observe that, for the speci3c problem of packing squares into
squares (see, e.g., [8]), our lower bound simpli3es considerably:

M. Dell’Amico et al. / Discrete Applied Mathematics 118 (2002) 13–24 19

Corollary 6. If W =H; Eq. (7) simpli<es to

L′(q)= |S1 ∪ S2|+max

{
0;

⌈∑
j∈S2∪S4 l

2
j

W 2 − |S2|
⌉}

:

Proof. It is easy to see that W =H induces S3 = ∅, L̃= |S2| and S23 = ∅. Eq. (9) follows
by algebraic manipulation.

Martello and Vigo [11] gave lower bounds for problem 2BP|O|F, in which rotation
is not allowed: L1 and L2 with time complexity O(n2), and L3 with time complexity
O(n3). These bounds are obviously valid for our relaxed instance. We observe that none
of them dominates lower bound LB, as shown by the following numerical example.
Let n=5, W =H =10, w1 = h1 = 9, w2 = 9, h2 = 8, w3 = 10, h3 = 5, w4 = 10, h4 = 3,

w5 = 7, h5 = 5. By executing procedure CUTSQ we get: m=10, l1 = 9, l2 = 8, l3 =
l4 = 5, l5 = l6 = l7 = 3, l8 = 5, l9 = l10 = 2. For q=3 we have: S1 = {1; 2}, S2 = S3 =
RS3 = S23 = ∅, S4 = {3; : : : ; 8} hence L̃=0 and L(3)= 2+0+
(102−0)=100�=4. By com-
puting the Martello and Vigo [11] lower bounds one obtains instead L1 =L2 =L3 = 3.
We 3nally mention that, for instances with rectangular bins and such that some item

cannot be rotated (i.e., wj ¿H for some j), an alternative bound can be obtained as
follows. Let T = {j: wj ¿H}, apply CUTSQ only to the items of {1; : : : ; n} \ T and
compute, for the instance de3ned by T plus the resulting squares, any lower bound for
2BP|O|F. We used lower bound L4 by Martello and Vigo [11], and improved LB (see
(8)) by setting LB=max{LB; L4}.

3. A branch-and-bound algorithm

In order to test the eGectiveness of lower bound LB of the previous section, we used
a branch-and-bound algorithm for the exact solution of 2BP|R|F, obtained by adapting
the nested branching scheme introduced by Martello and Vigo [11] for 2BP|O|F.
An outer tree assigns the items to the bins without specifying their actual position.

The items are initially sorted according to non-increasing area, and the search is per-
formed according to a depth-3rst strategy: at level k, item k is assigned, in turn, to
all active bins and, possibly, to a new bin. At each decision-node, an inner tree may
be used to determine a feasible single bin packing (if any) for item k and the set
J of items currently assigned to the selected bin. Before executing the inner search,
however, two heuristic attempts are performed. Lower bound LB is 3rst computed for
item set J ∪ {k}: if LB¿ 1, then the decision node is fathomed. Otherwise, simple
approximation algorithms are executed, trying to obtain a packing of J ∪ {k} into
a single bin. If both attempts fail, the inner tree enumerates all possible patterns as
follows.
At the root node of the inner tree, at most 2(|J |+1) descendant nodes are generated

by placing each item, in both orientations, with a vertex in the bottom-left corner

20 M. Dell’Amico et al. / Discrete Applied Mathematics 118 (2002) 13–24

of the bin. At every decision-node, each unassigned item is allocated, in both possible
orientations, to all feasible positions where it cannot be moved leftward or downward.
In order to avoid the duplication of identical patterns, we adapted the approach intro-
duced by Martello et al. [10] for the three-dimensional oriented bin packing problem,
thus reducing the possible points on which to allocate an item vertex to the points
for which no already assigned item has some part right and above the vertex. If no
feasible single bin packing is determined by the inner tree, the outer tree node is
fathomed.
Whenever an outer tree node is not fathomed, lower bound LB is used for trying

to establish that no further item can be assigned to the current bin. We compute LB
for all sub-instances induced, for each unassigned item j, by item set J ∪ {k} ∪ {j}:
the result is established if LB=2 for all j, hence the bin is considered closed. When
a new bin is closed, LB is used again in an additional attempt to fathom the current
node. Let B be the set of closed bins, and J (B) the set of items assigned to these bins:
we compute LB for the sub-instance induced by item set {1; : : : ; n} \ J (B), and fathom
the node if |B|+ LB¿ z, where z is the incumbent solution value.

4. Computational experiments

Lower bound LB and the branch-and-bound algorithm of the previous section were
coded in FORTRAN 77 and run on a Digital Alpha 533 MHz. Computational exper-
iments on two-dimensional bin packing problems (see, e.g., Martello and Vigo [11])
show that randomly generated instances are generally harder to solve exactly than
real-world ones. Therefore, we tested our bound and the branch-and-bound algorithm
on random instances, generated so as to consider diGerent bin types (square and rect-
angular) and item characteristics.
We considered nine classes of instances, subdivided into three groups. Group 1

involves square bins with W =H =100. The items are generated in three classes by
increasing average area:
Class 1.1: wj; hj uniformly random in [10; 100];
Class 1.2: wj; hj uniformly random in [20; 100];
Class 1.3: wj; hj uniformly random in [30; 100].
The second group of classes involves rectangular bins with W =100 and H =50. In

this case too, the items are generated in three classes by increasing average area:
Class 2.1: wj uniformly random in [10; 100], hj uniformly random in [5; 50];
Class 2.2: wj uniformly random in [20; 100], hj uniformly random in [10; 50];
Class 2.3: wj uniformly random in [30; 100], hj uniformly random in [15; 50].
Finally, in Group 3, we have square bins with W =H =100, and a mix of thin and

square items. Namely, each item belongs, with equal probability, to one of two types,
i.e.,
thin: wj uniformly random in [10; 50], hj uniformly random in [hmin ; 100];
square: wj = hj uniformly random in [20; 100],

M. Dell’Amico et al. / Discrete Applied Mathematics 118 (2002) 13–24 21

Table 1
Results on test instances of Group 1a

B&B (continuous bound) B&B (bound LB)
Class n % LBC

z % LB
z #Opt Nodes Time #Opt Nodes Time #Squares

1.1 10 88.0 95.0 10 6 0.00 10 3 0.00 142.0
20 86.3 94.7 10 227 0.03 10 56 0.02 180.4
30 86.2 96.6 10 4610 3.00 10 419 0.12 289.3
40 88.2 93.0 7 355 328 46.95 8 101 055 38.41 385.7
50 88.0 94.2 4 57 329 6.77 5 20 008 4.46 461.7
75 90.1 93.0 2 44 556 2.66 2 2638 2.03 699.9
100 88.0 95.0 1 1 485 071 96.78 2 0 0.06 938.4

1.2 10 88.3 92.0 10 9 0.00 10 2 0.00 185.1
20 79.9 90.3 10 482 0.05 10 149 0.05 197.7
30 82.5 94.7 10 5842 0.85 10 1789 0.84 315.0
40 84.4 92.7 7 281 926 24.60 7 84 681 24.66 403.4
50 83.5 95.1 3 2997 0.27 5 0 0.03 498.5
75 86.7 92.2 0 0 0.00 2 4098 2.60 753.6
100 83.9 93.3 0 0 0.00 1 0 0.08 994.5

1.3 10 72.8 88.2 10 39 0.01 10 11 0.00 189.7
20 78.3 93.3 10 1705 0.15 10 246 0.13 213.8
30 74.3 95.5 10 40 170 4.81 10 4987 3.92 319.4
40 77.9 93.6 5 339 662 31.37 5 36 821 25.19 440.5
50 78.4 93.5 1 699 0.07 3 0 0.02 536.4
75 80.8 92.6 0 0 0.00 0 0 0.00 785.6
100 78.2 94.6 0 0 0.00 3 0 0.08 1052.8

a Time limit of 120 CPU seconds on a Digital Alpha 533 MHz. Average nodes and times computed over
the solved instances.

and three classes are obtained as

Class 3.1: hmin = 40;
Class 3.2: hmin = 60;
Class 3.3: hmin = 80.
For each class, we considered seven values of n : 10; 20; 30; 40; 50; 75 and 100.
Ten instances were generated for each class and value of n, yielding a total of 630

test problems. A time limit of 120 seconds was given to each instance. Tables 1–3
give the outcome of the experiments for the three groups. The entries give, for each
class and value of n,
(i) average values of the ratios 100 · LBC=z and 100 · LB=z, where z is the value of

the best solution found by the branch-and-bound algorithm (optimal or incumbent);
(ii) number of instances solved to proved optimality, average number of decision

nodes and average CPU time (both computed over the optimally solved instances) for
the branch-and-bound algorithm, if run with the continuous lower bound;
(iii) same information as (ii) for the branch-and-bound algorithm, if run with lower

bound LB;
(iv) average number of squares generated by procedure CUTSQ.

22 M. Dell’Amico et al. / Discrete Applied Mathematics 118 (2002) 13–24

Table 2
Results on test instances of Group 2b

B&B (continuous bound) B&B (bound LB)
Class n % LBC

z % LB
z #Opt Nodes Time #Opt Nodes Time #Squares

2.1 10 84.7 95.8 10 6 0.00 10 1 0.00 178.3
20 85.8 97.5 9 134 0.01 10 10 0.02 161.6
30 86.4 97.7 10 2188 0.45 10 29 0.04 245.5
40 85.2 95.2 6 74 889 7.74 8 10 559 11.68 339.5
50 86.0 94.4 1 282 826 12.47 3 20 0.07 422.4
75 90.1 94.6 0 0 0.00 1 0 0.02 614.6
100 88.4 95.9 0 0 0.00 1 108 0.28 823.6

2.2
10 85.0 94.3 10 9 0.00 10 1 0.00 162.3
20 82.2 94.6 10 659 0.07 10 63 0.07 168.1
30 82.1 99.2 9 214 474 13.34 10 58 0.10 262.6
40 83.9 95.5 6 347 152 38.80 6 1575 3.12 343.7
50 84.4 97.5 2 61 151 8.19 6 3174 6.31 420.5
75 87.0 96.3 1 501 704 38.80 2 23 0.13 634.4
100 84.3 96.8 0 0 0.00 4 30 0.35 847.7

2.3 10 75.4 96.1 10 19 0.00 10 2 0.00 159.0
20 77.9 98.3 10 1369 0.13 10 13 0.03 167.1
30 74.4 100.0 10 10 494 0.92 10 14 0.11 259.9
40 78.5 96.7 6 475 834 49.23 7 3323 13.39 355.3
50 79.7 96.9 0 0 0.00 3 1 0.06 434.0
75 81.4 96.7 0 0 0.00 2 13 0.20 637.3
100 78.9 97.3 0 0 0.00 5 6 0.34 877.8

b Time limit of 120 CPU seconds on a Digital Alpha 533 MHz. Average nodes and times computed over
the solved instances.

The tables show that the proposed bound is considerably better than the continuous
lower bound. By embedding it in a standard branch-and-bound algorithm we could
easily solve instances of moderate size. Indeed, practically all instances with n6 30,
90% of those with n6 40, and 80% of those with n6 50 were solved to optimality
within very short computing time. In total, we solved almost two-thirds of the instances
within a time limit of 2 minutes (i.e., 398 out of 630). Increasing the time limit to
600 seconds produced just a slight improvement: 25 more instances in total were solved
to optimality.
The same branch-and-bound algorithm with the continuous lower bound solved to

optimality 15% less instances and the number of branch-decision nodes was one order
of magnitude higher. As to the CPU times, the algorithm with bound LB is generally
faster and=or solves more instances (recall that the times in the tables are averages
over the solved instances only).
Finally, from the comparison of the three tables it is seen that both the bound and

the branch-and-bound algorithm have a rather stable behavior over the three groups:
the bound quality and the number of solved instances are indeed quite insensitive to
bin and item characteristics.

M. Dell’Amico et al. / Discrete Applied Mathematics 118 (2002) 13–24 23

Table 3
Results on test instances of Group 3c

B&B (continuous bound) B&B (bound LB)
Class n % LBC

z % LB
z #Opt Nodes Time #Opt Nodes Time #Squares

3.1 10 79.5 97.5 10 5 0.00 10 0 0.00 44.7
20 82.5 92.1 10 345 0.03 10 95 0.02 97.1
30 80.5 91.0 10 90 310 7.42 10 37 561 6.66 163.8
40 81.7 97.7 8 156 909 14.54 10 44 881 26.56 196.1
50 81.5 95.5 6 1 057 470 61.44 6 97 632 22.15 254.9
75 83.7 97.8 0 0 0.00 4 0 0.02 357.3
100 83.7 95.5 0 0 0.00 1 0 0.02 518.6

3.2 10 82.7 95.8 10 7 0.00 10 1 0.00 107.0
20 81.5 91.0 10 1187 0.17 10 746 0.16 115.3
30 81.6 89.0 9 111 017 9.35 9 48 003 8.76 166.1
40 82.0 95.5 5 194 792 20.91 7 99 568 27.93 216.9
50 83.6 94.1 1 1 078 344 68.43 3 42 962 17.98 289.1
75 85.5 96.4 0 0 0.00 2 0 0.02 383.5
100 86.1 94.7 0 0 0.00 0 0 0.00 553.4

3.3 10 86.8 98.3 10 7 0.00 10 1 0.00 109.3
20 83.4 94.2 10 2424 0.35 10 826 0.18 116.3
30 82.6 89.1 8 96 114 6.93 8 25 688 5.53 164.5
40 83.3 94.2 3 162 047 14.19 4 8363 5.13 215.2
50 84.4 93.4 1 1 029 222 61.52 3 17 445 15.95 284.5
75 86.9 94.8 0 0 0.00 1 0 0.02 391.9
100 87.6 93.0 0 0 0.00 0 0 0.00 575.8

c Time limit of 120 CPU seconds on a Digital Alpha 533 MHz. Average nodes and times computed over
the solved instances.

Acknowledgements

This work was supported by Ministero dell’UniversitVa e della Ricerca Scienti3ca
e Tecnologica, and by Consiglio Nazionale delle Ricerche, Italy. We thank Lab.O.R.
(Laboratory of Operations Research of the University of Bologna) for the support given
in the computational testings.

References

[1] B.S. Baker, A.R. Calderbank, E.G. CoGman Jr., J.C. Lagarias, Approximation algorithms for maximizing
the number of squares packed into a rectangle, SIAM J. Algebraic Discrete Methods 4 (3) (1983) 383–
397.

[2] B.E. Bengtsson, Packing rectangular pieces — a heuristic approach, Comput. J. 25 (1982) 353–357.
[3] K.A. Dowsland, W.B. Dowsland, Packing Problems, European J. Oper. Res. 56 (1992) 2–14.
[4] H. DyckhoG, U. Finke, Cutting and Packing in Production and Distribution, Physica-Verlag, Heidelberg,

1992.
[5] H. DyckhoG, G. Scheithauer, J. Terno, Cutting and Packing (C&P), in: M. Dell’Amico, F. MaYoli, S.

Martello (Eds.), Annotated Bibliographies in Combinatorial Optimization, Wiley, Chichester, 1997.
[6] A. El-Bouri, N. Popplewell, S. Balakrishnan, A. Alfa, A search based heuristic for the two-dimensional

bin-packing problem, INFOR 32 (1994) 265–274.

24 M. Dell’Amico et al. / Discrete Applied Mathematics 118 (2002) 13–24

[7] S.P. Fekete, J. Schepers, On more-dimensional packing II: Bounds, Technical Report ZPR97-289,
Mathematisches Institut, Universit[at zu K[oln, 2000.

[8] C.E. Ferreira, F.K. Miyazawa, Y. Wakabayashi, Packing squares into squares, Technical Report, Instituto
de Computa]cão, Universidade Estadual de Campinas, Brazil, 1999.

[9] A. Lodi, S. Martello, D. Vigo, Heuristic and metaheuristic approaches for a class of two-dimensional
bin packing problems, INFORMS J. Comput. 11 (1999) 345–357.

[10] S. Martello, D. Pisinger, D. Vigo, The three-dimensional bin packing problem, Oper. Res. 48 (2000)
256–267.

[11] S. Martello, D. Vigo, Exact solution of the two-dimensional 3nite bin packing problem, Management
Sci. 44 (1998) 388–399.

