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Abstract In this paper we consider a problem related to deliveries assisted
by an unmanned aerial vehicle, so-called drone. In particular we consider the
Flying Sidekick Traveling Salesman Problem, where a truck and a drone co-
operate to delivery parcels to customers minimizing the completion time. In
the following we improve the formulation found in the related literature. We
propose three-indexed and two-indexed formulations and a set of inequalities
that can be implemented in a branch-and-cut fashion. We could find the opti-
mal solutions for most of the literature instances. Moreover, we consider two
versions of the problem: one in which the drone is allowed to wait at the cus-
tomers, as in the literature, and one where waiting is allowed only in flying
mode. The solving methodologies are adapted to both versions. A comparison
between the two versions is provided.
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Emilia (UNIMORE)
via Amendola 2, 42122 Reggio Emilia, Italy

Stefano Novellani
Dipartimento di Scienze e Metodi dell’Ingegneria (DISMI), Università di Modena e Reggio
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1 Introduction

Once restricted to the military domain, unmanned aerial vehicles (UAV), also
known as (aerial) drones, have received a widespread adoption in civil appli-
cations by the humanitarian sector and are currently object of great interest
of the commercial sector. This is due to their capability of accomplishing oth-
erwise impossible tasks, performing activities more effectively, or to lead to
cost saving solutions. A comprehensive definition of drones that is the one
provided by Scott and Scott [47]: “Drones are devices which are capable of
sustained flight, which do not have human on board, and are under sufficient
control to perform useful functions”.

During the last years, drones have interested researchers whose effort was
put especially in improving the required technology:

(a) the hardware, by reducing weigh, increasing battery duration, improving
the charging system, improving safety, etc.,

(b) the software, by designing better autonomous operations and guidance sys-
tems using improved GPS accuracy, localization techniques, obstacle de-
tection and avoidance techniques, enhanced sensors, image processing, etc.,

(c) the safety and security elements, by adopting technologies to protect the
flight against spoofing and hijacking of UAVs, etc.

A smaller effort has been done for the solution of optimization and operational
problems related to the use of drones, although the number of paper in this
direction has strongly increased in the very last years.

The paper is organized as follows: we start with Section 2 where we sum-
marize the main real-life applications that use drones. In Section 3 we discuss
upon the most relevant related literature, while in Section 4 we formally de-
scribe the problem. Mathematical formulations and their implementations are
described in Sections 5 and 6. Extensive computational results comparing the
models performances are presented in Section 7. The last Section 8 concludes
the paper.

2 Applications

Early drones application arose in the military sector, where most of the opti-
mization works are focused on the path planning, normally to avoid obstacles
or radars, minimizing travel length or altitude, or to improve the usage of
batteries. In this paper we are not interested in listing the military applica-
tions, but we address the interested reader to the following works: Bortoff [21],
Richards et al. [42], Zheng et al. [55], and Roberge et al. [43].

Besides military applications, drones can be used in both humanitarian and
commercial sectors. The three sectors make use of drones in such a way that
can be divided in two main applications: to collect and deliver information and
to collect and deliver goods. On one hand we have the surveillance, monitoring,
or covering, and on the other hand deliveries. In the following we describe a
large set of applications adhering to this dichotomy.
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2.1 Gathering information: Surveillance, monitoring and covering

The information gathering applications include surveillance, monitoring, and
covering activities, where displacement of goods is not necessary, in which
drones fly autonomously and monitor the environment with different sensors
or cameras and communicate and exchange data and information with other
drones or with a central station.

Drones can be used to optimize the coverage of an area (see, e.g., Shang
et al. [48]) or following specific targets that can also be moving ones (see, e.g.,
Zorbas et al. [56] and Di Puglia Pugliese et al. [41]). This is done by defining the
position of drones, their path (see, e.g., Kashuba et al. [33]), their number, etc.,
while maximizing the coverage or minimizing the time between an appearance
of an event and its covering, the total length, the service costs in energy,
etc. In particular, typical applications regard the following domains: traffic
management, environmental monitoring, catastrophic events, remote locations
surveillance, precision agriculture, building inspection, security surveillance,
etc.

2.2 Moving goods: Deliveries

This second set of applications is characterized by the fact that real goods need
to be moved from one place to another. The main application is to provide
faster, more cost efficient goods or parcel delivery, especially in the last-mile,
but also mail delivery and quickly required medical items delivery have been
object of interest. Indeed, in emergency and events management drones can be
used when infrastructure are damaged or unreliable to access isolated regions
to deliver needed goods in addition to surveillance. This point can match the
medical items delivery: delivery of blood, medications, vaccines, defibrillators,
insulin, oxygen, or other needed health-care items in location with difficult
access due to poor infrastructure, remote areas, traffic congestion, inaccessi-
ble roads due to weather or disasters, or simply urgently needed. Drone can
transport water, food, medical supplies during a crisis or and event.

Commercial applications arise when one needs to provide faster, more cost
efficient goods or parcel delivery, especially in the last-mile. Several companies
are investigating the use of drones for parcel delivery for e-commerce, such as
Amazon [4], Alibaba [3], and Alphabet [17]. Amazon CEO announced Ama-
zon’s Prime Air, that uses a fleet of UAVs to deliver parcels from warehouses
to customers [4]. Australian textbook distributor Zookal started testing drone
parcel deliveries in Australia [18]. DHL Parcel operates an autonomous drone
delivery system, to deliver medications and other urgent goods to one of the
Germany’s North See islands of Juist [8]. In 2016 they also tested a delivery
system in the Bavaria alpine region typically carrying either sporting goods
or urgently needed medicines [13]. Chinese JD.com deploys drones to extend
their delivery and logistics network. They consider to use drones in areas with
complex terrain and poor infrastructure for last-mile delivery. They started in
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2016 with four rural locations of China in the outskirts of Beijing and in the
provinces of Jiangsu, Shaanxi, and Sichuan. They announced an agreement
with the Shaanxi provincial government to build China’s largest low altitude
drone network, serving a 300 km area with drone stations and routes to de-
livery e-commerce parcels [11,12]. They will build 150 drone launch facilities
in China by 2020 [10]. Also Alphabet (Google) announced to enter the field
with Project Wing [17]. UPS and DPDgroup are also testing parcel delivery
with drones [15,7]. UPS and Zipline are working on a drone network to deliver
vaccines and blood to 20 clinics in remote locations in Rwanda [9]. Only 20%
of Africans live within 2 km of a road that functions year-round, thus malaria
medications, rabies vaccines, etc. can be carried and left with a parachute (see
Scott and Scott [47]). UPS and Workhorse are also testing drone and truck
combo delivery [14]. Flirtey completed the first Federal Aviation Administra-
tion approved drone delivery in July 2015, when it delivered medical supplies
to a health clinic in Wise, Virginia. The company has also started a part-
nership with 7-Eleven for home delivery [1]. In the Netherlands and Sweden
a prototype ambulance drone has also been tested for delivering defibrilla-
tors [5,6]. Matternet provides an on-demand delivery platform, an end-to-end
solution integrating the Matternet’s drones and stations. They provide their
platform as a service to healthcare, e-commerce and logistics organizations.
In particular, they transport medical items between health-care facilities in
Switzerland. They perform drone deliver in Zurich. In this case Matternet and
Mercedes-Benz have joined forces to create delivery solutions integrating vans
and drones for siroop online shop [16]. The United Arab Emirates say they
plan to use unmanned aerial drones to deliver official documents and packages
to its citizens as part of efforts to upgrade government services [2].

This is just an incomplete list of many of the cases that arose in the field
in the last years. The large number make us suspect an increasing interest in
the field in the future.

3 Related literature

The FSTSP is a generalization of the (TSP) and the vehicle routing problem
(VRP). A large body of literature has been dedicated to these problems; how-
ever, we are interested only in those problems that are highly related to the
FSTSP, especially where drones and trucks are coupled and synchronized.

A problem that is conceptually related to the FSTSP is the Close enough
traveling salesman problem (see, e.g., Shuttleworth et al. [50]), that aims at
finding the cheapest route for the truck without visiting every customer on
his route, but only getting within a certain radius of each customer. A similar
problem and even more conceptually related is the covering salesman problem
(see, e.g., Current and Schilling [26]), that aims at finding the cheapest tour
such that all nodes that are not part of the route lie within a specified radius
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from a node on the truck route. This reminds the maximum radius that the
drone can travel.

In the FSTSP, the vehicle that arrives first at the meeting point has to wait
for the other, thus we can state that it lies in the class of problems that require
synchronization between vehicles, in particular, among the categories defined
by Drexl [30], the FSTSP can be considered under movement synchronization
en route, where vehicles may join and separate multiple times along a route.
The author claims that this class received little attention in literature. One
of these problems is also one of the most related to our problem: the Truck
and Trailer Routing Problem (TRRP) (see e.g., Chao [25]), where two different
types of vehicle can serve customers: trucks and trailers. Due to practical con-
straints (e.g. street size), some customers can only be served by a truck, while
other customers can be served by a truck or a truck pulling a trailer. A truck
is autonomous, while the trailers always need to be pulled by a truck. Parking
places are used to decouple trucks from trailer when convenient to serve some
subset of customers that can only be served by single truck. This resembles
the idea of the drone truck decoupling. A similar problem to the FSTSP has
been studied by Lin [34], where two types of delivery resources are used, vans
and foot couriers, which allows for coordination. A heavy resource (a van) may
carry both delivery items and one or more units of the lighter resource (foot
couriers). Foot couriers can pick up and deliver items independently or travel
with a van on its outbound and/or return leg, they can serve more than one
customers, in contrary of what a drone can do. Moreover, foot couriers do not
need to return to the same van.

Let us now consider works that solve problems related to the use of drones.
As said, the first applications of UAVs have been performed in the military
sector, and the same can be said for the use of optimization techniques when
optimizing operations for drones. In Sisson’s thesis [51] it is studied a tabu
search coupled with Monte Carlo simulation to determine the minimum num-
ber of UAVs to cover a pre-selected target set based on stochastic survival
probabilities that also incorporate the wind effects. In Ryan’s thesis [44] a
tabu search within a discrete event simulation is applied to solve a multi TSP
with time windows for UAVs, where it is required to attain a level of target
coverage using a minimum number of vehicles. Weather and threat are consid-
ered. A direct extension of this work is proposed in Ryan et al. [45]. O’Rourke
et al. [37] consider dynamic routing of UAVs in operational use with the US
Air Force. Dynamic components are wind and emerging targets. They model
the problem as a VRP with time windows and use a tabu search to solve it.

Boone et al. [20] solve a multi TSP for drones, they firstly divide customers
in clusters by using K-mean clustering, then they solve a TSP for each clus-
ter with a nearest neighbor improved with 2-opt. Dorling et al. [29] study a
multi trip VRP for drone delivery where the effect of batteries and weight on
energy consumption is considered. They solve one version of the problem in
which costs are minimized under a delivery time limit and a second version
where delivery time is minimized subject to a budget constraint. The authors
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present MILP formulations and a simulated annealing algorithm. Tseng et al.
[52] solve a modified TSP where an autonomous drone has to serve delivery
points and may use charging stations for charging the battery. They consider
wind uncertainty and variable speeds. The used algorithm is based on the
Christofides one to solve the shortest spanning tree and then the minimum
matching problem to obtain an Eulerian tour.

Location problems linked to drones are studied in the two following works.
Scott and Scott [47] consider drone delivery models for healthcare. They con-
sider delivery with trucks that leave a central depot to drone nests, and then
from drone nests to delivery points. They use two objective functions: one min-
imizes the total time and the other minimizes the maximum weighted time for
truck/drone delivery. Both depot and nests need to be located. No routing
is considered but only direct trips. Shavarani et al. [49] studied the facility
location problem for the optimization of drone delivery system evaluating the
Amazon prime air case study in San Francisco. They locate both launching
stations and recharge stations. No routing is considered but direct trips. The
authors solve the problem with a genetic algorithm.

Campbell et al. [24] present some drone arc routing problems, that are
continuous optimization problems. They discretized them by approximating
the curves with polygonal chains. The drone rural postman problem, in which
drones have no capacity, is solved with iterative algorithms for the rural post-
man problem. They discuss also other problems where drones are capacitated
or more than one.

The following papers consider the coupled interventions of drones and
trucks. The first paper we consider is slightly different from the others, indeed
Savuran and Karakaya [46] study a problem where a truck follows a linear
path, in the meanwhile a drone is launched from the truck and must return to
the truck after performing a, let’s say, open TSP to visit all the targets. They
solve the problem with a genetic algorithm. Ferrandez et al. [31] propose a
work that couples drones and a truck. They have a set of delivery customers
that are clusterized by using K-means clusterization. They thus solve the TSP
among the centroid of each cluster that are the points where the truck stops to
launch one or more drones. The TSP part is solved with a genetic algorithm.
Boysen et al. [23] consider a fixed truck route where the truck represents a
loading platform for the drones. The truck and the drone can wait each other.
They use at most 2 drones and three restriction of the problem: one where the
drone must return to the launching point, one in which the drone can return
up to the next vertex, and the last one where the drones can return in one of
the following nodes.

In the following we consider problems where drones and vehicles work
together to complete operations, in which both can accomplish tasks. In this
first part we evaluate what Otto et al. [38] classify as Drones and vehicles
performing independent tasks. Murray and Chu [36] propose the parallel drone
scheduling TSP (PDSTSP), where one truck and a fleet of drones can serve
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customers only departing from the depot. In this case only customers within a
certain range from the depot can be served via drones. The others are served by
the truck. Solving this problem can provide good results when many customers
lie close to the depot. They propose MILP formulations and simple greedy
heuristics for both problems. Saleu et al. [35] propose a two step iterative
heuristic based on dynamic programming for the same problem. Ulmer and
Thomas [53] study a dynamic variant of the PDSTSP called the Same-day
delivery with heterogeneous fleets of drones and vehicles, where requests arrive
dynamically and they need to be allocated to drones or truck maximizing the
number of served customers. They solve the problem with an approximate
dynamic programming known as parametric policy function approximation.

We consider, now, routing problems where trucks are equipped with drones
and both vehicles can be used to deliver packages to customers. Otto et al. [38]
classify these problems under the name Drones and vehicles as synchronized
working units. In the case of the drone, the flight is called sortie: the drone
start from its vehicle in a vertex of the network (launch), performs a delivery
to a customer, and returns to the truck (rendezvous) in a vertex of the net-
work. Some problems consider the launching and rendezvous times negligible,
some other account for these; however, truck and drone must be synchronized
and thus wait for each other. The objective function is normally to minimize
the completion time. Murray and Chu [36] define and study the Flying side-
kick traveling salesman problem (FSTSP). In the FSTSP truck and drone can
cooperate to serve customers: one drone can leave the truck at a vertex and
return to the truck at another vertex after completing a delivery. Customers
can be visited only once, but some customers can be visited only by the truck
because their request cannot be fulfilled by the drone (for various reasons,
such as capacity limitations, requirement of a signature, drone cannot safely
land, etc.). Drones cannot return at the launching point. Agatz et al. [19] solve
the TSP with Drone (TSP-D), where one truck cooperates with one drone to
make deliveries. The aim is to find the fastest method to serve customers with
a truck or a drone that can leave the truck, serve a customer, and return to
the truck in one of the vertices. Each customer has to be visited at least once
by one of the vehicles, but they can be visited more than once by the truck
if it is convenient for drone launching and return. Launching and rendezvous
of the same sortie can coincide. Some vertices cannot be visited by drones.
Endurance is unlimited and launching and rendezvous times are considered
negligible. The authors preset an ILP and propose route first-cluster second
heuristics based on local search and dynamic programming. Bouman et al. [22]
solve the TSP-D with with dynamic programming. The drone is not slower
than the truck. Instances with up to 20 customers are solved. Ha et al. [32]
also use the name TSP-D, albeit in this case nodes cannot be visited multiple
times and launch and rendezvous of a sortie are not allowed to happen at
the same vertex. The authors declare that the considered problem shared the
FSTSP characteristics, but they called it TSP-D. To highlight the difference
between the two problems we call this problem TSP-D*. The authors propose
two heuristic algorithms: a route first-cluster second one and a cluster first-
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route second one. Ponza’s thesis [40] tackles the FSTSP proposing a modified
MILP formulation with respect to the Murray and Chu’s [36] one and solve it
with a simulated annealing algorithm. The new formulation, with respect to
the FSTPS one, among the other few differences, does not allow the drone to
wait at customers nodes.

Wang et al. [54] define the vehicle routing problem with drones (VRPD),
where a homogeneous fleet of trucks equipped with a not necessary unitary
number of drones delivers parcels to customers. Drones can be launched from
trucks at depot or at any customer vertex. Each drone must return to the same
truck also if this happens at the same node where it has been launched. One
drone can carry only one parcel. The authors imagine that the drone must
travel along the street network. They derive a number of worst case results
based on the number of drones per truck and the difference between the drones
speed and the trucks speed. Poikonen et al. [39] extend the worst-case results
considering different metrics for trucks and drones, considering limited drone
batteries, and evaluating different objective functions. They also evaluate con-
nections between the VRPD and other VRP variants. Daknama and Kraus
[27] present and solve the Vehicle routing with drones where multiple vehicles
and drones can be used for deliveries. They minimize the average delivery
times instead of the completion time. No mathematical model is presented,
but they solve the problem by first solving a multiple TSP heuristically and
then introducing drones. Local search procedures are thus applied to improve
the solution.

In Table 1 we classify the truck and drone problems. In Paper column
we report the authors and the reference to the paper, in the second column
we report the name of the problem as by the papers (but we include the
renaming of TSP-D* to avoid confusion: we recall that Agatz et al. [19] and
Ha et al. [32] use the same name for different problems ). In #t and #d we
report the considered number of trucks and drones, respectively. If trucks and
drones are multiple we identify it with the letter m. In following columns we
consider some features of the problems: the fact that launch and return points
may coincide (L = R); the fact that trucks may visit vertices multiple times
(m − v); the fact that some vertices can be visited only by trucks (t − v). In
last column we provide a rough description of the method used to solve the
proposed problems, if any. Table 1 is inspired by the tables proposed by Ponza
[40] that we adjusted referring only to the problems where drones and vehicles
are considered as synchronized working units and by adding the fact that
the studied problems allow the following points: (i) the possibility of having
multiple visits; (ii) the possibility of having nodes to be visited only by the
truck.

A recent survey by Otto et al. [38] provides a wide overview on civil appli-
cations of drones, it gives an insight into optimization approaches used to solve
operational problems, in particular where both drones and drones combined
with other vehicles are considered, that is the class of problems addressed in
this work.
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Paper Name Formul. #t #d L=R m-v t-v Solving method

Murray and
Chu [36]

FSTSP
MILP
2-index

1 1 x

MILP, heuristic (near-
est neighbour, savings,
sweep + savings for UAV
routes definition)

Agatz et al.
[19]

TSP-D
ILP set
covering

1 1 x x x
Heuristic (route first
cluster second)

Bouman et
al. [22]

TSP-D none 1 1 x x x Dynamic programming

Ha et al. [32] TSP-D*
MILP for
clustering,
set packing

1 1
Heuristic (route first
cluster second, cluster
first route second)

Ponza [40] FSTSP
MILP,
2-index

1 1 x
MILP, saimulated an-
nelaing

Wang et al.
[54]

VRPD none m m x none

Poikonen et
al. [39]

VRPD none m m x none

Daknama and
Kraus [27]

VRD none m m
Metaheuristic, Local
search

Table 1: Classification of problems where drones and vehicles are synchronized
working units.

4 Problem Description and Basic Mathematical Model

In this work we study the FSTSP defined by Murray and Chu [36], that is to
serve a set of customers C = {1, . . . , c} with either a truck or a drone. The
truck starts from depot 0 and returns to the final depot c+ 1, and is equipped
with a flying drone that can be used in parallel to serve one customer at a
time. The drone can perform a sortie, defined by a launching node (where the
drone leaves the truck), a served customer, and a rendezvous node (where the
drone returns to the truck), that must be different from the launching one.
All customers of C can be served by the truck, but only a subset C ′ ⊆ C
can be served by the drone with a sortie. The problem is built on digraph
G = (N,A), where the set N = {0, 1, . . . , c+ 1} represents all the nodes, while
we define N0 = {0, 1, . . . , c} and N+ = {1, . . . , c + 1}. The set A is the set of
all the arcs (i, j), i ∈ N0, j ∈ N+, i 6= j. Each arc (i, j) is associated with two
non-negatives traveling times: τTij and τDij , that represent the time for traveling
that arc by the truck and by the drone, respectively. The travel time matrix
of the drone and the truck may be different (τTij ≶ τDij , (i, j) ∈ A). Nodes 0
and c+ 1 represent the same physical point, the depot, and the traveling time
between them is set to 0 to account for the case in which there is only one
customer served by the drone directly from the depot.

We assume that the capacity of the truck is large enough to serve all
customers and that the drone performs only one delivery at the time, i.e., it
leaves the truck, serves a customer and returns to the truck before possibly
serving a new customer. A sortie is formally defined by a triplet 〈i, j, k〉, (i 6=
j 6= k) where i ∈ N0 is the launching node, j ∈ C ′ the customer to serve, and
k ∈ N+ the rendezvous node.

Serving times at customers for both drone and truck are negligible. Service
times for preparing the drone at launch and rendezvous are given by σL and
σR. Drones have a battery limit (endurance) of E time units, that limits drone
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use. Rendezvous time σR contributes to the endurance computation while σL

does not, since the drone lies on the truck when it is prepared for launch.

Let F be the set of all sorties that can be performed within the endurance
E, that means τDij + τDjk + σR ≤ E, i ∈ N0, j ∈ C ′, k ∈ N+.

Drones can be launched from trucks only when the truck is stopped at
customers points or at the depot, however, they cannot leave the depot before
the truck starts its route. In the meanwhile a truck can keep serving customers
and the drone can return only at another point, that is not the launching one
(if not the depot). This requires a certain synchronization: the vehicle (drone
or truck) that arrives first at the meeting point has to wait for the other. The
objective is to minimize the completion time, that is the moment when the
last vehicle arrives at the depot.

4.1 Murray-Chu Formulation

We report in this section the mathematical formulation proposed by Murray
and Chu [36] (MC in the following) that is the basis for our work. A binary
variable xij is created for each arc (i, j) ∈ A : i 6= j and is set to 1 if the truck
uses the corresponding arc, 0 otherwise. For each sortie of the drone is used a
binary variable yijk, 〈i, j, k〉 ∈ F that takes value one if the sortie is performed,
0 otherwise.

The non-negative variables tTi , i ∈ N and tDi , i ∈ N represent the time
of availability at node i for the truck and the drone, respectively. For the
starting depot we fix tT0 = tD0 = 0. Note that the drone and the truck may
leave uncoupled at the starting depot. The waiting of the truck (resp. of the
drone) at a node i is modeled as a delayed availability and included in tTi (resp.
tDi ).

The MC formulation uses two sets of auxiliary variables. A variable ui, i ∈
N , 1 ≤ ui ≤ c + 2 is used to model subtour elimination constraints for the
track route, as in Miller-Tucker-Zemlin (see, e.g., Desrochers and Laporte [28]).
Finally, binary variable pij is set to 1 if customer i ∈ C is visited before
customer j ∈ C (j 6= i), thus defining a total ordering among all the pair of
customers. We set p0j = 1, j ∈ C to impose the starting of the route from the
depot.

The resulting model for the MC formulation is described in the following,
presenting one group of logically related constraints at a time.

The objective function (1) minimizes the arrival time at the depot of the
truck, but due to next constraints (12) and (13) this is equivalent to minimize
max{tTc+1, t

D
c+1}.

min tTc+1 (1)

Customer covering
The first constraints impose that all customers must be served either by the
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truck or by the drone:∑
(i,j)∈A

xij +
∑

〈i,j,k〉∈F

yijk = 1 j ∈ C (2)

Truck routing constraints
Constraints (3) and (4) force the truck to depart from depot 0 and to return
to depot c+ 1 at the end of the trip, while constraints (5) guarantee the flow
conservation at customers.

∑
j∈N+

x0j = 1 (3)

∑
i∈N0

xi,c+1 = 1 (4)

∑
(i,j)∈A

xij =
∑

(j,k)∈A

xjk j ∈ C (5)

Single sortie leave/return
Constraints (6)–(7) impose that at most one launch of drone and one ren-
dezvous with the truck is done in any node. The drone cannot start its sorties
in c+ 1 or return to 0. ∑

〈i,j,k〉∈F

yijk ≤ 1 i ∈ N0 (6)

∑
〈i,j,k〉∈F

yijk ≤ 1 k ∈ N+ (7)

x-y coupling constraints
In constraints (8) we impose that, if the triplet 〈i, j, k〉 is selected, then the
truck must enter in node i and in node k to launch and collect the drone.
Constraints (9) is the equivalent of (8) when the drone is launched from the
depot.

2yijk ≤
∑

(h,i)∈A

xhi +
∑

(l,k)∈A

xlk 〈i, j, k〉 ∈ F, i ∈ N+ (8)

y0jk ≤
∑

(h,k)∈A

xhk 〈0, j, k〉 ∈ F (9)

Truck-drone timing constraints
Constraints from (10) to (13) ensure time synchronization between the truck
and the drone at launching and return node. Constraints (14) and (15) set the
starting time at depot of both drone and truck to zero.

tDi ≥ tTi −M(1−
∑

〈i,j,k〉∈F

yijk) i ∈ C (10)
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tDi ≤ tTi +M(1−
∑

〈i,j,k〉∈F

yijk) i ∈ C (11)

tDk ≥ tTk −M(1−
∑

〈i,j,k〉∈F

yijk) k ∈ N+ (12)

tDk ≤ tTk +M(1−
∑

〈i,j,k〉∈F

yijk) k ∈ N+ (13)

tT0 = 0 (14)

tD0 = 0 (15)

Truck timing constraints
Constraints (16) state that if the arc (h, k) ∈ A is used by the truck, then the
timing variables must be consistent with the travelling times and the launch
and rendezvous times, if drone is used. We will discuss these constraints in
detail in Section 4.2.

tTk ≥ tTh + τThk + σR
∑

〈i,j,k〉∈F

yijk+

σL
∑

〈k,l,m〉∈F
l 6=h

yklm −M(1− xhk) (h, k) ∈ A (16)

Drone timing constraints
Constraints (17)-(18) impose consistency on the drone timing variables when
a sortie 〈i, j, k〉 is selected.

tDj ≥ tDi + τDij −M(1−
∑

〈i,j,k〉∈F

yijk) (i, j) ∈ A, j ∈ C ′ (17)

tDk ≥ tDj + τDjk + σR −M(1−
∑

〈i,j,k〉∈F

yijk) (j, k) ∈ A, j ∈ C ′ (18)

Note that these constraints allow tDj to be greater than the arrival time at
customer j, and consequently to insert a waiting time at j.

Drone battery endurance constraints
Constraints (19) are the battery endurance constraints, for each sortie.

tDk − (tDj − τDij ) ≤ E +M(1− yijk) 〈i, j, k〉 ∈ F (19)

We observe that inequalities (19) do not consider the waiting at j in the com-
putation of the energy consumption, i.e., we can therefore suppose that the
drone is allowed to wait on the ground.
Miller-Tucker-Zemlin subtour elimination
Constraints (20) are the classical Miller-Tucker-Zemlin constraints for the
truck route, while (21) are the extension to sorties, and impose that node
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i precedes node k if sortie 〈i, j, k〉 is selected.

ui − uj + 1 ≤ (c+ 2)(1− xij) (i, j) ∈ A, i ∈ N+ (20)

uk − ui ≥ 1− (c+ 2)(1−
∑

〈i,j,k〉∈F

yijk) i ∈ C, k ∈ N+, k 6= i (21)

Node total ordering
Constraints (22)–(23) induce variables pij to define a total ordering of the
nodes.

pij + pji = 1 (i, j) ∈ A, i < j (22)

p0j = 1 j ∈ C (23)

u-p congruence
These constraints impose the consistency between the ordering given by u and
p variables.

ui − uj ≥ 1− (c+ 2)pij i, j ∈ C, j 6= i (24)

ui − uj ≤ −1 + (c+ 2)(1− pij) i, j ∈ C, j 6= i (25)

Simple crossing sorties elimination
Constraints (26) avoid that a sortie starts before a previous sortie is termi-
nated. More specifically, if node i is visited by the truck before node l (i.e.,
pil = 1) and there are two sorties starting from i and l, respectively, than the
rendezvous node k of the sortie from i, must be visited before node l.

tDl ≥ tDk −M(3−
∑

〈i,j,k〉∈F
j 6=l

yijk −
∑

〈l,m,n〉∈F
m,n6∈{i,k}

ylmn − pil)

i ∈ N0, l ∈ C, k ∈ N+, i 6= l 6= k

(26)

Variable bounds

tTi ≥ 0 i ∈ N (27)

tDi ≥ 0 i ∈ N (28)

pij ∈ {0, 1} (i, j) ∈ A (29)

xij ∈ {0, 1} (i, j) ∈ A (30)

yijk ∈ {0, 1} 〈i, j, k〉 ∈ F. (31)

1 ≤ ui ≤ c+ 2 i ∈ N+ (32)



14 Mauro Dell’Amico et al.

i h

j

k

l

m

τDjk + σR

Fig. 1: Improving constraint.

4.2 Formulation MC

We propose a formulation called MC built upon MC with just a set of mod-
ifications inserted to provide a more realistic interpretation of the problem
description given by Murray and Chu.

Let us consider the truck timing constraints (16), which applies to a truck
running along arc (h, k) ∈ A. Let us refer to Figure 1, showing a solution
where the drone performs a sortie which starts from i, a node that precedes h,
terminates in k, and immediately starts a second sortie from k. If this happens,
constraint (16) imposes tTk ≥ tTh + τThk + σR + σL, where σR and σL refers,
respectively, to the rendezvous and launch time arriving in k and restarting
from k. Allocating the rendezvous time to tTk is correct, but we believe that
the launch time must be allocated to the time of the node visited after k in the
truck route, otherwise the launching time needed for sortie 〈k, l,m〉 would be
included in the flying time of sortie 〈i, j, k〉, and that could erroneously make
exceed its endurance. Moreover, we believe that the launch time must not
be allocated to the truck when the drone starts from the depot, since depot
operations are considered to be done offline. Therefore, we substituted (16)
with (33)-(34).

tTk ≥ tTh + τThk + σR
∑

〈i,j,k〉∈F

yijk + σL
∑

〈h,r,s〉∈F
r 6=k

yhrs −M(1− xhk)

(h, k) ∈ A, h ∈ N+

(33)

tTk ≥ tT0 + τT0k + σR(
∑

〈i,j,k〉∈F

yijk)−M(1− x0k) (0, k) ∈ A, k ∈ N+ (34)

Moreover, we believe that σL must be included in the drone timing, when
the drone is launched from a node different from the depot, being the time
when the drone is on the truck and the operator prepares it. We thus substitute
the first drone timing constraint (17) with (35)–(36).

tDj ≥ tDi + τDij + σL −M(1−
∑

〈i,j,k〉∈F

yijk) (i, j) ∈ A, j ∈ C ′, i ∈ N+ (35)

tDj ≥ tD0 + τD0j −M(1−
∑

〈0,j,k〉∈F

yijk) j ∈ C ′ (36)
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4.2.1 Wait and no-wait models

As for the original MC formulation constraints (35)–(36) allow tDj to be greater
than the arrival time at customer j, without incurring in its computation while
calculating energy consumption (19). We refer to this model as the wait model.
From our experience the waiting is not always technically possible. In this case
the no-wait model is obtained by substituting the Drone battery endurance
constraints (19) with (37)–(38).

tDk − tDi ≤ E + σL +M(1− yijk) 〈i, j, k〉 ∈ F, i 6= 0 (37)

tDk − tD0 ≤ E +M(1− y0jk) 〈0, j, k〉 ∈ F (38)

Note that our reformulation is similar, but slightly different from the one
proposed by Ponza [40]. Indeed, in [40] the launching time is allocated to both
truck and drone, so it enters in the computation of the energy consumption,
while we suppose that launching time does not consume energy, being the
time needed by the truck to make the drone ready, while the drone does not
fly. Moreover, Ponza [40] includes the launching time in the computation also
when the sortie starts from the depot, while we use the original MC model
that assumes depot operations are done off-line.

5 Improvements on DMN

In this section we present a first enhanced formulation, built upon formulation
MC of Section 4.2. The general idea is to substitute some explicit constraints
with exponentially many constraints to be added in a cutting plane fashion.

5.1 Crossing Sorties Elimination

The basic MC model uses the explicit simple crossing sorties elimination (26)
which are based on timing and use of a ‘big M’ constant. We propose to
substitute them with the following structural constraints that directly address
and prevent the unfeasible topologies. Let i ∈ N0, l ∈ C be two vertices visited
by the truck while running along a path P from i to l, and assume that two
sorties 〈i, j, k〉 and 〈l,m, n〉 with k 6∈ P exist. In this case, the second sortie
starts before the first one is returned and the overall solution is therefore
infeasible. Let us define P as the set of all the paths with these characteristics.
The following Crossing Sorties Elimination Constraints (CSEC) (39) can be
used to eliminate this type of infeasibility.

|P |−1∑
h=1

xv(h),v(h+1) +
∑

〈i,j,k〉∈F
k 6∈P

yi,j,k +
∑

〈l,m,n〉∈F

yl,m,n ≤ |P | P ∈ P (39)



16 Mauro Dell’Amico et al.

where P = {v(1), v(2), . . . , v(|P |)}, v(1) = i, v(|P |) = l. These constraints
impose that one of the arcs of the path or one of the sorties should be set to
zero to make the solution feasible.

We can strengthen (39) using the idea of “tournament constraint”. Since
the path enters at most once in each vertex, we can include in the constraint
also the arcs (h, j) ∈ A such that h, j ∈ P and h precedes j in P . We obtain
the Tournament Crossing Constraints (TCS), given by (39).

|P |−1∑
h=1

|P |∑
j=h+1

xv(h)v(j) +
∑

〈i,j,k〉∈F
k 6∈P

yi,j,k +
∑

〈l,m,n〉∈F

yl,m,n ≤ |P | P ∈ P (40)

5.2 Backward Sorties Elimination

A next improvement is the avoidance of backward sorties, that are sorties
with a rendezvous that happens before the departure. Let B denote the set
of all truck paths P = {v(1), v(2), . . . , v(q)} with v(1) = 0 and v(q) ∈ C.
Given one of such paths P suppose that exists a sorties 〈i, j, v(q)〉 with i 6∈ P .
The Backward Sortie Elimination Constraints (BSEC) are given by (41), and
impose that at least one of the arcs of the path or the sortie is eliminated.

|P |−1∑
i=1

xv(i)v(i+1) +
∑

〈i,j,v(q)〉∈F

yi,j,v(q) ≤ |P | − 1 P ∈ B (41)

Constraint (41) can be strengthen by considering a tournament type constraint
on path P , that imposes that at most one arc enters a node of the path, and
adding all sorties that terminate in P , but start at nodes outside P . We obtain
the Tournament Backward Constraints (TBS), given by (42).

(TBS)

|P |−1∑
i=1

|P |∑
j=i+1

xv(i)v(j) +
∑

〈i,j,k〉∈F
i 6∈P,k∈P

yi,j,k ≤ |P | − 1 P ∈ B (42)

Finally note that backwards sorties happen only when the time constraint are
not respected, in our case in fractional solutions.

5.3 Improving the Objective Function

Preliminary computational results showed that formulation DMN, and thus
F1, provides very bad lower bounds at the root node of the decision-tree (see
Section 7 for more details). Therefore, we reformulate the objective function
min tTc+1 by explicating its components: the traveling time of the truck, the
launching and rendezvous times, and the time truck waits for the drone. The
first two components can be modeled using the variables we dispose already,
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but the waiting times must be expressed by new variables. We add variables
wi, i ∈ N , to model the truck waiting at node i, thus giving the new objective
function (43).

min
∑

(i,j)∈A

τTijxij + σR
∑

〈0,j,k〉∈F

y0jk + (σL + σR)
∑

〈i,j,k〉∈F
i 6=0

yijk +
∑
i∈N

wi
(43)

The waiting variables must be included in the truck timing constraints as in
(44)–(47). Note that we use a pair of constraint with opposite versus to impose
equality when an arc (h, k) is selected. Non-negativity of the wi must also be
imposed.

tTk ≥ tTh + τThk + σR
∑

〈i,j,k〉∈F

yijk + σL
∑

〈h,r,s〉∈F
r 6=k

yhrs

−M(1− xhk) + wk (h, k) ∈ A, h ∈ N+

(44)

tTk ≤ tTh + τThk + σR
∑

〈i,j,k〉∈F

yijk + σL
∑

〈h,r,s〉∈F
r 6=k

yhrs

+M(1− xhk) + wk (h, k) ∈ A, h ∈ N+

(45)

tTk ≥ tT0 + τT0k + σR(
∑

〈i,j,k〉∈F

yijk)−M(1− x0k) + wk (0, k) ∈ A, k ∈ N+

(46)

tTk ≥ tT0 + τT0k + σR(
∑

〈i,j,k〉∈F

yijk) +M(1− x0k) + wk (0, k) ∈ A, k ∈ N+

(47)

wi ≥ 0 i ∈ N (48)

5.4 Subtour Elimination Constraints

When avoiding crossing sorties by using the CSEC or TCS, Miller-Tucker-
Zemlin constraint are not needed; indeed, total node ordering variables are
not needed and timing constrains are sufficient to prevent subtours; however,
the introduction of subtour elimination constraints (49) and the two nodes
subtours elimination (50) is profitable. Preliminary computational results con-
firmed us the reduction of the number of visited nodes by the branch-and-
bound and the computing time even if applied to the MD formulation.

(SEC)
∑
i∈S

∑
j∈S

xij ≤ |S| − 1 S ⊆ N,S 6= ∅, |S| > 2 (49)

xij + xji ≤ 1 i, j ∈ N, i 6= j (50)
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The overall formulation, called DMN in the following, uses all the im-
provements of this section with the “tournament” version for crossing sorties
(40) and backward sorties (42).

6 Two-indexed Formulations: DMN2

In the previous models we represented the sorties with three-indexed boolean
variables, hereby we propose a new formulation which uses two-indexed arc
variables. In particular, let us consider the binary variables −→g ij and←−g jk which
take value 1 if the drone enters, respectively leaves, customer node j. In this
way the number of variables representing the sorties reduces from n3 to 2n2.
To further reduce the variables we preliminary fix to zero all the variables
corresponding to arcs with flying time exceeding the battery limit, i.e., we set
−→g ij = 0 for all (i, j) ∈ A : τDij > E and ←−g jk = 0 for all (j, k) ∈ A : τDjk + σR >
E. We also fix to zero variables that do not allow to complete a feasible drone
fly: −→g ij = 0, (i, j) ∈ A, j 6∈ C ′; ←−g jk = 0, (j, k) ∈ A, j 6∈ C ′; −→g ic+1 = 0 i ∈ N
and ←−g j0 = 0 j ∈ N .

Starting from our model DMN, we build the new formulation DMN2 using
the above two-indexed variables. The objective function is

min
∑

(i,j)∈A

τTijxij + σL
∑

(i,j)∈A
i 6=0

−→g ij + σR
∑

(j,k)∈A

←−g jk +
∑
i∈N

wi (51)

All the constraints using y variables must be rewritten using the −→g and ←−g
variables, as follows:
Customer covering constraints (2) become∑

(i,j)∈A

xij +
∑

(i,j)∈A

−→g ij = 1 j ∈ C (52)

∑
(i,j)∈A

xij +
∑

(i,j)∈A

←−g ij = 1 i ∈ C (53)

Single sortie leave/return constrains (6) and (7) are no longer necessary, since
are induced by the truck routing constraints (3)–(5) within the x-y coupling
constraints, now called x-g coupling constraints:∑

(i,j)∈A

−→g ij ≤
∑

(i,h)∈A

xih i ∈ N0 (54)

∑
(i,j)∈A

←−g ij ≤
∑

(h,j)∈A

xhj j ∈ N+ (55)

∑
(i,j)∈A

−→g ij =
∑

(j,k)∈A

←−g jk j ∈ C (56)



New formulations for the FSTSP 19

Drone-truck timing constraints (10)–(13) are substituted by

tDi ≥ tTi −M(1−
∑

(i,j)∈A

−→g ij) i ∈ C (57)

tDi ≤ tTi +M(1−
∑

i,j)∈A

−→g ij) i ∈ C (58)

tDk ≥ tTk −M(1−
∑

(j,k)∈A

←−g jk) k ∈ N+ (59)

tDk ≤ tTk +M(1−
∑

(j,k)∈A

←−g jk) k ∈ N+ (60)

Truck timing constraints (44)–(47) become

tTk ≥ tTh + τThk + σR
∑

(i,k)∈A

←−g jk + σL
∑

(h,l)∈A

−→g hl −M(1− xhk) + wk

(h, k) ∈ A, h ∈ N+

(61)

tTk ≤ tTh + τThk + σR
∑

(j,k)∈A

←−g jk + σL
∑

(h,l)∈A

−→g hl +M(1− xhk) + wk

(h, k) ∈ A, h ∈ N+

(62)

tTk ≥ tT0 + τT0k + σR
∑

(j,k)∈A

←−g jk −M(1− x0k) + wk k ∈ N+ (63)

tTk ≤ tT0 + τT0k + σR
∑

(j,k)∈A

←−g jk +M(1− x0k) + wk k ∈ N+ (64)

(65)

Drone timing constraints (35), (36) and (18) are now

tDj ≥ tDi + τDij + σL −M(1−−→g ij) j ∈ C ′, i ∈ C, i 6= j (66)

tDj ≥ tD0 + τD0j −M(1−−→g 0j) j ∈ C ′ (67)

tDk ≥ tDj + τDjk + σR −M(1−
∑

(j,k)∈A

←−g jk) j ∈ C ′, k ∈ N+, j 6= k (68)

Drone battery endurance constraints (37)-(38) become:

tDk − tDi ≤ E + σL +M(2−−→g ij −←−g jk)

(i, j) ∈ A, (j, k) ∈ A, j ∈ C ′, i ∈ N+, i 6= k
(69)

tDk − tD0 ≤ E +M(2−−→g 0j −←−g jk) (j, k) ∈ A, j ∈ C ′ (70)

Crossing sorties elimination constraints (40) must be rewritten as follows. Let
i ∈ N0, l ∈ C be two vertices encountered by the truck while running along
a path P from i to l, and assume that exist two sorties defined by −→g ij > 0
and −→g lm > 0 and such that there is no node k ∈ P \ {i} with ←−g hk > 0. In
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this case the second sortie starts before the first sortie is terminated an the
following “tournament” crossing sorties elimination holds:

(TCS2)

|P |−1∑
h=1

|P |∑
j=h+1

xv(h)v(j) +
∑

(i,j)∈A,
j 6∈P

−→g ij +
∑

(l,j)∈A,
j 6∈P

−→g lj ≤ |P | P ∈ P (71)

where P = {v(1), v(2), . . . , v(q)} with v(1) = i, v(q) = l, and P now defines
the set of all the paths with the described characteristics.

Backward sorties elimination are modified as follows. Let i ∈ N0, j ∈ N+ be
two nodes encountered by the truck while traveling on a path P , suppose that
exist a sortie identified by←−g k,i > 0 and such that k 6∈ P and a sortie identified
by −→g v(q),k > 0 and such that k 6∈ P , that, together determine an infeasible
solution. Let B now denote the set of all truck paths {v(1), . . . , v(m), . . . , v(q)}
with v(1) = 0, v(m) = i, and v(q) = j. The tournament version of the back-
ward sorties elimination constraints is:

(TBS2)

|P |−1∑
h=1

|P |∑
l=h+1

xv(h)v(l) +−→g jk +
∑

(l,k)∈A
l 6∈P

−→g lk +
∑

(k,l)∈A
l 6∈P

←−g kl ≤ |P | P ∈ B

(72)

We finally need to impose the following constraints to avoid infeasibilities:

−→g ij +←−g ij ≤ 1 (i, j) ∈ A (73)
−→g ij +←−g ji ≤ 1 (i, j) ∈ A (74)

7 Computational Experiments

To test the above models we have implemented them to run on an Intel Core i3-
2100 CPU, with 3.10 GHz and 8.00 GB of RAM, running Windows 7 operating
system. CPLEX 12.71 was used as MILP solver, and only a single thread was
utilized during the testing.

Formulation MC was solved directly by CPLEX, while DMN and DMN2
required a branch-and-cut implementation, since they include exponentially
many constraints. To separate these constraints we considered the residual
graph G′ = (N,A′) obtained from G (see Section 4) by selecting the only
arcs associated with a non zero variable (x, y, −→g and ←−g ) in the continuous
relaxation of the model. For the crossing sorties elimination constraints and
for the backward sorties elimination constraints we simply explore the graph
starting from depot 0, until a truck path violating one of the constraints is
identified, if any. The overall procedure has a time complexity O(|A′|). To
separate the subtour elimination constraints we use the standard approach
which requires to solve at most O(n2) max flow problems on the residual
graph.
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To facilitate the solution of the problem, we give all the algorithms an initial
heuristic solution computed as follow. We first find a heuristic (TSP) solution
in which all the customers are served by the truck. We build this solution with
a greedy constructive algorithm followed by a local search improvement using
as moves to define neighbouring solution the relocate of one customer and the
swap of two customers. Next we examine all the possible sorties and we select
the one, if any, that improves the solution. We repeat the search for improving
sorties (and update of the solution) until no one is found. We based our tests
on the 72 benchmark instances provided by Murray and Chu [36]. In each
of these, ten customers are randomly distributed across an eight-mile square
region, while the depot is located in four different positions. The endurance
of the drone was chosen to be either 20 or 40 minutes, while the speed of the
drone was selected to be 15, 25, 35 miles/h based on Euclidean distances. The
truck speed was assumed to be 25 miles/h and based on Manhattan distances.
In the first 24 instances it has been set a ratio |C ′|/|C| = 90%, while for the
remaining ones they set the same ratio to 80%. For each instance we tested the
formulations on both the ‘no-wait’ case (in which the drone is not allowed to
wait at a customer), and the ‘wait’ case, adopted in [36], where wait is allowed,
but not considered in the computation of the battery endurance (see Section
1). Overall 144 instances are available in our test bed.

The interested reader can find all the results and solutions in our web site
www.or.unimore.it following the online resources link.

7.1 Tests

Table 2 presents the performances of the lower bounds for different formula-
tions. The entries of the table are the average gap over the instances referred
in each row, computed as 100 · (opt−LB)/opt, where ‘opt’ is the value of the
optimal solution obtained giving to formulation DMN2 enough time to close all
instances. The first column, labeled ‘E’, reports the battery endurance value,
while column labeled ‘speed’ refers to the drone speed. Column ‘MC’ reports
the lower bound gap obtained by the Murray-Chu formulation, modified as in
Section 4.2, after one hour of computing time. All the other columns give the
lower bound obtained at the root node. Columns labeled ‘newF’ (new objective
function) refer to formulation MC modified by adopting the objective function
introduced in Section 5. Columns labeled ‘newF2’ refer to formulation newF
modified by substituting the three index variables y with the two-indexed vari-
ables −→g and←−g as in Section 6. Finally ‘DMN’ and ‘DMN2’ report on the lower
bound gaps of our complete formulations. Formulation MC clearly gives bad
results, in terms of lower bound gap, providing a gap close to 80% for all class
of instances. The adoption of the new objective function greatly improves the
behaviour, drastically reducing the gap to about 22%. The use of two-indexed
variables and complete formulations further improve the gap. Concerning the
effect of the waiting time at the customers we observe that instances where is
allowed to wait have slightly smaller gaps.

www.or.unimore.it
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Fig. 2: Comparison of lower bound gaps at the root node for the different
proposed methods.
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Table 2: Lower bounds at the root node, by speed class

No-Wait Wait

E speed MC newF newF2 DMN DMN2 MC newF newF2 DMN DMN2
15 83.31 14.38 13.71 9.35 8.46 83.42 13.83 12.73 8.67 6.83

20 25 81.99 26.60 25.30 23.10 18.57 81.39 23.99 21.79 20.25 15.36
35 79.72 19.47 19.14 16.12 11.41 79.64 19.21 18.56 15.99 11.12
15 82.86 29.95 29.27 26.53 22.90 82.78 29.77 29.30 27.16 23.06

40 25 80.68 23.58 21.94 20.05 16.06 80.68 23.58 22.55 20.28 15.80
35 79.66 20.93 19.85 18.22 12.60 79.65 20.79 19.61 17.82 12.49

All 81.37 22.49 21.53 18.89 15.00 81.26 21.86 20.76 18.36 14.11

Table 3 gives the same data as in Table 2, but grouped by depot position.
Column labeled dep refers to the four depot positions, with respect to the
square in which are generated the customers. In the first position a the depot
is almost in the barycentre of the customers, in b, c and d it is close to the
right border of the square, with a vertical position which is, respectively, in the
barycentre, on the bottom border and below the bottom border at a distance
which is equal to the distance of the barycenter from this border. One can see
that the worst bound gaps are obtained when the depot is in position ‘b’ and
improve when it is far from the barycenter (positions ‘c’ and ‘d’). The best
gaps are obtained when the depot is outside the square, that is far from all
customers. In this case there is a sort of ‘offset’ distance that must be covered
by any route to reach the customers, and this improves the bound.
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Table 3: Lower bounds at the root node, by depot location

No-Wait Wait

E dep MC newF newF2 DMN DMN2 MC newF newF2 DMN DMN2
a 89.87 20.97 20.24 15.88 13.79 89.67 19.10 17.17 13.80 11.21

20 b 88.08 25.19 24.25 21.57 16.28 88.14 24.16 22.81 19.86 14.72
c 82.06 19.03 17.86 14.53 11.10 81.94 18.46 17.67 14.91 9.95
d 66.69 15.41 15.18 12.78 10.08 66.18 14.31 13.11 11.31 8.55
a 90.08 26.65 25.03 23.00 18.71 90.07 26.46 24.60 23.07 18.84

40 b 87.41 29.92 28.72 26.86 21.08 87.41 29.92 28.72 27.55 20.75
c 81.30 23.49 21.88 20.16 16.01 81.29 23.46 23.42 19.87 15.79
d 65.46 19.21 19.11 16.38 12.95 65.37 19.01 18.53 16.51 13.08

Figure 2 provides a graphical representation of the lower bound gaps for the
’no-wait’ instances. One can see that the lower bound gap at the root node is
improved largely by the proposed methods with respect to the original model
with no difference based on endurance and speed class. The reader can notice
that each of the improvement features applied provide a relevant contribution
to the results.

In Tables 4-5 we report on the performances of the formulations in finding
the proven optimal solution for the instances where waiting at the customer’s
location is allowed. The values in the table are averaged over the 12 (resp.
9) instances of each class of speed (resp. depot location). The overall results
are computed over the 72 instances. In the columns labeled ‘gap%’, ‘opt’,
‘nodes’ and ‘time’, we report, respectively: the percentage gap computed as
100·(UB−LB)/UB (average on the only instances not solved to the optimum),
the number of proven optimal solutions, the average computing time in CPU
seconds, and the average number of branch-decision-trees explored. As already
anticipated, formulation MC, in one hour of CPU time, was not able to solve
any instance given the poor performances of the lower bound, so we do not
report the CPU time for this formulation.

Looking at Table 4 we observe that the instances with endurance 20 are
much easier than those with endurance 40: in terms of obtained optimal so-
lutions and computing times. This is due to the fact that the number of pos-
sible drone sorties are much less in the first case, thus reducing the possible
choices of the algorithm. The two-indexed formulation DMN2 has better per-
formances than DMN, since it solves 13 more instances, the unsolved instances
have smaller gap and also the computing time is smaller.

For the ’no-wait’ instances the formulations exhibit a very similar be-
haviour that is not reported here (the interested reader can find the related
results at www.or.unimore.it).

Looking at Table 5 we can observe that instances of class ‘a’, where the
depot is located almost in the middle of the customers, are more difficult than
the other cases. Class ‘d’, which gave the best results for the root node lower
bounds, has, instead, the same difficulty of the classes ‘b’ and ‘c’

Tables 6 depicts the difference between the ’wait’ and ’no-wait’ solutions
with respect to the speed class and the depot location. The entries of Table
6-(a) and Table 6-(b), are the endurance, the speed (depot location, respec-

www.or.unimore.it
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Table 4: Exact solutions for ‘wait’ instances, by speed class

MC DMN DMN2
E sp gap% opt nodes gap% opt time nodes gap% opt time nodes

15 83.48 0 180356.6 0.00 12 10.2 379.9 0.00 12 6.1 340.4
20 25 82.02 0 159165.3 8.25 11 797.1 17056.3 1.75 11 503.1 19934.1

35 80.81 0 142095.8 8.72 9 1342.2 24671.7 4.18 10 920.4 35803.4
15 82.96 0 153948.3 10.59 2 3313.3 54078.5 7.67 9 2247.2 91281.3

40 25 81.47 0 145158.7 10.14 4 2533.3 46797.5 6.70 7 2033.7 83462.6
35 80.63 0 140049.8 5.28 8 1433.6 25229.2 8.93 10 1020.6 45452.8

All 81.90 0 153462.4 9.33 46 1571.68 28035.5 6.50 59 1121.89 46045.8

Table 5: Exact solutions for ‘wait’ instances, by depot location

MC DMN DMN2
E dep gap% opt nodes gap% opt time nodes gap% opt time nodes

a 90.14 0 161330.4 9.03 6 1496.6 26211.3 3.37 6 1293.5 41864.8
20 b 88.38 0 162479.0 7.34 8 1034.0 22432.4 0.00 9 559.4 29790.4

c 82.72 0 157777.2 0.00 9 155.0 3771.9 0.00 9 29.2 1703.1
d 67.18 0 160570.2 0.00 9 180.7 3728.2 0.00 9 24.2 1412.2
a 90.64 0 145540.9 11.71 2 2937.7 49395.2 8.23 3 2662.4 86080.9

40 b 87.79 0 145526.4 10.68 3 2555.8 46533.9 7.67 6 2081.0 86932.6
c 82.02 0 151308.9 7.51 5 2033.6 35907.6 0.00 9 1064.3 53117.3
d 66.30 0 143166.2 6.41 4 2180.0 36303.6 1.96 8 1261.1 67464.7

All 81.90 0 153462.4 9.33 46 1571.7 28035.5 6.50 59 1121.9 46045.8

tively), the gap% computed as 100 ·(optn−optw)/optn averaged only when the
two solution differs, being optn and optw the optimal solution of the no-wait
and wait case, respectively. The last column reports the number of occurrences
of a difference between the two optimal solutions. One can note that a more
restrictive endurance make the allowance of waiting at customer without fly-
ing more important. This appears more relevant than the speed class. On the
other hand, depot position ’a’ (centrally positioned) and ’d’ (positioned out
of the square) have a strong impact on the solution when waiting is allowed.
Moreover, based on extensive computational tests, we can state that the ’wait’
model is only slightly easier to be solved than the ’no-wait’ one.

Table 6: Comparison between ’wait’ and ’no-wait’ solutions

(a) By speed class

E speed gap% occur.

20 15 1.65 5
25 3.86 10
35 2.24 2

40 15 1.42 4
25 0.00 0
35 0.00 0

All 2.72 21

(b) By depot location

E dep gap% occur.

20 a 4.08 5
b 2.64 5
c 1.22 4
d 3.89 3

40 a 2.66 1
b 0.00 0
c 0.37 1
d 1.32 2

All 2.72 21
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Figure 3 shows the difference between a ’no-wait’ and a ’wait’ solution.
For this particular instance, the gap between the value of the two optimal
solutions is around 9%. Note that one more sortie can be performed in the
’wait’ solution. In particular, allowing to wait at customer 2, the drone can
save battery while the truck travels path (0,8,1), whose length would exceed
battery endurance if the drone had to wait while flying. Similarly, the ’wait’
solution can let the drone wait at customer 3, while the truck runs on the path
(7,4,10,9), whose time would exceed the battery endurance. In this case the
’no-wait’ solution performs a shorter sortie, instead; however, this difference
does not improve the solution, but it shows, nevertheless, that the instances
of the FSTSP can have more than one optimal solution, with the same truck
route, and different sorties. This last consideration is one of the reasons why
these problems are hard to solve also for small instances and it further justifies
the increasing interest of researchers.

Fig. 3: Comparison between the ’no-wait’ (a) and ’wait’ (b) solution of an
instance with E = 20, depot location ’d’, and ’speed’ = 25 miles/h. The
solid, dashed, lines represent the truck route, sorties, respectively. The square
indicates the depot while the circles indicate the customers.

(a) no-wait (b) wait

8 Conclusions

This paper considered one of the most promising fields in parcel deliveries
nowadays, the combined use of traditional vehicles and drones. We focused on
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one particular problem called the Flying Sidekick Traveling Salesman Prob-
lem, where a drone and a truck are coupled and synchronized, and must serve
a set of customers. We provided improvements on the literature by proposing
a three and a two-indexed formulations for which we proposed a novel objec-
tive function that could increase remarkably the lower bounds, and a set of
good inequalities to be separated in a branch-and-cut fashion that provided an
important contribution to obtain better solutions in a faster way. Our method
outperforms the previously proposed one, being the two-indexed formulation
the preferable one: 59 out of the 72 benchmark instances could be solved to
optimality with an average percentage gap between the best lower and upper
bound of 1.70% and within an average computing time of less than 20 minutes.
We evaluated two versions of the problem: one in which the drone is allowed to
wait at the customers to save battery and one where this is prohibited. Both
are hard to solve even when considering small sized instances. The version
in which waiting is allowed is only slightly easier to be solved with respect
to the other one: larger sets of feasible solutions must be treated by the al-
gorithm, but feasible solutions are easier to find and possibly with a smaller
cost. Among the several features considered, the drone endurance is the one
that has the stronger influence on the convergence of the algorithm, a smaller
endurance allow the algorithms to have better performances, while reducing
the number of feasible sorties. To conclude, our ideas could be easily applied
to similar problems: this could suggest a direction of future research where
analogous problems, with different constraints, are considered. Another possi-
ble direction of research could be the development of metaheuristic algorithms
for these sets of problems.
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