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Abstract

Turbulent forced convection is investigated by Direct Numerical Simulation
in a channel with one sinusoidal wavy wall and one flat wall. Fluid flow and
heat transfer are periodically fully developed, the simulated Reynolds number
of the bulk velocity and the hydraulic diameter is Re = 18 880 while three
Prandtl numbers are considered, i.e. Pr = 0.025, Pr = 0.2, and Pr = 0.71.
The fluid flow is characterized by separation, reattachment and a shear layer
downstream the wave peak, these are conditions relevant for turbulent heat
transfer and passive scalar transport applications.

In the range of Péclet numbers investigated, the most important heat
transfer mechanism is by mean flow advection. Accordingly, the peak heat
transfer region is in the upslope part of the domain. The separation bubble
instead acts as a barrier to convection and the heat transfer rate is minimum
close to separation. An a priori analysis is performed in order to assess the
accuracy of turbulent heat transfer models based on the Generalized Gradient
Diffusion Hypothesis.
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Introduction

Liquid metals are used as coolants in many current nuclear reactors de-20

signs, but the heat transfer behavior of low Prandtl number fluids in condi-
tions relevant to applications are still to be elucidated, also because of the
difficulty in performing experiments. Turbulent heat transfer of liquid met-
als have to be investigated in conditions relevant for the applications i.e. in
complex flow configurations, involving separation, reattachment and possi-25

bly shear layer regions. Only a deeper knowledge of these characteristics can
allow for a more accurate turbulent heat transfer modeling to be employed
in the design cooling systems which might ensure also passive safety.

A number of publications on turbulent convection in low Prandtl num-
ber flows consider the flat channel configuration. Kawamura and co-workers30

[1, 2] perform direct numerical simulations (DNS) in the flat channel case,
the investigated Prandtl number values range between 0.025 and 0.71, while
friction Reynolds numbers Reτ = 180 and 395 are considered. The authors
observe that the effect of Re on the turbulent Prandtl number is stronger at
low Pr. Instead, for Pr > 0.2 the near-wall value of turbulent Prandtl num-35

ber is found to be about unity, independently of both Re and Pr. Piller et
al. [3] present results of a DNS for the same range of Prandtl numbers as in
[1, 2] and for Reτ = 150. Based on temperature spectra and the correlations
coefficient between velocity and temperature fluctuations, they observe that
in low Prandtl number fluids the molecular conductivity acts as a filter, de-40

creasing the effectiveness of large frequency velocity fluctuations in creating
temperature fluctuations. Abe and co-workers [4] use DNS results to focus on
the characteristics of surface heat flux fluctuations. Their simulations span a
wide range of Re number; Reτ = 180, 395, 640 and 1020 and Pr = 0.025 and
0.71. The comparison between the space-time correlations at Pr = 0.71 and45

0.025 reveals that the surface heat flux fluctuations propagate downstream
with a larger convection velocity for Pr = 0.025, with respect to Pr = 0.71.

There is a large volume of published studies investigating the effects of
surface undulation on turbulent flow features, as the experimental works by
Zilker and Hanratty [5], Hudson et al. [6, 7], Zenklusen et al. [8], and the50

numerical studies by Maaß and Schumann [9], Cherukat et al. [10], Calhoun
and Street [11], Patel et al. [12].

Experimental and numerical studies of forced turbulent convection in
wavy channels are also available in the literature, but only for order one
Prandtl number fluids. Günther and von Rohr [13] conduct an experimen-55
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tal study on the same geometry and for the same Reynolds number as in
Ref. [6]. They use a Liquid Crystal Thermometry (LCT) technique and de-
tect the size of dominant spanwise scales of the fluid temperature by means
of a POD. Digital Particle Image Velocimetry (PIV) and Planar Laser In-
duced Fluoresce (PLIF) technique are instead used by Kuhn et al. [8] to60

study the influence of wavy walls on the passive scalar transport in turbulent
regime. They consider channels with one flat wall and a wavy wall of varying
amplitude, for a Reynolds number based on half the average channel height
Re = 11 200.

Numerical investigations using RANS models or LES for simulating tur-65

bulent heat transfer in wavy channels have also appeared in the literature.
Dellil et al.[14] use a k-ε turbulence model to study the turbulent flow and
heat transfer over wavy walls. Waves of different amplitude are considered;
they observe that while increasing a/λ between 0 to 0.1, the average Nus-
selt number initially increases until a critical value is reached. Choi and70

Suzuki [15] perform LES of turbulent heat transfer in a channel with one
wavy wall, for three different values of the wave amplitude in the range
0.01 ≤ a/λ ≤ 0.1. The Prandtl number investigated is Pr = 0.71 and the
Reynolds number the same as in Ref. [6]. An instantaneous streamwise vor-
tex is sometimes found in the upslope part of the wave, which enhances the75

local heat transfer rate. A DNS study has been performed by Rossi [16], for
the usual wave steepness of a/λ = 0.05, and a Reynolds number based on
the average channel height, Re = 6 850 and Prandtl number Pr = 0.71. The
results of this study have never been published in a journal, they instead
have been used for comparison purposes in the later work by Rossi [17],80

where Reynolds Averaged Navier Stokes and scalar transport equations are
used to evaluate the predictive capabilities of the algebraic heat-flux models
in comparison to the simple gradient model. Rossi [17] reports that alge-
braic heat-flux models are able to improve the scalar field predictions in the
analysis of scalar dispersion from a point source over the wavy wall.85

The present work investigates the turbulent forced convection of low to
order one Prandtl number fluids for flow configurations relevant for heat
exchangers passages, i.e. with a periodic set of flow separations and reat-
tachments. The geometry selected is the same as used in many of the ref-
erences mentioned above, [6, 7, 9, 10]. The Reynolds number based on the90

mean bulk velocity and hydraulic diameter is Re = 18 880 (corresponding to
Reδ = 4 720); the three simulated Prandtl numbers are Pr = 0.025, repre-
senting lead-bismuth eutectic, Pr = 0.2, which corresponds to a low Prandtl
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number gaseous mixture, and Pr = 0.71, which corresponds to air. The
main characteristics of the velocity field are shown. Results obtained for95

the temperature fields distribution, the temperature fluctuations, the Nus-
selt number and the heat fluxes are presented, also considering the Prandtl
number effect.

Based on DNS data, and using an a priori approach, the accuracy of two
widely used models for the representation of turbulent heat fluxes is assessed100

and discussed. The isotropic model based on the Simple Gradient Diffusion
Hypothesis fails in representing the streamwise component of turbulent heat
fluxes. In addition it is found that the use of an uniform turbulent Prandtl
number might provide inaccurate results when separated flow and shear lay-
ers are included in the flow investigated. The Generalized Gradient Diffusion105

Hypothesis recovers more accurately the direction of turbulent heat fluxes,
but it needs to be tuned for the simulation of turbulent heat transfer in
Pr 6= 1 fluids.

1. Governing equations

Governing equations are given in the following in their non-dimensional
form. Dimensionless equations are obtained using half the average channel
height δ as the reference quantity for length, u∗ = (βδ/ρ)1/2 as the reference
velocity and tref = δ/u∗ as the reference quantity for time. In the definition of
the reference velocity, ρ is the density of the fluid and β is the constant pres-
sure drop imposed in the x direction, divided by length of the computational
domain in streamwise direction

P (x, y, z)− P (x+ Lx, y, z)

Lx
= β (1)

Temperature field is made dimensionless using the reference temperature110

Tref, while a further normalization is performed for allowing for a periodic
representation of the temperature, as outlined in section 1.2.

1.1. Momentum equation

For the simulation of the fully developed flow in a channel, the pressure
field P is conveniently subdivided into a linear and an unsteady periodic
contributions

P (x, y, z, t) = −βx+ p(x, y, z, t) (2)
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The conservation equations for mass and momentum in dimensionless form
result in115

∇ · u = 0 (3)

∂u

∂t
+∇ · (u⊗ u) = −∇p+

1

Re∗
∇2u + b (4)

where b is the unit vector in x direction, since in the non-dimensional form,
β = 1. Re∗ can be interpreted as the total drag Reynolds number, Re∗ =
u∗δ/ν and it differs from the friction Reynolds number which is formed using
a velocity scale representing only viscous drag effects, uτ =

√
τw/ρ.120

1.2. Energy equation

Buoyancy effects are neglected in the present study, and the temperature
variable T is treated as a passive scalar. Thermophysical properties are
assumed to remain constant and viscous dissipation is not accounted for.
The non dimensional energy equation with no heat sources, is given by

∂T

∂t
+∇ · (uT ) =

1

Pe∗
∇2T (5)

where a still to be defined reference temperature Tref is used for the non
dimensional formulation and Pe∗ = Re∗ Pr.

Uniform wall temperature conditions are set at the solid boundaries. A
normalization of the temperature field is introduced for simulating the pre-
scribed temperature conditions, by enabling a streamwise periodic variable
to be calculated instead of the actual temperature field. While the more
common numerical techniques make use of the bulk temperature at every
step and an iterative procedure is required for this, the technique employed
in this study, directly solves the transport equation of the periodic variable
θ

∂θ

∂t
+∇ · (u θ) =

1

Pe∗
∇2θ +

(
1

Pe∗
λ2L + uλL

)
θ − 2

1

Pe∗
λL

∂θ

∂x
(6)

with no need of multiple step procedures. The dimensionless, normalized
temperature θ is defined as

θ(x, y, z, t) =
T (x, y, z, t)

exp(−λL x)
(7)
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An energy balance is used to evaluate the space averaged temperature
decay rate λL thus closing the system of equations, see Ref. [18]. The ef-125

fects of axial diffusion are included in the equation for λL as well as in (6)
and are therefore accounted for in the solution. The recovery of the actual
temperature field can be finally performed through equation (7).

The temperature-like variable θ is defined apart from a multiplicative con-
stant associated with the selection of Tref which has been left undetermined
up to this point. This is expressed by the following equation

θ(x, y, z, t) =
1

T̃ref

T̃ (x, y, z, t)

exp(−λL x)
(8)

where T̃ indicates the dimensional temperature field. In this work the three
θ fields corresponding to different molecular Pr numbers have been scaled in
the post processing phase, and thus also Tref has been selected during post
processing so that time and space averaged heat flux at the flat wall equals
unity

∂θ

∂y

∣∣∣∣
w,u

= −Pe∗ (9)

this allows for immediate comparison between temperature fields at different
Pr number and also against results in the literature where heat flux is imposed130

at the walls. A more detailed description of the method is given in Ref. [18].

1.3. Discrete form of the equations

The Finite Volume code used for the simulations is the same as used in
former studies of the flow and heat transfer over corrugated surfaces [19],
where the transport equation for the three velocity components are solved135

by a second order projection-scheme. The Crank-Nicolson scheme is used
for the temporal discretization of the diffusive terms of both the momentum
and the energy equations, while the Adams-Bashfort scheme is used for the
convective terms and for the source term of the energy equation. The spatial
discretization is performed by means of second order symmetric schemes.140

Further details can be found in Ref. [19].

2. Computational domain and mesh

2.1. Computational domain

A three dimensional computational domain, periodic in the streamwise
direction and homogeneous in the spanwise direction is considered in this
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Figure 1: Periodic geometry of the problem, three dimensional view.
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Figure 2: Two dimensional view of the computational domain. The reference length chosen
is half the average channel height δ.

study. It is depicted in figure 1, together with the coordinate system. The
shape of the wavy wall yw in the x - y plane is described by

yw = a

[
1 + cos

(
2πx

λ

)]
(10)

where a is the amplitude of the wave and λ is the wavelength. In the present
investigation wavelength and amplitude are set equal to 2δ and 0.1δ respec-145

tively, where δ corresponds to half the channel average height, see figure 2.
Geometrical parameter have been selected to match the geometry investi-
gated in the experiments in Ref. [6] and subsequent DNSs in references [9]
and [10].
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The size of the domain in streamwise direction is Lx = 6δ; it is smaller150

than the domain selected by Cherukatet al. [10] where computations are per-
formed over four periodicities, but the smaller Lx employed is not expected
to affect the accuracy of present results, as demonstrated by the λ2 analy-
sis in Ref. [11], which shows that typical large scale structures have size in
streamwise direction, Λx = λ. The computational domain in the spanwise155

direction is also Lz = 6δ, i.e. 1.5 times larger with respect to Ref. [10] be-
cause of the observation of very large spanwise structures (1.5λ) occurring
over wavy walls, as described in Ref. [13].

2.2. Computational mesh

A structured, curvilinear and orthogonal mesh is employed for domain160

discretization. The number of grid points set for Re = 18 880 (Reτ = 282) is
265×187×221 along x, y and z. In order to validate the fluid flow results
obtained, a simulation for a Reynolds number of Re = 13 730 has also been
performed on a 253×129×161 mesh. The Reynolds number of this simulation
falls very close to the flow regime investigated by Hudson [6] and by Cherukat165

et al. [10] and available in the literature; validation is reported in Appendix
A.

channel Re Reτ ∆x+ ∆y+mean y+w ∆y+max ∆z+

Present wavy 18 900 282 6.7 3.3 0.53 5.5 7.9
Present wavy 13 700 216 5.3 3.6 0.58 5.7 8.3
Ref. [9] wavy 11 400 – 10.2 – 1.6 12.4 10.2
Ref. [4] flat 11 700 180 9.0 – 0.20 5.9 4.5
Ref. [4] flat 27 500 395 9.9 – 0.15 6.5 4.9

Table 1: Grid spacings in wall units. For the purpose of comparison values available in
Ref. [4] Ref. [9] are also indicated. Simulations at Re = 13 700 have been performed for
validation, see Appendix A.

Grid spacings for the two Reynolds numbers simulated are given in Ta-
ble 1. In the same table, details of the mesh used by Kawamura et al. [4]
for convective heat transfer in a flat channel and in Ref. [9] for the fluid flow170

over wavy walls are also reported for comparison.
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3. Non dimensional parameters

In the numerical code employed, the pressure drop at the ends of the
channel is imposed through the total drag Reynolds number Re∗ value. The
non-dimensional global parameters, the Reynolds number and the friction175

factor are evaluated in terms of non-dimensional quantities by

Re = 2Re∗Qs; f =
4Hav

u2mRe
∗

〈∣∣∣∣∂u∂η
∣∣∣∣
w

〉
(11)

where Qs is the time-averaged volume flow rate per unit spanwise width
of the channel, 2Hav corresponds to the average hydraulic diameter, the bulk
mean velocity is um ≡ Qs/Hav and the angular brackets indicate a spatial
average.180

The friction Reynolds number is calculated as

Reτ =
uτδ

ν
; uτ =

√
τw,u + τw,l

2ρ
(12)

where the wall shear stress of the upper and lower wall τw,u and τw,l are
calculated on the projected horizontal area.

The Nusselt number in terms of non dimensional quantities is evaluated
from

〈Nu〉 =
2Hav

〈Tb〉 − Tw

〈∣∣∣∣∂T∂η
∣∣∣∣
w

〉
(13)

where η is the wall normal coordinate.
A local Nusselt number can be defined starting from equation (13)

Nu(x) =
2Hav

Tb − Tw

∣∣∣∣∂T∂η
∣∣∣∣
w

(14)

the local Nu(x) allows for the discussion of heat transfer performance in185

specific portions of the channel.

4. Results

4.1. Velocity field

Streamlines of the mean velocity field on the periodic module of the chan-
nel are depicted in figure 3, together with profiles of the streamwise compo-190

nent of the velocity field. Closer streamlines over the crest of the waves
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Figure 3: Profiles of the streamwise component of the mean velocity field and streamlines.

indicate flow acceleration; past the crest, the adverse pressure gradient in-
duces flow separation. The thickening of the boundary layer before separa-
tion is evident from profiles of u; a steep velocity gradient at the restart of
the boundary layer can also be observed. Peak velocity profiles are located195

well above the mean channel centerline (y = 1.1δ), this indicates that the
influence of the lower wall undulation on the flow field extends beyond half
the channel height. Due to the presence of the recirculation bubble in the
valleys, viscous drag on the lower wavy wall is smaller with respect to viscous
drag calculated on the upper flat wall. The friction factor evaluated through200

equation (11) gives f = 0.0247 at the lower, wavy wall and f = 0.0345 at
the upper wall. A more complete description and further comments on the
friction factors on the flat and the wavy walls are provided in Ref. [20] and
also Ref. [10]

Figure 4 shows the root mean square (rms) fluctuation profiles for all three205

components of the velocity; the behavior is markedly different for different
streamwise positions. The region with peak velocity fluctuations is located
above the trough and is almost coincident with the shear layer region. The
shear layer region is indicated in figure 4 by a gray area where Reynolds
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Figure 4: Profiles of the root-mean-square velocity fluctuations. Solid line, urms; dotted
line, vrms; dashed line, wrms. The gray area is the region where Reynolds stress −u′v′ are
greater than 2.1. A gray, horizontal, dashed line indicates the channel centerline y = 1.1δ.

stress exceeds a given threshold −u′v′ ≥ 2.1. Despite a global effect of the210

lower wall undulation is felt by the upper flat wall in terms of larger velocity
field fluctuations with respect to the flat channel case (not shown here),
fluctuations on the upper wall are essentially independent of the streamwise
coordinate. Further details on the flow field characteristics like the Reynolds
stress distribution together with the pressure field distribution can be found215

in previous papers on the turbulent flow in a wavy channel, [7, 10].

4.2. Temperature field

Mean temperature profiles are shown in figure 5. Temperature profiles
change their characteristics depending on the Prandtl number: while for
Pr = 0.71, the shape of the profile is turbulent, for Pr = 0.025 the profile220

shape is typically laminar.
Instantaneous contours of the streamwise velocity component and three

temperature fields corresponding to the different Prandtl numbers simulated
are displayed in figure 6, together with the fluctuation fields. It appears
that the mean temperature profiles of laminar characteristics at Pr = 0.025225
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Figure 5: Profiles of the normalized mean temperature field θ for three different Prandtl
number values, solid line: Pr = 0.71; dashed line: Pr = 0.20 and dash-dot line Pr = 0.025.
Streamlines of the mean vortex are also indicated in the figure.

shown in figure 5 derive from an unsteady temperature field, a small range
of spatial scales and (as discussed later) weak turbulent heat flux in verti-
cal direction. Visual comparison of the u′ distribution against temperature
fluctuation fields suggest that the calculation of the turbulent diffusivity as
the product of the eddy diffusivity and the inverse of a uniform turbulent230

Prandtl number may not be accurate for Pr� 1.
Profiles of the root-mean-square of the temperature fluctuations are de-

picted in figure 7. Close to the lower wall and for Pr = 0.71 two peaks appear
at x = 0.7, the lower peak corresponds to the region of maximum velocity of
the mean recirculating bubble, while the other one corresponds to the shear235

layer. Profiles in the boundary layer restart region (see x-stations x = 1.3
and x = 1.7) display a sharp peak close to the lower wall, while the peak
originating from the shear layer is considerably reduced. For Pr = 0.025
it is impossible to discriminate between the two peaks. Shapes of profiles
obtained for Pr = 0.20 lie between the two cases discussed.240

Turbulent heat fluxes in x, y and wall normal direction are depicted in
figure 8. Distribution of the turbulent heat fluxes in x, figure 8a, reveals
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(a) u (b) u′

(c) θ at Pr = 0.71 (d) θ′ at Pr = 0.71

(e) θ at Pr = 0.20 (f) θ′ at Pr = 0.20

(g) θ at Pr = 0.025 (h) θ′ at Pr = 0.025

Figure 6: Snapshots of the instantaneous streamwise velocity component and temperature
fields: u in a; u′ in b, θ in c,e,g; θ′ in d,f,h.

that the streamwise component reaches its maximum along the shear layer
region, where Reynolds stress are also large. A very small intensity of tur-
bulent heat fluxes in the flow reattachment region for (y − yw)+ < 15 can245

be observed. For decreasing Prandtl numbers, turbulent heat fluxes almost
vanish, see figure 8d, this is in direct relation with the laminar shape of mean
temperature profiles for Pr = 0.025. Given the turbulent heat fluxes depend
on the particular frame of reference employed, figure 8 provides also profiles
calculated in a reference frame aligned with the streamlines of the potential250

flow above the same geometries.
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Figure 7: Root-mean-square of the temperature fluctuations, θrms, solid line: Pr = 0.71;
dashed line: Pr = 0.20 and dash-dot line Pr = 0.025.

4.2.1. Vertical heat fluxes

Analysis of vertical heat fluxes is used here to examine the heat transport
mechanism between the channel walls and the fluid. Vertical heat fluxes can
be decomposed into conductive, turbulent and advective contributions

qy =
1

Re∗Pr

∂θ

∂y
− v′θ′ − vθ (15)

Profiles of the three contributions to qy and of the total vertical heat flux qy
are presented for the three selected molecular Prandtl numbers in figures 9–
11.255

The conductive contribution to the heat fluxes in vertical direction is sig-
nificant in the near wall region; it largely varies along x close to the wavy
wall, attaining its minimum close to the separation point, and its maximum
past the flow reattachment position. Difference in turbulent heat fluxes in
y direction almost vanish for y ≈ 0.4. Mean advective fluxes are positive260

or negative, depending on the sign of the mean vertical component of the
velocity. Above the lower wall and within the core region not only the mean
advective transport in vertical direction −vθ is non-negligible, but it prevails
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Figure 8: Profiles of turbulent heat fluxes, (a) u′θ′: solid line Pr = 0.71; dashed line
Pr = 0.20; dash-dot line Pr = 0.025. Insets (b) (c) (d), black lines: vertical heat fluxes;
gray lines: heat fluxes calculated on a reference frame locally aligned with the wavy walls.

on turbulent transport, thus representing the main contribution to the ver-
tical heat fluxes. For the lowest Prandtl number investigated, vertical heat265

fluxes of advective origin, and also total vertical heat fluxes are considerably
reduced with respect to the Pr = 0.71 and Pr = 0.20 cases.

4.2.2. Nusselt number

Local Nusselt numbers, calculated as in equation (14), are displayed in
figure 12 for the three fluids considered and for the two channel walls. If270

by one side heat transfer enhancement at the wavy wall can be ascribed to
the presence of flow separation, on the other side heat transfer is hindered
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Figure 9: Profiles of the vertical heat fluxes for subsequent axial positions, Pr = 0.71.
Dotted line, x = 0.3; dashed line, x = 0.9; solid line, x = 1.4.

by the recirculating bubble; peak heat transfer rate is located in the flow
reattachment region. As suggested by results in section 4.2.1, the larger wall
heat flux close to reattachment is associated with increased mean advection275

effects rather than vertical heat fluxes, at least within the present Reynolds
number range.

Table 2 reports global Nusselt numbers 〈Nu〉 calculated from the present
DNS together with Nusselt number values for the flat channel calculated
using the correlation by Sleicher and Rouse [21], 〈Nu〉f , and with the heat
transfer ratio hr defined as the ratio between Nusselt numbers of the wavy
channels and those of the flat channel, hr ≡ 〈Nu〉c / 〈Nu〉f . Given hr is
calculated using a correlation, the ratio between Nu(x) averaged on the wavy
wall and the flat wall of the wavy channel is also provided in table 2, where
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Figure 10: Profiles of the vertical heat fluxes for subsequent axial positions, Pr = 0.20.
Dotted line, x = 0.3; dashed line, x = 0.9; solid line, x = 1.4.

it is indicated by hr,w.

hr,w =

∫ λ

x=0

Nu(x)|u dx∫ λ

x=0

Nu(x)|l dx
(16)

Notice from equations (13) and (14) that unlike the local Nusselt number,
the Nusselt of the wavy channel 〈Nu〉c is calculated using a global bulk tem-
perature and space averaged wall heat fluxes; as a consequence the spatial280

average of Nu(x) at the two walls may very well not correspond to the global
〈Nu〉c.

The Nusselt number of low Prandtl number fluids is low. Heat transfer
enhancement due to the presence of the wavy wall is instead substantial. The
ratio between Nusselt numbers at the two walls hr,w is seen to decrease for285

decreasing Pr. The heat transfer enhancement obtained is compensated by
a corresponding increase in friction drag, and in the addition of a form drag
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Figure 11: Profiles of the vertical heat fluxes for subsequent axial positions, Pr = 0.025.
Dotted line, x = 0.3; dashed line, x = 0.9; solid line, x = 1.4.

whose measure is in the difference between the total drag velocity u∗ and the
friction velocity uτ .

Pr 〈Nu〉f 〈Nu〉 hr hr,w 〈Prt〉
(Ref. [21]) (present) (present)

0.71 47 77.3 1.64 1.57 0.861
0.20 19 37.1 1.95 1.46 0.924
0.025 7.3 12.2 1.67 1.17 1.22

Table 2: Space averaged Nusselt numbers, heat transfer ratio and Prt at Re = 18 880 .

4.3. Turbulent Prandtl number distribution290

The turbulent Prandtl number is a fundamental parameter for practical
heat transfer analyses. It is often defined as a scalar, with the wall normal
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Figure 12: Profiles of the local Nusselt number: curves are for the lower wall while the
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Pr = 0.71, the dashed line is for Pr = 0.20, the dash-dot line for Pr = 0.025.

direction selected as the direction of the main heat fluxes

Prt ≡
u′v′

∂θ

∂y

v′θ′
∂u

∂y

(17)

The assumption of a uniform value of Prt is included in the hypothesis of
most turbulence models for the closure of RANS equations. This is also the
case of the Simple Gradient Diffusion Hypothesis (SGDH), which is probably
the most widely used turbulent heat flux model.

Contour plots of the turbulent Prandtl number calculated from equation295

(17) are shown in figure 13 and compared to contour plots of vertical heat
fluxes. In insets a), c), e) gray levels indicate 0.50 < Prt < 3.3, the local
Prt value is instead beyond those limits in white regions. This allows to
emphasize regions where the local Prt exceeds the range of the expected
values before a possible divergence Prt → ±∞.300
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As opposed to the flat channel case, where Prt diverges about the channel
centerline, in the present case unboundedness is observed also close to the
walls. This is not surprising as in a separation bubble the ∂u/∂y derivative
becomes zero at least once for each x-coordinate. In addition, in the wavy
channel of the present investigation v′θ′ approaches zero in the upslope por-305

tion of the domain for y+ < 20. A small turbulent mixing in vertical direction
is due to favorable pressure gradient and a concave streamline shape, which,
as investigated in [22], locally inhibits vertical fluctuations.

There are many physical cases where the turbulent Prandtl number di-
verge also close to the solid walls, the comparison between turbulent Prandtl310

number distributions and vertical heat fluxes in figure 13 suggests that in
these cases Prt cannot provide a reliable approximation to the turbulent
heat fluxes.

Space averages of the turbulent Prandtl number are given in table 2 using
data of the present DNS; as there are regions in the field where the local Prt →315

±∞, these are evaluated omitting from the calculation all computational cells
where Prt < 0.50 or Prt > 3.3.

4.4. Turbulent convection modeling in a wavy channel

In this paragraph, results obtained from the DNS are used as reference
data for assessing the accuracy of turbulent heat fluxes predicted by the320

SGDH model in the present geometry and conditions, thus performing an a
priori analysis of the model. Further in the discussion, the possible appli-
cation of a Generalized Gradient Diffusion Hypothesis (GGDH) in modeling
turbulent heat transfer over wavy walls will be evaluated, with special at-
tention on direction of the modeled turbulent stress, application to fluids of325

different Prandtl numbers and application on moderately complex geome-
tries.

The SGDH model is based on the gradient diffusion hypothesis

u′iT
′ = − νt

P̂rt

∂T

∂xi
(18)

where P̂rt indicates an assigned value for the turbulent Prandtl number.
In order to single out errors associated with turbulent transport modeling,
DNS data are used in equation (18) for both temperature gradient and eddy330

viscosity to form the modeled heat fluxes.
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Figure 13: Contour plots of the time-averaged turbulent Prandtl number over the wavy
walls are displayed in insets (a), (c), (e). White regions indicate Prt < 0.50 or Prt > 3.3.
Insets (b), (d), (f) display contour plots of the time-averaged vertical heat fluxes. Values
of 〈Prt〉 for the three molecular Pr are given in table 2.

Figure 14 displays turbulent heat flux vectors from DNS and from the
SGDH model using P̂rt = 0.9. Given the isotropic character of the gradient
diffusion hypothesis, the model fails to represent the streamwise component
of turbulent heat fluxes, see also Ref. [20]. In particular it fails in taking335

into account that while turbulent fluxes are substantial in the streamwise
direction (a couple of times larger than turbulent heat fluxes in the wall
normal direction), the time-averaged temperature derivative in x is very small
(about one order of magnitude smaller than ∂T/∂η). As a consequence the
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SGDH only gives a fair indication of the turbulent heat flux in the wall normal340

direction, along which the turbulent Prandtl number has been calculated, see
also Launder [23].

It is apparent in this context that resorting to a anisotropic turbulent
heat flux model could improve the quality of the representation of turbulent
heat fluxes. The Generalized Gradient Diffusion Hypothesis (GGDH), which
inherits his anisotropy from the Reynolds Stress tensor, is often employed in
complex flow configurations. When the flow is homogeneous in z as in the
channel with wavy walls, the simplest form of the GGDH model writes

u′T ′ = Cθτc

(
u′2

∂T

∂x
+ u′v′

∂T

∂y

)
v′T ′ = Cθτc

(
u′v′

∂T

∂x
+ v′2

∂T

∂y

)
w′T ′ = 0

(19)

where Cθ is a model constant (Cθ = 0.3), and τc is the characteristic time-
scale distribution τc = τc(x, y). The GGDH turbulent convection model is
meant to be coupled with the use of a model for the full Reynolds stress345

tensor.
Given that in the GGDH model equation τc, although based on mechan-

ical quantities τc = k/ε in the customary implementations (see [24]), is pri-
marily responsible for the module of the turbulent heat flux vector for all
Prandtl numbers, the assessment of the GGDH model is split into two sepa-350

rate stages.

• First the direction of the modeled turbulent heat flux vector –which
does not depend on the Cθτc product– is investigated;

• secondly Cθτc is calculated form DNS quantities, allowing in this way
to investigate to which extent the time scale τc can be considered as355

independent of the Prandtl number.

A more direct approach like for example the evaluation of τc from k and ε
extracted from DNS results, would introduce the supplementary uncertainty
associated with the correct representation of the turbulent kinetic energy
dissipation rate ε, whose transport equation is heavily modeled and whose360

distribution computed in a RANS simulation framework is typically very
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different form the ε which would be calculated by substitution of quantities
extracted from a DNS directly into its definition.

Figure 15 displays unit vectors directed like turbulent heat fluxes calcu-
lated by DNS, and by the two models: SGDH and GGDH. The improvement365

in the representation by GGDH of the turbulent flux direction is apparent;
the accuracy in the determination of the module of the vector depends in-
stead on the calculation of the local time scale distribution.

Figures 16 and 17 display the Cθτc product calculated from equation (19)
through an a priori approach, where all turbulent flow statistics and temper-370

ature derivatives are provided by DNS data and the module of the modeled
turbulent heat flux vector is compared to the module of the calculated tur-
bulent heat flux vector to get the Cθτc distribution.

In figure 16, data are averaged in time, along x and along z and for this
reason, the profile is shown only far enough (y − yw ' 0.7) from the wavy375

wall. From the inspection of figure 16 it can be concluded that a dependence
of Cθ from the molecular diffusivity of the fluid is non negligible for fluids of
molecular Prandtl numbers of O(10−1) or O(10−2).

Figure 17 displays the Cθτc product close to the wavy walls. The Cθτc
values are averaged in time and the spanwise direction only, for two different380

molecular Prandtl numbers and for two different x locations: valley of the
wave and crest of the wave. The Pr = 0.71 case is not displayed in the figure
for clarity, as if by one side the time scale value do not differ appreciably
from the Pr = 0.2 case, on the other side the profile is less regular. It can
be concluded that for moderately complex wall geometries, also involving385

separation, the product Cθτc is rather independent of the location where it
is calculated, thus encouraging its use over moderately complex geometries.

5. Conclusions

Forced convective heat transfer is simulated by DNS in an infinite channel
with one wavy wall and one flat wall. The simulated friction Reynold number390

is Reτ = 282, corresponding to a Reynold number of the bulk velocity and the
hydraulic diameter, Re ≈ 18 900. Heat transfer is simulated for three fluids
of different thermal conductivity, corresponding to Pr = 0.71, 0.20, 0.025. As
the fluid flow features in the same geometries and for the same Reynolds
number range has been extensively investigated numerically and through395

experiments, only few results are provided concerning the fluid flow features.
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Profiles of turbulent heat flux show that for the Reynolds number of
our simulations, turbulent heat flux almost vanish at Pr = 0.025; as a con-
sequence mean temperature profiles at those low Péclet number values are
typically laminar. Also temperature fluctuations are very different depending400

on the thermal diffusivity of the flow. A peak observed on θrms for Pr = 0.71
corresponding to the shear layer region is almost indistinguishable in the very
low Prandtl number range.

As expected, low Prandtl number fluids are characterized by compara-
tively low Nusselt numbers but heat transfer is enhanced by the wall undu-405

lation. While heat transfer is minimum in the separated flow region, where
the recirculating bubble act as a barrier to the advection of heat, a peak heat
transfer rate is found in the flow reattachment region for all fluids investi-
gated. A detailed investigation of the components of heat flux in vertical
direction reveals that the main contribution to heat transfer is always to be410

ascribed to the mean advective term, at least within the range of parameters
investigated.

Two widely used models of turbulent heat fluxes are evaluated through
an a priori approach. The model based on the Simple Gradient Diffusion
Hypothesis uses the turbulent Prandtl number for turbulent heat transfer415

predictions. While the dependence of Prt on the molecular Prandtl number
has been extensively investigated in the literature, it is shown in this work
that separation and in general complex flow configuration can have even
more severe effects on the turbulent Prandtl number distribution. Further,
the SGDH model is shown to fail in the prediction of turbulent heat fluxes420

in the streamwise direction, for Pr ∼ 1 and low Prandtl number fluids, for
flow configurations including separated flow as well as in flat geometries. In
summary the direction of the turbulent heat fluxes is misrepresented by the
SGDH model. The direction of turbulent heat fluxes is predicted more
accurately by the the GGDH model. On the other hand, given the time scale425

included in the model is a mechanical quantity, the Cθ constant should be
modified to take into account the thermal diffusivity of the fluid simulated,
when the Prandtl number of the simulated fluid is far from Pr ≈ 1
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Appendix A. Validation of fluid flow results

In this section, fluid flow results are validated against experimental data
available from Ref. [6] and DNS data from Ref. [10]. In order to match the
Reynolds number of reference data, Re = 13 840 validation is performed using435

the same code as discussed in section 1 but for a smaller Reynolds number
Re = 13 700 with respect to the turbulent heat transfer results presented and
a coarser mesh, see Table 1.

Figure A.18 displays all comparisons performed. Profiles of the mean
velocity field in horizontal and vertical direction, together with the root-440

mean-square velocity fluctuations are compared to data available and taken
directly from figures 10a and 10b in Ref. [10]. In summary it can be concluded
that the fluid flow predicted by the present simulations compare well against
both experiments and numerical simulations available in the literature.
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Figure 14: Comparison between vectors of turbulent heat fluxes, for the three different
Pr. Triangle head: DNS results; round head: SGDH model using P̂rt = 0.9 for all Prandtl
numbers.
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Figure 15: Unit vectors of the turbulent heat fluxes, (a) Pr = 0.71; (b) Pr = 0.20; (c)
Pr = 0.025. Circle arrows head for DNS results, square arrows head for the GGDH model,
triangle arrows head for the SGDH.
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Figure 16: Time, x and z average of the Cθτc product for y − yw ' 0.7 and for three
different Prandtl number values, solid line: Pr = 0.71; dashed line: Pr = 0.20 and dash-
dot line Pr = 0.025.
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Figure 17: Time and z average of the Cθτc product for y − yw / 0.9 and for two different
Prandtl number values; dashed line: Pr = 0.20 and dash-dot line Pr = 0.025.
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Figure A.18: Validation of the numerical technique employed by comparison with experi-
ments and DNS results from the literature. (a) Profiles of the normalized mean streamwise
velocity for crest and trough. Gray lines indicate present results; symbols indicate mea-
surements in Ref. [6]; solid black lines are for the DNS in Ref. [10]. (b) Profiles of the
normalized mean vertical velocity for crest and trough. Legend is like for figure A.18a.
(c) Profiles of the normalized root-mean-square velocity fluctuations at the crest. The
dashed gray line indicates urms/um, the solid gray line is for vrms/um; symbols indicate
measurements in Ref. [6]; dashed lines are for the DNS in Ref. [10]. (d) Profiles of the
normalized root-mean-square velocity fluctuations at the trough; legend is like for figure
A.18c
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