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Abstract: The C-terminal aminoacidic sequence from NPM1-mutated protein, absent in normal
human tissues, may serve as a leukemia-specific antigen and can be considered an ideal target for
NPM1-mutated acute myeloid leukemia (AML) immunotherapy. Different in silico instruments
and in vitro/ex vivo immunological platforms have identified the most immunogenic epitopes
from NPM1-mutated protein. Spontaneous development of endogenous NPM1-mutated-specific
cytotoxic T cells has been observed in patients, potentially contributing to remission maintenance
and prolonged survival. Genetically engineered T cells, namely CAR-T or TCR-transduced T cells,
directed against NPM1-mutated peptides bound to HLA could prospectively represent a promising
therapeutic approach. Although either adoptive or vaccine-based immunotherapies are unlikely to be
highly effective in patients with full-blown leukemia, these strategies, potentially in combination with
immune-checkpoint inhibitors, could be promising in maintaining remission or preemptively eradicat-
ing persistent measurable residual disease, mainly in patients ineligible for allogeneic hematopoietic
stem cell transplant (HSCT). Alternatively, neoantigen-specific donor lymphocyte infusion derived
from healthy donors and targeting NPM1-mutated protein to selectively elicit graft-versus-leukemia
effect may represent an attractive option in subjects experiencing post-HSCT relapse. Future studies
are warranted to further investigate dynamics of NPM1-mutated-specific immunity and explore
whether novel individualized immunotherapies may have potential clinical utility in NPM1-mutated
AML patients.

Keywords: NPM1 mutation; acute myeloid leukemia; leukemia-specific neoantigen; NPM1-mutated-
specific T cells; adoptive immunotherapy; immune-checkpoint inhibitors
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1. Introduction

The graft-versus-leukemia (GvL) effect associated with allogeneic hematopoietic stem
cell transplantation (HSCT) and the efficacy of donor lymphocyte infusion (DLI) to eradi-
cate residual disease after HSCT still actually represent cornerstones of immunotherapy for
the treatment of acute myeloid leukemia (AML) [1]. However, apart from mediating the
beneficial GvL effect, the immune system, mainly through antigen-reactive T cells, may also
induce graft-versus-host disease (GvHD), leading to potentially harmful post-transplant
complications. These observations suggest the need for innovative suitable immunother-
apeutic approaches aiming to obtain robust anti-leukemic activity while avoiding T-cell
cytotoxicity directed against healthy tissues [1]. Of interest, harnessing antigen-specific
anti-leukemic T-cell activity, minimizing the risk of “on-target/off-tumor” toxicity, should
also increasingly be translated into AML management outside the allogeneic HSCT setting,
but certainly still represents a clinical challenge [1,2]. Any ideal target antigen for AML
immunotherapy should display strong and homogeneous expression levels in most to
all leukemic cells, potentially including leukemic stem cell (LSC) subpopulation, with
minimal to absent expression in normal hematopoietic cells and extramedullary tissues.
Furthermore, optimal target antigens should be expressed in most AML cases, showing a
clearly defined indispensable leukemogenic role and possibly harboring strong immuno-
genic properties. While leukemia-associated antigens (LAA) are overexpressed on AML
cells relative to normal tissues but are not usually lineage-specific and may also be found
on non-hematopoietic cells, leukemia-specific antigens, resulting from aberrant proteins
encoded by ideally leukemogenic mutations, are exclusively expressed in malignant clones,
therefore representing optimal candidate targets for anti-leukemic immunity [1–3]. Indeed,
neoantigens are composed of peptides derived from full-length leukemia-specific proteins
through a multistep intracellular process, eventually resulting in the antigen presentation
on the cell surface in the context of Human Leukocyte Antigen (HLA) molecules, with
the subsequent potential recognition of peptide-HLA complex by specific T-cell receptor
(TCR) [3]. However, it should be noted that not all intracellular neoantigens derived from
leukemia-specific gene lesions are finally presented on the cell surface and, in addition,
that aberrant proteins will not necessarily yield target neoantigens [1,3]. Furthermore,
some neoantigens could be encoded by patient-specific passenger mutations, which could
be lost due to immune editing, a phenomenon especially observed in solid tumors with
higher mutational load, resulting in tumor immune evasion, which could also be observed
in case of either altered proteosomal processing of the immunogenic epitope or down-
regulation/loss of HLA molecules expression [3,4]. Conversely, the neoantigens derived
from driver gene mutations directly leukemogenic are less likely to induce immune evasion
because leukemic cells need to definitely express the critical driver mutated protein in order
to maintain their malignant phenotype [3,4]. Relevant to this, nucleophosmin (NPM1) gene
mutations, observed in nearly 30% of adult AML patients, accounting for approximately
50–60% of cases among the cytogenetically normal AML subgroup, represent one of the
most frequent genetic lesions documented in AML [5–8]. Moreover, NPM1 mutations are
highly specific, being almost exclusively found in AML, and generally expressed in the
entire leukemic population, while not detectable in clonal hematopoiesis [5,7–10]. As ex-
pected for driver genetic lesions, NPM1 mutations are also stable throughout the course of
the disease, with most relapses being due to the recurrence of the original NPM1-mutated
clone, whereas only 5% to 10% of recurrent cases are characterized by the absence of
NPM1 mutations. Of note, in these cases, the hypothesis of development of a second
different AML favored by the persistence of clonal hematopoiesis following the eradication
of the original NPM1-mutated clone is actually considered [7,8,11–13]. Most significantly,
NPM1 mutations result in structural modifications of the C-terminus of NPM1 protein,
with consequent abnormal cytoplasmic delocalization, leading to alterations of multiple
cellular pathways, critical for leukemic transformation [5,7,8,14]. NPM1 cytoplasmic dis-
location could also favor protein processing and degradation pathways, presumptively
determining more efficient HLA presentation [15]. Additionally, no aminoacidic sequences
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from normal human tissues present in databanks match that of the 11 residues from the
C-terminal NPM1-mutated protein, suggesting that this aminoacidic sequence may clearly
serve as a leukemia-specific antigen [15]. Based upon the above indicated biological re-
quirements, NPM1-mutated protein may thus be considered an ideal target antigen for
AML immunotherapy [1,2].

2. Identification of Most Immunogenic Peptides from NPM1-Mutated Protein

Liso et al., proposed for the first time that the unique C-terminal sequences of NPM1-
mutated protein may represent a potential immunotherapeutic target [15]. Indeed, the
in silico analysis by Epimatrix System predicted that several peptide sequences from
NPM1-mutated protein could potentially be presented by common HLA class I and II
molecules. Moreover, they investigated the capacity of candidate peptides to bind HLA
molecules in vitro, showing that two of the selected peptides, namely CLAVEEVSL and
AIQDLCLAV, both deriving from NPM1 mutation types A and D, efficiently bound to
HLA-A2 molecules, similarly to the reference control peptide obtained from the Epstein–
Barr virus BMLF1 protein (Table 1) [15]. Greiner et al., subsequently screened the whole
amino acid sequences of mutated (types A, B, C, D) and wild-type NPM1 protein to identify
HLA-A*02:01-binding T-cell epitopes utilizing the SYFPEITHI, Rankpep, and HLA-Bind
software programs [16]. The ten 9-mer peptides yielding the highest predictive scores for
HLA-binding, retrieved by the three different bioinformatics algorithms, were therefore
evaluated in an 8-day culture setting in which CD8+ T cells obtained from peripheral
blood (PB) of healthy subjects and AML patients, were ex vivo stimulated with antigen-
presenting cells (APCs) pulsed with each individual peptide, and tested for cytokine
secretion capability. A significant increase of specific CD8+ T cells secreting Interferon-γ
(IFNγ) and granzyme B in response to the most immunogenic HLA-A2-restricted NPM1-
mutated peptides, #1 AIQDLCLAV, and #3 AIQDLCVAV, was observed by Enzyme-linked
immunospot (ELISPOT) assay (Table 1) [16,17]. Although both peptides were naturally
processed and recognized by specific CD8+ T cells, among 27 NPM1-mutated AML patients
a significantly higher frequency of T-cell responses was shown against peptide #3 (44% of
patients) compared to healthy subjects (6/33, 18%), whereas for peptide #1 the frequency
of specific immune responses found in NPM1-mutated AML and healthy volunteers (33%
and 39%, respectively) was not statistically different [16]. Additional immunoepitopes
derived from NPM1-mutated protein and restricted to different HLA class I molecules
were predicted by Kuzelova et al., using the Immune Epitope Database (IEDB), as detailed
in Table 1 [18]. The generation of high-affinity binding immunoepitopes involving several
amino acid sequences from the unmutated portion of NPM1 protein was also identified
by the authors [18]. On the other hand, Forghieri et al., later documented the emergence
of NPM1-mutated-specific IFNγ-secreting T cells in 34 of 52 (65.4%) PB samples obtained
from 17 adults with NPM1-mutated AML, by ELISPOT assay after 20 hour antigenic stimu-
lation with a comprehensive mixture of 18 (9–18 mers) peptides spanning the C-terminal
of NPM1-mutated protein [19]. Subsequently, in order to ex vivo identify the most im-
munogenic epitopes, peptide mixtures were progressively split, until the ELISPOT assay
was performed using single individual peptides, as antigenic stimulation, on the same
samples stored from 12 of the 17 patients, which were previously stimulated with the entire
18-peptide mixture. These extensive examinations permitted us to identify LAVEEVSLR
(13.9) and AVEEVSLRK (14.9) as the most immunogenic 9-mer peptides within the C-
terminal of NPM1-mutated protein (Table 1). Accordingly, ELISPOT assay, after ex vivo
stimulation with the combination of 13.9 and 14.9 peptides, revealed NPM1-mutated-
specific T cells secreting IFNγ in 43/85 (50.6%) PB samples and in 34/80 (42.5%) bone
marrow (BM) samples, collected from 26 NPM1-mutated AML patients. No significant
differences in either frequency of positive samples or magnitude of specific T-cell responses
were observed after stimulation when PB and BM samples were compared. Overall, the
spontaneous occurrence of NPM1-mutated-specific immune responses was shown in 26 of
31 (83.9%) patients from our series [19]. Of interest, after stimulation with the combination
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of 13.9 and 14.9 peptides, IFNγ-secreting NPM1-mutated-specific T cells could also be doc-
umented by ELISPOT assay in PB samples of 3 out of 11 (27.3%) healthy individuals. The
14.9 peptide, recognized to have in silico binding affinity at least for HLA-A*02:01, A*03:01,
A*11:01, and A*68:01, may show significant advantages based on its extreme C-terminal
aminoacidic sequence, which is shared by most frequent NPM1 mutation types, namely
A/D, B, and C (Table 1). These features could thus facilitate documentation of specific
immune responses, irrespective of NPM1 mutation type [15,16,18,19]. Our ELISPOT assay,
performed after brief ex vivo antigenic stimulation, markedly differed from the ELISPOT
analysis carried out after 8-day culture by Greiner et al., and this feature may account for
diverse aminoacid sequences being identified as the most immunogenic [16,19]. Subse-
quently, van der Lee et al., immunoprecipitated peptide/HLA class I surface molecules
from 12 primary AML samples, eluted the peptides from the binding groove, and analyzed
the peptidome by tandem mass spectrometry [20]. Among the five different peptides iden-
tified from the alternative reading frame of NPM1-mutated protein by searching the HLA
class I ligandome, as detailed in Table 1, CLAVEEVSL peptide, predicted to bind to the
frequently expressed in the Caucasian population HLA-A*02:01, was selected for further
immunological investigations [20]. Specifically, PB samples from six HLA-A*02:01-positive
NPM1-mutated AML patients were analyzed for immune responses against CLAVEEVSL,
but tetramer-positive T cells were not detected, possibly indicating that frequencies of
specific immune response naturally occurring in vivo in these patients having achieved
complete remission (CR) after chemotherapy, could be below the threshold of detection.
Conversely, NPM1-mutated tetramer-positive CD8+ T cells were successfully isolated from
PB samples of six HLA-A*02:01-positive healthy individuals, with subsequent expansion of
13 T-cell clones positive for the NPM1-mutated CLAVEEVSL tetramer. Two of these latter
clones showed specific reactivity, with IFNγ release, against HLA-A*02:01-positive T2 cells
exogenously pulsed with CLAVEEVSL peptide, whereas no reactivity was documented
against T2 cells when pulsed with an irrelevant HLA-A*02:01-binding CMV control peptide.
Moreover, a minority of T-cell clones yielded ex vivo reaction against HLA-A*02:01-positive
primary blasts from AML patients harboring NPM1 gene mutations, whereas no T-cell
reactivity was observed against HLA-A*02:01-positive AML with wild-type NPM1 [20].
Furthermore, Narayan et al., utilized NetMHC to investigate HLA class I binding affinities
for putative 9–11 mer peptides spanning common recurrent AML mutations and computa-
tionally documented that several NPM1-mutated peptides, including mutation-bearing
sequences AIQDLCLAV and AVEEVSLRK, are predicted to efficiently bind various HLA
class I alleles [21]. Additionally, the authors empirically measured, by mass spectrometry,
the HLA class I and class II immunopeptidomes of 13 primary leukemic samples and
two AML cell lines, namely OCI-AML3 and MV4-11, carrying type A NPM1 mutation
and FLT3-ITD, respectively. Two endogenous mutation-bearing HLA class I 9-mer lig-
ands from NPM1-mutated sequences, namely AVEEVSLRK from two patient samples
and C(Cys)LAVEEVSL from OCI-AML3 cell line were predicted to bind common HLA
haplotypes, as detailed in Table 1. Of interest, as previously reported by Kuzelova et al. [18],
non-mutation-bearing ligands from NPM1 protein were also frequently found in either
patient AML samples or cell lines, including ligands close to or corresponding to hotspot
mutation regions. Whether the processing and presentation of non-mutation-bearing HLA
ligands from wild-type regions of the protein may subsequently increase the likelihood
of NPM1-mutated peptides to be processed and presented still need to be elucidated [21].
Moreover, it was previously described that recipients of allogeneic HSCT who develop ex-
tensive GvHD are able to generate immune responses against wild-type NPM1 protein [22],
while cytotoxic T-lymphocyte (CTL) lines derived from colorectal cancer patients may also
recognize normal NPM1 protein sequences [23]. These observations collectively support
the general immunogenicity of both mutated and non-mutated peptide sequences from
NPM1 protein [15,16,18–23].
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Table 1. Selection of most immunogenic NPM1-mutated epitopes.

Reference Amino Acid Sequences Position NPM1 Mutation Types HLA Binding Restriction Peptide
Identification

Liso et al., 2008
[15]

CLAVEEVSL (9-mer)
AIQDLCLAV (9-mer)

288–296
283–291

A/D/G/H
A/D/G/H

A*02:01
A*02:01

in silico and in
vitro

Greiner et al.,
2012 [16]

AIQDLCLAV (9-mer)
AIQDLCVAV (9-mer)

283–291
283–291

A/D/G/H
C

A*02:01
A*02:01

in silico and
ex vivo

Kuzelova et al.,
2015 [18]

LAVEEVSL (8-mer)
QEAIQDLCLAV (11-mer)

AVEEVSLRK (9-mer)
LAVEEVSLR (9-mer)
QEAIQDLCL (9-mer)

289–296
281–291
290–298
289–297
281–289

A/D/G/H
A/D/G/H

A/B/C/D/G/H/J
A/D/G/H
A/D/G/H

C*03:03/C*03:04/B*35:03
B*37:01/B*49:01/B*40:02

A*11:01
A*68:01
B*40:01

in silico

Ruecker-Braun
et al., 2016 [24] AIQDLCLAV (9-mer) 283–291 A/D/G/H A*02:01 ex vivo

Kuzelova et al.,
2018 [25]

CLAVEEVSL (9-mer)
DLCLAVEEV (9-mer)
AIQDLCLAV (9-mer)

288–296
286–294
283–291

A/D/G/H
A/D/G/H
A/D/G/H

A*02:01
A*02:01
A*02:01

in silico

Forghieri et al.,
2019 [19]

LAVEEVSLR (9-mer)
AVEEVSLRK (9-mer)

CLAVEEVSLRK (11-mer)

289–297
290–298
288–298

A/D/G/H
A/B/C/D/G/H/J

A/D/G/H

AVEEVSLRK known to have
in silico binding affinity for

HLA-A*02:01/A*03:01/
A*11:01/A*68:01

ex vivo

van der Lee et al.,
2019 [20]

CLAVEEVSL (9-mer)
VEEVSLRK (8-mer)
AVEEVSLR (8-mer)

AVEEVSLRK (9-mer)
CLAVEEVSLRK (11-mer)

288–296
291–298
290–297
290–298
288–298

A/D/G/H
A/B/C/D/G/H/J
A/B/C/D/G/H/J
A/B/C/D/G/H/J

A/D/G/H/J

A*02:01
-
-

A*03:01/A*11:01
A*03:01/A*11:01

in vitro, ex
vivo and in

vivo (murine
model)

Narayan et al.,
2019 [21]

AVEEVSLRK (9-mer)

C(Cys)LAVEEVSL (9-mer)

290–298

288–296

A/B/C/D/G/H/J

A/D/G/H

A*03:01/A*11:01/A*31:01/
A*66:01/A*68:01/A*30:01

A*02:01

in silico and in
vitro

Xie et al., 2020 [4] AIQDLCLAV (9-mer) 283–291 A/D/G/H A*02:01
in vitro and in
vivo (mouse

model)

NPM1, Nucleophosmin; HLA, Human Leukocyte Antigen.

3. Cytolytic Activity of NPM1-Mutated-Specific T Cells in Ex Vivo Assays

To assess peptide recognition and antigen-specific cell lysis, Greiner et al., generated
NPM1-mutated-specific CTLs from the PB of four healthy subjects [16]. CD8+ T cells
were isolated and stimulated weekly with NPM1-mutated peptide #1. Antigen-specific
cytotoxic activity was documented by Cr51-release assays on day 21, using exogenously
peptide-pulsed T2 cells as target cells. Furthermore, the cytolytic potential of NPM1-
mutated-specific CTLs was demonstrated against primary NPM1-mutated leukemic blasts,
in the context of HLA-A2, whereas blasts from patients without NPM1 mutations or lacking
HLA-A2 expression were not recognized. These data showed that NPM1-mutated-derived
epitope peptides can be naturally processed by AML blasts and efficiently recognized, at
least in the context of HLA-A2 [16]. Forghieri et al., interestingly performed phenotypic
and functional characterization, by Cytokine Secretion Assays (CSA), of NPM1-mutated-
specific T cells, identifying a subset of degranulation marker CD107a-positive cytotoxic
IFNγ-producing T cells among both CD8+ and CD4+ populations from PB and BM [19].
The analysis of memory T-cell profiles also showed that Central Memory (CM) and Effector
Memory (EM) T-cell phenotypes were equally distributed among Tumor Necrosis Factor
α (TNFα)-producing T cells, whereas EM T and CM phenotypes, both CD4+ and CD8+,
were predominantly identified among IFNγ-producing T cells and IL2-producing T cells,
respectively [19]. Moreover, by stimulation with dendritic cells pulsed with different
NPM1-mutated peptide mixtures in a 13-day culture, we were able to expand ex vivo
leukemia-specific CD8+ and CD4+ CTLs from four NPM1-mutated AML patients, as well
as to prime leukemia-specific responses in three healthy donors. Among the different
NPM1-mutated-peptide pools employed, the combination of 13.9 and 14.9 peptides with
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the addition of the 11-mer CLAVEEVSLRK peptide was mostly able to elicit specific lytic
activity against targets represented by autologous PHA blasts pulsed with NPM1-mutated-
derived peptides, in all the subjects tested, which was comparable to cytotoxicity observed
by using a comprehensive mixture containing all 18 NPM1-mutated peptides. The ability
of NPM1-mutated-specific CTLs, stimulated and expanded from either patients or healthy
volunteers, to recognize and exert direct lytic activity against either autologous or allogeneic
primary leukemic blasts, respectively, was also demonstrated [19]. Of interest, the presence
of the 11-mer peptide along with 13.9 and 14.9 epitopes allowed the stimulation of leukemia-
specific CD4+ T cells, which have previously been shown to directly induce potent anti-
tumor, HLA class II-mediated, cytotoxic responses in vivo, in addition to providing help to
CD8+ CTLs [19,26].

4. Clinical Significance of NPM1-Mutated-Specific Immune Responses in
AML Patients

In a survival analysis of 25 patients affected with NPM1-mutated AML, Greiner et al.,
documented a better overall survival (OS) in patients experiencing autologous specific
T-cell responses against one or two immunogenic NPM1-mutated epitopes, namely pep-
tides #1 and #3, compared to cases showing no specific immune responses, suggesting that
immunity against the mutated region of NPM1 protein may potentially contribute to the
globally favorable outcome of NPM1-mutated AML patients [27]. To further confirm the
hypothesis that efficient responses against immunogenic NPM1-mutated epitopes may be
induced in humans, Kuzelova et al., identified a skewed HLA molecule distribution in
AML patients and documented that subjects expressing HLA alleles suitable for actively
presenting NPM1-derived peptides are less prone to develop NPM1-mutated AML [18].
Indeed, a few HLA class I alleles, mainly B*07, B*18, and B*40, exhibited a surprisingly
reduced incidence in the NPM1-mutated patient group compared to controls, namely
healthy subjects, and NPM1-wild-type AML patients. Therefore, it has been indirectly
suggested that specific immune responses to the NPM1 protein could protect from AML
occurrence in a large part of individuals who express appropriate HLA alleles and may help
in maintaining sustained and durable responses in the remaining cases, who unfortunately
develop AML, despite bearing at least one of those depleted alleles [18]. Subsequently, in
a larger cohort of 398 patients, the same authors found that HLA-A*02, B*07, B*40, and
C*07:01 alleles were under-represented in NPM1-mutated AML compared to the healthy
population, further supporting the epidemiological hypothesis that anti-NPM1 protein
immune reaction could contain AML development. Candidate immunoepitope peptides
derived from either mutated NPM1 sequences for HLA-A*02:01 (Table 1) or unmutated
NPM1 protein for HLA B*40 and B*07 were observed using prediction software tools.
Moreover, the presence of B*07 or C*07:01 antigen only was associated with better sur-
vival outcomes in NPM1-mutated AML patients without FLT3-ITD [25]. Subsequently,
in order to evaluate the dynamics of specific immune responses throughout the disease
course, Forghieri et al., collected PB and BM samples from NPM1-mutated AML patients
at different timepoints [19], whereas in the former study by Greiner et al., the presence of
NPM1-mutated-specific T cells was investigated in a single PB sample per patient [16]. In
our cohort, increased and sustained specific immune responses were commonly observed
in patients with long-term CR, especially in cases experiencing persistent molecular CR,
whereas either decreased number or absence of IFNγ-producing NPM1-mutated-specific T
cells strongly correlated with molecular or morphologic leukemia relapse [19], suggesting
an inverse correlation between the kinetics of measurable residual disease (MRD) moni-
tored by real-time quantitative polymerase chain reaction (RQ-PCR) for NPM1-mutated
transcripts [28–34] and anti-leukemic specific T cells, as previously observed in Philadelphia
chromosome-positive B-acute lymphoblastic leukemia patients [35–37]. Of interest, some
cases from our series exhibited NPM1-mutated-reactive T-cell responses five years or later
after the completion of anti-leukemic treatments, further suggesting that specific immune
responses could have a central role in the long-term favorable clinical outcomes, at least in
some NPM1-mutated AML patients [19]. Since NPM1 mutations are present in the whole
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leukemic population, including LSCs from NPM1-mutated AML patients, it may be hypoth-
esized that immune responses against NPM1-mutated protein could contribute to definitive
eradication of MRD [7,19,38,39]. Moreover, robust NPM1-mutated specific T-cell responses
were identified early in most patients, whose samples were available after having achieved
morphologic CR by remission induction treatments including anthracycline, a prototype of
immunogenic chemotherapy [19,40–42]. This latter observation is not surprising since it has
recently been reported that infiltration by T-cell population, using immunohistochemical
examinations, appeared to be quantitatively preserved in BM specimens from AML patients
compared with healthy donors, even though an increased proportion of T-regulatory cells
(Tregs) and higher frequency of PD1/CD8+ T cells coexpressing TIM3 or LAG3 immune-
checkpoint molecules were documented by flow cytometry in AML patients, mainly in
relapsed/refractory cases [43,44]. Moreover, in the study by Knaus et al., CD8+ T cells at
AML diagnosis exhibited features of exhaustion and senescence, with AML blasts directly
altering viability and expression of co-signaling molecules on CD8+ T cells. Following anti-
leukemic treatments, phenotypic and transcriptional profiles of dysfunctional CD8+ T cells
diverged between responders and non-responders. In particular, response to chemother-
apy correlated with up-regulation of costimulatory and down-regulation of apoptotic and
inhibitory T-cell signaling pathways, indicating plasticity and restoration of T-cell function.
These observations collectively characterized the potential reversibility of T-cell dysfunc-
tion in AML patients who obtain response after intensive therapeutic approaches [43–45].
Interestingly, Alsuliman et al., also studied, in AML patients, long-lived viral-specific
drug-effluxing CD4+ T cells, characterized as CD161+ CD95+ CD45RA- CD127hi CD28+
CD25int, with a distinct chemokine profile and a Th1-polarized proinflammatory pheno-
type [46]. The identification of this quiescent pathogen-specific CD4+ T-cell subpopulation,
which was resistant to chemotherapy-induced cytotoxicity and subsequently expanded in
AML patients, formerly rendered lymphopenic by chemotherapy, therefore contributing
to repopulation and maintenance of anti-viral immunity, may spur further investigations
on similar mechanisms that could preserve and sustain the emergence of endogenous
long-lasting anti-leukemic specific immunity [46,47].

5. NPM1-Mutated-Specific T-Cell Responses in Allogeneic HSCT Setting

Forghieri et al., found a significantly higher magnitude of IFNγ-producing NPM1-
mutated-specific T-cells in PB samples obtained in the allogeneic HSCT setting, compared
to those observed in NPM1-mutated AML patients having received different consolidation
strategies based on either autologous HSCT or chemotherapy only [19]. This interesting
observation was not entirely surprising, since 27.3% of healthy donors from our cohort
yielded IFNγ-producing NPM1-mutated-specific T cells by ELISPOT assay, and, in the
study by Greiner et al., specific responses directed to peptides #1 and #3 were documented
in 39% and 18% of healthy volunteers, respectively [16,19]. It should be acknowledged
that these results from in vitro assays may possibly reflect the general capacity of T cells
to be stimulated by foreign antigens [18], but we also intriguingly found that short se-
quences of four amino acids from the C-terminal of NPM1-mutated protein, namely LCLA,
CLAV, LAVE, SLRK, and VEEV, are homologous with several common viral and bac-
terial antigens, potentially suggesting cross-reactive immune response mechanisms, as
previously shown in the setting of malignant melanoma [19,48–50]. Moreover, van der
Lee et al., documented immune responses and isolated CLAVEEVSL-specific TCR from
HLA-A*02:01-positive healthy individuals, suggesting that high-affinity T cells against
neoantigens arising from tumor-specific molecular lesions, such as NPM1 mutations, which
are absent in healthy tissues, are therefore not deleted by thymic selection through T-cell
maturation processes [20,51,52]. These observations could collectively have relevant impli-
cations for NPM1-mutated AML patients undergoing allogeneic HSCT procedures. While
allogeneic HSCT is generally recognized as the best therapeutic option in NPM1-mutated
AML patients showing FLT3-ITD, at least in cases with a high allelic ratio; conversely, this
procedure in first CR is generally not recommended in patients harboring NPM1 gene
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mutations without FLT3-ITD [8,53,54]. However, allogeneic HSCT has been advocated by
Rollig et al., as a potential therapeutic option for patients younger than 50 years, with low
predicted transplant-related mortality and an HLA-identical donor, even though HSCT
resulted in better relapse-free survival (RFS) only, with no significant improvement in OS,
likely because patients could be salvaged by allogeneic HSCT in second CR [55]. How-
ever, either a suboptimal reduction in NPM1-mutated transcripts evaluated by RQ-PCR
at relevant timepoints after chemotherapy or the occurrence of molecular relapse could
potentially help in identifying patients with otherwise favorable genotype who may benefit
from allogeneic HSCT [8,28–34]. Furthermore, recent studies interestingly demonstrated
low relapse rates and more favorable outcomes in older NPM1-mutated and FLT3-ITD
negative AML patients consolidated with allogeneic HSCT, challenging the paradigm
of a chemotherapy-based consolidation being sufficient in older patient group [56,57].
Therefore, allogeneic HSCT in first CR should be at least considered and discussed in
elderly fit AML patients with NPM1-mutated AML without FLT3-ITD to maximize their
chances of cure [56,57]. Relevant to the allogeneic HSCT context, in a patient affected with
NPM1-mutated AML in molecular relapse after allogeneic HSCT, described by a German
group, preemptive DLI induced polyspecific CD8+ T cells responses directed to different
LAA, including #1 and #3 NPM1-mutated peptides, which contributed to achievement
of MRD negativity, thereby suggesting a correlation between GvL and LAA-specific CTL
response [58]. Hofmann et al., subsequently assessed frequency and diversity of LAA-
specific cytotoxic T cells in a cohort of 11 patients who had received allogeneic HSCT for
different hematologic malignancies, including two NPM1-mutated AML cases in molecular
relapse, before and after having received unmanipulated DLI [59]. For NPM1-mutated
AML patients, NPM1-mutated epitopes, PRAME, RHAMM, proteinase 3, survivin 2, and
WT1 were chosen as LAAs to be investigated. From the entire cohort, a significant increase
in the number of LAAs actively recognized by CTLs and an enhanced LAA diversity in
T-cell responses were detected in clinical responders following DLI when compared to non–
responders. Moreover, clinical responders showed a significant reduction in the frequency
of the highly immunosuppressive CD4+ Tregs. Of interest, one of the two NPM1-mutated
AML patients developed NPM1-mutated-specific CTL response after administration of
preemptive DLI and achieved molecular CR, whereas in the remaining clinically non–
responder case, NPM1-mutated-specific CTLs were already detectable before DLI and
persisted, but without showing an increase, after DLI [59]. Collectively, the authors sug-
gested that increased specific T-cell responses against several different LAA, enhancing GvL
effect and potentially able to target LSC population, as well as decreased numbers of Tregs
after prophylactic/therapeutic DLI, could contribute to favorable clinical outcomes [59–61].
To maximize the GvL effect minimizing the risk of GvHD, Lulla et al., selectively activated
and expanded stem cell donor-derived T cells reactive to multiple antigens expressed by
AML/MDS cells, namely PRAME, WT1, survivin and NY-SEO-1 [62]. In contrast to DLI,
leukemia-specific T cells selectively recognized and killed leukemia antigen-pulsed cells,
with no activity against recipient’s normal cells in vitro. Additionally, anti-leukemic effects
in vivo were demonstrated, with long-term post-HSCT remissions in the adjuvant patient
group at a high risk of relapse (median leukemia-free survival not reached at a median
follow-up of 1.9 years and estimated 2-year OS 77%), and objective responses observed
in two out of eight patients with HSCT-refractory active disease. Therefore, allogeneic
leukemia-specific T cells could represent a safe and promising preventative/therapeutic
tool in the management of AML post-HSCT [62].

6. Exploiting Genetic Engineering of T Cells against NPM1-Mutated AML Cells

In recent years, different treatment platforms have overall been developed to harness
anti-neoplastic T-cell activity in individuals affected with cancer, including hematologic
malignancies: (a) recruitment of T cells independently of TCR specificity through T-cell-
engaging antibody constructs, (b) reactivation of endogenous T-cell immune responses
through either immune-checkpoint inhibitors (ICPIs) or other immunological strategies,
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and (c) genetic engineering of T cells, namely TCR-modified and chimeric antigen receptor
(CAR) T cells, to be utilized as adoptive immunotherapy [1,63–65]. Relevant to this latter
point, van der Lee et al., isolated and sequenced the CLAVEEVSL-specific TCR from one
clone that specifically and strongly recognized HLA-A*02:01 peptide-pulsed targets and
NPM1-mutated AML blasts [20]. Using a retroviral vector, this NPM1-mutated peptide-
specific TCR was transferred into CD4+ and CD8+ T cells isolated from HLA-A*02:01-
positive healthy individuals. T cells transduced with the transgenic NPM1-mutated
neoantigen TCR were functional, resulting in specific recognition and release of IFNγ

upon incubation with HLA-A*02:01-positive T2 cells loaded with CLAVEEVSL peptide, as
well as with OCI-AML3 cell line and HLA-A*02:01-positive primary AML blasts harboring
NPM1 mutation. Moreover, CD8+, as well as CD4+ T cells transduced with the TCR
for NPM1-mutated peptide, demonstrated efficient specific lysis by Cr51-release assay of
NPM1-mutated, but not NPM1 wild-type, HLA-A2-restricted primary leukemic blasts,
indicating that CLAVEEVSL is a neoantigen that can be efficiently targeted on AML cells
by NPM1-mutated sequence TCR gene transfer in a CD8 coreceptor-independent fashion.
T cells transduced with TCR for NPM1-mutated protein also efficiently killed AML cells in
an in vivo xenograft murine model, resulting in prolonged OS of immunodeficient NSG
mice engrafted with HLA-A*02:01-positive NPM1-mutated OCI-AML3 human cells, in
comparison to untreated mice or mice treated with CMV-specific TCR [20]. An advan-
tage of gene therapy is the possibility to introduce TCR into distinct T-cell subsets with
superior in vivo persistence, higher binding affinity to tumor antigens, and anti-leukemic
efficacy. Conversely, gene therapy could potentially lead to immune escape of the tumor
by HLA class I down-regulation or loss of antigen expression, even though this latter
may not be a limitation clearly relevant to NPM1 mutations, which are driver lesions
essential for leukemogenesis and stably present in leukemic cells throughout the course
of the disease [20]. Another specific drawback of TCR gene therapy is the risk of TCR
chain mispairing between introduced and endogenous TCR α and β chain, resulting in
reduced efficacy and potential toxicity by new TCRs with unknown specificities [4,20].
Intriguingly, Xie et al., recently used yeast surface display to isolate a single-chain variable
fragment (scFv) specific for the NPM1-mutated neoepitope AIQDLCLAV in complex with
HLA-A*02:01 (AIQ-HLA-A2) and subsequently developed CAR-T cells recognizing with
high specificity and affinity AIQ-HLA-A2 complex, but not isolated HLA-A2 or HLA-A2
loaded with control peptides [4]. CAR-T cells exhibited potent in vitro cytotoxicity against
HLA-A2-positive cell lines and primary blast cells expressing NPM1-mutated epitopes,
but not against HLA-A2-positive leukemic cells without NPM1-mutated expression and
different tumor cells in the absence of HLA-A2 expression, supporting the specificity of
NPM1-mutated CAR-T cell recognition and the killing of target cells with AIQ-HLA-A2
complex on the cell surface. Of further interest, NSG mice injected intravenously with OCI-
AML3 leukemic cells and receiving treatment with NPM1-mutated CAR-T cells showed
a significant reduction in leukemia burden, resulting in prolonged survival compared to
mice treated with untransduced T cells. NPM1-mutated CAR-T cells were thus capable
of killing in vivo AML cells harboring HLA-A2-positivity and NPM1 mutations, but not
HLA-A2-positive lymphoma cells without NPM1-mutated protein, demonstrating killing
specificity. CAR-T cells targeting the NPM1-mutated neoepitope were also effective in
reducing primary HLA-A2-positive NPM1-mutated AML blast levels in patient-derived
xenograft murine model [4]. NPM1-mutated CAR-T cells, as well as TCR transduced T
cells, should be able to specifically target all leukemic cells without reacting against healthy
tissues, including CD34+ hematopoietic stem/progenitor normal cells, due to the absence
of NPM1-mutated aminoacidic sequence expression, hopefully yielding potent and highly
specific anti-leukemic effect, minimizing tumor resistance and “on-target/off-tumor” tox-
icity [4,20]. In addition to either genetically engineered T cells against NPM1-mutated
protein [4,20,24] or T cells reactive against patients’ primary blasts [66,67], the observation
of spontaneous development of specific anti-leukemic T cell immunity directed against
highly immunogenic NPM1-mutated peptides could also indicate the feasibility of stimu-
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lating and expanding ex vivo NPM1-mutated specific CTL lines from either patients with
NPM1-mutated AML or healthy donors, who may be antigen-naive, to be potentially used
for adoptive immunotherapeutic approaches [16,19,42].

7. Immune-Checkpoint Inhibitors and Novel Therapeutic Approaches in
NPM1-Mutated AML

ICPIs recently changed clinical treatment algorithms of several solid tumors, espe-
cially melanoma and lung cancer, whereas the role of ICPIs has so far been less explored in
hematologic malignancies, although anti-PD1 antibodies nivolumab and pembrolizumab
are notable exceptions for the treatment of Hodgkin lymphoma and primary mediastinal
B cell lymphoma [1]. Since in AML patients T-cell populations are globally preserved
in BM, with increased frequencies of immune inhibitory and activating co-receptor ex-
pression, a potential role of T cell-harnessing therapies could be hypothesized in AML
management [1,43,44,65]. However, single-agent ICPIs have so far demonstrated very mod-
est anti-leukemic activity in clinical trials for relapsed/refractory AML patients, maybe
due to suboptimal patient selection and lower mutational load of AML compared to
solid tumors [1,68]. The role of several combination approaches of ICPIs with either hy-
pomethylating agents (HMAs) or more intensive cytotoxic chemotherapy has recently
been evaluated and is still under investigation in clinical trials enrolling AML patients at
different disease stages, as comprehensively reviewed elsewhere [1,63–65,69]. Interestingly,
Greiner et al., recently performed flow-cytometry and microarray analyses on a total of
30 AML samples, including 15 cases with NPM1 mutations, to assess PD-L1 expression in
leukemic cells at diagnosis [17,70]. Bulk leukemic cells of NPM1-mutated AML showed a
significantly higher PD-L1 expression in comparison to NPM1 wild-type cases. Remarkably,
PD-L1 expression was detected at a higher percentage in leukemic progenitors/stem cell
compartment (CD34+ CD38−) from NPM1-mutated AML cases than in patients without
NPM1 mutations [17,70]. In the retrospective series by Brodska et al., high PD-L1 expres-
sion in AML blasts predicted inferior survival outcomes, though this negative prognostic
impact was limited to the patient subgroup affected with NPM1-mutated AML showing
concurrent FLT3-ITD [71]. Intriguingly, Qin et al., discovered that normal NPM1 protein
specifically binds to PD-L1 promoter in triple-negative breast cancer cells and activates
PD-L1 transcription, therefore inhibiting T-cell activity in vitro and in vivo. Furthermore,
they demonstrated that PARP1 suppresses PD-L1 transcription through its interaction with
the nucleic acid-binding domain of NPM1, which is required for the binding of NPM1 at
the PD-L1 promoter. Consistently, the PARP1 inhibitor olaparib elevated PD-L1 expression,
arguing for potential combinatorial therapeutic strategies to enhance the efficacy of ICPIs,
at least in this breast cancer subtype [72]. Furthermore, Greiner et al., investigated the in-
fluence of nivolumab and anti-CTLA4 antibody ipilumumab on specific immune response
to several LAA, namely PRAME, RHAMM, WT1, and #3 peptide from NPM1-mutated
protein, by specific T cells, stimulated from 12 AML patients, including five cases harboring
NPM1 mutations, against leukemic myeloid blasts and colony-forming cells including
leukemic progenitor cells (CFC/LPC) [73]. In functional immunoassays using AML cell
lines or primary HLA-A2-positive patient samples, the authors detected specific LAA-
directed immune responses against CFC/LPC, which were significantly increased by the
addition of nivolumab to CTL cultures, whereas no effect was observed when ipilimumab
was added. Additionally, the combination of nivolumab and ipilimumab did not improve
the inhibitory effect in cell colony growth compared to nivolumab alone. The anti-PD1-
stimulated cytotoxic responses correlated to PD-L1 expression on leukemic cells, especially
on progenitor cells [73]. The same authors, in a larger cohort of 15 NPM1-mutated and
15 NPM1 wild-type AML patients, analyzed the influence of anti-PD1 on antigen-specific
immune responses exerted by allogeneic CTLs against CFC/LPC in functional T-cell assays
and colony-forming immunoassays [74,75]. A reduction in cell colonies in colony-forming
immunoassays was demonstrated by CTLs against PRAME, RHAMM, and WT1 antigens in
both NPM1-mutated and wild-type subgroups, whereas no response was exerted by CTLs
against NPM1-mutated epitope in NPM1 wild-type AML cases. Remarkably, the immune
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effect on CFC/LPC in NPM1-mutated AML patients markedly increased with specific CTLs
against NPM1-mutated epitope and was stronger with the addition of anti-PD1 antibody
to colony-forming immunoassays. Of note, anti-PD1 may overcome the immune resistance
since a favorable effect was observed even in those cases not showing any colony-forming
reduction in the presence of NPM1-mutated-specific T cells alone [74,75]. These data collec-
tively confirmed the immunogenicity of neoantigens derived from NPM1-mutated protein,
with the possible combination of immune-checkpoint inhibition targeting PD1/PD-L1 axis
to enhance NPM1-mutated-specific immune responses in antigen-directed immunother-
apeutic approaches [70,74,75]. While older unfit patients affected with NPM1-mutated
AML rarely show long-term response to single HMAs, the combination of BCL-2 inhibitor
venetoclax with HMAs, preferably 5-azacitidine, is currently emerging as the standard
of care in this clinical setting, inducing CR in 70–90% of cases and significant survival
advantages compared to alternative therapeutic strategies [7,8,76–78]. Perhaps, also in fit
elderly patients with NPM1-mutated AML, venetoclax-based regimens could have the
potential to challenge, as frontline treatment, standard intensive chemotherapy, which
results in only 15% to 20% long-term survival [7,8,78]. Relevant to potential immunological
implications, it is widely recognized that HMAs globally possess both immunostimu-
latory and immunosuppressive properties. In particular, they could stimulate immune
responses against AML blasts by increasing the expression of cancer testis antigens, as well
as relevant elements of the antigen-presenting machinery, such as HLA class I molecules
and costimulatory molecules. On the other hand, HMAs can lead to immune escape
of AML blasts through up-regulation of immune checkpoints and their ligands, as well
as regulatory T cells. Combining the immunomodulatory effects of HMAs with other
forms of immunotherapy may hold the promise of a synergistic effect on the immune
system, leading to immunogenic antigen recognition and elimination of AML blasts [79].
More interestingly, Lee et al., recently discovered that venetoclax directly enhanced the
effector function of double-negative T cells, used as surrogate of leukemia-specific T cells,
and CD8+ T cells from healthy donors by increasing reactive-oxygen species generation,
thereby increasing cytotoxicity against AML cells in vitro and in vivo [80]. In addition,
5-azacitidine rendered leukemic cells more susceptible to T-cell-mediated cytotoxicity via
induction of viral mimicry. These results may collectively support the importance of T-
cell immunity in facilitating the anti-leukemic effect induced by the combination therapy
of venetoclax and 5-azacitidine [80]. It may be speculated that the relatively favorable
outcomes observed in patients suffering from the highly immunogenic NPM1-mutated
AML and receiving this frontline therapeutic regimen could be, at least in part, the re-
sult of immune-mediated mechanisms. Whether anti-leukemic NPM1-mutated-specific
T-cell responses may be elicited in patients by the combination of venetoclax and HMAs
needs to be further elucidated in prospective clinical studies. Besides the emergence of
NPM1-mutated-specific T cells responses, other different immunotherapeutic approaches
targeting antigens expressed on leukemic cells should be considered in NPM1-mutated
AML. Given the association between high CD33 expression levels and NPM1 mutations,
the addition of gemtuzumab ozogamicin (GO) to standard chemotherapy has formerly
been considered of potential benefit in this AML molecular subgroup [81]. A meta-analysis
clearly demonstrated a survival benefit of GO added to standard chemotherapy for pa-
tients with AML patients either favorable or intermediate-risk cytogenetics [82]. In the
ALFA-0701 clinical trial, the subset analyses pointed out the benefit of the addition of GO
on 2-year event-free survival (EFS), RFS and OS in NPM1-mutated AML patients, mainly in
the subgroup presenting with activating signaling mutations [83], while the AMLSG 09-09
German phase III study showed an improved RFS and a reduced cumulative incidence
of relapse in NPM1-mutated AML, due to deeper reduction of NPM1-mutated transcript
levels across all treatment cycles [84,85]. However, EFS, the early primary end-point of
this trial, was not met due to excessive toxicity, possibly related to monoclonal antibody
dosing strategy and inclusion in the regimens of all-trans retinoic acid (ATRA) and etopo-
side. GO benefit in this latter clinical trial was mostly observed in ≤70 year-old females
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without FLT3-ITD [84,85]. Globally, these findings support the possibility to incorporate in
clinical practice GO into the frontline treatment of NPM1-mutated AML [82–86]. CD123,
the alpha-subunit of interleukin-3 receptor, may represent another attractive target for
immunotherapy, since it has been reported to be expressed in most cases of AML, both on
bulk leukemic cells and LSC subpopulation, with higher expression potentially associated
with poorer prognosis [1,65,87]. Perriello et al., recently documented that CD123 was highly
expressed on NPM1-mutated AML cells both at diagnosis and relapse, with the highest
levels detectable in cases carrying concomitant FLT3-ITD [87]. High CD123 expression
levels were consistently found on NPM1-mutated CD34+ CD38- putative LSC, suggesting
that immunotherapies targeting CD123 could potentially be particularly effective in NPM1-
mutated AML patients [1,65,87]. However, due to the low expression of CD33 or CD123
on healthy tissues, including normal hematopoietic stem cells, targeting these surface
antigens through either monoclonal antibodies/T-cell recruiting antibody constructs or
CAR-T cells may be hampered by potentially threatening “on-target/off-tumor” toxicity,
including myeloablation [1,65,87].

8. Conclusions

NPM1 mutations are recurrent molecular lesions, occurring in nearly 30% of AML pa-
tients, are stable across the disease course and are considered to be driver events, highly specific
for leukemogenesis [5,7–10]. Indeed, NPM1-mutated C-terminal aminoacidic sequences are
not found in either malignancies different from AML or normal tissues, resulting in leukemia-
specific neoantigens considered optimal target for immunotherapy [2,3,15,16,19,20,88,89]. De-
spite the globally immunosuppressive BM microenvironment, the spontaneous develop-
ment of endogenous specific anti-leukemic T-cell immunity directed against highly immuno-
genic NPM1-mutated-derived peptides has been observed in several patients with NPM1-
mutated AML and may contribute to the maintenance of long-lasting CR and prolonged
survival [16,19,27]. Whether the frequency and intensity of NPM1-mutated-specific T-cell re-
sponses may vary according to the molecular landscape found in NPM1-mutated AML patients
still needs to be elucidated. In a small patient subgroup, Forghieri et al., did not document
significantly different amounts of specific immune response against NPM1-mutated peptides,
when cases were compared according to FLT3 mutational status [19]. However, the impact
of additional molecular lesions on NPM1-mutated-specific T-cell responses warrants further
investigations in larger patient series. Relevant to this, Mer et al., recently identified two distinct
subtypes within NPM1-mutated AML patients, referred to as “primitive” or “committed”,
based on the respective presence or absence of a stem cell signature [90]. Using gene expression
profiling, epigenomic and immunophenotyping, each subtype was associated with particular
molecular characteristics, disease differentiation state, and patients survival. Of note, in the
“committed” subtype, immunomodulatory genes, such as CD163 and CD14, were up-regulated.
Additionally, immune response pathways such as IFNγ-mediated signaling, GPCR signaling,
and toll-like receptor signaling were up-regulated in this disease subgroup, with potential
implications also in occurrence or persistence of NPM1-mutated-specific immune responses,
to be prospectively investigated [90]. Although generally associated with favorable prognosis,
especially in the absence of FLT3-ITD, approximately 50% of NPM1-mutated AML patients
receiving conventional treatment approaches, based on chemotherapy and HSCT procedures,
still currently die due to disease relapse and progression [7,8,87]. Careful monitoring of the
correlation between NPM1-mutated transcripts MRD and specific T-cell responses against
NPM1-mutated peptides, easily evaluable in PB samples, may provide relevant prognostic in-
formation [19]. Beyond novel agents either targeting abnormal cell transport of NPM1-mutated
protein, such as XPO1 inhibitors, or targeting HOX expression, namely the menin-MLL in-
hibitors MI3454 and VTP-50469, or triggering nucleolar stress, such as dactinomycin, which
have shown anti-leukemic activity in pre-clinical models and have started to be investigated
in humans, immunotherapeutic approaches targeting NPM1-mutated protein processed and
presented by HLA system on AML cell surface could represent an effective treatment option,
at least in some distinct disease phases [7,91,92]. Due to diverse bioinformatic instruments
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and in vitro/ex vivo immunological platforms employed, investigators identified different
epitopes from NPM1-mutated protein showing the potentially highest immunogenicity, as
detailed in Table 1 [4,15,16,18–21,25]. In order to expand the opportunity to track the occur-
rence and clinical significance of NPM1-mutated-specific T-cell immunity, it could be possibly
suggested to utilize for future immunological experiments a combination of at least AIQDL-
CLAV, AIQDLCVAV, CLAVEEVSL, LAVEEVSLR, AVEEVSLRK 9-mer, and CLAVEEVSLRK
11-mer immunogenic peptides, representative of the more common NPM1 mutation types
and able to efficiently bind to at least most common HLA types, such as A*02:01 and A*03:01,
which are frequently found in the Caucasian population (Table 1) [4,15,16,18–21,25]. The use of
engineered T cells, namely CAR-T or TCR-transduced T cells, directed against NPM1-mutated
peptides bound to HLA could represent a promising therapeutic approach, warranting future
investigation on the potential clinical application [3,4,7,19,51]. Although either adoptive or
vaccine-based immunotherapies to elicit endogenous immune responses are unlikely to be
highly effective in patients with full-blown either newly diagnosed or relapsed leukemia,
these strategies, potentially in combination with ICPIs, could be promising in maintaining
CR or preemptively eradicating persistent MRD, following conventional chemotherapy in
older NPM1-mutated AML patients not eligible for allogeneic HSCT [19,21,42,93]. Alterna-
tively, neoantigen-specific DLI derived from healthy donors and targeting NPM1-mutated
protein to selectively elicit GvL may be an attractive therapeutic option in subjects experienc-
ing morphological or, preferentially, molecular relapse after allogeneic HSCT, as previously
demonstrated in Philadelphia chromosome-positive B-acute lymphoblastic leukemia patients
(Figure 1) [19,37,58,59,61,62,94,95]. In conclusion, even though it has thoroughly been doc-
umented that NPM1-mutated protein is immunogenic and may elicit neoantigen-specific
immune responses in vivo, further prospective studies are warranted to investigate whether
individualized anti-leukemic immunotherapeutic approaches could have a potential clinical
utility in NPM1-mutated AML patients throughout their disease course [1,3,4,19,20,70].

Figure 1. Exploiting immunotherapy against NPM1-mutated AML.Autologous or allogeneic NPM1-mutated-specific T-cell
responses can naturally occur in patients receiving either conventional chemotherapy/hypomethylating agents or allogeneic
HSCT, respectively.
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Adoptive immunotherapy carried out by infusion of NPM1-mutated-specific T cells, stimulated and expanded directly from
patients, could potentially be promising in maintaining complete remission or eradicating persistent measurable residual
disease in subjects not candidate to allogeneic HSCT. The selected NPM1-mutated-derived peptides that are most immuno-
genic are listed. In addition to unmanipulated DLI, neoantigen-specific DLI obtained from healthy donors could represent a
therapeutic option in case of morphological or molecular AML relapse after allogeneic HSCT. Genetically engineered T cells
directed against NPM1-mutated-derived peptides bound to HLA may also represent a newer immunotherapeutic strategy.
Immune-checkpoint inhibitors and NPM1-mutated peptide vaccines could also prospectively be considered to further
elicit and stimulate NPM1-mutated-specific immune responses. Finally, CD33 and CD123, antigens strongly expressed on
NPM1-mutated blast cell surface, are currently recognized as valuable targets for monoclonal antibodies/T-cell recruiting
antibody constructs or CAR-T cells, despite being hampered by “on-target/off-tumor” toxicity.
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