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Summary 
Background Amyotrophic lateral sclerosis (ALS) is known to represent a collection of overlapping syndromes. Various 
classification systems based on empirical observations have been proposed, but it is unclear to what extent they reflect 
ALS population substructures. We aimed to use machine-learning techniques to identify the number and nature of 
ALS subtypes to obtain a better understanding of this heterogeneity, enhance our understanding of the disease, and 
improve clinical care. 

Methods In this retrospective study, we applied unsupervised Uniform Manifold Approximation and Projection 
[UMAP]) modelling, semi-supervised (neural network UMAP) modelling, and supervised (ensemble learning based 
on LightGBM) modelling to a population-based discovery cohort of patients who were diagnosed with ALS while 
living in the Piedmont and Valle d’Aosta regions of Italy, for whom detailed clinical data, such as age at symptom 
onset, were available. We excluded patients with missing Revised ALS Functional Rating Scale (ALSFRS-R) feature 
values from the unsupervised and semi-supervised steps. We replicated our findings in an independent population-
based cohort of patients who were diagnosed with ALS while living in the Emilia Romagna region of Italy. 

Findings Between Jan 1, 1995, and Dec 31, 2015, 2858 patients were entered in the discovery cohort. After excluding 
497 (17%) patients with missing ALSFRS-R feature values, data for 42 clinical features across 2361 (83%) patients 
were available for the unsupervised and semi-supervised analysis. We found that semi-supervised machine learning 
produced the optimum clustering of the patients with ALS. These clusters roughly corresponded to the six clinical 
subtypes defined by the Chiò classification system (ie, bulbar, respiratory, flail arm, classical, pyramidal, and flail leg 
ALS). Between Jan 1, 2009, and March 1, 2018, 1097 patients were entered in the replication cohort. After excluding 
108 (10%) patients with missing ALSFRS-R feature values, data for 42 clinical features across 989 patients were 
available for the unsupervised and semi-supervised analysis. All 1097 patients were included in the supervised 
analysis. The same clusters were identified in the replication cohort. By contrast, other ALS classification schemes, 
such as the El Escorial categories, Milano-Torino clinical staging, and King’s clinical stages, did not adequately label 
the clusters. Supervised learning identified 11 clinical parameters that predicted ALS clinical subtypes with high 
accuracy (area under the curve 0·982 [95% CI 0·980–0·983]).

Interpretation Our data-driven study provides insight into the ALS population substructure and confirms that the 
Chiò classification system successfully identifies ALS subtypes. Additional validation is required to determine the 
accuracy and clinical use of these algorithms in assigning clinical subtypes. Nevertheless, our algorithms offer a 
broad insight into the clinical heterogeneity of ALS and help to determine the actual subtypes of disease that exist 
within this fatal neurodegenerative syndrome. The systematic identification of ALS subtypes will improve clinical 
care and clinical trial design.
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Health Authority, and Italian Ministry of Education, University, and Research. 
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Introduction 
Amyotrophic lateral sclerosis (ALS) is one of the most 
common forms of neurodegeneration, accounting for 
approximately 6000 deaths in the USA and 11 000 deaths 
in Europe, annually.1 ALS is characterised by progressive 

paralysis of limb and bulbar musculature, and typically 
leads to death within 3–5 years of symptom onset. 
Medications only minimally slow the rate of 
progression, so treatment focuses on symptomatic 
management.

http://crossmark.crossref.org/dialog/?doi=10.1016/S2589-7500(21)00274-0&domain=pdf
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Genetic advancements have shown that ALS is not a 
single entity and instead consists of a collection of 
syndromes in which the motor neurons degenerate. 
Alongside these multiple genetic aetiologies, there is 
broad variability in the disease’s clinical manifestations, 
in terms of age at symptom onset, site of onset, rate and 
pattern of progression, and cognitive involvement. This 
clinical heterogeneity has hampered efforts to understand 
the cellular mechanisms underlying this fatal neuro­
degenerative syndrome and has hindered efforts to find 
effective therapies.

Given the importance of clinical heterogeneity within 
ALS, it is not surprising that there has been considerable 
effort over time to develop classification systems for 
patients. Examples include groupings based on family 
status,2 clinical milestones,3 neurophysiological measure­
ments,4 and diagnostic certainty.5 Although useful, it is 

unclear whether any of these classification systems 
identify clinically meaningful subgroups within the ALS 
population, or merely represent human constructs based 
on empirical observations. Determining the correct 
number and nature of subgroups within the ALS popu­
lation would be an important step towards understanding 
the disease. By extension, a reliable method to predict an 
individual patient’s subgroup using data collected at the 
beginning of their illness would be helpful for clinical 
care and clinical trial design.

Our goal was to determine the disease subtypes 
existing within a deeply phenotyped, population-based 
collection of patients  and to build predictor models to 
classify individuals according to their subtype using 
machine learning. The advantage of machine-learning 
approaches is their ability to identify complex  
relationships in a data-driven manner.

Research in context

Evidence before this study
We searched PubMed for articles published in English from 
database inception to Jan 5, 2021, about the use of machine 
learning and the identification of clinical subtypes within the 
amyotrophic lateral sclerosis (ALS) population, using the search 
terms “machine learning” AND “classification” AND 
“amyotrophic lateral sclerosis”. The search identified 29 studies. 
Most of these studies used machine learning to diagnose ALS 
(on the basis of gait, imaging, electromyography, gene 
expression, proteomic, and metabolomic data) or to improve 
brain–computer interfaces. One study used machine-learning 
algorithms to stratify ALS post-mortem cortex samples into 
molecular subtypes on the basis of transcriptome data. A 2015 
study crowdsourced the development of machine-learning 
algorithms to approximately 30 teams to try to obtain a 
consensus to identify subpopulations of patients with ALS. 
Although four categories of patients with ALS were identified, 
the clinical relevance of this approach was unclear, because all 
patients with ALS necessarily pass through an early and late 
stage of the disease. Furthermore, no attempt was made to 
discern which of the existing clinical classification systems 
(eg, the El Escorial criteria, the Chiò classification system, and the 
King’s clinical staging system) can identify ALS subtypes.

ALS subtype identification has been explored using 
t-distributed stochastic neighbour embedding, and Uniform 
Manifold Approximation and Projection (UMAP) has also been 
used in the context of stratifying patients with ALS in two 
papers. Prognosis outcome and patient stratification have been 
modelled in a classification context using either real-life data or 
Pooled Resource Open-Access ALS Clinical Trials data. The 
Piedmont and Valle d’Aosta Registry for ALS (PARALS) data 
were also used for stratification of patients with ALS but most 
of the data in that study were not population-based. Our semi-
supervised approach, based on a neural network and UMAP, is 
similar to work published by Sainburg and colleagues.

We concluded that there remained an unmet need to identify the 
ALS population substructure in a data-driven, non-empirical 
manner. Building on this conclusion, there was a need for a tool 
that reliably predicted the clinical subtype of patients with ALS. 
This knowledge would improve understanding of the clinical 
heterogeneity associated with this fatal neurodegenerative 
disease.

Added value of this study
This study developed a machine-learning algorithm to detect 
clinical subtypes of patients with ALS using clinical data 
collected from the 2858 Italian patients with ALS. 
Ascertainment of such patients within the catchment area was 
near complete, meaning that the dataset truly represented the 
ALS population. We replicated our approach using clinical data 
obtained from an independent cohort of 1097 Italian patients 
with ALS that had also been collected in a population-based, 
longitudinal manner. Semi-supervised learning based on UMAP 
applied to a multilayer perceptron neural network provided the 
optimum results based on visual inspection. The observed 
clusters equated to the six clinical ALS subtypes previously 
defined by the Chiò classification system (ie, bulbar, respiratory, 
flail arm, classical, pyramidal, and flail leg). Using a small 
number of clinical parameters, an ensemble-learning approach 
could predict the ALS clinical subtype with high accuracy (area 
under the curve 0·954).

Implications of all the available evidence
Additional validation is required to determine the accuracy and 
clinical use of these algorithms in assigning clinical subtypes. 
Nevertheless, our algorithms offer a broad insight into the 
clinical heterogeneity of ALS and help to determine the actual 
subtypes of disease that exist within this fatal neuro-
degenerative syndrome. The systematic identification of ALS 
subtypes could improve clinical care and clinical trial design.
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Methods 
Study design and participants 
We explored the clinical subtypes of ALS by applying 
unsupervised and semi-supervised machine learning to 
deeply phenotyped, population-based cohorts of patients 
(see figure 1 for the analysis workflow). After identifying 
the ALS subtypes, we used supervised machine learning 
to build predictor models to classify individual patients. 

The discovery cohort consisted of patients diagnosed 
with ALS while living in the Piedmont and Valle d’Aosta 
regions of Italy and entered in a population-based 
registry, known as the Piedmont and Valle d’Aosta 
Registry for ALS (PARALS; established Jan 1, 1995) 
during the study period.6 This registry has near-complete 
case ascertainment within its catchment population of 
nearly 4·5 million inhabitants (appendix 3 p 1).6 

To validate our results, we replicated the identification 
of the ALS subtypes using an independent cohort. The 
replication cohort consisted of patients diagnosed with 
ALS and living in the Emilia Romagna region of Italy, 
and entered in a population-based registry, known as the 
Emilia Romagna Region registry for ALS (ERRALS; 
established Jan 1, 2008).7 The ERRALS catchment area 
included 4·4 million inhabitants.7

None of the patients with ALS who were enrolled in 
ERRALS were enrolled in PARALS, and there were no 
exclusion criteria for the registries. We used the discovery 
(PARALS) cohort as a training dataset, and the replication 
(ERRALS) cohort as the replication dataset in our 
machine-learning analyses. 

An important feature of these two studies6,7 is real-time 
collection, by study authors who were experienced ALS 
neurologists, of detailed data about patients throughout 

their illness. The data collection methods were stan­
dardised across the two registries to facilitate comparisons. 
Each patient was evaluated according to published 
classification schema that included: the El Escorial 
classification system,5 family status (sporadic vs familial 
disease),2 the Milano-Torino clinical staging system,8 and 
the King’s staging system.3 The El Escorial diagnostic 
criteria for ALS classify patients into categories reflecting 
different degrees of diagnostic certainty.5 The Milano-
Torino staging system captures the clinical milestones 
corresponding to the loss of independence and function in 
patients with ALS.8 The King’s staging system is based on 
disease burden, as measured by clinical involvement and 
feeding or respiratory failure, and classifies patients into 
five stages, with stage 1 representing symptom onset and 
stage 5 being death.3 The Revised ALS Functional Rating 
Score (ALSFRS-R) scale9 includes 12 questions that each 
has a score ranging from 0 (no function) to 4 (full function) 
and is used to measure disease progression; the first three 
questions (part 1) of this ordinal scale evaluate the bulbar 
function of the patient. Patients were given an ALSFRS-R 
score and were dichotomised according to whether or not 
they were a C9orf72 gene carrier (the most common 
genetic cause of ALS). The PARALS and ERRALS studies 
were approved by the local ethics committees (appendix 3 
p 2). We anonymised all records in accordance with the 
Italian Personal Data Protection Code, Containing 
Provisions to Adapt the National Legislation to General 
Data Protection Regulation (Regulation [EU] 2016/679). 

Preprocessing of the clinical data 
The clinical data (appendix 3 p 13) were filtered before 
analysis. Features with non-random missingness 

Figure 1: Study workflow   
Unsupervised and semi-supervised machine learning were applied to clinical data collected from two population-based ALS registries (PARALS=2858 patients and 
ERRALS=1097 patients) to identify ALS clinical subtypes. Supervised machine learning was used to predict ALS subtypes on the basis of clinical parameters, and a 
web-based tool was built for clinical researchers to apply to their own data. ALS=amyotrophic lateral sclerosis. 
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(eg, cancer type), high sampling bias (eg, place of birth), 
and features that could introduce data leakage 
(eg, tracheostomy, and an initial diagnosis of primary 
lateral sclerosis) were omitted from the analyses 
(appendix 3 pp 11–12). For unsupervised and semi-
supervised ALS subtype identification, patients with 
missing values in the ALSFRS-R9 feature were also 
excluded (497 [17%] of 2858 patients in the discovery 
cohort and 108 [10%] of 1097 patients in the replication 
cohort). By contrast, patients with missing ALSFRS-R 
data were included in the supervised analysis, because 
the ensemble-learning methods used can handle 
missingness. Thus, the prediction modelling used data 
for 2858 patients in the discovery cohort and 1097 patients 
in the replication cohort. Categorical features were 
encoded to numerical values using the one-hot 
encoding10 method. Min–max normalisation was applied 
to numerical features to preserve the relationships 
among the original data and ensure a zero-to-one range.11 

Data imputation 
After data filtering and preprocessing, the following 
features had residual missingness that was distributed 
randomly across 15–20% of patients: forced vital capacity 
percentage at diagnosis; body-mass index (BMI) at 
2 years before illness; rate of decline of BMI per month 
since 2 years before illness; weight 2 years before illness; 
BMI at diagnosis; height at diagnosis; and weight at 
diagnosis. To account for this, we used the k-nearest 
neighbour imputation method with k=5 neighbours to 
preserve the clusters.12 The discovery and replication 
cohorts were imputed independently.

Unsupervised machine learning 
After preparing the data for analysis as described above, 
we did unsupervised machine learning. We hypothesised 
that machine-learning approaches could identify the 
number and nature of ALS subtypes when applied to a 
large, well-characterised population cohort. The primary 
outcome measure of our analyses was a comparison of 
the ALS subtype clusters defined by the approaches to 
the six clinical subtypes (ie, bulbar, respiratory, flail arm, 
classical, pyramidal, and flail leg) assigned manually by 
neurologists applying the Chiò classification system.13 
The clinical subtypes assigned by the Chiò classification 
system were not entered into the unsupervised 
algorithms and were not used to construct the patient 
clusters.

First, we used an unsupervised clustering approach to 
identify ALS subtypes by applying Uniform Manifold 
Approximation and Projection (UMAP) to the processed 
data. UMAP is used for non-linear dimensionality  
reduction to produce a low-dimensional projection of the 
data with the closest possible equivalent fuzzy topological 
structure.14 This approach preserves the local and global 
structures existing within the data, along with 
reproducible and meaningful clusters. As a comparison, 

we applied dimensionality reduction methods such as 
principal component analysis, independent component 
analysis, and non-negative matrix factorisation to the 
data.

Semi-supervised machine learning 
To further refine the clusters identified by UMAP alone, 
we processed the data using a multilayer perceptron 
neural network consisting of five hidden layers with 200, 
100, 50, 25, and 3 neurons (appendix 3 p 4).15 The network 
was trained with the clinical-type-at-1-year outcome labels 
related to the Chiò schema, using a Softmax classifier 
(which squashes raw class scores into normalised 
positive values that sum to one). After training the 
network with ten-times cross-validation, we extracted the 
activations of the last hidden layer and used them as the 
input for the UMAP algorithm.14 This approach reduced 
the dataset dimensions from 72 dimensions at the start 
of the process to three dimensions at the end. 

Supervised subtype prediction 
Next, we applied a supervised-learning approach, called 
ensemble learning, to develop predictive models 
forecasting the ALS clinical subtype of a patient solely on 
the basis of clinical data obtained at the first neurology 
visit. Ensemble learning combines multiple learning 
algorithms to generate a better predictive model than a 
single learning algorithm could.16 For supervised machine 
learning, we used GenoML, an open-source automated 
machine-learning package developed by the current 
authors.17 Within this package, ensemble learning was 
used to develop predictive models to forecast the ALS 
clinical subtype of a patient solely on the basis of clinical 
data obtained at their first neurology visit. The stacking 
ensembles of three supervised machine-learning 
algorithms (Random Forest version 0.24.2,18 LightGBM 
version 3.2.1,19 and XGBoost version 1.4.220) were 
evaluated, and the ensemble model that performed best 
was selected (see appendix 3 pp 5–6 for model selection 
and hyperparameter tuning). Feature reduction was done 
using recursive elimination to decrease the number of 
parameters included in the model without sacrificing 
accuracy. Internal validation on the discovery cohort and 
external validation on the replication cohort were used to 
assess performance and determine the best algorithms 
and parameters to use in the model using the logloss 
metric (appendix 3 p 2). Model performance was 
evaluated on the basis of various metrics, including 
accuracy, area under the curve (AUC), area under the 
precision-recall curve (AUPRC), and logloss. We used the 
Shapley Additive Explanations (SHAP)21 approach to 
evaluate each clinical feature’s influence in ensemble 
learning. This approach is used in game theory and 
assigns an importance (ie, SHAP) value to each feature 
to determine a player’s contribution to success.21 SHAP 
enhance understanding by creating accurate explanations 
for each observation in a dataset and bolstering trust if 

For more on GenoML see 
https://genoml.com/

https://genoml.com/
https://genoml.com/
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the crucial variables for specific records conform to 
human domain knowledge and reasonable expectations. 
The interactive website was developed as an open-access, 
cloud-based platform to provide a simple-to-use tool that 
clinicians can access. 

Computational tools and code availability 
The data-analysis pipeline for this work was done in 
Python (version 3.6) using open-source libraries (NumPy 
[version 1.20.3], pandas [version 1.2.5], matplotlib [version 
3.4.2], seaborn [version 0.11.1], plotly [version 4.14.2], scikit-
learn [version 0.24.2], UMAP [version 0.5.0], XGBoost 
[version 1.4.2], LightGBM [version 3.2.1], GenoML [version 
2v1.0.0b11], and TensorFlow [version 2.4.0]). We made our 
code publicly available to facilitate replication and future 
expansion of our work. Manuscript visualisations were 
created with tidyverse (version 1.3), ggplot2 (version 3.3.2), 
and plotly (version 4.9.2.2), and implemented in R 
(version 4.0.3). The exploratory data analysis was done 
with dlooker (version 0.5.4). The exploratory data analysis 
was the initial investigations done on data to discover any 
anomalies and to check assumptions with the help of 
summary statistics and graphical representations. The 
UpSet plot (also known as an attributes graph) was 

produced using UpSetR (version 1.4.0) software in R. 
UpSet plot analysis can only be done using complete data, 
whereas machine-learning analysis can be done and still 
be valid using samples from which missing ALSFRS data 
have been removed. The reporting guideline checklists 
are provided in appendix 3 (pp 26–31).

Role of the funding source 
The study sponsors had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results 
Between Jan 1, 1995, and Dec 31, 2015, 2858 patients 
were entered in PARALS. The clinical and demographic 
details of this discovery cohort are given in 
appendix 3 (pp 13–16). The 66 clinical features collected 
for each patient are listed in appendix 3 (pp 11–12); for an 
exploratory data analysis describing the content of each 
feature see appendix 3 (pp 32–111). After filtering and 
excluding 497 (17%) patients who had missing values in 
the ALSFRS-R feature, data for 42 clinical features across 
2361 (83%) of 2858 patients in the PARALS discovery 
cohort were available for the unsupervised analysis. We 

Figure 2: The ALS subtypes identified by machine learning in the discovery and replication cohorts
Three-dimensional projections for the discovery (ie, PARALS) cohort (A) and the replication (ie, ERRALS) cohort (B), with azimuthal rotations of 100° (left), 135° 
(centre), and 170° (right), which are symbolic of ALS subtypes as defined by the semi-supervised machine-learning algorithm that consisted of a uniform manifold 
approximation and projection algorithm applied to the output of a five-layer neural network. Colour coding using the Chiò classification system13 was done after 
machine-learning cluster generation. Interactive three-dimensional graphs are available on the interactive Machine Learning for ALS website (https://share.streamlit.
io/anant-dadu/machinelearningforals/main). ALS=amyotrophic lateral sclerosis. 

A Discovery cohort (n=2361)   

B Replication cohort (n=989)

Patient with bulbar ALS Patient with classical ALS Patient with flail arm ALS
Patient with flail leg ALS Patient with pyramidal ALS Patient with respiratory ALS

For the interactive website see 
https://share.streamlit.io/anant-
dadu/machinelearningforals/
main

For the code see https://github.
com/ffaghri1/ALS-ML

https://share.streamlit.io/anant-dadu/machinelearningforals/main
https://github.com/ffaghri1/ALS-ML
https://share.streamlit.io/anant-dadu/machinelearningforals/main
https://share.streamlit.io/anant-dadu/machinelearningforals/main
https://share.streamlit.io/anant-dadu/machinelearningforals/main
https://share.streamlit.io/anant-dadu/machinelearningforals/main
https://share.streamlit.io/anant-dadu/machinelearningforals/main
https://github.com/ffaghri1/ALS-ML
https://github.com/ffaghri1/ALS-ML
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included all 2858 (100%) patients in the semi-supervised 
analysis. Both the unsupervised and semi-supervised 
approaches identified multiple clusters of patients, 
representing distinct subtypes of ALS (for the results of 
the UMAP alone, see appendix 3 p 7; for the results of 
the neural network UMAP see figure 2A). Colour coding 
the patients according to the ALS clinical subtype 
assigned by a neurologist showed that the clusters 
roughly corresponded to the six clinical subtypes 
previously defined by the Chiò classification system13 
(primary outcome). Visually investigating these 
three-dimensional (3D) projections, the optimum 
separation of the patients into their clinical subtypes of 
ALS was obtained using the semi-supervised machine-
learning approach. There was excellent discrimination 
of the bulbar, respiratory, flail arm, and classical subtypes 
of ALS. By contrast, the pyramidal and flail leg subtypes 
overlapped substantially although the flail leg variant did 
form a distinct tail that did not overlap with the other 
subtypes. Overall, we found that 787 (>99%) of 
789 patients with bulbar, 42 (100%) of 42 patients with 
respiratory, 150 (91%) of 164 patients with flail arm, and 
663 (94%) of 707 patients with classical ALS were 
assigned to the same subtype by both the neurologist 
and the semi-supervised algorithm. 

For the replication study, between Jan 1, 2009, and 
March 1, 2018, 1097 patients were entered in ERRALS. 

For the unsupervised and semi-supervised analysis, we 
excluded 108 (10%) patients who had missing values in 
the ALSFRS-R feature; after filtering, data for 42 clinical 
features for 989 patients with ALS were available for 
analysis. We included all 1097 patients in the supervised 
analysis. The subtypes and clusters identified in the 
independent replication cohort are shown in figure 2B. 
Visually, the cluster pattern was similar to that observed 
in the discovery cohort, confirming the reproducibility 
of our data-driven approach. Interactive 3D graphs are 
available on the interactive Machine Learning for ALS 
website (see “Explore the ALS subtype topological 
space”).

Our semi-supervised machine-learning algorithm was 
more accurate than the other dimensionality reduction 
approaches, such as principal component analysis and 
independent component analysis (appendix 3 p 8). 
Furthermore, other ALS classification schema, such as 
the El Escorial categories,5 family status,2 the presence or 
absence of the pathogenic C9orf72 repeat expansion, 
Milano-Torino clinical staging,8 ALSFRS-R score,9 and 
King’s clinical stages,3 did not label the clusters in a 
meaningful, clinically useful manner (figure 3).

With the supervised (ensemble-learning) approach, if all 
available features (n=66) were included in the model, the 
clinical subtype of a patient was predicted with high 
accuracy (internal validation AUC 0·982 [95% CI 

Figure 3: Classification schema applied to the semi-supervised three-dimensional projection of the discovery (PARALS) cohort 
(A) The El Escorial classification system5 assigns patients to five ALS categories on the basis of the extent of their disability. Laboratory supported means supported by 
neurophysiology, neuroimaging, and clinical laboratory tests. (B) Patients with a family history of ALS or sporadic disease. (C) Patients carrying the pathogenic repeat 
expansion mutation in C9orf72. (D) The Milano-Torino clinical staging classification system8 assigns patients to stages 0–4 (minimal disability–most disability).  
(E) The ALSFRS-R score9 rates a patient’s physical function from 0 to 48 (most disability–no disability). (F) The King’s clinical staging system3  classifies patients into 
five stages from 1 (symptom onset) to 5 (death) according to the extent of their disability. ALS=amyotrophic lateral sclerosis. ALSFRS-R=Revised ALS Functional 
Rating Scale.9

10 20 30 40

A El Escorial classification B Family status C C9orf72 genetic carrier status
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0·979–0·984] and external validation AUC 0·954 
[0·950–0·958]; appendix 3 pp 9, 17–23).

To increase the clinical utility of this approach, we used 
recursive feature elimination to decrease the number of 
parameters included in the model without sacrificing 
accuracy, and this reduced the number of parameters 
to 11. The full performance results for Accuracy, AUC, 
AUCPR, and logloss can be found in appendix 3 (p 17). 
The predictor model built with the top 11 factors was 

equally robust compared with the all-inclusive model 
(internal validation AUC 0·982 [95% CI 0·980–0·983] 
and external validation AUC 0·943 [0·939–0·947]; 
figure 4 and appendix 3 pp 9, 22–23), The table and 
figure 5 list the 11 parameters selected for the final model 
and their relative contributions to the model’s precision. 
Finally, we implemented an interactive website that 
allows clinical researchers to determine the future 
clinical subtype of a patient with ALS on the basis of 

Figure 4: UpSet plot of the clinical parameters used in the supervised machine-learning model to predict ALS clinical subtype
Analysis was confined to 1584 ALS patients enrolled in PARALS with complete data and the figure was created using UpSetR software. Set size is the number of 
individuals with a specified parameter. (A) Graphical representation of the overlap between the 11 parameters that had the most substantial effects on the 
classification model. (B) Distribution of clinical parameters per patient (mean 5·1 [SD 1·7]). (C) Distribution of age at ALS onset. (D) Weight at diagnosis. (E) FVC 
percentage at diagnosis. ALS=amyotrophic lateral sclerosis. BMI=body-mass index. FVC=forced vital capacity.  
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these 11 parameters available in the early stages of the 
disease. We have also developed a what-if analysis 
functionality, to explore how feature changes could 
influence subgroup designation.

Discussion 
Researchers and clinicians have long sought a reliable 
method to identify the subgroups existing within the 
ALS population. Knowledge of the ALS substructure 
would improve understanding of the clinical hetero­
geneity associated with this fatal neurodegenerative 
disease. By extension, such knowledge would enhance 
patient care and provide insights into the underlying 
pathological mechanisms.22–30 Here, we used a machine-
learning approach to identify such subtypes within a 
large cohort of patients with ALS and replicated our 
findings in an independent cohort. This data-driven 
approach confirmed the existence of subtypes within the 
ALS disease spectrum. Interestingly, these subtypes 
roughly corresponded to those previously defined by the 
Chiò classification system,13 showing the schema’s utility. 
Unlike other subtyping approaches, the Chiò classi­
fication system relies on the patient’s clinical data 
collected during the first year of illness.13 This 1-year 
observation period allows the disease’s symptoms to 
manifest more clearly and enables the clinician to assess 
the progression rate more accurately. Although disease 
progression is a fundamental feature of ALS, it is not 
typically used in determining the disease subtype.

The primary obstacles to deciphering the clinical 
heterogeneity observed among patients with ALS have 
been the absence of a sufficiently large dataset and the 
inability to analyse multidimensional relationships. To 
address these issues, we used data from two large, 
population-based registries that had enrolled patients 

with ALS over several decades. These registries collected 
data throughout the patient’s illness and, overall, they 
contained nearly 300 000 pieces of information that we 
used for our categorisation efforts. Our results highlight 
the value of disease registries that capture deep 
phenotypes across an entire catchment area. Previous 
efforts to catalogue the various subgroups of ALS relied 
on a small number of clinical features, such as family 
history or site of symptom onset.2–5 Although clinically 
useful, these univariate or bivariate classification 
systems do not capture the complicated clinical patterns 
that exist within the ALS population. By contrast, the 
machine-learning algorithms we applied were adept at 
deciphering complex and multifaceted relationships. 
Indeed, the 11 features selected by the supervised model 
have not been previously combined to predict ALS 
subtypes.

Our semi-supervised approach, based on a neural 
network and UMAP, is similar to work published by 
Sainburg and colleagues. Remarkably, our unsupervised 
and semi-supervised machine-learning algorithms defined 
the same subgroups outlined by Chiò and colleagues13 in 
their 2011 classification system. This similarity might not 
be completely surprising in the context of our semi-
supervised approach because the same clinical-type-at-1-
year patient labels were used to assist the neural 
network-UMAP clustering. We do not assert that our 
machine-learning approach is better at identifying 
categories than experienced ALS neurologists are. Instead, 
we validated the Chiò classification system using a data-
driven approach and provided prima facie evidence that 
this schema captures the ALS population’s substructure. 
Classification based on other schemes, such as the 
El Escorial,5 Milano-Torino,8 and King’s systems,3 did not 
help to assign patients to a disease subtype (figure 3).

Nevertheless, our machine-learning algorithm provides 
opportunities to improve and refine the Chiò classi­
fication system, especially as the pyramidal and flail leg 
ALS subtypes might not be as distinct from each other as 
other subtypes are. This finding was unexpected, because 
these patients are easily distinguished from each other in 
the clinic, highlighting machine-learning’s ability to 
provide new and essential insights into a complex 
disease, and also offers a novel starting point for 
exploring the neurobiology underlying the pyramidal 
and flail leg ALS variants.

Having established that the six subtypes outlined by 
the Chiò classification system reflected the correct 
substructures of ALS, we next considered how clinicians 
and researchers could use this information. The ability 
to assign patients to subgroups at an early disease stage 
helps to unravel the disease’s clinical heterogeneity and 
helps in discussions with newly diagnosed individuals 
about the probable disease course and prognosis.  
Outcome data from negative clinical trials could be 
reanalysed for a therapeutic effect limited to one or 
two subgroups. A similar approach has been successful 

Relative importance 
to model precision

SD

Anatomical level at onset 1·000 0·078

Site of symptom onset 0·460 0·021

Onset side 0·132 0·023

Weight at diagnosis, kg 0·042 4·548 × 10–4 

El Escorial category5 at diagnosis 0·033 0·003

ALSFRS-R part 1 score for speech 0·027 8·967 × 10–4 

Time from symptom onset to first 
ALSFRS-R measurement, days

0·020 0·000

Smoking status 0·019 1·980 × 10–4 

Age at symptom onset, years 0·015 0·000

Rate of body-mass index decline 
per month

0·014 0·000

Forced vital capacity percentage at 
diagnosis

0·013 0·000

ALSFRS-R=Revised Amyotrophic Lateral Sclerosis Functional Rating Scale.9

Table: Clinical features selected for the final model and their relative 
contributions to the model’s precision



Articles

www.thelancet.com/digital-health   Published online March 24, 2022   https://doi.org/10.1016/S2589-7500(21)00274-0	 9

in Parkinson’s disease.31 Genetic heterogeneity also 
diminishes our ability to implicate new loci in the 
disease’s pathogenesis using genome-wide association 
analysis. Including the subgroup as a covariate or 
restricting the search to a single subtype might resolve 
this issue by focusing gene-finding efforts within a more 
homogeneous patient population.

It has not escaped our attention that the topology 
representation of the ALS subtypes produced by the 
machine-learning algorithm resembles the CNS. We 
observed this pattern most clearly in figure 2. The bulbar 
subtype delineates the cerebrum, and the spinal cord is 
represented by a long tail running successively from flail 
arm, pyramidal, classical, to flail leg subtypes. We speculate 
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that this arrangement hints at a broader anatomical 
organisation within the ALS spectrum, perhaps reflecting 
subtle differences of the motor neuron subtypes within 
each segment of the CNS and differing susceptibilities to 
pathogenic mechanisms of neurodegeneration.

Our study has several limitations. First, machine-
learning algorithms can identify patterns within a dataset 
even if no such pattern exists. Such overfitting of the 
model is an inherent problem with this statistical method, 
and the most legitimate remedy is to attempt replication 
in an independent dataset. We therefore replicated our 
findings in an independent, population-based cohort, 
which yielded remarkably similar outcomes to the 
discovery cohort, showing the robustness of our approach. 
Second, the handling of missing data is increasingly 
recognised as a crucial constraint of machine learning. 
Our data were remarkably complete, as shown in the 
exploratory data analysis notebooks. Nonetheless, as with 
any real-life clinical dataset, information was missing for 
some parameters, and we aimed to be transparent and 
cautious in handling these issues. Third, our modelling 
might have a bias, because we used the same set of 
patients used by Chiò and colleagues13 to define their 
subtypes in their 2011 study. However, it is unlikely that 
the use of this case series led to sampling bias, because 
the clinical information used to create the models is 
standard across the ALS field. Furthermore, population-
based registries decrease the possibility of sampling bias 
because they capture every case within a catchment area. 
We also replicated our initial findings in an independent 
cohort that was not used in Chiò and colleagues’ 
2011 study,13 confirming that the clusters identified by the 
data-driven approach did not arise from spurious within-
patient associations between variables in the discovery 
cohort. Nevertheless, both our discovery and replication 
data originated from the northern Italian population. 
Additional studies in other countries are required to rule 
out the possibility of population bias and to test our 
approach’s generalisability. Such data will have to be 
collected anew, as there is insufficient information to 
determine the Chiò classification of samples in retro­
spective data repositories, such as the Pooled Resource 
Open-Access ALS Clinical Trials Database.32

Like other statistical systems, machine-learning algo­
rithms are only practical if they can be applied broadly, and 
to facilitate this, we have established an interactive website 
so that physicians can enter a patient’s characteristics to 
predict their ALS subtype. We have made our programming 
code publicly available so that other researchers can apply 
it and modify it as our understanding of ALS and machine-
learning approaches evolve. Although our current cat-
egorisation approach is robust, we anticipate that it will 
improve over time to the point that it becomes a valuable 
tool for clinicians helping patients with ALS. Here, we 
provide an early demonstration of machine learning’s 
ability to unravel highly complex and interrelated disease 
systems such as ALS.
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