
03/07/2024 12:24

The Bike sharing Rebalancing Problem with Stochastic Demands / Dell'Amico, Mauro; Iori, Manuel;
Novellani, Stefano; Subramanian, Anand. - In: TRANSPORTATION RESEARCH PART B-METHODOLOGICAL. -
ISSN 0191-2615. - 118:(2018), pp. 362-380. [10.1016/j.trb.2018.10.015]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

The Bike sharing Rebalancing Problem with Stochastic Demands

Mauro Dell’Amicoa, Manuel Ioria, Stefano Novellania,∗, Anand Subramanianb

aDISMI, Università di Modena e Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
bDepartamento de Sistemas de Computação, Centro de Informática, Universidade Federal da Paráıba, Rua dos

Escoteiros, Mangabeira, João Pessoa – PB, 58058-600, Brazil

Abstract

In this paper we deal with the stochastic version of a problem arising in the context of self-service

bike sharing systems, which aims at determining minimum cost routes for a fleet of homogeneous

vehicles in order to redistribute bikes among stations. The Bike sharing Rebalancing Problem

with Stochastic Demands is a variant of the one-commodity many-to-many pickup and delivery

vehicle routing problem where demands at each station are represented by random variables,

with associated probability distributions, that depend on stochastic scenarios. We develop

stochastic programming models that are solved using different approaches, in particular, the

L-Shaped and branch-and-cut. Moreover, we also propose heuristic algorithms based on an

innovative use of positive and negative correlations among stations’ stochastic demands, as

well as an efficient strategy for checking feasibility. The proposed solution approaches are

evaluated and compared by means of extensive computational experiments on newly realistic

benchmark instances.

Keywords: Stochastic Programming, Vehicle Routing, Bike Sharing, Branch-and-cut,

Correlations.

Declaration of interest: none

1. Introduction

Bike sharing systems are public or private systems used to provide an additional mean

of transportation to users moving across city centers. They appeared for the first time in

Amsterdam in the 1960s and they have multiplied consistently in the last two decades in every

∗Corresponding author
Email addresses: mauro.dellamico@unimore.it (Mauro Dell’Amico), manuel.iori@unimore.it (Manuel

Iori), stefano.novellani@unimore.it (Stefano Novellani), anand@ci.ufpb.br (Anand Subramanian)

Preprint submitted to Transportation Research Part B: Methodological August 3, 2018

continent. As a matter of fact, according to the Bike sharing World Map (see Meddin and5

DeMaio (2018)), in February 2018 there were more than 1500 active bike sharing systems

across the globe.

Bike sharing systems consist of a set of bikes and several stations, located in different

places of the city. Each station has a number of slots where users can collect or return a bike.

Generally, users start and finish their trips in two different stations, and need not necessarily10

to perform the return trip using the same mean of transportation. For example, a typical

situation arises when the starting station is located on the top of a hill and the ending one

is at the bottom. Furthermore, the target number of bikes of a station defines the balanced

level of occupation. Note that if all the stations are balanced then the system is balanced. A

station may get imbalanced if a user collects a bike from a balanced station and returns it to a15

different one, thus potentially leading to undesirable situations where a station turns out to be

empty or full. Therefore, to increase the efficiency of the system as well as users’ satisfaction,

each station must be brought from the current situation to its balanced level of occupation.

This defines a demand or request of a station. In this paper, we consider stochastic demands

representing different scenarios, each one with its corresponding probability distribution.20

The main goal of this paper is to propose efficient solution methods for the Bike sharing

Rebalancing Problem with Stochastic Demands , which consists of determining minimum cost

routes for a fleet of homogeneous vehicles in order to redistribute bikes among stations with

stochastic demands so as to keep the system balanced.

The main contributions of the paper are:25

• A new problem: the stochastic version of the deterministic Bike sharing Rebalancing

Problem (considered by Dell’Amico et al. (2014)).

• The design and evaluation of five exact approaches, namely: deterministic equivalent

program, one-cut and multi-cut L-shaped method, and one-cut and multi-cut single stage

branch-and-cut methods. We show that some of these methods are able to solve large30

instances to optimality.

• A heuristic algorithm based on correlation among stochastic variables.

The remainder of the paper is structured as follows. Section 2 presents a literature review

2

on the related problems. Section 3 formally defines the problem, whereas stochastic program-

ming models are provided in Sections 4. Section 5 suggests some interesting properties and35

valid inequalities for checking feasibility that are used to speed up the performance of the al-

gorithms. Section 6 explains the exact algorithms based on the L-shaped and branch-and-cut

methods. Section 7 describes the heuristic algorithms based on correlations among stations.

Computational results are reported in Section 8. Finally, Section 9 concludes.

2. Literature review40

Bike sharing systems have been receiving considerable attention from the literature during

the past decade. Several associated optimization problems were suggested aimed at rebalancing

bike sharing systems. Rebalancing operations can be performed during the night, i.e., when

the system is closed or the usage is negligible, or during the day, i.e., when the status of the

system changes rapidly. The former case is known as the static rebalancing problem, whereas45

the latter is known as the dynamic rebalancing problem.

Among the first authors, Chemla et al. (2013) and Raviv et al. (2013) defined and solved

static rebalancing problems. Chemla et al. (2013) solved a deterministic static single vehicle

rebalancing problem where vertices can be visited more than once and split delivery is allowed.

The authors proposed branch-and-cut algorithms for two relaxations of the problem and a tabu50

search algorithm. Raviv et al. (2013) considered a multi-vehicle static bike sharing rebalancing

variant, where the objective is to minimize both operational costs and user’s dissatisfaction

expressed as a penalty. Stations can be visited multiple times, transshippment is allowed, and

a maximum duration is imposed to all routes. They proposed two formulations strengthened

with valid inequalities and dominance rules, whereas Forma et al. (2015) developed a heuristic55

procedure to solve the same problem. Ho and Szeto (2017) solved a multi-vehicle repositioning

problem based on the same model by proposing a hybrid large neighborhood search. Moreover,

Li et al. (2016) considered multiple types of bikes to be redistributed with a single vehicle

proposing a mixed-integer linear programming (MILP) model and a hybrid genetic algorithm.

In that problem, when a request of a bike type cannot be met, then another type can be60

used instead, incurring a penalty. Szeto and Shui (2018) studied a single vehicle static bike

repositioning problem that determines the routes and the loading and unloading quantities

3

that minimize the positive deviation from the tolerance of total demand dissatisfaction and the

service times. They use a set of loading and unloading strategies embedded in a bee colony

algorithm. Other static versions of the problem with multiple vehicles have been proposed by65

Rainer-Harbach et al. (2015) and Bulhões et al. (2018), while other static problems with one

vehicle have been considered by Ho and Szeto (2014), Erdoğan et al. (2014), Erdoğan et al.

(2015), Szeto et al. (2016), Li et al. (2016), Cruz et al. (2017)).

In particular, Erdoğan et al. (2014) introduced a variant of the 1-PDTSP called the static

bicycle relocation problem with demand intervals, where the number of bikes at each station70

can lie within an interval. Erdoğan et al. (2015) considered a static problem where the same

station may be visited multiple times, thus allowing the demand of the station to be split.

Other related works that allow splits to be performed, in addition to Chemla et al. (2013),

are: Cruz et al. (2017), Salazar-González and Santos-Hernández (2015), Bruck et al. (2017),

Benchimol et al. (2011), and Di Gaspero et al. (2013) among others.75

Static problems include the Bike sharing Rebalancing Problem (BRP) by Dell’Amico et al.

(2014). BRP belongs to the wider class of pickup and delivery problems, and according to

the scheme defined by Berbeglia et al. (2007) it can be classified as a many-to-many pickup

and delivery problem, where commodities do not have fixed origins and destinations. One of

the most relevant examples of this class of problem is the one-commodity pickup and delivery80

traveling salesman problem (1-PDTSP) introduced by Hernández-Pérez and Salazar-González

(2004), where a single vehicle is used to meet the pickup and delivery demands associated with

a single commodity. In that paper the authors propose a branch-and-cut algorithm to solve

the symmetric and asymmetric versions of the problem. An enhanced branch-and-cut with

new valid inequalities was later presented in Hernández-Pérez and Salazar-González (2007). In85

addition, (meta)heuristics were put forward by Hernández-Pérez and Salazar-González (2004),

Hernández-Pérez et al. (2009), Wang et al. (2006), Mladenović et al. (2012). We refer the

interested reader to the survey by Battarra et al. (2014) on pickup and delivery problems for

freight transportation. Dell’Amico et al. (2014) proposed, in their seminal work, four mathe-

matical formulations for the BRP with multiple vehicles that were solved with branch-and-cut90

algorithms. Later on, Dell’Amico et al. (2016) implemented destroy and repair algorithms for

the BRP and for the version with route duration constraints, as well as a branch-and-cut pro-

4

cedure for the latter. The present work on the BRP with stochastic demands is based on these

deterministic problems.

A dynamic version of the BRP where the fleet of vehicles is heterogeneous was considered95

by Contardo et al. (2012). They put forward time-indexed formulations that are solved via

Dantzing-Wolfe and Benders’ decomposition based heuristics. Zhang et al. (2017) studied

a dynamic version of the repositioning problem, considering inventory level and user arrival

forecasting in a time-space network flow model. They propose a MILP formulation and a

math-heuristic approach. Shui and Szeto (2017) introduced a dynamic green bike repositioning100

problem that minimizes the total unmet demand and the fuel and CO2 emission cost of the

repositioning vehicle over an operational period for which they proposed a hybrid rolling horizon

artificial bee colony algorithm.

To our knowledge, while the deterministic versions of several BRPs have been studied in

many recent works, their stochastic counterparts have not been considered yet. Wang and105

Wang (2013) provided an analysis on bike repositioning strategies by conducting a simulation

study where real time and historical data are considered. Raviv et al. (2013) considered sto-

chastic information implicitly in their penalty function. Regue and Recker (2014) solved a

dynamic problem, where routing and inventory problems are both accounted and the unknown

demand part is estimated using historical data feeding a forecasting model. Saharidis et al.110

(2014) suggested a mathematical formulation to design the bike sharing infrastructure, deci-

ding the location and the size of the bike stations, incorporating a hourly demand estimation.

Schuijbroek et al. (2017) derived bounds on inventory quantities by modeling inventory as a

non-stationary Markov chain, and used them in mixed integer programming and constraint

programming models.115

Stochastic optimization (see, e.g., Birge and Louveaux (2011) and King and Wallace (2012))

has been applied to solve many vehicle routing problems under uncertainty. For example,

vehicle routing problems with stochastic demands have been modeled and solved with chance

constrained programming (see, e.g., Stewart and Golden (1983)), robust optimization (see,

e.g, Bertsimas and Simchi-Levi (1996)), and stochastic programming with recourse (see, e.g.,120

Laporte et al. (2002)). The reader is referred to Gendreau et al. (2014) and Oyola et al. (2016)

for detailed surveys on a variety of stochastic vehicle routing problems. Nevertheless, despite

5

the broad literature on the topic, problems with positive and negative stochastic demands

of the same commodity (i.e., one-commodity pickup and delivery problems with stochastic

demands) have been only investigated by Louveaux and Salazar-González (2009) and Louveaux125

and Salazar-González (2014), where they study the one vehicle version and consider the capacity

of the vehicle as an output.

3. Problem description

The Bike sharing Rebalancing Problem with Stochastic Demands (BRPSD) is modeled on

a complete digraph G = (V,A), where V = {0, 1, . . . , n} is the set of vertices including the130

depot, vertex 0, and the subset of n customers V0 = V \ {0}, and A is the set of arcs between

each pair of distinct vertices, each having an associated non-negative cost cij, (i, j) ∈ A. Let

cmin = min(i,j)∈A{cij} denote the minimum cost of an arc in the digraph. A request qωj , which

denotes the difference between the current level of occupation and the balanced one, is given for

each vertex j ∈ V0 and scenario ω ∈ Ω, where Ω is the set of all the possible scenarios and pω is135

the probability of the scenario ω, with
∑

ω∈Ω p
ω = 1. Requests can be positive (pickup vertex)

or negative (delivery vertex). The quantities collected at pickup vertices can be used to serve

the demand of delivery vertices or can be disposed to the depot. If necessary or convenient,

some quantities can come from the depot in order to meet the delivery requests and some others

can return to the depot at the end of the rebalancing. Stations balanced a priori (i.e., those140

for which qωj = 0) must also be visited.

In the BRPSD, it is not always possible or even convenient to completely meet the requests

of certain vertices in some scenarios. Therefore, we model the problem using a novel recourse

function allowing the demands to be partially fulfilled at the price of a penalty. This novel

feature is aligned with the suggestion provided by Gendreau et al. (2016) in their study on145

future research directions in stochastic vehicle routing (“What about allowing the demand of

customers to be partially fulfilled (at the price of some penalty) if the vehicle’s capacity is

exceeded by the total demand on its planned route? Such an option might be particularly

welcomed in the case where demands are correlated”).

When the request is violated the objective function is penalized by incurring a penalty ε·cmin150

(0 ≤ ε ≤ 1) for each unit of slack and surplus in vertex j ∈ V0. This penalty is chosen to be

6

a fraction of the minimum cost of an arc, so as to have a relation with the traveling costs. A

relationship between the penalty and the traveling cost is needed to express a uniform objective

function. Because of the nature of the problem, we believe that an unmet request should not be

very expensive. Indeed, not delivering or collecting a bike does not imply in large hidden costs,155

opposed to not meeting a customer request in the traditional VRP. Computational insights on

how the penalty affects the problem difficulty and model behaviour are provided in Section 8.5.

Slack and surplus quantities are limited by some considerations on the capacity and the

balanced level of occupation of each station, Hj and dj, respectively. In other words, one

cannot leave more bikes than the capacity of the station and one cannot pickup more bikes160

than the available number. Moreover, we set a coefficient δ, 0 ≤ δ ≤ 1, in order to have a

leverage on the request violation. If δ = 0, we forbid any violation of the requests, which

means that the solution must be feasible for all scenarios. On the other hand, if δ = 1 the

only limit to the request violation are the number of bikes present in the station and the

station capacity. More specifically, we set the maximum slack and surplus quantities for j ∈ V0165

as min{dδHje, dj} and min{dδHje, Hj − dj}, respectively. Furthermore, we also assume that

|qωj | ≤ Hj and |qωj | ≤ Q, j ∈ V0, ω ∈ Ω, where Q is the vehicle capacity. In Sections 8.4 and 8.5

an extensive study regarding values of δ and ε is performed.

The BRPSD aims at routing a fleet of identical vehicles of capacity Q available at the depot

in order to partially or completely meet the scenario requests, while minimizing the sum of the170

travel and penalty costs. Each route starts and ends in the depot and each station must be

visited exactly once.

4. Formulations for the BRPSD

In this section we present a set of formulations to solve the BRPSD. We adopted the

terminology used in Birge and Louveaux (2011).175

4.1. Deterministic equivalent program

We first introduce the Deterministic Equivalent Program (DEP) formulation, which consists

of a large model containing all the scenarios, including the decisions to be taken before and

after the realization of the stochastic variables. We define variables xij, (i, j) ∈ A, that can

7

take value 1 if arc (i, j) is used and 0 otherwise. Variable fω
ij represents the quantity flowing on

the arc (i, j) in scenario ω ∈ Ω, whereas sω−j and sω+
j are, respectively, the slack and surplus

variables used to pay a cost k for each unit of slack and surplus when the flows do not respect

the request at vertex j ∈ V0 in scenario ω ∈ Ω.

(DEP) min
∑
i∈V

∑
j∈V

cijxij + ε · cmin

∑
ω∈Ω

pω
∑
j∈V0

(sω−j + sω+
j) (1)

∑
i∈V

xij = 1 j ∈ V0 (2)

∑
i∈V

xji = 1 j ∈ V0 (3)

∑
i∈S

∑
j∈S

xij ≤ |S| − 1 S ⊆ V0, S 6= ∅, |S| > 2 (4)

xij + xji ≤ 1 i, j ∈ V0, i 6= j (5)

fω
ij ≤ Qxij (i, j) ∈ A, ω ∈ Ω (6)∑
i∈V

fω
ji −

∑
i∈V

fω
ij = qωj + sω−j − sω+

j j ∈ V0, ω ∈ Ω (7)

sω−j ≤ min{dδHje, dj} j ∈ V0, ω ∈ Ω (8)

sω+
j ≤ min{dδHje, Hj − dj} j ∈ V0, ω ∈ Ω (9)

sω+
j , sω−j ≥ 0 j ∈ V0, ω ∈ Ω (10)

fω
ij ≥ 0 (i, j) ∈ A, ω ∈ Ω (11)

xij ∈ {0, 1} (i, j) ∈ A. (12)

The first component of the objective function (1) aims at minimizing the traveling costs,

while the second component incurs a penalty k for every unit of demand that is not fulfilled,

multiplied by the probability of the related scenario. Constraints (2) and (3) impose that

exactly one arc must enter and leave every customer vertex, respectively. A maximum number

of available vehicles can be easily imposed in the model. Constraints (11) and (12) define the

domain of variables xij and fω
ij . Constraints (4)–(5) avoid subtours, whereas constraints (6)

state that the flow variables must not exceed the vehicle capacity. Constraints (7) specify that

the difference between the flows leaving and entering a vertex must be equal to its request, in

a given scenario, corrected by the surplus and slack variables, which in turn are bounded by

constraints (8)–(10). In particular, the vehicle cannot collect more bikes than what is available

8

at the station and the capacity of the station cannot be exceeded if those values are not greater

than dδHje, with 0 ≤ δ ≤ 1, δ ∈ R. Figure 1 shows an example of a possible balanced level of

occupation dj with respect to a negative or non-negative request, given that lωj is the current

level of occupation of a station j ∈ V0 in scenario ω ∈ Ω. Note that the current level of

occupation lωj is a stochastic variable, but because the balanced level of occupation is fixed for

each station, the demand can also be considered a stochastic variable:

qωj = lωj − dj, j ∈ V0, ω ∈ Ω. (13)

0 lωj dj Hj

qωj < 0

0 dj lωj Hj

qωj > 0

Figure 1: Parameters of a station in case of negative (left) and positive (right) request. In grey the current level

of occupation, in white the current empty docks.

4.2. Two-stage formulation

In this section, we propose a two-stage Stochastic Integer Programming (SIP) model with

simple recourse for the BRPSD. In this case we perform a Benders’ decomposition of the

DEP formulation into two stages, the first one takes into account the deterministic part of

the problem, while the second one represents a set of models (a.k.a. submodels), one for each

scenario, that take as input the decisions made at the first stage and make them fit with the

request of the various scenarios after the realization of the stochastic variables. This is achieved

by generating a cut from the solution of the second stage and adding it to the first stage model

as further explained. Both models must be solved in an iterative way: when the inequalities

produced by the second stage models do not violate the solution of the first stage then the

optimal solution has been found (see, e.g., Birge and Louveaux (2011)).

(1-Stage) min
∑
i∈V

∑
j∈V

cijxij +
∑
ω∈Ω

pωz(ω, s−, s+) (14)

(2)− (5), (12).

9

The objective function (14) of the first stage model contemplates the travel costs and the

expected value of the solution of the second stage that defines the costs due to the penalties.

(2-Stage) min z(ω, s−, s+) = ε · cmin

∑
j∈V0

(sω−j + sω+
j) (15)

fω
ij ≤ Qxij (i, j) ∈ A (16)

(7)− (11).

As for the second stage, the objective function (15) minimizes the penalty costs for the

particular scenario ω ∈ Ω. Note that xij, (i, j) ∈ A, are fixed values that were obtained by

solving the first stage model.180

The most common way to solve a two-stage stochastic model is through the L-Shaped

method (see, Birge and Louveaux (2011)), which solves the first stage problem (an Integer

Linear Program (ILP), in our case), takes the linking variables between the two stages (xij)

and uses them as an input in all the second stage models. The dual problem of the second

stage problem is then solved for each ω ∈ Ω. We can associate constraints (16) with the dual

variables ξωij, (i, j) ∈ A, ω ∈ Ω, and constraints (7), (8), and (9) with, respectively, the dual

variables φω
j , π

ω
j , and νωj , j ∈ V0, ω ∈ Ω. If at least one of the dual problems of the second

stage is unbounded, then the first stage solution is not feasible for this scenario. Therefore,

one must add a so-called feasibility cut, which is computed by using the extreme ray of the

unbounded dual problem, to the first stage model and solve the latter again. The extreme ray,

here indicated as the dual variables with a hat (ξ̂ij, φ̂j, π̂j, and ν̂j), is a vector of the same

size of the solution and it basically expresses the direction of the unboundedness. Hence, the

feasibility cut for an infeasible scenario can be written as

Q
∑

(i,j)∈A

ξ̂tijxij ≥−
∑

j∈V \{0}

φ̂t
jq

t
j −

∑
j∈V \{0}

π̂t
j min{dδHje, dj}

−
∑
j∈V0

ν̂tj min{dδHje, Hj − dj}
t ∈ Tfeas (17)

where Tfeas is the set that defines the number of feasibility cuts required at the end of the

procedure, but keeping in mind that we insert them one at a time. When all submodels are

feasible (they are all finite because we have a simple recourse), one may need to introduce a so-

called optimality cut, which takes into account the average cost of the second stage problems,

10

the variable η (that considers the expected value of the second stage model costs), and the185

current solution. In particular, it means that if all second stage problems are feasible, then

variable η must cover the expected value of the costs of each second stage problem, or that

the current solution must be changed if a cheapest option is available. The optimality cut (18)

imposes the variable η to be greater than or equal to the expected value of the dual solution

of the second stage problems, computed for all scenarios. The dual solution is represented by190

overlined variables (ξ
ω

ij, φ
ω

j , π
ω
j , and νωj), whereas Topt is the set representing the amount of

optimality cuts required.

η ≥
∑
ω∈Ω

pω
(
−Q

∑
(i,j)∈A

ξ
ω,t

ij xij −
∑
j∈V0

φ
ω,t

j qωj −

∑
j∈V0

πω,t
j min{dδHje, dj} −

∑
j∈V0

νω,tj min{dδHje, Hj − dj}
)ω ∈ Ω, t ∈ Topt (18)

If the inequality does not violate the current solution then it is optimal, otherwise the

optimality cut imposes the solution vector to change or the penalty value η to increase. In this

latter case we must recompute the first stage model with the new cut.195

The resulting formulation of the L-Shaped method, denoted as Two-stage Formulation or

Benders’ Master Problem, can be written as in (19)–(20), where η is the variable that takes

into account the penalties incurred by the second stage models, as well as the derived feasibility

cuts (17) and optimality cuts (18).

(Two-stage) min
∑
i∈V

∑
j∈V

cijxij + η (19)

(2)− (5), (12), (17), (18)

η ≥ 0. (20)

4.3. Multi-cut formulation

The Multi-cut L-Shaped method (see Birge and Louveaux (2011)) is another way of solving

the two-stage problem by inserting, at each iteration for which all scenarios are feasible, one

optimality cut for each scenario that needs its component of costs to increase. In this case,

we need a variable ηω for each scenario ω ∈ Ω, and the summation of these new variables is

evaluated in the objective function (21) while the new optimality constraints are represented in

11

(22). If one scenario is found infeasible a feasibility cut (17) is inserted. The resulting Multi-cut

Formulation can be written as follows.

(Multi-cut) min
∑
i∈V

∑
j∈V

cijxij +
∑
ω∈Ω

ηω (21)

(2)− (5), (12), (17)

ηω ≥ pω
(
−Q

∑
(i,j)∈A

ξ
ω,t

ij xij −
∑
j∈V0

φ
ω,t

j qωj −

∑
j∈V0

πω,t
j min{dδHje, dj} −

∑
j∈V0

νω,tj min{dδHje, Hj − dj}
) t ∈ Topt, ω ∈ Ω (22)

ηω ≥ 0 ω ∈ Ω. (23)

4.4. Single stage branch-and-cut

Another possibility to solve the problem is again related to the two-stage method, but

a single run of a branch-and-cut algorithm is used. The branch-and-cut is initialized with

the 1-Stage model, without the subtour elimination constraints (4). The CallBack function200

of the MIP solver is activated every time the LP solver provides a solution, either fractional

or integer. In this implementation the CallBack checks the current solution to find possible

violated subtour elimination constraints, violated feasibility cuts, or violated optimality cuts

and adds them to the current LP model. The solution found by the branch-and-cut algorithm

is the optimal solution of the Benders’ Master Problem. Similarly to the previous case, we205

separated the cuts using the One-cut or the Multi-cut formulation.

5. Properties and valid inequalities for the BRPSD

In this section, we define a set of properties related to feasible paths for the BRPSD built

upon the ideas provided in Dell’Amico et al. (2016). Such properties enable one to derive

valid inequalities, also described in this section, as well as to speed up the computation of the210

heuristic procedures described in Section 7.

5.1. Properties

The proposed properties are based on the following operators:

• Remove a vertex from its current position in the solution;

12

• Insert a vertex in a given position of a route;215

• Move a vertex from its position to another one (composition of remove and insert);

• Swap the position of two vertices (composition of two remove and two insert);

• Merge two routes or partial routes by concatenating them, one after the other.

We define a route P as an ordered sequence of vertices {0}, P (1), . . . , P (|P |), {0}, that

starts and ends at the depot, where P (i) ∈ V0, i = 1, . . . , |P |.220

We recall that for each vertex j ∈ V0 the values min{dδHje, Hj − dj} and min{dδHje, dj}

represent the maximum value that surplus variables s+
j and slack variables s−j can assume, re-

spectively. Reminding that qj < 0 when we leave bikes in j the quantity max {−Q, qj −min{dδHje,

Hj − dj}} gives the opposite of the maximum number of bikes we can leave in vertex j, taking

into account the vehicle and station capacity and the maximum request violation. Similarly225

min {Q, qj + min{dδHje, dj}} gives the maximum number of bikes we can remove from vertex

j.

Given a route P , for each vertex P (i) ∈ P in position i, and for each scenario ω ∈ Ω let

λωP (i) denote the cumulative sum of the opposite of the maximum possible number of bikes, we

can leave in each vertex of P , up to vertex P (i). Similarly, let µω
P (i) denote the cumulative sum

of the maximum possible number of bikes we can remove/avoid to deliver in each vertex of P ,

up to vertex P (i):

λωP (i) =
i∑

j=0

max
{
−Q, qωP (j) −min{dδHP (j)e, HP (j) − dP (j)}

}
, (24)

µω
P (i) =

i∑
j=0

min
{
Q, qωP (j) + min{dδHP (j)e, dP (j)}

}
. (25)

Moreover, let λω0 = µω
0 = 0. By using the values λ and µ, we can derive some conditions on

the vehicle loads that guarantee the feasibility of route P .

Consider the value mini
j=0{λωP (j)} and observe that it is non-positive. If this value is strictly

negative it means that the route P , up to P (i), may be feasible only if the vehicle starts from

the depot with an initial load of |mini
j=0{λωP (j)}| bikes. Therefore the vehicle load at P (i) must

be at least λωP (i)−mini
j=0{λωP (j)}. Similarly Q−maxi

j=0{µω
P (j)} is the greater empty space in the

13

vehicle, up to P (i), so the maximum possible bike’s removal at P (i) is µω
P (i)+Q−maxi

j=0{µω
P (j)}.

This leads us to define

F ω
P (i) =

[
λωP (i) −

i

min
j=0
{λωP (j)}, µω

P (i) +Q− i
max
j=0
{µω

P (j)}
]
, (26)

as the end load window of P (i), i.e., the feasible interval for the load on the vehicle after leaving230

vertex P (i) on route P , for scenario ω ∈ Ω.

Property 1. If the end load windows up to the last customer vertex P (|P |) of a route P are

non-empty for all scenarios, then the route is feasible.

Proof. The end load windows F ω
P (i) gives the minimum and maximum load of a vehicle running

on route P , when leaving vertex P (i). If this load interval is non-empty vertex P (i) can be235

feasibly served. If the interval is non-empty for all vertices of the route, the entire route is

feasible. �

In Figure 2 we provide an example that illustrates Property 1. We have a route P =

(0, 1, 2, 3, 4, 0), a fixed scenario and requests q = (0, 5,−6,−7, 10, 0). We also set vehicle ca-240

pacity Q = 20 and, for sake of simplicity, min{dδHje, Hj − dj} = min{dδHje, dj} = 2 for

all vertices. The plot reports, in solid line, the cumulative sum of all requests along the

route. The dashed line represents µ, while the dotted line represents λ. One can see that

mini
j=0{λP (j)} = (0, 0,−5,−14,−14), and Q −maxi

j=0{µP (j)} = (20, 13, 13, 13, 10). Therefore,

F = ([0, 0], [3, 20], [0, 16], [0, 11], [8, 20]) and all the vertices in the root are feasible, as the entire245

root.

Similarly, we can define for a vertex j ∈ V0 the start load window Bω
j , that represents the

load interval which guarantees the feasibility of the route from P (i) to the depot. In this case,

we need values similar to λ and µ, but in a reverse logic. We denote such values as γ and ζ. ***

SIamo sicuri che sia γ il corrispondente di λ ?? Mi pare che le formule siano opposte *** These

quantities are the cumulative sums of the loads adjusted by the maximum slack and surplus

quantities computed from the last node of the path to the current one, in a backward way. We

can now compute the sum of reverse quantities corrected by the maximum surplus and slack

14

0 1 2 3 4
−20

−15

−10

−5

0

5

10

15

20

0

7

3

−2

10

0

5

−1

−8

2
0

3

−5

−14

−6

P (i)

lo
ad

End load windows

µω
P (i)∑i

j=0 q
ω
P (j)

λωP (i)

1 2 3 4 5
−20

−15

−10

−5

0

5

10

15

20

6

9

1

−8

0

−2

3

−3

−10

0

−10

−3

−7

−12

0

P (i)

lo
ad

Start load windows

ζωP (i)

−
∑|P |+1

j=i qωP (j)
γωP (i)

Figure 2: Example of end load windows and start load windows computation.

values on a route P , for the vertex P (i) ∈ P in position i for scenario ω ∈ Ω, as follows:

γωP (i) = −
|P |+1∑
j=i

min
{
Q, qωP (j) + min{dδHP (j)e, dP (j)}

}
(27)

ζωP (i) = −
|P |+1∑
j=i

max
{
−Q, qωP (j) −min{dδHP (j)e, HP (j) − dP (j)}

}
, (28)

where we set γωP (|P |+1) = ζωP (|P |+1) = 0, ω ∈ Ω. We recall that P (|P |+ 1) is the depot.

Let us define the start load window, denoted as B, as the interval of loads in which the vehicle

load must lie when entering vertex P (i) to ensure the feasibility of route {0}, P (1), . . . , P (|P |), {0},

where P (i) ∈ V0, i = . . . , |P |, for scenario ω ∈ Ω, i.e.:

Bω
P (i) =

[
γωP (i) −

|P |+1

min
j=i
{γωP (j)}, ζωP (i) + (Q−

|P |+1
max
j=i
{ζωP (j)})

]
. (29)

Similarly to Property 1, we can write the following:250

Property 2. If the start load windows from the end, up to vertex P (1) of a route P is non-

empty for all scenarios, then the route is feasible.

In Figure 2, one can see an example of the computation of γ and ζ along a route. For this

example we can compute the start load window of the route as described in (29), namely: B =

15

([xx, xx], [xx, xx], [xx, xx], [xx, xx], [0, 0]) and thus the route is feasible for the corresponding255

scenario.

From Properties 1 and 2 we can derive two more properties.

Property 3. Two disjoint and feasible routes P and R can be merged in a feasible route P⊕R,

where the last customer vertex of P is followed by the first customer vertex of R if the following

condition is satisfied for each scenario ω ∈ Ω:

F ω
P (|P |) ∩Bω

R(1) 6= ∅.

Property 4. Given a feasible route P :

• Removing the first and last customer vertex from route P is always feasible.260

• Removing a customer vertex P (i) from route P , where 1 < i < |P |, is feasible if F ω
P (i−1)∩

Bω
P (i+1) 6= ∅ for all scenarios ω ∈ Ω.

• Let R denote a route consisting of the single customer i. The insertion of vertex i in route

P after the vertex P (p) is feasible if the two following conditions are satisfied for every

scenario ω ∈ Ω: (1) i can be feasibly inserted after the first part of the route P , i.e., F ω
P (p)∩265

Bω
R(1) 6= ∅; and (2) the novel first part of the route (path {0}, P (1), P (2), ..., P (p), {i}) can

be feasibly merged with the second part of the route P , i.e., F ω
i (P) ∩Bω

P (p+1) 6= ∅.

5.2. Valid inequalities

Let us consider a route P = (0, i, j, 0) composed of two vertices. Because of Property 1, if

F ω
j is an empty interval for at least one scenario ω ∈ Ω, then such route is infeasible. Thus,270

if Property 1 is not satisfied for a given pair of vertices i, j ∈ V0, then xij can be removed

from the model or one can simply set xij = 0. The preprocessing procedure that performs such

verification for each pair of vertices i, j ∈ V0 is denoted as RemoveArcs.

By using a similar rationale, we now introduce two valid inequalities. Given a pair of vertices

i, j ∈ V0, i 6= j, let N+(i, j) (resp., N−(i, j)) contain those vertices h ∈ V0, h 6= i, j, associated

16

with route (0, i, j, h, 0) (resp., (0, h, i, j, 0)), that are infeasible for at least one scenario because

of Property 1 (resp., Property 2). The following inequalities hold.

xij +
∑

h∈N+(i,j)

xjh ≤ 1 i, j ∈ V0, (30)

∑
h∈N−(i,j)

xhi + xij ≤ 1 i, j ∈ V0. (31)

In (30) we state that, if a route (0, i, j, h, 0) is infeasible by following Property 1, we must impose

that at most one arc is selected between (i, j) and (j, h) in the optimal solution. Moreover,275

we can strengthen the inequality by including all the arcs (j, h) that imply infeasible routes

because of constraints (3), which set to one the maximum cardinality of arcs exiting a node. A

similar rationale is used in (31), where if a route (0, h, i, j, 0) is infeasible for Property 2, one

must select at most one arc between (i, j) and (j, h) in the optimal solution. We thus strengthen

the inequality by including all the arcs (h, i) that imply infeasible routes due to constraints (2).280

Both inequalities (30) and (31) can be exactly separated in O(n2) by complete enumeration.

6. Exact algorithms

In this section we describe the implementations of the exact approaches proposed for the

BRPSD, namely: DEP, One-cut L-Shaped, Multi-cut L-Shaped, One-cut single stage, and Multi-

cut single stage.285

6.1. First stage, DEP, and single stage implementations

The ILP associated with the first stage “1-Stage” is solved using a branch-and-cut scheme.

The preprocessing procedure (RemoveArcs) described in Section 5.2 is applied to eliminate

unnecessary variables. Subtour elimination constraints (4) are separated in polynomial time

using the well-known procedure by Crowder and Padberg (1980), by selecting the most violated290

cut. Inequalities (30) and (31) are separated by complete enumeration adding the most violated

one at a time, and are applied only in the L-Shaped method implementations where they allow

to improve the average gap between the best upper and lower bound by 1%, on the tested

instances.

An initial primal bound, obtained using the heuristics presented in Section 7, is provided295

to the algorithm and the strong branching strategy is adopted.

17

The DEP implementation solves the entire formulation (1)–(12) using the same branch-and-

cut scheme employed for the first stage implementation.

The One-cut and Multi-cut single stage branch-and-cut apply a similar scheme to formula-

tion “1-Stage”: RemoveArcs preprossesing, the same primal bound, strong branching strategy,300

and the same separation procedure for the subtour elimination constraints.

6.2. L-Shaped method implementations

We define as One-cut L-Shaped the algorithm that solves the Two-stage Formulation “Two-

stage” described in Section 4.2, with the L-Shaped method. This method solves the first stage

model “1-Stage” to optimality. The first stage, in turn, provides an integer solution that is305

plugged into the second stage models “2-Stage”, one for each scenario. If for at least one

scenario the corresponding second stage model is infeasible, the algorithm aborts the resolution

of the remaining ones and inserts the derived feasibility cut (17) to the first stage model that

is solved again and so on. In case all second stage models are feasible the algorithm computes

and inserts the derived optimality cut (18) to the first stage model and reiterates. When no310

feasibility cut is produced and the optimality cut does not violate the current solution, the

optimal solution is obtained.

The Multi-cut L-Shaped algorithm that solves the formulation “Multi-cut” of Section 4.3

is similar to the L-Shaped described above; however, when optimality cuts are needed, one

optimality cut (22) derived from each one of the second stage models, and thus for each scenario,315

is inserted in the first stage model that is solved again and the procedure reiterates. When no

feasibility cut is produced and the optimality cuts do not violate the current solution we obtain

the optimal solution.

7. Heuristic algorithms based on correlations

One-commodity pickup and delivery problems, such as the one considered in this paper,320

make use of the positive requests of some vertices to meet the negative requests of other vertices.

If requests are stochastic, solution methods can take advantage of the existing negative and

positive correlations between vertices’ requests. For example, while the requests of a set of

vertices are usually negative for a relevant number of scenarios, they can be typically positive

18

for another set. Therefore, the correlation between the request of a vertex of the first set and325

the request of a vertex of the second one will be negative. It is thus reasonable to look for the

arcs connecting vertices with negatively correlated requests because coupling them may help

to keep the load of the vehicle far from its extremes, i.e., 0 and Q, and hence more vertices

can be served with the same vehicle. Of course, travel costs contribute substantially to the

objective function, and it is also reasonable to look for the cheapest arcs. To our knowledge,330

the proposed use of correlations among requests is novel in vehicle routing. In the following, for

sake of simplicity, we write “correlation between two vertices”, or two routes, when referring

to the correlation among their stochastic demands.

7.1. Constructive procedures

The two algorithms proposed in this section are based on the well-known nearest neighbor335

and savings constructive heuristics (see, e.g., Toth and Vigo (2014)), and they both consider

travel costs as well as correlations in the evaluation function.

7.1.1. Nearest neighbor with correlations

We first propose a constructive procedure, called Nearest neighbor with correlations, that

takes into account not only the travel cost, but also the correlations while evaluating the feasible

insertion of an unrouted vertex at the end of a possible partial route, where the correlation

is expressed as the Pearson-Bravais coefficient (see, e.g., Pearson (1920)). Given two vertices

i, j ∈ V0, i 6= j, their correlation is computed as the ratio between the covariance σij and the

product of the standard deviations of the two vertices, σi and σj, namely:

ρij =
σij
σiσj

=

∑
ω∈Ω p

ω(qωi − qi)(qωj − qj)√∑
ω∈Ω p

ω(qωi − qi)2
√∑

ω∈Ω p
ω(qωj − qj)2

,

where qi =
∑

ω∈Ω p
ωqωi , i ∈ V0 and −1 ≤ ρij ≤ 1. If ρij = −1, then there is a perfect negative

correlation between i and j, while they are perfectly positively correlated if ρij = 1. If two340

vertices i and j are negatively correlated, then there is a good chance that in many scenarios

an increase in the request of one vertex can correspond to a decrease in the request of the

other vertex, and if not too expensive, the arc (i, j) is likely to be in a high quality solution.

Otherwise, positive correlations suggest that two vertices have similar behaviors among the

scenarios, and hence they are not likely to be adjacent in a high quality solution.345

19

When building an initial solution with our nearest neighbor heuristic, we consider the cor-

relation between the current route R and the vertex j, which is computed as follows:

ρRj =
σRj

σRσj
=

∑
ω∈Ω p

ω
(∑

i∈R q
ω
i − qR

)
(qωj − qj)√∑

ω∈Ω p
ω
(∑

i∈R q
ω
i − qR

)2
√∑

ω∈Ω p
ω(qωj − qj)2

, (32)

where qR =
∑

ω∈Ω p
ω
∑

i∈R q
ω
i . Also, in this case, we have −1 ≤ ρRj ≤ 1, where -1 corresponds

to perfect negative correlation and 1 to perfect positive correlation.

When evaluating the insertion of vertex j after the last vertex i of the current route R we

use the following function:

EC(R, j) = α

(
cij

max(h,k)∈A chk

)
+ (1− α)ρRj, (33)

where α is a rational number between 0 and 1. The evaluating function is a weighted sum of

the normalized travel cost and of the correlation of the insertion as computed in (32). When

the insertion of every vertex at the end of the current route is more expensive than creating a350

new route or when no more vertex can be feasibly inserted, then a new route is created. The

insertion procedure terminates when all the vertices are assigned to a route.

7.1.2. Savings with correlations

In Savings with correlations, we iteratively consider the merging of two routes, if feasible,

for all scenarios. In addition, we also take into account the correlation between the two routes,

say R and P , that we are considering for merging, which is computed as follows:

ρRP =
σRP

σRσP
=

∑
ω∈Ω p

ω
(∑

i∈R q
ω
i − qR

) (∑
j∈P q

ω
j − qP

)
√∑

ω∈Ω p
ω
(∑

i∈R q
ω
i − qR

)2

√∑
ω∈Ω p

ω
(∑

j∈P q
ω
j − qP

)2
,

where qX =
∑

ω∈Ω p
ω
∑

i∈X q
ω
i for route X. Thus the evaluating function used when merging

two routes results in:

ES(R,P) = αχ+ (1− α)ρRP , (34)

with:

χ =
cR(|R|−1),P (1) − cR(|R|−1),0 − c0,P (1)

max(h,k)∈A chk · 2
,

20

where α ∈ R is a number between 0 and 1, R(|R| − 1) is the last vertex of route R before the

depot, and P (1) is the first vertex of route P after the depot. In (34) we consider a convex355

combination of the normalized savings of merging the two routes R and P in this direction and

their correlation.

It is worth emphasizing that the initial solution generated by both constructive procedures

does not necessarily respect the limit on the maximum number of vehicles even if the algorithms

try to minimize the number of routes.360

7.2. Local search procedure

The initial solutions are possibly improved by means of a local search procedure based on

Variable Neighborhood Descent (VND) (Hansen and Mladenović (2001)). Given a predefined

neighborhood ordering, the traditional VND works as follows. Initially, it examines the first

neighborhood in an exhaustive fashion so as to find the best neighbor. If no improvements were365

found, then the procedure exhaustively examines the second neighborhood and so on until all

neighborhoods are searched without improvements. In case of improvement, then VND restarts

the search from the first neighborhood. The following neighborhood structures, whose size are

all of the order of O(n2), were adopted:

• Relocate: a vertex is moved from its current position to another one, either in the same370

route or in a different one. The feasibility of the move is quickly checked in O(1) time for

each scenario by means of Properties 3 and 4.

• κ-Shift: at most κ consecutive vertices are removed from a route P , and then reinserted in

another position, either in the same route P or in a different one, say R. The feasibility of

the removal of vertices from P is checked by evaluating the merging of the two remaining375

partial routes of P by using Properties 3 and 4. The feasibility of inserting κ consecutive

vertices in another route R is checked in O(κ) operations for each scenario, thus yielding

an overall complexity of O(κ|Ω|). This is done by evaluating the κ forward and backward

load windows of the removed vertices as if they were a single route and by trying to merge

it with the first partial route of R via Property 3. If this is feasible then we update the380

forward load window of the κ vertices and we check the merging of the new partial route

with the second partial route of R by using the same Property 3. The complexity of

21

the feasibility check of reinserting κ consecutive vertices in route P is slightly different

than the previous case. Let β be the number of vertices whose position were modified

after the reinsertion in P . Hence, the number of operations required to check feasibility385

is O((κ+ β)|Ω|).

• Swap: two vertices are interchanged. This procedures accounts for both inter and intra-

route swaps. The feasibility of a swap move is checked in O(1) time via Property 3.

Note that number of routes in the solution is possibly decreased by the Relocate and κ-Shift

operators.390

We have actually implemented a modified version of the traditional VND which is described

as follows. At first, the Relocate procedure is applied, and when no improvement is obtained

the κ-Shift is applied. For the latter, κ is initially set as |V | − 2 and every time the operator

fails to find an improved solution, κ is decreased until it reaches value 2. When 2-Shift does not

yield an improvement, the procedure calls once again Relocate and κ-Shift. If no improvement395

at all is obtained after applying Relocate and κ-Shift operators, then Swap is applied. When

Swap fails to find an improved solution, the sequence of local searches is repeated until no

improvement at all is obtained. We refer to the described implementation as to NearestVND

and SavingsVND in case we make use of the Nearest neighborhood with Correlation or Savings

with Correlations algorithms, respectively, to build the initial solution.400

We recall that the objective function of the BRPSD is composed of the travel cost function

and the penalty function (also called recourse function, when considering the two stage model).

However, in order to speed up the runtime performance while evaluating a move, the algorithm

only considers the first function. This is justified by the fact that the penalty cost is not the

most relevant in our instances. Nonetheless, when the local search procedure terminates, the405

algorithm provides the solution obtained to the second stage submodels (see, e.g., Section 4)

in order to obtain a set of objective functions, one for each scenario. By summing up all these

objective functions multiplied by its probability one can obtain the second component of the

objective function of the current solution. This is done only once because it is computationally

expensive.410

Finally, to speed up our local search procedure, we made use of the so-called Don’t look bits

22

strategy (see, e.g., Hoos and Stützle (2004)), that keeps track of possible infeasible moves in a

neighborhood and avoids to evaluate those moves more than once. For example, when applying

the Relocate operator by moving a node in a route and this is infeasible, the algorithm stores

that information as a 0-1 value; the value is reset only when the route is modified by other415

operators.

8. Computational experiments

This section presents the computational experiments for the different methodologies deve-

loped to solve the BRPSD. The algorithms were run on an Intel Core i3-2100 CPU, with 3.10

GHz and 8.00 GB of RAM, running Windows 7 operating system. CPLEX 12.6 was used as420

MILP solver and only a single thread was utilized during the testing, which were performed on

newly proposed instances derived from real-world data.

8.1. Benchmark instances

We first considered the usage data from a 7-month period concerning the bike sharing system

of the city of Reggio Emilia, in Northern Italy. These data were made available by the operator425

of the system. In addition, we collected data from Capital Bikeshare1, the bike sharing system

located in Washington and Arlington, USA, and also from Divvy2, located in Chicago, USA.

Their websites provide the complete data on the usage of the systems throughout the years.

We selected data from the third quarter of 2014, for Capital Bikeshare, and from 30 days in

the same period for Divvy. In our instances, each day represents a scenario. We collected the430

geographic coordinates and the capacity of each station and used historical data to determine

the requests of each scenario. It is worth mentioning that some adaptations were necessary

because the rebalancing was already applied to the systems and some requests appeared to be

very large with respect to the station capacity. In this case, because we had no information

on the rebalancing criterion and on the desired level of occupation, we set the request to the435

maximum capacity of the station. Capital Bikeshare and Divvy are very large bike sharing

systems, and at the time of the data collection they had 346 and 296 stations, respectively.

1https://www.capitalbikeshare.com
2https://www.divvybikes.com

23

We derived several instances ranging from 20 to 100 vertices by randomly selecting subsets of

stations from the complete sets. For each instance, a station was randomly chosen to be the

depot.440

Benchmark instances are available at www.or.unimore.it/site/home/online-resources.

html.

8.2. Results for the heuristic algorithms based on correlations

In order to provide good upper bounds for our exact methods we first studied a set of

variations of the two proposed heuristics. To perform this evaluation we report the results445

obtained by Nearest Neighbor with Correlations and Savings with Correlations and those found

by alternative implementations involving several combinations of the developed constructive

and local search procedures.

Figure 3 shows the average percentage gap between the best lower bound LB (among those

provided by the exact algorithms) and the upper bound ObjH obtained by the corresponding450

heuristic, which is computed as follows: %gap = 100 × (ObjH − LB)/ObjH . The experiments

were conducted for different values of the parameter α (see (34)) ranging from 0 to 1 with a step

of 0.1, and for each configuration, namely: Nearest Neighbor with Correlations without local

search (Nearest), Nearest+Relocate, Nearest+κ-Shift, Nearest+Swap, Nearest with Traditional

VND (NearestTradVND), NearestVND, and the same configurations with Nearest Neighbor455

substituted by Savings.

From Figure 3, one can notice that Nearest does not seem to take advantage of the use of

correlations. Indeed, the best average gap is the one provided by α = 1, where the correlations

are not considered. However, the use of correlations starts showing its importance when the

local search procedures are used, this is due to the diversification that the use of correlations460

provides to the initial solution. This becomes more evident if one focuses on the results of

NearestTradVND and NearestVND, where the average gap obtained when only the correlations

were considered (α = 0) is the best one. The configuration that yielded the best average gap

(17.43%) was NearestVND for α = 0.

For what concerns the algorithms based on Savings with Correlations, the results are similar465

to those achieved by Nearest Neighbor with Correlations, as shown in Figure 3, and the best

average gaps are provided by the SavingsVND configurations, where the lowest value of 16.37%

24

www.or.unimore.it/site/home/online-resources.html
www.or.unimore.it/site/home/online-resources.html
www.or.unimore.it/site/home/online-resources.html

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

70

α

%
ga

p
Nearest Neighbor with Correlations

Nearest
Nearest+Relocate
Nearest+κ-shift
Nearest+Swap

NearestTradVND
NearestVND

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

70

α

%
ga

p

Savings with Correlations

Savings
Savings+Relocate
Savings+κ-shift
Savings+Swap

SavingsTradVND
SavingsVND

Figure 3: A comparison among different configurations of heuristics with the use of correlations and different

values of parameters α.

was attained for α = 0.1. Therefore, we can verify that the adopted VND improves upon the

traditional one.

The average CPU times of the different configurations are very similar and relatively small:470

the largest one is 4.41 seconds plus about 1 second for the computation of the penalties. Due

to the fast CPU times we decided to use a composed algorithm denoted as InitialUB running

all 22 configurations of NearestVND and SavingsVND, each one with the 11 studied values of

α = 0, 0.1, . . . , 0.9, 1. Table 1 gives the value InitialUB as well as the best lower bounds,

BestLB, obtained by the exact algorithms (see Section 8.3) along with the percentage gaps475

computed as %gap = 100× (InitialUB −BestLB)/InitialUB, and the CPU time in seconds.

Two optimal solutions were found and the gap obtained on two other instances was < 0.01%.

The average gap was 11.92%. The CPU time is negligible for small/medium instances and more

than 50 seconds only for the largest instance.

8.3. Results for the Exact Algorithms480

Table 2 presents the results found by DEP, whereas Table 3 shows those obtained by One-

cut L-Shaped and Multi-cut L-Shaped, and Table 4 illustrates the results achieved by One-cut

single stage and Multi-cut single stage. For all exact methods we report, in addition to the

name of the instance, the best upper bound (UB) and lower bound (LB), the percentage gap

25

Table 1: Best upper bounds obtained by the heuristic algorithms and a comparison with the best known lower

bounds.

Instance InitialUB BestLB %gap time

Reggio Emilia 16900.00 16900.00 0.00 0.52

Washington (20)1 81195.57 81192.12 < 0.01 0.52

Washington (20)2 79008.23 78798.08 0.27 0.55

Chicago (20)1 41066.77 40303.87 1.86 0.19

Chicago (20)2 41870.00 37592.00 10.22 0.20

Washington (30)1 101980.42 101976.19 < 0.01 1.26

Washington (30)2 118374.40 117158.73 1.03 1.25

Chicago (30)1 52401.33 45964.00 12.28 0.52

Chicago (30)2 61468.07 61468.07 0.00 0.52

Washington (40)1 116498.62 99598.41 13.95 2.92

Washington (40)2 229111.18 127425.66 45.45 2.76

Chicago (40)1 66029.80 65140.93 1.35 1.26

Chicago (40)2 86091.47 81766.27 5.02 1.29

Washington (50)1 217415.41 130793.99 39.14 5.83

Washington (50)2 136282.02 121644.00 10.74 6.03

Chicago (50) 92773.60 90900.90 2.02 2.77

Washington (66) 131319.46 130625.10 0.53 15.80

Chicago (66) 129969.93 109997.00 15.37 8.43

Washington (80)1 139314.97 137697.91 1.16 31.27

Washington (80)2 181727.64 115461.54 36.46 29.36

Washington (90) 231105.37 168756.48 26.98 47.83

Washington (100) 184979.80 158097.00 14.53 75.00

Average 11.92 10.73

St. Dev. 14.01 19.08

Maximum 45.45 75.00

#opt 2

26

(%gap = 100 · (UB − LB)/UB), the CPU time in seconds (knowing that a time limit of one485

hour was imposed to the algorithms), and the number of used vehicles (#v) in the best solution.

Optimal solutions are highlighted in bold. At the end of the tables we also report the overall

average, standard deviation, and maximum percentage gap and time among all instances for

which a solution has been found, and the number of optima obtained.

A first analysis of the tables shows that the performance of DEP is clearly inferior than the490

other methods. In particular, for the four largest instances (Washington (80)1, Washington

(80)2, Washington (90), and Washington (100)) the 8 GB of memory or our computer were not

enough to run the method. The average gap and running times, computed with the remaining

instances, definitely show that DEP is not competitive with respect to the other methods.

By observing the results reported in Tables 3 and 4, we notice that the multi-cut-based495

implementations yielded better results than their respective one-cut counterpart. Although

Multi-cut single stage obtained inferior gap when compared to Multi-cut L-Shaped (average

10.68% against 10.83%, maximum 45.56% against 59.37%), the latter was not dominated by

the first, as it was capable of finding better lower bounds in some particular instances, and

presents a smaller average CPU time (1847.89 against 2068.21). On the other hand, both500

methods managed to achieve 11 optimal solutions.

We conclude that multi-cut implementations are the best configurations. In particular,

Multi-cut L-Shaped should be chosen when quicker convergence is required. If one can wait

more CPU time then the Multi-cut single stage should be preferred, as it also shows a smaller

average standard deviation. A more detailed conclusion on the choice of the two algorithms505

can be drawn from from the discussion on the values of δ and ε that follows.

Concerning the number of vehicles used, we observe that, when it was possible to find the

optimal solution, it varied between 1 and 3. Indeed, the use of more than one vehicle can make

the penalty cost decrease. For the remaining instances the vehicles used in the best solution

found are no more than seven and usually between 1 and 3.510

8.4. Discussion on the value of δ

We adopted a value of δ = 0.2 when conducting the experiments reported in the previous

sections, which can be considered a reasonable quantity because of the large number of sto-

chastic scenarios considered. We recall that the value of δ limits the possible slack and surplus

27

Table 2: Results obtained by DEP.

DEP

Instance UB LB %gap time #v

Reggio Emilia 16900.00 16900.00 0.00 6.27 1

Washington (20)1 81192.12 81192.12 0.00 225.1 1

Washington (20)2 79008.23 76592.57 3.06 3600 1

Chicago (20)1 40303.87 40303.87 0.00 742.011 3

Chicago (20)2 41870.00 36025.97 13.96 3600.00 2

Washington (30)1 101976.19 101976.19 0.00 474.48 1

Washington (30)2 117158.73 117158.73 0.00 499.27 1

Chicago (30)1 51128.00 44731.22 12.51 3600.00 1

Chicago (30)2 61468.07 61468.07 0.00 419.422 1

Washington (40)1 116498.62 100249.89 13.95 3600.00 1

Washington (40)2 229111.18 124971.79 45.45 3600.00 3

Chicago (40)1 65742.87 62712.61 4.61 3600.00 1

Chicago (40)2 86091.47 77283.10 10.23 3600.00 2

Washington (50)1 217415.41 95940.94 55.87 3600.00 2

Washington (50)2 136282.02 117425.96 13.84 3600.00 1

Chicago (50) 92773.60 90231.79 2.74 3600.00 2

Washington (66) 131319.46 104086.97 20.74 3600.00 1

Chicago (66) 129969.93 108273.84 16.69 3600.00 3

Washington (80)1 137697.91 out of mem. − − 1

Washington (80)2 181727.64 out of mem. − − 7

Washington (90) 231105.37 out of mem. − − 5

Washington (100) 184979.8 out of mem. − − 1

Average 11.87 2531.48

St. Dev. 15.79 1560.94

Maximum 55.87 3600.00

#opt 6

28

Table 3: Results obtained by the L-Shaped algorithms.

One-cut L-Shaped Multi-cut L-Shaped

Instance UB LB %gap time #v UB LB %gap time #v

Reggio Emilia 16900.00 16900.00 0.00 1.07 1 16900.00 16900.00 0.00 0.09 1

Washington (20)1 81192.12 81192.12 0.00 4.89 1 81192.12 81192.12 0.00 2.33 1

Washington (20)2 78824.69 78757.08 0.09 3600.00 1 78824.69 78798.08 0.03 3600.00 1

Chicago (20)1 40303.87 40303.87 0.00 106.92 3 40303.87 40303.87 0.00 54.37 3

Chicago (20)2 39456.33 36750.00 6.86 3600.00 1 39456.33 37592.00 4.73 3600.00 1

Washington (30)1 101976.19 101976.19 0.00 10.32 1 101976.79 101976.19 0.00 7.49 1

Washington (30)2 117158.73 117158.73 0.00 3.03 1 117158.73 117158.73 0.00 2.72 1

Chicago (30)1 52401.33 45964.00 12.28 3600.00 1 52401.33 45957.00 12.30 3600.00 1

Chicago (30)2 61468.07 61468.07 0.00 17.03 1 61468.07 61468.07 0.00 6.30 1

Washington (40)1 116498.62 97191.00 16.57 3600.00 1 116498.62 97177.00 16.59 3600.00 1

Washington (40)2 229111.18 93091.00 59.37 3600.00 3 229111.18 93086.00 59.37 3600.00 3

Chicago (40)1 65140.93 65140.93 0.00 372.49 1 65140.93 65140.93 0.00 130.39 1

Chicago (40)2 81766.27 80845.00 1.13 3600.00 2 81766.27 81766.20 0.00 639.56 2

Washington (50)1 217415.41 128035.00 41.11 3600.00 2 217415.41 128035.00 41.11 3600.00 2

Washington (50)2 136282.02 121644.00 10.74 3600.00 1 136282.02 121644.00 10.74 3600.00 1

Chicago (50) 90900.90 90900.90 0.00 97.44 2 90900.90 90900.90 0.00 82.54 2

Washington (66) 130625.10 130625.10 0.00 42.56 1 130625.10 130625.10 0.00 49.15 1

Chicago (66) 129969.93 109980.00 15.38 3600.00 3 129969.93 109997.00 15.37 3600.00 3

Washington (80)1 137697.91 137697.91 0.00 90.547 1 137697.91 137697.91 0.00 78.627 1

Washington (80)2 181727.64 115388.47 36.50 3600.00 7 181727.64 115461.54 36.46 3600.00 7

Washington (90) 231105.37 168733.30 26.99 3600.00 5 231105.37 168756.48 26.98 3600.00 5

Washington (100) 184979.80 158097.00 14.53 3600.00 1 184979.80 158097.00 14.53 3600.00 1

Average 10.98 1997.56 10.83 1847.89

St. Dev. 16.42 1798.21 16.48 1797.90

Maximum 59.37 3600.00 59.37 3600.00

#opt 10 11

29

Table 4: Results by the single stage branch-and-cut algorithms.

One-cut single stage Multi-cut single stage

Instance UB LB %gap time #v UB LB %gap time #v

Reggio Emilia 16900.00 16900.00 0.00 4.59 1 16900.00 16900.00 0.00 2.72 1

Washington (20)1 81192.12 81192.12 0.00 20.70 1 81192.12 81192.12 0.00 8.36 1

Washington (20)2 79001.85 78263.53 0.93 3600.00 1 79008.23 78334.55 0.85 3600.00 1

Chicago (20)1 40303.87 40303.87 0.00 345.45 3 40303.87 40303.87 0.00 54.50 3

Chicago (20)2 40847.00 35329.22 13.51 3600.00 1 39992.67 36609.19 8.46 3600.00 1

Washington (30)1 101976.19 101976.19 0.00 27.59 2 101976.19 101976.19 0.00 21.20 1

Washington (30)2 117158.73 117158.73 0.00 10.72 1 117158.73 117158.73 0.00 14.71 1

Chicago (30)1 52401.33 45027.16 14.07 3600.00 1 52401.33 45530.14 13.11 3600.00 2

Chicago (30)2 61468.07 61468.07 0.00 35.50 1 61468.07 61468.07 0.00 10.80 1

Washington (40)1 116498.62 98559.32 15.40 3600.00 1 116498.62 99416.90 14.66 3600.00 1

Washington (40)2 229111.18 123782.94 45.97 3600.00 3 229111.18 124739.04 45.56 3600.00 3

Chicago (40)1 66029.80 63522.96 3.80 3600.00 1 65140.93 65140.93 0.00 1548.06 1

Chicago (40)2 86091.47 76597.63 11.03 3600.00 2 81766.27 81766.27 0.00 2497.99 2

Washington (50)1 217415.41 132236.23 39.18 3600.00 2 217415.41 132314.92 39.14 3600.00 2

Washington (50)2 136282.02 118213.30 13.26 3600.00 1 136282.02 118441.00 13.09 3600.00 1

Chicago (50) 90900.90 90900.90 0.00 451.13 2 90900.90 90900.90 0.00 406.86 2

Washington (66) 130625.10 130625.10 0.00 489.61 1 130625.10 130625.10 0.00 380.32 1

Chicago (66) 129969.93 105026.02 19.19 3600.00 3 129969.93 105523.92 18.81 3600.00 3

Washington (80)1 137697.91 137697.91 0.00 906.441 1 137697.91 137697.91 0.00 955.157 1

Washington (80)2 181727.64 111570.63 38.61 3600.00 7 181727.64 114522.66 36.98 3600.00 7

Washington (90) 231105.37 166110.61 28.12 3600.00 5 231105.37 166563.46 27.93 3600.00 5

Washington (100) 184979.80 154872.19 16.28 3600.00 1 184979.8022 154839.4319 16.29 3600.00 1

Average 11.79 2231.44 10.68 2068.21

St. Dev. 14.53 1694.83 14.63 1666.44

Maximum 45.97 3600.00 45.56 3600.00

#opt 9 11

30

quantities on requests with respect to the station capacity. In practice, this means that the515

requests can be violated for each station by up to an amount of 20% of its size for each scenario.

Nevertheless, we decided to perform further experiments for different values of δ. For example,

for δ = 0, where no slack neither surplus are allowed with respect to requests, and hence the

routing solution must be feasible for all scenarios, the value of the objective function increases

dramatically. In fact, the average percentage gap between the best lower bound achieved for520

δ = 0 and the best upper bound attained for δ = 0.2 is around 35%. On the other hand, a larger

value such as δ = 0.4, which may be considered relatively soft, appears to be more realistic

from the bike sharing provider point of view, and thus more likely to be adopted. Moreover,

δ = 1 will let the surplus and slack values limited only by the stations and vehicle capacity, but

leave the level of occupation far from the desired one in several stations of the network. All525

this motivated us to study the behaviour of the two best performing algorithms whit different

values of δ, in particular with δ = 0, . . . , 1 with steps of 0.2. The results are reported in Table

5. The table reports, for each value of δ and for the two algorithms, the average percentage

gap between the upper and lower bounds (%gap = 100 × (UB − LB)/UB), the average CPU

time in seconds (both values computed on all instances), and the number of instances solved530

to optimality within the time limit of 1 hour. One can see that the average gap is very large

for δ = 0. This depends on the fact that we need to respond exactly to each request of every

scenario, which can be seen as the worst case scenario: making the problem harder to be sol-

ved. This is also linked to the average number of vehicles needed for the instances solved to

optimality that, in this case, is 6. For δ ≥ 0.4 the number of vehicles used is 1 for all instances.535

This confirms that parameter δ is an important element for the flexibility of the routes and

that can be a very important factor that drives the changes of costs and solutions.

From Table 5, it can be seen that for the Multi-cut L-Shaped the instances become visibly

easier when increasing the value of δ, while for the Multi-cut single stage this trend is less linear.

Multi-cut L-Shaped solves 20 instances for δ = 0.6, 0.8, 1 with shorter CPU times and smaller540

average gaps, thus it appears to be a better option for less constrained problems: it is faster

and obtains better solutions. On the other hand, Multi-cut single stage appears to be more

efficient for harder and more constrained problems, as, e.g., those with δ = 0 or δ = 0.2.

Figure 4 considers the 10 instances that could be solved to optimality for all values of

31

Table 5: Comparison of multi-cut algorithms when δ varies.

Multi-cut single stage Multi-cut L-Shaped

δ avg %gap avg time #opt avg %gap avg time #opt

0 34.06 3315.99 2 47.32 3287.54 2

0.2 10.68 2068.21 11 10.83 1847.89 11

0.4 0.85 1138.86 16 0.75 872.16 17

0.6 0.12 704.09 20 0.03 476.00 20

0.8 0.11 720.43 19 0.03 473.33 20

1 0.16 710.57 19 0.03 461.31 20

δ > 0. For each value we report the unsatisfied request averaged on all scenarios (for δ = 0 we545

know that the number of unsatisfied requests is zero). The results depend on the instance, for

Washington (20)1, Washington (30)1, and Washington (66) the values are small and do not

vary particularly, while for Chicago (20)1, Chicago (40)1, Chicago (40)2, and Chicago (50) the

variation is larger and it shows that choosing δ = 0.2 is a good compromise for a low level of

average unmet demand. Moreover, one can see that with our method a good solution implies a550

relatively small number of unmet requests, even if supporting a certain flexibility in the route

design.

8.5. Discussion on the value of penalty on request violations

Our stochastic programming problem can be considered a two-criteria problem where the

first criterion is the routing cost, while the second is the penalty cost ε · cmin associated to each555

unsatisfied request unit (bike). In this section, we report a set of results obtained by varying

the value of ε between 0 and 1, with a step of 0.2 (recall we set ε = 0.2 in all other tests).

Value ε = 0 means that no penalty is associated to unsatisfied requests, while ε = 1 imposes

each unsatisfied request unit to be penalized by the minimum cost of all arcs. We believe that

increasing its value (ε > 1) would not produce interesting results for our problem, given that560

an unmet request is considered less important than the traveling costs. The value of δ is fixed

to 0.2 as in the original experiments.

Table 6 reports the average percentage gap (%gap = 100 · (UB − LB)/UB), and CPU

32

R
eg

gi
o

E
m

il
ia

W
as

h
in

gt
on

(2
0)

1
C

h
ic

ag
o

(2
0)

1
W

as
h
in

gt
on

(3
0)

1
W

as
h
in

gt
on

(3
0)

2
C

h
ic

ag
o

(3
0)

2

C
h
ic

ag
o

(4
0)

1

C
h
ic

ag
o

(4
0)

2

C
h
ic

ag
o

(5
0)

W
as

h
in

gt
on

(6
6)

0

20

40

60

0 0 0 0 0 0 0 0 0 00
5.26

33.97

4.01

26.98
21.1

39.9
43.37

55.27

7.74

A
ve

ra
ge

u
n
sa

ti
sfi

ed
re

q
u
es

ts δ = 0.0
δ = 0.2
δ = 0.4
δ = 0.6
δ = 0.8
δ = 1.0

Figure 4: Average unsatisfied requests for different values of δ.

time over all instances, and the number of instances solved to optimality, when ε increases

from 0 to 1 with steps of 0.2 units. We observe that the instances are harder to solve when565

ε increases. Multi-cut single stage shows better average gaps, but Multi-cut L-Shaped is faster

and solves to optimality four more instances. This supports, once more, our conclusion on the

non domination of one algorithm over the other, and it suggests that Multi-cut single stage

should be considered when solving more constrained instances such as those with higher ε.

To better understand the impact of the penalty, we considered the instances that could be570

solved to optimality for all the ε values and, in Figure 5, we draw a comparison of the average

unsatisfied requests for each instance, when ε changes. The results strongly depend on the

instance: for Reggio Emilia no unmet demand was found, while for Washington the solutions

do not change or change slightly. For Chicago (20)1 the average unmet request decreases

rapidly. By observing this plot, one can state that the chosen value of ε = 0.2 is reasonable:575

for most of the instances the average unmet request does not change or changes slightly after

ε = 0.2, and for others the value of average unmet request is acceptable for ε = 0.2. On

the other hand, this value makes the problem not to hard to solve and let the algorithm to

find similar solution is a faster way. The proposed methods show solutions with a relatively

33

Table 6: Comparison of multi-cut algorithms when ε varies.

Multi-cut single stage Multi-cut L-Shaped

ε avg %gap avg time #opt avg %gap avg time #opt

0.0 9.92 1858.34 12 10.15 1690.13 13

0.2 10.68 2068.21 11 10.83 1847.89 11

0.4 11.07 2181.92 10 11.59 2003.34 10

0.6 11.52 2268.88 9 12.13 2063.22 10

0.8 11.55 2358.07 8 12.76 2220.84 10

1.0 11.71 2360.12 8 13.19 2303.50 8

small average unmet request; however, this can be decreased by increasing the value of ε at the580

expense of a less efficient algorithm.

R
eg

gi
o

E
m

il
ia

W
as

h
in

gt
on

(2
0)

1

C
h
ic

ag
o

(2
0)

1

W
as

h
in

gt
on

(3
0)

1

W
as

h
in

gt
on

(3
0)

2

C
h
ic

ag
o

(3
0)

2

W
as

h
in

gt
on

(6
6)

W
as

h
in

gt
on

(8
0)

1

0

5

10

15

20

0

5.43

18.07

3.97

16.42

21.93

7.76

10.9

0

5.26

11.2

3.97

16.42
14.3

7.74

10.9

A
ve

ra
ge

u
n
sa

ti
sfi

ed
re

q
u
es

ts ε = 0.0
ε = 0.2
ε = 0.4
ε = 0.6
ε = 0.8
ε = 1.0

Figure 5: Average unsatisfied requests for different values of penalty ε.

9. Concluding Remarks

This paper introduced the Bike sharing Rebalancing Problem with Stochastic Demands

(BRPSD), a highly challenging problem, given its complexity and potentially large number

34

of scenarios. To solve it, we proposed five exact procedures based on deterministic equivalent585

program, L-Shaped methods, and branch-and-cut. We also developed heuristic algorithms that

combine novel correlation-based constructive procedures, which take advantage of the informa-

tion on the requests of the different scenarios, with a VND local search approach. In addition,

we presented some properties for the BRPSD that enabled us to implement efficient feasibility

checking procedures while evaluating a move. The best upper bound found by the heuristic590

algorithms was provided as an initial primal bound for the exact methods. The proposed al-

gorithms were tested on newly collected realistic instances and the results that we obtained

show their effectiveness. In particular, several optimal solutions were found by the Multi-cut

L-Shaped method and also by a Multi-cut single stage branch-and-cut procedure for instances

involving up to 80 vertices. The two methods do not seem to dominate each other, but we595

suggest to use Multi-cut single stage branch-and-cut procedure for more constrained problems

and Multi-cut L-Shaped method for less constrained ones. This is linked to the amount of

unmet request that we consider acceptable. With our method we show that we can provide

solution with a relatively small amount of unmet request in acceptable CPU times. Moreover,

the correlation scheme clearly helped the heuristics to find good quality upper bounds. As600

for future work one can develop metaheuristic algorithms to improve the quality of the upper

bounds, and also tackle other pickup and delivery problems with stochastic components, for

which the literature is still very limited. The use of penalties for unmet requests as a recourse

function in stochastic vehicle routing problems is also a potential area of investigation. Finally,

more complex versions of the problem, such as the one where multiple visits to bike stations605

are allowed or multiple type of bikes are used could be investigated. Given the larger and

larger availability of data, studies using correlations in other routing applications are also an

attractive line of future research.

Acknowledgements

This research was partially supported by Conselho Nacional de Desenvolvimento Cient́ıfico e610

Tecnológico (CNPq), grants 305223/2015-1 and 428549/2016-0, by Comissão de Aperfeiçoamento

de Pessoal de Nı́vel Superior (CAPES), grant PVE A007 2013, and by Ministero dell’Istruzione,

dell’Università e della Ricerca, grant PRIN 2015.

35

References

Battarra, M., Cordeau, J.-F., Iori, M., 2014. Chapter 6: pickup-and-delivery problems for goods615

transportation. In: Vehicle Routing: Problems, Methods, and Applications, Second Edition.

SIAM, pp. 161–191.

Benchimol, M., Benchimol, P., Chappert, B., De La Taille, A., Laroche, F., Meunier, F.,

Robinet, L., 2011. Balancing the stations of a self service bike hire system. RAIRO-Operations

Research 45 (1), 37–61.620

Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., Laporte, G., 2007. Static pickup and delivery

problems: a classification scheme and survey. Top 15 (1), 1–31.

Bertsimas, D. J., Simchi-Levi, D., 1996. A new generation of vehicle routing research: robust

algorithms, addressing uncertainty. Operations Research 44 (2), 286–304.

Birge, J. R., Louveaux, F., 2011. Introduction to stochastic programming. Springer Science &625

Business Media.

Bruck, B. P., Cruz, F., Iori, M., Subramanian, A., 2017. The static bike sharing rebalancing

problem with forbidden temporary operations. Technical report.

Bulhões, T., Subramanian, A., Erdoğan, G., Laporte, G., 2018. The static bike relocation

problem with multiple vehicles and visits. European Journal of Operational Research 264 (2),630

508–523.

Chemla, D., Meunier, F., Calvo, R. W., 2013. Bike sharing systems: Solving the static reba-

lancing problem. Discrete Optimization 10 (2), 120–146.

Contardo, C., Morency, C., Rousseau, L.-M., 2012. Balancing a dynamic public bike-sharing

system. Vol. 4. Cirrelt Montreal.635

Crowder, H., Padberg, M., 1980. Solving large-scale symmetric travelling salesman problems

to optimality. Management Science 26, 495–509.

Cruz, F., Subramanian, A., Bruck, B. P., Iori, M., 2017. A heuristic algorithm for a single vehicle

static bike sharing rebalancing problem. Computers & Operations Research 79, 19–33.

36

Dell’Amico, M., Hadjicostantinou, E., Iori, M., Novellani, S., 2014. The bike sharing rebalancing640

problem: Mathematical formulations and benchmark instances. Omega 45, 7–19.

Dell’Amico, M., Iori, M., Novellani, S., Stützle, T., 2016. A destroy and repair algorithm for

the bike sharing rebalancing problem. Computers & Operations Research 71, 149–162.

Di Gaspero, L., Rendl, A., Urli, T., 2013. A hybrid ACO+CP for balancing bicycle sharing

systems. In: International Workshop on Hybrid Metaheuristics. Springer, pp. 198–212.645

Erdoğan, G., Battarra, M., Wolfler Calvo, R., 2015. An exact algorithm for the static rebalan-

cing problem arising in bicycle sharing systems. European Journal of Operational Research

245 (3), 667–679.

Erdoğan, G., Laporte, G., Wolfler Calvo, R., 2014. The static bicycle relocation problem with

demand intervals. European Journal of Operational Research 238 (2), 451–457.650

Forma, I. A., Raviv, T., Tzur, M., 2015. A 3-step math heuristic for the static repositioning

problem in bike-sharing systems. Transportation Research Part B: Methodological 71, 230–

247.

Gendreau, M., Jabali, O., Rei, W., 2014. Vehicle Routing: problems methods and applications.

SIAM, Philadelphia, Ch. Stochastic Vehicle Routing Problems, pp. 213–239.655

Gendreau, M., Jabali, O., Rei, W., 2016. 50th anniversary invited articlefuture research directi-

ons in stochastic vehicle routing. Transportation Science 50 (4), 1163–1173.

Hansen, P., Mladenović, N., 2001. Variable neighborhood search: Principles and applications.

European Journal of Operational Research 130 (3), 449–467.

Hernández-Pérez, H., Rodŕıguez-Mart́ın, I., Salazar-González, J. J., 2009. A hybrid grasp/vnd660

heuristic for the one-commodity pickup-and-delivery traveling salesman problem. Computers

& Operations Research 36 (5), 1639–1645.

Hernández-Pérez, H., Salazar-González, J.-J., 2004. A branch-and-cut algorithm for a traveling

salesman problem with pickup and delivery. Discrete Applied Mathematics 145 (1), 126–139.

37

Hernández-Pérez, H., Salazar-González, J.-J., 2007. The one-commodity pickup-and-delivery665

traveling salesman problem: Inequalities and algorithms. Networks 50 (4), 258–272.

Ho, S. C., Szeto, W., 2014. Solving a static repositioning problem in bike-sharing systems using

iterated tabu search. Transportation Research Part E: Logistics and Transportation Review

69, 180–198.

Ho, S. C., Szeto, W., 2017. A hybrid large neighborhood search for the static multi-vehicle670

bike-repositioning problem. Transportation Research Part B: Methodological 95, 340–363.

Hoos, H. H., Stützle, T., 2004. Stochastic local search: Foundations and applications. Elsevier.

King, A. J., Wallace, S. W., 2012. Modeling with stochastic programming. Springer Science &

Business Media.

Laporte, G., Louveaux, F., Van Hamme, L., 2002. An integer l-shaped algorithm for the ca-675

pacitated vehicle routing problem with stochastic demands. Operations Research 50 (3),

415–423.

Li, Y., Szeto, W., Long, J., Shui, C., 2016. A multiple type bike repositioning problem. Trans-

portation Research Part B: Methodological 90, 263–278.

Louveaux, F., Salazar-González, J.-J., 2009. On the one-commodity pickup-and-delivery trave-680

ling salesman problem with stochastic demands. Mathematical Programming 119 (1), 169–

194.

Louveaux, F., Salazar-González, J.-J., 2014. Solving the single vehicle routing problem with

variable capacity. Transportation Science 50 (2), 708–719.

Meddin, R., DeMaio, P., 2018. The bike-sharing world map. URL http://www. metrobike. net.685

Mladenović, N., Urošević, D., Ilić, A., et al., 2012. A general variable neighborhood search for

the one-commodity pickup-and-delivery travelling salesman problem. European Journal of

Operational Research 220 (1), 270–285.

Oyola, J., Arntzen, H., Woodruff, D. L., 2016. The stochastic vehicle routing problem, a lite-

rature review. Technical Report.690

38

Pearson, K., 1920. Notes on the history of correlation. Biometrika 13 (1), 25–45.

Rainer-Harbach, M., Papazek, P., Raidl, G. R., Hu, B., Kloimüllner, C., 2015. Pilot, grasp,

and vns approaches for the static balancing of bicycle sharing systems. Journal of Global

Optimization 63 (3), 597–629.

Raviv, T., Tzur, M., Forma, I. A., 2013. Static repositioning in a bike-sharing system: models695

and solution approaches. EURO Journal on Transportation and Logistics 2 (3), 187–229.

Regue, R., Recker, W., 2014. Proactive vehicle routing with inferred demand to solve the bikes-

haring rebalancing problem. Transportation Research Part E: Logistics and Transportation

Review 72, 192–209.

Saharidis, G. K. D., Fragkogios, A., Zygouri, E., 2014. A multi-periodic optimization modeling700

approach for the establishment of a bike sharing network: A case study of the city of athens.

In: Proceedings of the International MultiConference of Engineers and Computer Scientists.

Vol. 2.

Salazar-González, J.-J., Santos-Hernández, B., 2015. The split-demand one-commodity pickup-

and-delivery travelling salesman problem. Transportation Research Part B: Methodological705

75, 58–73.

Schuijbroek, J., Hampshire, R. C., Van Hoeve, W.-J., 2017. Inventory rebalancing and vehicle

routing in bike sharing systems. European Journal of Operational Research 257 (3), 992–1004.

Shui, C., Szeto, W., 2017. Dynamic green bike repositioning problem–a hybrid rolling horizon

artificial bee colony algorithm approach. Transportation Research Part D: Transport and710

Environment.

Stewart, W. R., Golden, B. L., 1983. Stochastic vehicle routing: A comprehensive approach.

European Journal of Operational Research 14 (4), 371–385.

Szeto, W., Liu, Y., Ho, S. C., 2016. Chemical reaction optimization for solving a static bike

repositioning problem. Transportation research part D: transport and environment 47, 104–715

135.

39

Szeto, W., Shui, C., 2018. Exact loading and unloading strategies for the static multi-vehicle

bike repositioning problem. Transportation Research Part B: Methodological 109, 176–211.

Toth, P., Vigo, D., 2014. Vehicle routing: problems, methods, and applications. SIAM.

Wang, F., Lim, A., Xu, Z., 2006. The one-commodity pickup and delivery travelling salesman720

problem on a path or a tree. Networks 48 (1), 24–35.

Wang, I.-L., Wang, C.-W., 2013. Analyzing bike repositioning strategies based on simulations

for public bike sharing systems: simulating bike repositioning strategies for bike sharing

systems. In: Advanced Applied Informatics (IIAIAAI), 2013 IIAI International Conference

on. IEEE, pp. 306–311.725

Zhang, D., Yu, C., Desai, J., Lau, H., Srivathsan, S., 2017. A time-space network flow ap-

proach to dynamic repositioning in bicycle sharing systems. Transportation research part B:

methodological 103, 188–207.

40

	Introduction
	Literature review
	Problem description
	Formulations for the BRPSD
	Deterministic equivalent program
	Two-stage formulation
	Multi-cut formulation
	Single stage branch-and-cut

	Properties and valid inequalities for the BRPSD
	Properties
	Valid inequalities

	Exact algorithms
	First stage, DEP, and single stage implementations
	L-Shaped method implementations

	Heuristic algorithms based on correlations
	Constructive procedures
	Nearest neighbor with correlations
	Savings with correlations

	Local search procedure

	Computational experiments
	Benchmark instances
	Results for the heuristic algorithms based on correlations
	Results for the Exact Algorithms
	Discussion on the value of
	Discussion on the value of penalty on request violations

	Concluding Remarks

