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Abstract: Thrombosis of small and large vessels is reported as a key player in COVID-19 severity.
However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic
Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-
large vWF and thrombotic microangiopathy, frequently triggered by infections. Carriers are reported
to be asymptomatic. Exome analysis of about 3000 SARS-CoV-2 infected subjects of different severities,
belonging to the GEN-COVID cohort, revealed the specific role of vWF cleaving enzyme ADAMTS13
(A disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13). We report here that
ultra-rare variants in a heterozygous state lead to a rare form of COVID-19 characterized by hyper-
inflammation signs, which segregates in families as an autosomal dominant disorder conditioned by
SARS-CoV-2 infection, sex, and age. This has clinical relevance due to the availability of drugs such
as Caplacizumab, which inhibits vWF–platelet interaction, and Crizanlizumab, which, by inhibiting
P-selectin binding to its ligands, prevents leukocyte recruitment and platelet aggregation at the site
of vascular damage.

Keywords: COVID-19; ADAMTS13; thromboembolism; add-on therapy

1. Introduction

Congenital Thrombotic Thrombocytopenic Purpura (cTTP) is a severe autosomal
recessive disorder due to ADAMTS13 (a disintegrin-like and metalloprotease with throm-
bospondin type 1 motif, 13) rare variants and is characterized by uncleaved ultra-large
vWF and thrombotic microangiopathy, frequently triggered by infections. Common poly-
morphisms in the same enzyme are reported to be involved in thrombosis [1,2]. It is well-
recognized that coagulation abnormalities with an increased risk of thrombosis are one of
the complications of severe Coronavirus disease 2019 (COVID-19) disease, accompanied
by a high level of IL-6 and D-dimer often together with a reduction in platelets [3–6].
ADAMTS13 gene encodes for a plasma glycoprotein with protease activity that plays a
fundamental role in platelet adhesion and aggregation on vascular lesions, and the reduced
activity of ADAMTS13 is already reported to be associated with a severe COVID-19 out-
come [7]. Moreover, ADAMTS13 protein production is positively induced by estrogen,
and this reflects the greater penetrance of acquired or congenital TTP in middle aged
females (over 50 years), whose estrogen levels start to decrease in relation to males [8].

In our previous work, we modeled COVID-19 by the use of Artificial Intelligence (AI),
and we identified variants related to COVID-19 severity [9]. Here, we specifically explore
the role of one key genetic player: ultra-rare variants in ADAMTS13.

2. Materials and Methods
2.1. GEN-COVID Cohort

A cohort of 2988 SARS-CoV-2-positive subjects, collected within the GEN-COVID
Multicenter study, was used in this work, including 48 from the Netherlands ConCOVID
cohort. Among the 2988 subjects, 1781 were males and 1207 were females. The majority
(2808 subjects, 94%) were European; the remaining 180 (6%) subjects were of African, Asian,
American, and Hispanic ethnicity.

2.2. Whole Exome Sequencing Analysis (WES)

WES, with at least 97% coverage at 20×, was performed using the NovaSeq6000
System (Illumina, San Diego, CA, USA) as previously described [10]. WES data were
represented in a binary mode on a gene-by-gene basis [9–11].

2.3. Phenotype Definition Adjusting by Age

An Ordered Logistic Regression (OLR) Model was applied, separately for males and
females, using age to predict the clinical grading according to the WHO Outcome scale [12].
Each patient had a clinical classification equal to 0 (asymptomatic cases) if the actual
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patient grading was below the one predicted by the OLR or 1 (severely affected cases)
if the grading was above the OLR prediction. The patients with a predicted gradient
equal to the actual gradient were excluded from further analyses, by which we wanted
to compare the “extreme ends” [9–11]. After the adjustment in females, there were 486
subjects with OLR equal to 1; 289 subjects with ORL equal to 0; and 432 subjects with a
predicted gradient equal to the WHO gradient. In males, there were 672 subjects with OLR
equal to 1; 552 subjects with ORL equal to 0; and 557 subjects with a predicted gradient
equal to the WHO gradient.

2.4. ADAMTS13 Assay

The TECHNOZYM® ADAMTS-13 Activity Enzyme-Linked Immunosorbent Assay
(ELISA) was used for determination of the ADAMTS13 activity using the venous-drawn,
frozen, citrated (3.2% sodium citrate), platelet-poor plasma of studied patients. Blood
samples should be collected with minimal stasis and processed rapidly to avoid cellular
and plasma activation. The assay is a chromogenic and quantitative test performed on
microplate readers capable of reading wavelengths of 450 nm. The measured value is
reported as a percentage of normal-pooled plasma, which has been calibrated and defined
as 100% activity [13].

2.5. Statistical Analysis

Statistical analysis was performed using R version 4.1.3 (10 March 2022) and RStudio
(2022.02.0-443) software. A p-value < 0.05 was considered statistically significant.

3. Results
3.1. ADAMTS13 Ultra-Rare Variants Associate with Severity in COVID-19

Exome analysis of 2988 SARS-CoV-2-infected subjects of different severities, belonging
to GEN-COVID cohort, stratified by sex and adjusted by age, shows an association between
ADAMTS13 ultra-rare variants (Minor Allele Frequency < 0.001) and severity in female pa-
tients with an OR = 3.32 (95% CI 1.37 to 8.05; p-value = 4.9 × 10–3) (Table 1a). No significant
association was found in male patients (p-value = 0.252) (Table 1b). The adjustment by age
was performed as explained in the paragraph “Phenotype definition adjusting by age” of
the Section 2.

Table 1. (a) ADAMTS13 ultra-rare variants correlation with COVID-19 severity in female cohort.
(b) ADAMTS13 ultra-rare variants correlation with COVID-19 severity in male cohort.

(a)

Phenotype Ultra-Rare Variants Wild Type Total
Severe 32 454 486

Not severe 6 283 289
Total 38 737 775 (Grand Total)

OR = 3.32 (95% CI 1.37 to 8.05); p-value = 4.9 × 10−3

(b)

Phenotype Ultra-Rare Variants Wild Type Total
Severe 23 649 672

Not severe 26 526 552
Total 49 1175 1224 (Grand Total)

p-value = 0.252888
Note: The correlation was obtained by chi-square test; p-value (severe vs not severe cases), significant at p < 0.05.
Severe = adjusted by age category 1; Not severe = adjusted by age category 0.

3.2. Characterization of Ultra-Rare Variants

One of several heterozygous ADAMTS13 ultra-rare variants (Table 2), classified as either
VUS or pathogenic, was identified in 124 SARS-CoV-2-infected patients (4.2%), including
49 females (39.5%) and 75 males (60.5%). Among these 124 subjects, 110 were of European
ethnicity, and the remaining subjects were of African, Asian, and Hispanic ethnicities.
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Table 2. ADAMTS13 heterozygous mutations in the entire cohort of SARS-CoV-2 positive subjects.

Nucleotide Change Amino Acid Change dbSNP CADD ExAC_NFE Tot. n. Patients Sex (n.) Age Range Hospitalized
(Not Hospitalized) Category †

c.11G > A p.R4H rs370406676 5.2 0.0001 1 F 56 1 2
c.220C > T p.R74W n.a. 22 0.000008 1 M 39 1 1

c.241C > T p.H81Y rs148644959 23 n.a 4
M (2) 38–60 2 1
F (2) 60–68 2 1

c.353C > T p.P118L rs587698109 19.3 0.000008 1 F 59 1 3

c.559G > C p.D187H rs148312697 25.6 0.0006 7
M(5)

41–76 4 3–2
54 (1) 0

F (2) 50–82 2 3–2

c.649G > A p.D217N rs782305581 29.4 0.00003 2 M(2)
75 1 3
34 (1) 0

c.703G > T p.D235Y n.a. 33 0.00004 1 F 45 1 2
c.722G > C p.G241A n.a. 8.1 n.a. v1 F 30 (1) 0
c.742G > A p.V248M n.a. 25.1 0.00004 2 M 49–51 2 3–2
c.953A > G p.K318R n.a. 0.006 n.a. 1 F 42 (1) 0

c.1016C > G p.T339R rs149517360 22.8 0.0004 # 6
M 40 1 3

F (5)
9 months-66 4 2–1

23 (1) 0
c.1084G > A p.V362M rs781924046 0.21 0.00001523 1 F 46 (1) 0

c.1117_1121del p.S373Gfs*15 n.a n.a n.a 1 M 39 1 1

c.1157G > A p.R386H rs151048660 11.6 0.0003 10
F (5)

46–82 4 4–3
49 (1) 0

M (4) 42–73 4 3–2
c.1178G > A p.R393Q rs140937290 12.5 0.000017 1 M 68 1 1
c.1226G > A p.R409Q n.a 35 n.a. 1 M 48 1 1

c.1261C > T p.R421C rs145825553 33 0.0008 6 M (6)
55–81 4 3–1
52–65 (2) 0

c.1291G > A p.E431Q rs781915989 25.8 0.000018 2
M 47 (1) 0
F 75 (1) 0

c.1336A > G p.M446V rs782733359 16.1 0.000022 1 F 70 1 3

c.1423C > T p.P475S rs11575933 4.5 0.0006 § 3
M (2)

33 1 1
63 (1) 0

F 1 month 1 1
c.1463G > A p.R488Q rs147201977 22.6 n.a. 1 M 72 1 5
c.1486A > G p.M496V rs782574335 0.001 0.00004 1 F 44 1 1
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Table 2. Cont.

Nucleotide Change Amino Acid Change dbSNP CADD ExAC_NFE Tot. n. Patients Sex (n.) Age Range Hospitalized
(Not Hospitalized) Category †

c.1492C > A p.R498S n.a. 32 n.a. 1 F 93 1 2
c.1601G > A p.G534D rs782003053 26.6 0.00005 1 M 62 1 2
c.1700C > T p.A567V rs782272645 27.4 0.00007 1 M 79 1 2
c.1729A > T p.T577S n.a. 8.6 n.a. 1 F 33 1 1
c.1753A > G p.I585V n.a. 0.001 n.a. 1 M 82 1 3
c.1808A > G p.Y603C rs867154790 24.2 n.a. 1 M 52 1 1
c.1906C > T p.R636W rs201704847 24.7 0.000008 2 M 57–62 2 3–2
c.1931G > A p.R644H rs782184721 0.011 0.00002 1 F 70 1 2
c.1976G > A p.R659K rs150764227 23.5 0.0003 1 M 57 1 2
c.2009G > A p.R670H rs149953167 10.7 0.0003 1 F 78 1 5
c.2011C > A p.P671T n.a. 22.1 n.a. 1 F 56 1 3
c.2038C > T p.P680S n.a. 24.3 n.a. 1 M 76 1 2
c.2099G > A p.G700E n.a. 31 n.a. 1 M 25 1 3
c.2111G > A p.R704H rs782223605 23.7 0.0000008 1 F 34 1 3
c.2111G > T p.R704L n.a. 26.2 n.a. 1 M 68 1 2
c.2278G > A p.G760S rs782729939 22.8 0.00005 1 F 57 1 2
c.2282G > T p.G761V n.a. 25.3 n.a. 1 F 49 (1) 0
c.2288G > A p.R763Q rs781804540 16.8 0.000020 1 M 60 1 2
c.2351G > A p.R784Q rs377187626 4.4 n.a. 1 M 57 1 2
c.2420G > C p.R807T n.a. 23.5 n.a. 1 M 71 1 2
c.2422C > T p.W808R n.a. 0.007 n.a. 1 M 50 (1) 0

c.2494G > A p.V832M rs34104386 18.5 0.000017 ˆ 2
M 28 1 1
F 7 months 1 2

c.2519C > T p.A840V n.a. 0.3 n.a. 1 F 67 1 2
c.2545G > A p.V849I rs140639242 0.4 0.0002 1 M 72 1 5
c.2773A > G p.R925G rs782263547 4.1 0.000009 2 M 57–65 2 4–3
c.2814G > T p.K938N n.a. 25.7 n.a. 2 M 57–72 2 4–2

c.2824C > T p.R942W rs929435102 27.7 0.000009 2
M 61 (1) 0
F 56 1 2

c.2828G > A p.R943Q rs782160285 2.6 0.00009 1 M 84 1 5

c.2854C > T p.P952S rs143568784 29.9 0.0003 5
M 68 1 2

F (4)
67–85 3 2

40 (1) 0
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Table 2. Cont.

Nucleotide Change Amino Acid Change dbSNP CADD ExAC_NFE Tot. n. Patients Sex (n.) Age Range Hospitalized
(Not Hospitalized) Category †

c.2915G > A p.R972Q rs139951127 5.4 0.0002 7
M (4)

37–78 3 3–2
50 1 0

F (3) 35–70 1 5–1
c.2978C > T p.T993I rs139808736 23.2 0.00006 1 M 57 1 3
c.3161delC p.Cys1055Valfs*66 n.a. n.a. n.a. 1 F 54 1 2
c.3201T > A p.C1067 * n.a. 36 n.a. 1 M 72 1 3
c.3356C > T p.P1119L rs1044262941 36 0.000009 1 M 64 1 2
c.3463G > A p.A1155T n.a. 1.6 n.a 1 M 37 1 2

c.3541G > A p.G1181R rs192619276 1.5 * 0.000009 ◦ 5
M (3) 34–74 3 3–1
F (2) 57–66 2 3–2

c.3685G > A p.V1229I rs587643681 2.5 0.00001769 1 M 56 1 1
c.3694A > T p.S1232C n.a. 23.6 0.00001769 1 M 50 1 1
c.3713C > T p.A1238V rs587697598 13.9 0.00007986 1 F 63 1 3
c.3718G T p.D1240Y n.a. 24.9 n.a. 1 M 60 1 2

c.3722T > C p.M1241T rs1057522240 0.002 0.000008 1 F 46 1 1
c.3740G > A p.R1247Q rs782197792 27.2 0.00004 1 M 34 (1) 0
c.3826G > A p.G1276R rs144808448 0.493 0.00003 1 M 62 1 5
c.3853C > T p.R1285W rs370157837 27.6 0.00002264 1 M 68 1 4
c.3956C > T p.T1319M rs375824927 8.19 n.a. 1 F 84 1 2
c.3962A > T p.N1321I rs200645384 1.248 0.00006 1 M 73 1 2
c.4007G > A p.R1336Q rs782213090 23.8 0.000008 1 M 53 1 2
c.4012G > A p.A1338T rs782401854 27 0.000008 1 M 60 1 3
c.4141T > G p.S1381A n.a. 25.6 n.a. 1 F 29 (1) 0

c.4262_4271del p.G1423Efs*6 n.a. n.a. n.a. 1 M 48 1 3

Note: * mutation already reported as pathogenic in the Clinvar database (https://www.ncbi.nlm.nih.gov/clinvar/ (accessed on 21 April 2022)). # ExAC_SAS = 0.0012;
§ ExAC_EAS = 0.015, ExAC_AMR = 0.02; ˆ ExAC_AFR = 0.013;

◦
ExAC_EAS = 0.022; † Clinical category: 5, Deceased; 4, Hospitalized and intubated; 3, Hospitalized and CPAP-BiPAP

and high-flows oxygen treated; 2, Hospitalized and treated with conventional oxygen support only; 1, Hospitalized without respiratory support; 0, Not hospitalized oligo/asymptomatic
individuals. CADD, Combined Annotation Dependent Depletion; ExAC_NFE, Non-Finnish European minor allele frequency.

https://www.ncbi.nlm.nih.gov/clinvar/
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Most of the subjects (106) had severe COVID-19 disease requiring hospitalization
(85.5%). The remaining 18 subjects (14.5%) were not-hospitalized patients (Table 2). The ma-
jority of not-hospitalized patients (14 subjects) were either females under 50 years or males
over 50 years of age. For the females under 50, a protective role of estrogen, which increases
ADAMTS13 transcript, can be envisaged. Among the hospitalized patients, there were also
three females younger than 10 months, as described below (Table 2).

3.3. Characterization of ADAMTS13 Activity of Ultra-Rare Variants

Eleven subjects (6 cases with ADAMTS13 mutations and 5 controls without mutations)
had ad hoc blood drawn and successful ADAMTS13 activity assessed after SARS-CoV-
2 infection. The ADAMTS13 assay results were (median (min–max)) 61% (48–84) and
85% (71–106) for Cases and Controls, respectively. Carriers of ultra-rare variants show a
significant reduction of ADAMTS13 activity, p-value = 0.017 (Wilcoxon test), as expected
for heterozygous subjects. The box plot (Figure 1) shows the distribution of the two groups.
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Figure 1. Heterozygous ADAMTS13 ultra-rare variants are related to a reduction of protein detection.
Box plot of patients with one ultra-rare variant (6 cases) and patients without ultra-rare variants
(5 controls). The presence of ultra-rare variants is associated with a reduction of ADAMTS13 activity
(p-value = 0.017 at Mann–Whitney U test).

Among heterozygous subjects, there is a large variability in the percentage of activity,
likely due to different effects of each mutation and to additional genetic factors modulating
the activity. The mutation c.2915G > A, p.R972Q has 64% of activity (normal value of up to
150%); the mutation c.2111G > A, p.R704H has 48% of activity; the mutation c.2854C > T,
p.P952S has 63.8% of activity (mean of 4 subjects with a range of 49–85).

There is no data about low levels of ADAMTS13 in the other carriers, whose ADAMTS13
activity has not been measured.

3.4. Laboratory Values in Heterozygous Subjects

During hospitalization, both males and females with heterozygous ADAMTS13 vari-
ants have a tendency for hyper-inflammation (CRP mean 39, p = 0.005), higher D-dimer
(mean 3024, p = 0.03), platelets consumption (platelet count mean 180, p = 0.07) and hemol-
ysis (LDH mean 444, p = 0.009) (Tables 3 and S1).
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Table 3. Correlations between ADAMTS13 ultra-rare variants and laboratory values in hospitalized
patients.

CRP M and F cases CRP M < 50 y cases CRP F ≥ 50 y cases
Ultra-rare variants Mean Count Ultra-rare variants Mean Count Ultra-rare variants Mean Count

yes 39 64 yes 24.5 12 yes 55.1 21
no 28.5 1491 no 18.7 163 no 27.1 443
p-value = 0.0005166 p-value = 0.1116 p-value = 0.0001896

Fibrinogen M and F cases Fibrinogen M < 50 y cases Fibrinogen F ≥ 50 y cases
Ultra-rare variants Mean Count Ultra-rare variants Mean Count Ultra-rare variants Mean Count

yes 488 25 yes 446 6 yes 502 8
no 502 806 no 499 67 no 503 234

p-value = 0.8843 p-value = 0.6227 p-value = 0.9406

D-Dimer M and F cases D-Dimer M < 50 y cases D-Dimer F ≥ 50 y cases
Ultra-rare variants Mean Count Ultra-rare variants Mean Count Ultra-rare variants Mean Count

yes 3024 58 yes 4016 8 yes 4127 18
no 2788 1446 no 1908 148 no 2711 441

p-value = 0.03431 p-value = 0.1889 p-value = 0.47

Platelets M and F cases Platelets M <50 y cases Platelets F ≥ 50 y cases
Ultra-rare variants Mean Count Ultra-rare variants Mean Count Ultra-rare variants Mean Count

yes 183 63 yes 153 11 yes 182 17
no 315 1509 no 221 184 no 574 451

p-value = 0.07816 p-value = 0.05286 p-value = 0.2213

LDH M and F cases LDH M <50 y cases LDH F ≥ 50 y cases
Ultra-rare variants Mean Count Ultra-rare variants Mean Count Ultra-rare variants Mean Count

yes 444 49 yes 513 8 yes 506 16
no 395 1313 no 392 142 no 374 389

p-value = 0.009494 p-value = 0.05761 p-value = 0.006933

Note: CRP (C-reactive Protein) (mg/dL) highest value among all those collected during hospitalization;
normal value <0.5 mg/dL; Fibrinogen (mg/dL) lowest value among all those collected during hospitaliza-
tion; n.v. 200–400 mg/dL; D-Dimer (ng/mL) highest value among all those collected during hospitaliza-
tion; n.v. <500 ng/mL; Platelets (103/mmc) lowest value among all those collected during hospitalization;
n.v. 150–450 × 103/mmc; LDH (Lactate dehydrogenase) (UI/L) highest value among all those collected during
hospitalization; n.v. 135–225 UI/L (male (M)); 135–214 UI/L (female (F)). For the correlations, the Mann-Whitney
U test was performed; p-value is significant at p < 0.05. Correlations were performed in hospitalized patients
using both sexes (M and F cases), males under 50 years of age (M < 50y cases) and females over 50 years of age
(F ≥ 50y cases). Complete laboratory values correlation were included in Supplementary Table S1.

The correlation is sustained mainly by females≥50 years (CRP mean 55, p = 0.005; LDH
mean 506, p = 0.006933) and males <50 years (platelet mean 153, p = 0.052) (Tables 3 and S1).
No significant correlation was observed between fibrinogen levels and carriers of ultra-rare
variants (Tables 3 and S1).

3.5. Autosomal Dominant Disorder Conditioned by SARS-CoV-2 Infection, Sex and Age

Complete clinical and molecular data were available for two families (Figure 2).
Data of segregation analysis were able to demonstrate that the disorder segregates

as autosomal dominant disorders conditioned by SARS-CoV-2 infection, sex, and age
(Figure 2). In the first family, the 66-year-old female who required oxygen support trans-
mitted the mutation to the 34-year-old son who required CPAP treatment. In the second
family, the 73-year-old female treated by oxygen support transmitted the mutation to the
40-year-old daughter who was oligosymptomatic, likely due to the relatively young age;
her sister, the 76-year-old without the mutation, was oligosymptomatic.
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Figure 2. Segregation analysis. Pedigree (upper panel) and respective segregation of ADAMTS13
variant and COVID-19 status (lower panel) are shown. Squares represent male family members;
circles represent females. A virus cartoon close to the individual symbol indicates individuals
infected by SARS-CoV-2 (
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3.6. Pediatric Cases

Among the 127 patients with ADAMTS13 variants, three pediatric cases required
hospitalization. Clinical and molecular characteristics are detailed below.

Case 1 (female) is the second child of a non-consanguineous couple of Filipino origin.
Her pathological anamnesis is negative. The patient contracted SARS-CoV-2 infection when
she was nine months old and her parents also turned out to be positive, but neither of them
needed hospitalization, while her sister was negative. She had fever, cough, rhinitis, diure-
sis contraction and diarrhea (she tested negative for adenovirus and rotavirus); she did not
have respiratory distress and her chest/lung ultrasound showed a B pattern. Among her
blood tests, to be noticed: SGOT (serum glutamic oxaloacetic transaminase) 105 UI/L and
SGPT (serum glutamic-pyruvic transaminase) 46 UI/l (maximum values during hospital-
ization) and D-dimer 1096 ng/mL. She has c.1016C > G, p.T339R ADAMTS13 heterozygous
variant (MAF ExAC_NFE 0.0004; MAF ExAC_SAS 0.0012).

Case 1 (female) is the second child of a non-consanguineous couple of Filipino origin.
Her pathological anamnesis is negative. The patient contracted SARS-CoV-2 infection when
she was nine months old and her parents also turned out to be positive, but neither of them
needed hospitalization, while her sister was negative. She had fever, cough, rhinitis, diure-
sis contraction and diarrhea (she tested negative for adenovirus and rotavirus); she did not
have respiratory distress and her chest/lung ultrasound showed a B pattern. Among her
blood tests, to be noticed: SGOT (serum glutamic oxaloacetic transaminase) 105 UI/L and
SGPT (serum glutamic-pyruvic transaminase) 46 UI/l (maximum values during hospital-
ization) and D-dimer 1096 ng/mL. She has c.1016C > G, p.T339R ADAMTS13 heterozygous
variant (MAF ExAC_NFE 0.0004; MAF ExAC_SAS 0.0012).

Case 2 (female) is the second child of a non-consanguineous European couple (Ukrainian
mother, Italian father). She was born with a pulmonary CCAM (congenital cystic adeno-
matoid malformation) and a patent foramen ovale with a left-right shunt. The patient
contracted SARS-CoV-2 infection when she was one month old and her sister and par-
ents turned out to be positive but information on their clinical outcome is not available.
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She had fever, cough, rhinitis, diuresis contraction and diarrhea (she tested negative for
adenovirus and rotavirus); she had slight respiratory distress, which did not require oxygen
therapy, and her chest/lung ultrasound was negative. Among her blood tests, to be noticed:
SGOT 61 UI/L and SGPT 36 UI/L at admission. She has c.1423C > T, p.P475S ADAMTS13
heterozygous variant (MAF ExAC_NFE 0.0006).

Case 3 (female) is the fourth child of a non-consanguineous couple of Nigerian origin.
She was diagnosed with Rubinstein-Taybi syndrome (22q13.1q13.2 deletion) when she was
a newborn. The patient contracted SARS-CoV-2 infection when she was seven months
old and her mother turned out to be positive and she was not hospitalized. She had
fever, cough, dyspnea, tachycardia, and respiratory distress (with oxygen saturation 88–89
and resuscitation); she also had a rhinovirus infection and part of her clinical picture is
due to her genetic condition: in fact, she has a congenital heart defect. Her chest/lung
ultrasound showed a B pattern. Among her blood tests, to be noticed: SGOT 52 UI/L and
SGPT 71 UI/L at admission, which were normal when the child was discharged. She has
c.2494G > A, p.V832M ADAMTS13 heterozygous variant (MAF ExAC_NFE 0.000017, MAF
ExAC_AFR 0.013).

4. Discussion

Patients with severe COVID-19 can develop a wide range of complications, the most
common of which is thrombosis of the large vessels. Thrombotic microangiopathy (TMA),
whose pathophysiology is mostly due to endothelial dysfunction, has only been described
in a few of these patients. TMAs include (i) congenital Thrombotic Thrombocytopenic
Purpura (cTTP) characterized by no evidence of anti-ADAMTS-13 IgG antibodies and
severe deficiency of ADAMTS13 activity and (ii) autoimmune TTP characterized by the
presence of anti-ADAMTS-13 IgG antibodies. In primary autoimmune disease, no clear
cause is identified, and instead in secondary autoimmune TTP a defined disorder or trigger
can be identified, such as a viral infection [14,15]. The literature, recently reviewed by
Singh B. et al. [16], contains few case reports of secondary autoimmune TTP in the course
of COVID-19. In the descriptions of clinical cases, it is difficult to distinguish whether there
is a cause-and-effect relationship between COVID-19 and TTP or whether SARS-CoV-2
infection is just present at the time of TTP diagnosis.

All cases of TTP are due to reduced activity of ADAMTS13, the enzyme involved
in the cleavage of ultra-large von Willebrand factor (vWF) multimers into smaller, less
procoagulant multimers. The congenital or inherited form of TTP has autosomal recessive
inheritance, a prevalence of 0.5–2 cases per million [17], and accounts for 2–10% of all TTP
cases reported in international registries [18]. The diagnosis of secondary autoimmune
TTP is possible in the presence of microangiopathic hemolytic anemia, thrombocytopenia,
ADAMTS13 activity <10%, and demonstration of an anti-ADAMTS13 inhibitor [19]. TTP
heterozygous, i.e., carriers of one mutated allele only, are reported to be healthy. Here,
we show evidence that heterozygous subjects are at risk for severe COVID-19 through
a micro-thrombotic mechanism. Furthermore, the disease segregates in families as an
autosomal dominant disorder, conditioned by SARS-CoV-2 infection, sex, and age. It is
also known that the TTP-recessive disease is more penetrant in females. Females have a
lower basal level of ADAMTS13 than males. However, estrogens have the power to induce
protein production. Indeed, we expect females from the puberal period until ovarian
failure to be protected by the action of estrogens [8]. In line with this, we have identified
that heterozygous females over 50 are at more risk. On the other hand, we have reported
pediatric cases as well (all females), which also miss the beneficial effect of estrogens. In the
other sex (male), the period with less estrogens is that from puberty to andropause and
indeed, as shown by laboratory value, the tendency towards microangiopathy is more
evident in males under 50.

The penetrance of the thrombotic disease triggered by SARS-CoV-2 infection in het-
erozygous ADAMTS13 subjects is incomplete. Other factors that may contribute to the
imbalance in the vWF antigen (VWF:Ag):/ADAMTS13 ratio are age, as vWF levels increase
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with age [20], and the patient’s membership in a blood group other than 0, resulting in
baseline vWF:Ag levels 25–30% higher than in group 0 patients [21]. Furthermore, common
polymorphisms in thrombotic microangiopathy-associated genes such as the rs2230199 in
C3, the rs800292 in CFH (26 patients), and the rs2301612 missense mutation (448E) in the
gene itself ADAMTS13, reported in 60 patients with moderate-to-severe COVID-19 studied
by Graviilaki E. et al., may contribute to penetrance modulation [22]. From a multistep
pathogenetic perspective of TMA, the procoagulant environment that originates during
SARS-CoV-2 infection could precipitate the clinical manifestation of TMA in patients with
genetic variants of ADAMTS13. There is indeed a direct virus-induced endothelial damage
and secondary inflammatory status to cytokine storms [23], which result in the release of
vWF from endothelial storage sites and a further reduction in ADAMTS13 activity, creating
an imbalance in the vWF: Ag/ADAMTS13 activity ratio [24–27].

5. Conclusions

In conclusion, data from the large multicenter GEN-COVID study allow us to define
the prevalence of ADAMTS13 mutations in a SARS-CoV-2-positive population and to es-
tablish the severity of COVID-19 pathology in patients carrying the mutation. This finding
has clinical relevance due to the availability of drugs such as Caplacizumab or Crizanl-
izumab that could be suggested to patients with ADAMTS13 variants exhibiting decreased
enzymatic activity. Caplacizumab, an anti-vWF bivalent single-domain nanobody, inhibits
vWF–platelet interaction and is already used to treat acquired thrombotic thrombocy-
topenic purpura. Besides, Crizanlizumab is a monoclonal antibody that prevents leukocyte
recruitment and platelet aggregation at the site of vascular damage by inhibiting P-selectin
binding to its ligands. These two drugs are likely to replace the reduced activity of the
metalloproteinase due to certain mutations and therefore they could also be useful in
decreasing hyper-inflammation signs in heterozygous ADAMTS13 patients.
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