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7. Conclusions 

This paper investigates the nonlinear dynamic behavior of a planetary gear system 

with equally spaced planets. The effect of mesh frequency is evaluated and the system 

behavior at different rotational velocities is examined; this may helps designers to 

understand how velocity can affect dynamic response of a planetary gear system. The 

main results are summarized below. 

Modes corresponding to multiples of mesh frequency can be excited due to: i) the 

presence of higher harmonics of mesh stiffness variation; ii) nonlinear superharmonic 

resonance. Moreover, the resonance peaks lean-to the left, implying softening nonlinearity 

induced by teeth separation.  

Comparing the presents results with those of the work of Ambarisha and Parker 

Ref.[2] shows that there are additional resonance peaks below 1600 Hz, 1800 Hz (the 

first distinct mode) and 8000 Hz. These peaks are the due to a combination of effects: i) 

the parametric instability from higher harmonics of mesh stiffness; ii) nonlinear 

subharmonic and superharmonic resonances of the first and second distinct modes. 

Reducing the translational bearing stiffnesses generally cause decreasing the natural 

frequency as we expect from elementary considerations. Moreover, changing the bearing 

stiffness can influence the ratios between modes and, for certain values, produce 

additional internal resonances; this is reflected in a higher modal interaction in nonlinear 

regimes. 

Different nonlinear phenomena such as nonlinear jumps, chaotic motions, and period-

doubling bifurcations occur when the mesh frequency or any of its higher harmonics are 

near a natural frequency of the system. The nonlinearity is due to teeth separation that take 

place when the amplitude of vibration generates inertia forces exceeding the static preload. 

The occurrence of a parametric instability is found when the rotational speed is twice 

the resonance of a rotational mode; this phenomenon is typical of almost all gearboxes.  

In presence of internal resonances remarkable changes is observed; in particular, the 

variation of the bearing stiffness can greatly influence and enrich the dynamic scenario.  

One of the most interesting disclosures of this work is related to the chaos-induced-

imbalance; i.e. due to the symmetry of the system there is a perfect force balance, this 

means that the sun bearings are subjected to negligible forces (theoretically zero), this is 
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true in principle both in linear and nonlinear regular vibrations. However, when the 

vibration is chaotic, the system experiences a symmetry breaking, a well known 

phenomenon in chaotic dynamics. This symmetry breaking in the response has an 

important counterpart in the mechanical behavior of the system, i.e. it generates 

unexpected and undesirable loads on the sun supports. This aspect of the system dynamics 

cannot be accounted for using the classical design tools, leading to possibility of new 

failure modes. 
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