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ABSTRACT This paper presents SPHERE, a project aimed at the realization of an integrated framework
to abstract the hardware complexity of interconnected, modern system-on-chips (SoC) and simplify the
management of their heterogeneous computational resources. The SPHERE framework leverages hypervisor
technology to virtualize computational resources and isolate the behavior of different subsystems running
on the same platform, while providing safety, security, and real-time communication mechanisms. The
main challenges addressed by SPHERE are discussed in the paper along with a set of new technologies
developed in the context of the project. They include isolation mechanisms for mixed-criticality applications,
predictable I/O virtualization, the management of time-sensitive networks with heterogeneous traffic flows,
and the management of field-programmable gate arrays (FPGA) to provide efficient implementations for
cryptography modules, as well as hardware acceleration for deep neural networks. The SPHERE architecture

is validated through an autonomous driving use-case.

INDEX TERMS Cyber-physical systems, embedded systems, real-time systems, hypervisor, FPGA.

I. INTRODUCTION

Today’s commercial-of-the-shelf (COTS) heterogeneous
multicore platforms offer great opportunities for devel-
oping high-performance embedded computing systems.
At the same time, the increased complexity of emerg-
ing applications (e.g., self driving cars, humanoid robots,
augmented reality, and virtual interactive environments)
demand for the integration of different subsystems and func-
tionalities, imposing additional requirements to embedded
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systems designers that highlighted the limits of current
development frameworks. Examples of such requirements
include
o support for heterogeneous sensors (as multiple
cameras, radars, and lidars) producing intensive data
streams;
o real-time communication among distributed control
units;
« hardware acceleration of complex artificial intelligence
algorithms;
« tightinteraction with the environment, requiring fast and
predictable sensory-motor control loops;
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o fail-safe and fault tolerant behaviors in safety-critical
scenarios;

« security features to protect safety-critical components
from cyber attacks.

In addition, the full exploitation of modern heterogeneous
computing platforms is quite complex and poses a number of
new technical problems that seriously limit their usage. Some
of the most crucial problems are listed below:

« Virtualization support: When multiple applications
with different degrees of criticality need to co-exist on
a shared processing platform, virtualization techniques
need to be offered by the system to manage the access
to shared hardware resources. Examples of shared
resources include the CPU cores, caches, DRAMs
(Dynamic Random Access Memories), and hardware
accelerators, which may potentially give rise to signif-
icant contention delays when uncontrolled accesses are
permitted [1], [2].

« Isolation and timing predictability: A predictable vir-
tualization needs to provide techniques to limit delays
incurred accessing the underlying shared hardware plat-
form. This include the support for algorithms for tem-
poral isolation [3], cache isolation [4], [5], and memory
bandwidth reservation for both CPU cores and hardware
accelerators [6], [7]. Adopting these techniques is also
beneficial for making the system more secure, protecting
a critical application from potential cyber-attacks.

o Multi-SoC communications: When interconnected,
heterogeneous platforms need to rely on efficient and
predictable communication networks. This is particu-
larly important for emerging autonomous-driving appli-
cations, which might be so computationally expensive
to require multiple systems-on-chips (SoCs) for being
deployed.

o Real-time guarantees: Given the many sources of
non-determinism in such complex, virtualized, het-
erogeneous, and potentially distributed architectures,
performing timing analysis and providing real-time
guarantees is far more difficult with respect to the case
of a single processor platform.

This work presents the SPHERE project, which aims at
providing an integrated framework to abstract the hardware
complexity of interconnected, cutting-edge, multi-core plat-
forms and simplify the management of heterogeneous com-
putational resources. It leverages hypervisor technology to
virtualize computational resources and isolate the behav-
ior of different subsystems running on the same platform,
while providing safety, security, and real-time communica-
tion mechanisms.

The framework provides technologies to guarantee the safe
and secure behavior of applications for cyber-physical sys-
tems (CPSes) running on modern heterogeneous applications
while accounting for the requirements for such workloads.
Contribution. SPHERE addresses these challenges by pro-
viding a multi-SoC architecture for:
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o enabling isolation in a mixed-criticality setup where
non-critical applications are executed on a shared hard-
ware platform with critical tasks without harming their
functional and temporal correctness;

« supporting predictable I/O virtualization mechanisms,
with guaranteed bounds on the maximum communica-
tion lateness;

« handling time-sensitive networks with multiple traffic
flows requiring different temporal constraints; and

« managing portions of field-programmable gate arrays
(FPGA) to provide efficient implementations for cryp-
tography modules, as well as hardware acceleration for
deep neural networks.

The SPHERE architecture is validated through an

autonomous driving use-case.

Paper structure. The remainder of this paper is orga-
nized as follows. Section II presents the SPHERE archi-
tecture at a high level. Section III presents the proposed
multi-domain execution environment, also introducing new
technologies at the hypervisor level. Section IV presents the
techniques that SPHERE uses to handle the FPGA. Section V
addresses the virtualization of the communication system.
Section VI describes a case study based on autonomous
driving. Section VII concludes the paper.

Il. OVERVIEW OF THE ARCHITECTURE

SPHERE is a multi-SoC architecture for next-generation
CPSes based on FPGA-based heterogeneous computing plat-
forms. The architecture is illustrated in Figure 1 for the case
of two SoCs, which is the one considered by our case study.
Each SoC provides a multi-domain execution environment
implemented by hypervisor technology, which is detailed
in Section III. The application running above the SPHERE
architecture is distributed between the two SoCs. The two
SoCs communicate by means of a Time-Sensitive Network-
ing (TSN)-enabled IEEE 802.1Q switch deployed on the
FPGA fabric of each SoC. Both the domains are allowed
to use TSN communications thanks to an I/O virtualization
mechanism offered by SPHERE and a TSN scheduling logic
running at the application level. To support modern CPS
applications that make use of machine learning algorithms,
hardware accelerators for deep neural networks (DNNs) are
also deployed on the FPGA fabric. Furthermore, FPGA-based
accelerators for cryptographic services are available. The
whole set of modules deployed on the FPGA fabric is man-
aged by OS-level and hypervisor-level mechanisms provided
by SPHERE.

IlIl. MULTI-DOMAIN EXECUTION ENVIRONMENT

The SPHERE framework supports mixed-criticality applica-
tions by offering multiple execution domains. Our reference
design consists of two domains: a non-critical one, based
on the Linux operating system for running general-purpose
software, and a critical one, based the Erika operating
system for running real-time software. The two execution
domains are provided by a hypervisor. SPHERE supports
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two hypervisors to ensure diversity in the implementation
of the framework, namely CLARE-Hypervisor (Sec. III-A)
and Jailhouse (Sec. III-B). Both the hypervisors provide
isolation mechanisms for time-predictable software, which
are reviewed in Section III-C. This section also presents
two novel hypervisor-level features supported by SPHERE,
namely time-predictable I/O virtualization (Sec. III-D) and
direct interrupt dispatching (Sec. III-E).

A. CLARE-HYPERVISOR

CLARE-Hypervisor is a bare-metal type-1 hypervisor at
the core of the CLARE software stack [8]. It has been
developed by following an innovative design that integrates
cutting-edge safety, security, and real-time resource manage-
ment mechanisms by-design. CLARE-Hypervisor provides a
fully-static approach with off-line configurations and opti-
mizations to control the allocation of computing resources
and the settings related to virtual CPUs, timing performance,
and a set of mechanisms that allow regulating the inter-
ference among domains. Strong isolation among execution
domains with mixed and independent levels of safety and
security is ensured by the hypervisor while also enabling safe
inter-domain communications, which can occur via either a
port-based or a shared-memory-based low-latency mecha-
nism. CLARE-Hypervisor provides a novel FastBoot tech-
nology and is characterized by a small code base (suitable
to SIL4 certification) that does not depend on other soft-
ware systems, which allows to drastically reduce the attack
surface and time/space overhead. The hypervisor also offers
modern security mechanisms such as address space layout
randomization (ASLR), control flow integrity (CFI), Trust-
Zone support, and safety mechanisms such as run-time health
monitoring and fault recovery.

B. JAILHOUSE

Jailhouse [9], [10] is an open-source (GPL licensed) bare-
metal hypervisor whose design is focused on safety-critical
and real-time environments, built around two distinctive key
traits. The first is static partitioning of hardware resources,
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an approach that eradicates the very possibility of con-
tention between mixed-criticality domains caused by sharing.
Devices are assigned to virtual machines, and not virtual-
ized for them. The second trait is exploiting the Linux boot
process to improve portability and minimize the hypervisor
code base. In spite of being a type-1 hypervisor, it is not
directly loaded from the boot-loader, but from a Linux kernel
driver. Although Jailhouse currently features no virtualization
support, it is the most advanced open-source hypervisor with
respect to real-time applicability to high-performance embed-
ded platforms, thanks to memory management and arbitration
primitives [11].

C. ISOLATION MECHANISMS

In mixed-criticality systems it is of utmost importance to
ensure a high degree of isolation among domains. In addition
to the classical isolation mechanisms offered by almost all
hypervisors, such as spatial isolation in memory, the hyper-
visors of the SPHERE framework offer advanced isolation
features. For instance, in modern Arm SoCs, it is very com-
mon to have inclusive, data+instructions last-level caches
shared by multiple cores that can represent a relevant source
of mutual interference for domains running on different
cores. CLARE-Hypervisor provides strong isolation mech-
anisms for regulating the access to the memory subsystem.
In particular, it provides (i) cache coloring for reserving a
dedicated portion of shared caches to each virtual machine
(VM) or the hypervisor, (ii) memory-bandwidth reservation
for controlling contention among VMs in accessing the main
memory, and (iii) bank-aware memory allocation for lim-
iting the sources of unpredictability introduced by memory
controllers. CLARE-Hypervisor also offers isolation mech-
anisms for security purposes and for FPGA-based hardware
accelerators. Jailhouse also supports these mechanisms in a
fork maintained by partners of the SPHERE project.

Note that, since the hypervisor is directly and actively
involved in dispatching interrupts, it represents itself a soft-
ware component to be isolated to reduce potential inter-
ference. Shared levels of cache represent a clear source of
contention for hypervisor instruction cacheability. Hence,
cache-level isolation is also a desired feature in hypervisors
used for time-critical systems.

D. TIME-PREDICTABLE 1/0 VIRTUALIZATION

SPHERE aims at providing a predictable I/O communication
mechanism, ensuring that the maximum lateness is bounded.
To achieve this goal in a virtualized environment, the
I/O handling strategy needs to allow multiple VMs to share
one or more I/O devices.

In SPHERE, this is done using a predictable, software-based
I/O virtualization mechanism, whose structure is shown
in Figure 2, which refers to a case where the network
device is shared among different VMs. Applications run-
ning in the VMs perform I/O requests by interacting with
a para-virtualized application programming interface (API)
offered by the hypervisor, including function calls to send
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and receive I/O messages. These functions use hypercalls to
obtain buffers to communicate, maintained in a portion of
shared memory that can be accessed by a target VM and by
the I/O dispatching domain. The latter is a particular VM in
charge of interacting with the actual I/O devices on behalf of
the other domains. In this way, I/O peripherals are accessed
by a single entity, which predictably arbitrates the accesses to
shared devices.

The I/0O dispatching domain collects I/O requests in differ-
ent queues, one for each pair of device, VM, and communi-
cation type (input or output). It also implements a scheduling
policy that selects the request to be performed by choosing
among different requesters and different devices.

SPHERE provides a general scheduler for I/O requests
that employs round-robin arbitration among requests in dif-
ferent queues (and hence either coming to different VMs or
targeting different devices) and uses first-come-first-served
(FCFS) arbitration to choose among those in the same queue.
These two scheduling policies guarantee fairness in access-
ing I/O peripherals from different VMs, while also enabling
the derivation of predictable timing bounds. Furthermore,
the scheduler is flexible and modular enough to allow inte-
grating special-purpose I/O schedulers, e.g., the TSN packet
scheduler discussed later in Section V-B.

The shared memory buffers are used by a mechanism
for inter-domain communication that moves I/O messages
between the I/O dispatching domain and the other VMs.
Shared buffers are implemented with wait-free queues [12],
which provide predictable and constant timing effects while
guaranteeing data integrity.

SPHERE provides the I/O virtualization mechanism with
a timing analysis that allows bounding I/O communica-
tion latencies as well as predicting the worst-case response
times of computational activities (i.e., tasks) interacting with
I/O peripherals. The analysis is derived from fine-grained
modeling of the system, which includes virtual machines,
tasks, interrupt-service routines (ISRs), hypercalls, and I/O
requests [13]. The individual contributions to the latencies
are computed for each component, which potentially runs
different scheduling policies, and are then combined to derive
the end-to-end bounds to I/O delays. For example, the overall
delay may be in part due to a VM hosting a real-time operat-
ing system (RTOS) that uses a fixed-priority scheduling pol-
icy, while its I/O requests are executed by the I/O dispatching
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domain through an FCFS+round-robin scheme. Additional
effects due to I/O-driven interruptions and potential priority
inversion phenomena due to hypercalls give rise to a complex
scenario. The analysis proposed by SPHERE allows dealing
with this tricky scenario while also being modular enough
to be extended to other scheduling policies thanks to its
composability.

E. DIRECT INTERRUPT DISPATCHING

Interrupt management plays a crucial role for achieving a
predictable response to events, especially in the presence
of a hypervisor. Most commercially-available Arm v8 sys-
tems are equipped with GICv2 (Generic Interrupt Controller),
where the IRQs (Interrupt ReQuests) are controlled through
two components: 1) the distributor (GICD: GIC distributor),
responsible for enabling/disabling the IRQs and set their
target and priority; 2) the CPU interface (GICC: GIC CPU
interface), responsible for calling the interrupt handler and
signaling the corresponding hardware device. To isolate crit-
ical applications from non-critical ones, it is not safe to go
through the normal route, as a VM that has full access to the
GICD and GICC could interfere with the IRQ operations of
other VMs. The adopted solution is to leverage the hardware
feature provided by the virtual distributor and the virtual
CPU interface, so enabling the hypervisor to first handle
IRQs for its guest VMs and then explicitly inject them to the
appropriate VM.

In anormal setting, each IRQ requires two context switches
(from VM to hypervisor and back), and the hypervisor needs
to keep track of each configuration and request from every
VM and for every IRQ. Measurements show that this route
is at least 4x slower than the normal one (without hypervi-
sor) and can get even slower depending on the complexity
of the hypervisor IRQ handler. To reduce such a latency,
we can leverage the static-partitioning feature of the hyper-
visor (where VMs do not share the same core) by extending
the partitioning philosophy to the interrupts. In this case, the
CPU Interface for the IRQs becomes private to the VM that
gets that particular CPU assigned. Therefore, the hypervisor
can skip the GICC emulation and its relative bookkeeping
operations, and only emulate the distributor. In this way,
the GICH (GIC Hypervisor registers) and GICV (GIC Vir-
tual machine registers) are not used and can be turned off.
Adopting this solution, for each IRQ received, the path is
very similar to the one without hypervisor, and the interrupt
latency is kept at nearly the same values. Another limitation is
that direct dispatch will route all IRQs to VM space, skipping
hypervisor space altogether. This is due to hardware design
choices. A workaround for hypervisors to use signals for their
internal functioning is to use either fast interrupt requests
(FIQs, i.e., secure, fast interrupts, independently routable
from IRQs) or SDEI (Software Delegated Exception Inter-
face). Both solutions need some support at firmware level.
An SDEI-based implementation is available in the official
Jailhouse repository and an improved implementation has
been prototyped for SPHERE. Evaluation experiments from
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a bare-metal application on the Xilinx Zynq Ultrascale+
MPSoC (multi processor system-on-chip) have shown that
interrupt virtualization with Jailhouse can cost more than 5x
slowdown in the worst-case interrupt response (from around
260 to 1,410 ns). Using direct dispatch, instead, the latency
is restored close to the case without Jailhouse (430 ns). Other
experiments, carried to stress the memory hierarchy to pro-
duce inter-core interference, showed a dramatic degradation
(from 7x to 15x) in the worst case with respect to the isolated
case, in all aforementioned cases. Combining direct dispatch
with cache-coloring protection, instead, allowed achieving an
average-case delay of 240 us, and containing the worst-case
delay within 1390 us, even with the hypervisor and under
memory aggression.

IV. FPGA MANAGEMENT

Targeting the future evolution of modern MPSoC platforms,
SPHERE also addresses dynamic function exchange capabil-
ities (also known as dynamic partial reconfiguration) of mod-
ern heterogeneous devices, particularly those based on FPGA
fabrics [14]. These capabilities are already consolidated in
datacenters, where they are meant to extend multi-tenancy
support from standard server machines to accelerators like
GPU and FPGA cards. We however anticipate that the tech-
nical approach adopted for the server segment will even-
tually be adapted to the embedded area, allowing multiple
hardware/software tasks with various levels of criticality in
terms of both determinism and trustworthiness to co-exist and
be dynamically loaded to the MPSoC platform. We there-
fore build on a common concept used in datacenter-oriented
FPGAs, the device shell. This concept essentially refers to a
statically configured portion of the FPGA, providing a fixed
interface between the host’s system bus (typically PCle in
server machines) and a large dynamically reconfigurable area
of the FPGA device. This area is divided in one or more
regions that can host multiple accelerators uploaded to the
device through a dynamically reconfiguration process. The
shell is in charge of mediating the accelerator reconfiguration
triggered by the host and acts as a sandbox for the acceler-
ators, which are not directly exposed to the physical system
resources, including the FPGA-attached memory, e.g., a Dou-
ble Data Rate (DDR) DRAM or High-Memory Bandwidth
(HBM) banks.

The FPGA shell concept was considered by SPHERE for
extension to the MPSoC domain, where the coupling between
the host system, the FPGA, and the system memory is of
course different from server-class machines, but the presence
of multiple mixed-criticality hardware tasks (either dedicated
accelerators or soft cores), being time-multiplexed in the
FPGA fabric, creates similar needs in terms of reconfigura-
bility, manageability, isolation, and security.

In the setting foreseen by SPHERE, depicted in Figure 3,
the shell contains the internal reconfiguration port (the Inter-
nal Configuration Access Port, ICAP, in Xilinx FPGAs)
and a custom reconfiguration controller. Besides interfacing
the configuration port to the host, the controller supports
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a few additional functions. It can apply custom encryp-
tion/decryption/integrity checks to the partial bitstreams and
features readback capabilities to extract the contents of all
stateful components in the reconfigurable region, effectively
taking a snapshot of the accelerator execution state at a par-
ticular point in time. This low-level mechanism underpins
a variety of high-level operations that are crucial for man-
agement and reliability. In fact, SPHERE uses the readback
capabilities to support checkpointing of accelerator execu-
tion state and hence preemption/context switch of hardware
tasks. These two uses share fundamentally the same underly-
ing technical approach. We first identify the notion of state
in FPGA tasks, which boils down to the information bits
physically held by flip-flops and on-/off-chip RAM. A basic
approach consists in reading back the whole configuration
bitstream from the dynamic region, without identifying the
user data bits, which indeed form a significantly smaller sub-
set than the whole bitstream. Moreover, even some of the user
data bits may be unnecessary to preserve the application state
for subsequent restoring. To reduce overheads, we define an
application-level notion of execution state, i.e. the subset of
physical state of relevance for saving/restoring the context.
For that, we introduce a design flow and run-time support
allowing the expression and extraction of application-level
execution state. In this flow, the designer can optionally indi-
cate which components are strictly needed for maintaining
the execution state by explicitly instantiating special compo-
nents from a dedicated support library (registers, configurable
memories, etc.). Based on the naming convention used in the
support library, low-level mapping information is extracted
automatically after the place-and-route stage of the FPGA
implementation flow (namely, by analyzing the .11 file in
Xilinx Vivado toolflow). The logic to selectively extract,
handle, and restore the state is derived from this mapping
information. Following the design specification, the user is
completely unaware of the process, enabling a transparent
and automated flow. The availability of mapping information,
which decouples the logic components in the design from
their physical location after a specific implementation run,
has also interesting implications in that it enables porta-
bility across different implementations of the same design,
or possibly even different design versions having the same
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application-level execution state, as long as the corresponding
mapping information is made available.

Supported by the host side management routines,
the reconfiguration logic can generate a partial configuration
bitstream at runtime augmented with a previously saved
task’s state, so that writing a bitstream to the dynamic region
effectively results in resuming the processing from the point
in time when the task was preempted. As mentioned above,
the low-level access mechanism to read/resume execution
state is the FPGA internal reconfiguration port. We also
considered the JTAG debug port as an access mechanism,
which could limit or even avoid the resource overhead
incurred by the FPGA shell, but it would perform poorly
in terms of performance and provide no support for the
additional security-related functions that are handled on-chip
by the proposed shell-based solution. In the chosen setup,
thus, the custom shell embraces the internal configuration
port, which is a Xilinx ICAP primitive in our prototype,
it implements the management logic in the static region, and
exposes an AXI(Advanced eXtensible Interface)-lite control
interface to the host-side software.

As an important remark, note that the above low-level
mechanism can enable a full range of scenarios in addition
to preemption. It can also be useful for supporting process
migration across different implementations, as an underlying
mechanism for reliability, or for checkpointing of long or
critical FPGA tasks [15]. We thus plan to fully integrate the
flow with the software layers in the MPSoC and make
the low-level mechanisms accessible to, and controlled by the
operating system/hypervisor. To this end, SPHERE will also
aim at the integration with the FRED framework [16], [17] to
enable time-predictable virtualization of the FPGA area by
means of dynamic function exchange.

A. FPGA-BASED SECURITY SERVICES

The shell concept is not only concerned with the reconfigura-
tion process, though. In fact, for its positioning in the system,
the shell can also be in charge of arbitrating the access to
shared resources from the different hardware tasks. Among
other uses, this arbitration can offer interesting opportunities,
as an isolation mechanism aimed at establishing performance
guarantees exposed to the tasks. In addition, concerning
security, the arbitration functions can be further extended to
establish confidentiality, authentication, and integrity con-
ditions. In fact, as shown in Figure 3, the shell contains
one isolation module for each hardware task, which act as
a gate between the task and the rest of the system. From
the application’s perspective, this module can support on-line
encryption/decryption of bus transactions [18], relying on a
high-throughput hardware stream cypher [19], which estab-
lish a form of confidentiality of information flows outside the
perimeter of the hardware task and the (trusted) shell region.
More importantly, from the system’s perspective, the isola-
tion modules can serve as firewalls monitoring the traffic
patterns generated by the hardware tasks. This monitoring
can be as simple as checking address bounds and access
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conditions, complementing existing MPSoC-level features
like MMU/MPU and TrustZone, but can also apply smarter
policies, for example detecting ill-behaved AXI transactions
or even known patterns in the accelerator traffic that are
flagged as unsafe. Such policies can be stored in a configura-
tion memory that the shell, controlled by the host-side oper-
ating system, can dynamically change or update, allowing
improved configurability and reactivity to possible threats.

V. VIRTUALIZED TSN COMMUNICATIONS

The SPHERE framework requires a communication network
able to handle multiple traffic flows, internal and external
to the heterogeneous platforms, with different constraints.
In this context, the TSN family of standards offers a rich set
of protocols and combinations to design network architec-
tures that provide clock synchronization, fault-tolerance, and
support for different traffic classes with different temporal
requirements [20].

Many works addressed the key role of Ethernet and TSN
for automotive communications [21]-[23], pointing to the
novel features introduced in the IEEE 802.1Q standard [24],
which enables Ethernet switches to support the delay and
jitter requirements imposed on in-vehicle communications by
modern car applications, such as automated driving.

In particular, in the SPHERE framework, three types of
traffic flows are considered:

« Real-time Control Traffic. This is the highest prior-
ity traffic, consisting of small messages that require
deterministic transmission times, zero jitter, and delivery
guarantees. This traffic is typically transmitted accord-
ing to a time-driven schedule, such as x-by-wire com-
mands.

o Periodic Real-time Traffic. It includes periodic mes-
sages of different sizes, such as video streams, Lidar
point clouds, and audio streams, which require bounded
latencies and delivery guarantees.

o Best-effort Traffic. This is the lowest priority traffic,
served with no guarantees on latencies and delivery,
It includes messages for configurations, logs, GUI non-
critical information, etc.

The TSN standards provide mechanisms that are suit-
able for managing the transmissions of flows belong-
ing to any of these traffic types. In particular, the real-
time control traffic can be transmitted using the so-called
enhancements for scheduled traffic, defined in the IEEE
802.1Qbv-2015 amendment, now enrolled in the IEEE
802.1Q-2018 standard. This protocol provides novel queue
management mechanisms applied to the egress queues of
every switch port to enable/disable frame transmission from
the queues. These mechanisms are based on transmission
gates, which open or close according to the timings set in a
gate control list that is cyclically scanned. Transmission gates
can be used to guarantee temporal isolation for scheduled
traffic, i.e., a high-priority traffic class that requires frame
transmission based on a known timescale (i.e., time-driven
transmissions). Time-driven operations leverage on the
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common notion of time that is provided by the IEEE
802.1AS-2011 standard, and can also benefit from the recent
IEEE 802.1AS-2020 standard that, among other things, pro-
vides reliable clock synchronization. However, when using
the enhancements for scheduled traffic, transmission schedul-
ing is a crucial aspect for the system performance and,
depending on the number and types of flows to deal with
and on their characteristics, may be a challenging task.
In the literature, several approaches for frame scheduling
have been proposed. For instance, the Satisfiability Modulo
Theories (SMT) solver [25] is able to find a schedule solu-
tion by minimizing the delivery latencies or the number of
needed egress queues, etc. However, the computation time
needed to generate the schedule varies from some minutes to
a few hours, depending on the network complexity (number
of nodes/switches, number of flows, etc.). In [26], a novel
heuristic scheduler is introduced for the so-called Stream
Reservation (SR) classes introduced by the Ethernet Audio
Video Bridging (AVB) standards and now rolled into the
IEEE 802.1Q-2018 standard. It provides shorter schedule
computation times, i.e., in the order of seconds, but it cannot
guarantee zero jitter transmissions. However, such a sched-
uler guarantees a bounded interference between ST frames
scheduled in the same queue at the same time.

Periodic real-time traffic can be mapped onto the SR traffic
classes, handled according to the Stream Reservation Pro-
tocol (SRP) and frame transmissions undergo traffic shap-
ing using the Credit-Based Shaper (CBS). In particular, the
IEEE 802.1Q-2018 standard defines the parameters of two
SR classes, i.e.:

e SR Class A: it is the highest priority for SR classes,
providing a maximum delivery latency of 2 ms over
seven hops.

o SR Class B: it provides a maximum delivery latency
of 50 ms over seven hops.

SR classes can also be used for transmitting sporadic traffic.
However, to handle the transmission of multiple SR flows
according to the SRP on a single platform, like in the case
of the SPHERE framework, transmissions have to follow
specific rules that need to be handled by the platform. For
instance, SR frames belonging to the same flow have to be
transmitted to the Ethernet port spaced at least of an interval
defined for each class, that is 125 us for SR class A and
250 s for SR class B. ST frames, instead, have to be trans-
mitted to the Ethernet port at specific time instants (according
to the schedule).

Finally, best-effort flows are transmitted according to a
static priority scheduling without traffic shaping and timing
guarantees on message delivery.

In a real-time context, like the one addressed by the
SPHERE framework, response-time analysis techniques are
required to assess whether the time constraints associated
with the different types of traffic flows can be guar-
anteed. Recent works addressed the response-time anal-
ysis of time-sensitive networks, and some of them also
encompass the enhancements for scheduled traffic [27]-[29].
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Scheduled Traffic (ST) is a high priority traffic class in which
frames are transmitted according to a precise time schedule.
The ST frame transmissions are handled by the gate mecha-
nism to avoid interference from other classes.

In the SPHERE project, communications are handled not
only at the network level, where transmissions are scheduled
according to the protocols mentioned in this section, but
also at the framework level. In fact, heterogeneous platforms
with virtualization may have multiple virtual machines and
a lower number of Ethernet ports and/or TSN interfaces. For
this reason, in the following a suitable solution that enables
TSN transmissions of multiple virtual machines running on
the same platform will be discussed.

A. FPGA-BASED TSN SWITCH

To implement TSN protocols on a programmable SoC,
we selected the Multiport-TSN Switch (MTSN) IP core
by SoC-e [30], an all-in-one solution that can be adapted
and optimized depending on the application, from a simple
two-port end-point to a complex multiport switch. The IP uses
the Gigabit Ethernet MAC (GEM) of the SoC to configure up
to 16 internal/external MII (media-independent interface) /
GMII (gigabit MII) / (reduced GMII) RGMII ports. MTSN
targeted devices are the Xilinx Zyng-7000 SoC and the Zynq
Ultrascale+ MPSoC.

The main quality of the IP is the high configuration capa-
bility, not only of the number of ports, but also of the settings
like IP, MAC address MAC table, MDIO (Management Data
Input Output), frame storage queues, and more. In addition
to this, it offers the widest and most up-to-date support to
the TSN standards used in the automotive and industrial
domains [20], [31], including the following IEEE standards:

+ IEEE 802.1AS(rev) for time synchronization.

« IEEE 802.1Qav, for the credit-based shaper applied to

the Stream Reservation traffic classes.

o IEEE 802.1Qbyv for scheduled traffic.

« IEEE 802.1Qci for per-stream filtering and policing.

« IEEE 802.1CB for frame replication and elimination for

reliability.

« IEEE 802.1Qbu and 802.3br for frame preemption.

Starting from the only available vendor reference design,
which targets a custom board with the Xilinx Zynq
Ultrascale+ ZU3EG MPSoC, SPHERE addresses a proto-
typical implementation for the Xilinx ZCU102 evaluation
board [32]. Since this board has a single Ethernet port, an
FMC (FPGA Mezzanine Card) Ethernet module provides
four additional ports.

Note that, if using an Ethernet FMC on a different board,
we have to change how to handle the timing constraint and
use the recommended PIN for the Ethernet FMC.

B. TSN TRANSMISSION SCHEDULING IN VIRTUALIZED
HETEROGENEOUS PLATFORMS

The underlying computing platform typically offers a lim-
ited number of TSN-enabled Ethernet ports, which can be
lower than the number of VMs. This entails contention on
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the Ethernet port or the need for exclusive access from one
virtual machine. Moreover, as TSN transmissions have to
follow specific scheduling rules, (e.g., two consecutive frame
transmissions of the same SR flow have to be spaced at
least by a minimum time interval) a scheduling algorithm
has to be also applied to schedule the transmissions among
multiple VMs.

The SPHERE project envisages a specific software com-
ponent (called TSN Manager) that runs the transmission
scheduling algorithm, whose aim is transmitting the frames
belonging to different flows and traffic classes while main-
taining the properties and the behavior defined for each traffic
class in the IEEE 802.1Q standard.

In particular, the goal of the TSN Manager is to trans-
mit the frames belonging to specific flows to the Ethernet
port/s at specific times. In particular, ST flows are jitter-
sensitive, i.e., ST frames have to be transmitted to the
Ethernet port at precise time instants and the transmis-
sions to the Ethernet port of SR frames has to follow spe-
cific rules. Consequently, the TSN Manager, which is a
task itself, has to be scheduled with real-time guarantees.
A recent work by Leonardi et al. [33] investigated three dif-
ferent approaches to handle TSN real-time transmissions in a
heterogeneous platform with virtualization, also presenting
a preliminary assessment of their performance. As shown
in Figure 4 (a), (b) and (c), these approaches run at the appli-
cation level, at the virtual machine level and at the hypervisor
level, respectively.

VM1 VM2
(AppsSTL \(AppsT2 )(_ AppST3 )(_ AppsT4 AppSR_AL)("App SR_A2 )(“AppSR_B1 ("
|T$N ManagerHTSN ManagerHTSN ManagerHTSN Manager| ||| TSN ManagerHTSN ManagerHTsN Manager” App BE1
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[ Hypervisor ]
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VM1 VM2
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FIGURE 4. TSN Manager at (a) application level; (b) VM level (c);
hypervisor level.

The results presented in [33] showed that the application-
level transmission architecture offers a flexible solution,
thanks to the per-flow scheduling granularity. However, suit-
able scheduling policies have to be used to limit jitter. The
VM-level transmission architecture provides the application
with transparent transmission scheduling. However, using
this approach, the TSN Manager task is scheduled regardless
of the priority of the flows to be transmitted, thus losing the
per-flow scheduling granularity. Finally, the hypervisor-level
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transmission architecture also offers scheduling with per-flow
granularity, like the application level, but provides better
performance. However, this is at the expense of an increased
hypervisor complexity, which is not desirable for safety and
security purposes. Based on the findings of [33], the SPHERE
framework relies on a VM-level architecture, but reserving a
dedicated VM for the TSN Manager, as illustrated in Figure 5.

Board

Virtual Machine Virtual Machine Virtual Machine

Hypervisor
TSN Manager

Ethernet
Driver

E—lypervisor

TSN Ethernet Port

FIGURE 5. Archtecture of the SPHERE TSN Manager at the hypervisor
level.

TSN Component
(App. Level APIs)

TSN Component
(App. Level APIs)

)

[ Inter-domain Communication

Each virtual machine communicates with the TSN Man-
ager through a suitable API that allows the applications to
transmit/receive the frames belonging to a stream, regis-
ter/deregister a stream, and configure the network parameters.
The API provided to the virtual machine can be used by the
application to access the TSN manager through a suitable
inter-domain communication mechanism.

As discussed in Section III-D, the predictable I/O mecha-
nisms provided by SPHERE allows for a seamless integration
of a special-purpose I/O scheduler. As shown in Figure 2,
the TSN packet scheduler discussed in this section can be
used by the TSN dispatching domain to handle I/O requests
targeting the TSN switch, either in isolation (if the TSN
switch is the only device handled by the platform) or in
conjunction with other scheduling policy (in a hierarchical
setting). For example, a platform supporting TSN as well as
other I/O devices may prioritize the access to Ethernet (TSN)
giving preference to Ethernet frames transmission requests.

VI. CASE STUDY: AUTONOMOUS DRIVING APPLICATION
The use case considered by the SPHERE project is a
self-driving car able to follow a set of waypoints. The devel-
oped solution provides an end-to-end software stack capable
of properly analyzing the surrounding environment, detecting
ego vehicle position on a pre-loaded map, and providing the
proper drive-by-wire control signals (throttle, steering, and
brake). The car is able to navigate through a predetermined
map of waypoints, promptly reacting to unexpected events
in a highly dynamical environment, e.g., for avoiding obsta-
cles. This use case integrates multiple software components,
ranging from perception to control, that are becoming very
relevant in the automotive/autonomous driving domain, and
hence it is often adopted as possible baseline/benchmark to
researchers. The tasks involved in the case study and their
relations are illustrated in Figure 7, which is discussed with
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FIGURE 6. Vehicle and interface between SPHERE subsystem and vehicle
DBW actuation gateway.

more details in Section VI-C. The figure specifies the name
and the period (in milliseconds) of each software component.

As per project goals, safety and non-safety critical tasks are
managed to execute and communicate in isolation using the
SPHERE framework. Further details about the use case are
described in the following subsections.

A. SENSOR DESCRIPTION
The vehicle mounts different sensors properly installed and
integrated to ensure a complete coverage of its near surround-
ings. Specifically, the following sensors are installed:
o 5x Sekonix cameras [34], connected via Gigabit Multi-
media Serial Link (GMSL);
o Ouster OSO 64-120m lidar [35], connected via Ethernet;
¢ GPS+IMU module, connected via Ethernet;
o 2x Continental ARS420 radars [36], connected via
Ethernet.

1) VEHICLE INTERFACE

The target vehicle is a high-end passenger car used as a
research platform for projects related to autonomous driving
and advanced driving assistance systems (AD/ADASes). It is
capable of drive-by-wire control and actuation by means of
electrical signals on a Controller Area Network (CAN) bus
driven by one (or more) centralized domain controllers and
managed by vehicle electronic control units (ECUs). They

« steering control;

« shift control (from automatic to rear and vice versa);
¢ accelerator/brake control;

« power emergency ON/OFF button;

« steering encoder;

« encoder speed and odometry.

B. APPLICATIVE SOFTWARE ARCHITECTURE
The applicative software provides the proper throttle, steer-
ing, and brake signals to drive a vehicle through a pre-
determined map of waypoints that are defined in global
coordinates while avoiding obstacles, like pedestrians or
other vehicles. In this sense, the vehicle runs multiple tasks
at different priorities, namely, to control vehicle mission
(i.e., waypoint navigation), but also perform emergency
maneuvers, if needed.

Our system undergoes a standard design for autonomous
driving applications, which typically include the following
components:
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o Sensing, to gather information from the environment
using different sensors.

« Perception, to detect and track the position of road-users
(like pedestrians or vehicles).

o Localization, to determine the position of the car on the
given environmental map.

o Global (aka mission) planner, to update the position
and take decisions in the whole path that the car must
follow.

o Local planner, to update the car position on the map and
take decisions in the short time. This task computes the
trajectory to be followed considering the current speed
and angle between the vehicle and the target. The path
shall be followed while avoiding obstacles.

« Low-level actuation and control, to provide the proper
throttle and steering controls that must be effectively
employed by the car to reach the target position.

1) DETECTION

Camera frames are fed into a detection task. This task is
responsible for detecting and classifying the objects in the
road. The plan is to use a state-of-the-art convolutional neu-
ral network (CNN) to perform object detection and classi-
fication. The CNN used is YOLO (You Only Look Once)
version 3 [37], [38], re-trained from scratch on the Berkeley
BDD100K dataset. The inference is performed on the FPGA
and the output is composed of bounding boxes with an associ-
ated class. We currently support the following categories, but
our system can easily be-retrained and customized: Pedestri-
ans, Cars, Trucks, Bus, Motorbikes, Bicycles, Riders, Traffic
lights, Traffic signs.

2) LOCALIZATION

A precise localization of the vehicle on a given map is cru-
cial for navigation. This task has a high computational cost,
therefore it should be as light and responsive as possible to
always identify the vehicle position on the map. This task is
in charge of matching the features extracted from the sensor
with those stored on the map in a pre-mapping phase, but at
the same time, it also has to provide the location of the car in
the map. For this reason, this task is split into two subtasks:
localization (best effort) and position filtering (critical). The
best-effort localization is in charge of matching the current
point cloud with the complete one (i.e., the one created in the
mapping phase), matching the corresponding features. In our
case, localization is performed only via LiDAR using the
Generalized Iterative Closest Point (GICP) method, which
adopts a probabilistic model to determine the position of
the car on the given environmental map. This task is very
computational expensive. Once the localization is obtained,
the position is saved in a shared memory buffer to make
it available for the filtering subtask. The position filter is
implemented with an extended Kalman filter (EKF) running
in the safety-critical partition. Specifically, the Kalman filter
algorithm estimates the poses of the ego vehicle and objects
repeating two stages: prediction and correction. The resulting
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output is a matrix that corresponds to the estimated ego vehi-
cle position. Finally, a Particle Filter localization algorithm
is implemented to estimate the position of the vehicle in the
map; this algorithm uses a Monte Carlo probabilistic model to
determine the position of the car on the given map [39]. Such
a position is merged with the motion estimation coming from
the vehicle odometry, to obtain an accurate and predictive
estimate of the vehicle’s position. A nice property of the parti-
cle filter algorithm is that it is highly data-parallel, and thus it
can greatly benefit from the embedded reconfigurable FPGA
accelerators available in our onboard computing platform.

3) GLOBAL PLANNER

The global planner is the module that takes care of the whole
mission, which is typically pre-loaded together with the map
—for this reason, it is also often referred to as ““static planner™.
Its purpose is to compute the high-level control signals (accel-
eration/speed and steering angle) to be sent to the vehicle to
go from ““point A” to “point B’ in the map, under an optimal
trajectory, assuming a priori knowledge of the environment
and obstacles. As said, this task does not need to be executed
very frequently, hence it has been implemented as a best effort
low-criticality component.

4) LOCAL PLANNER

The main purpose of this component is to define the trajectory
to follow while avoiding obstacles in a short time lapse.
The local planner is one of the most important modules of
the application, because it is responsible for the behavior
of the vehicle and should be highly reactive to changes in
the surrounding environment, such as moving objects. This
task has been split into two parts: one in charge of trajectory
sampling (best-effort, low criticality task) and one in charge
of path following and collision avoidance (critical, highest
priority task). The trajectory sampling task has to generate
all the possible trajectories that the car can follow and select
the most suitable one. Each trajectory is defined as a spline,
that is, a line built through polynomial interpolation that
represents, at each point, the position and orientation that
the car will have to follow. The spline can be enriched with
additional information, such as speed to hold, stop, priorities,
etc. The path chosen is the closest to the optimal path while
avoiding possible obstacles. The rest of the local planner is
performed on the real-time partition. The path following task
receives data from the trajectory sampling one and follows
the chosen path with the Stanley Steering Control Algorithm.
This method adjusts the current pose of a vehicle to match
a reference pose that corresponds to the path computed in
the previous phase. The collision check is computed on the
real-time partition, using the occupancy grid given by the
LiDAR, thanks to which the car speed can be adjusted to
avoid obstacles.

5) ACTUATION
Actuation refers to the low-level control of the vehicle,
in charge of sending commands to the car via CAN bus.
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This activity is implemented as a safety-critical periodic task
with a period in the order of a millisecond. In particular, this
task is implemented by two proportional—integral-derivative
(PID) control loops, one acting to the throttle and one for
controlling the car speed. Both output values are sent via the
CAN bus in high-priority frame slots.

6) OTHER TASKS

Two additional tasks are present in the use case: a data col-
lector task, which receives data from all the tasks described
above, and a graphical user interface, which displays the data
of interest. Both functions are implemented as best-effort
tasks with low priority, running on the GNU/Linux partition.
The GUI can also be deployed on a separate computing board,
such as a tablet.

C. SOFTWARE PARTITIONING

1) TASK ANALYSIS

All the tasks involved in the AD stack are represented as a
directed acyclic graph [40] illustrated in Figure 7, where each
node of the graph is modeled as a time-triggered periodic
task with a relative deadline equal to its period. The results
produced by the tasks are exchanged through shared memory
buffers to guarantee that the most recent data are always
available to the other tasks for reading.

2) HARDWARE AND SYSTEM REQUIREMENTS

Each node of the graph in Figure 7 reports the name of
the task and its corresponding period in milliseconds. The
green-dashed circle represents the workload executed on
the FPGA, while the black ones represent best-effort tasks
that run on the CPU.

FPGA tasks can either consist of computational activities
purely implemented in hardware or be triggered by software
tasks to accelerate a portion of computation. In the first
case, the FPGA task is periodically triggered by a timer, still
implemented in hardware. In the second case, a software task
first passes data to the FPGA accelerator, then triggers the
acceleration request, and finally gets the produced results
and completes on the CPU. Therefore, the periodicity is
guaranteed by the execution paradigm since software tasks
are periodically scheduled on the CPU.

To guarantee the timing constraints of the application, tasks
are separated into best-effort tasks and critical tasks. The for-
mer runs on a best-effort operating system, like GNU/Linux,
while the latter executes on an RTOS, as Erika v3. Real-time
tasks are represented as red-dotted nodes.

3) SPHERE SYSTEM FRAMEWORK

The application configuration described so far relies on the
whole SPHERE framework. Firstly, its real-time proper-
ties are ensured by the RTOSes ecosystem, which in turn
leverages the strong partitioning mechanisms provided by
the SPHERE hypervisors used in the project. Secondly,
the TSN virtualization support is the key enabler for the
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FIGURE 7. Application graph with hardware and software partitioning.

mixed-criticality communication between the two hard-
ware platforms, among which the software stack is split,
as explained by the next subsection.

D. TASK PARTITIONING

To proper balance the workload of the system, the soft-
ware components are partitioned into two different hardware
platforms:

o SECO+I&M. It is composed by a SECO SMB71
SMARC module [41], including a ZU4-class Xilinx
Zynq UltraScale+ MPSoC platform, hosted on an Ideas
and Motion autonomous driving application SMARC
carrier board [42]. It provides the edge functionalities
and interfacing for ADAS software components.
ZCU104. It is an evaluation board from Xilinx with a
ZU7 MPSoC [43]. It is in charge of the highly demand-
ing object detection jobs. It also hosts the TSN switch
and the relocatable FPGA design that has been presented
in VLA (not depicted in the figure).

These two platforms exchange information (depicted
in Figure 7 with black dashed and solid edges) through a
single TSN link, which manages the messages with a prioriti-
zation mechanism. The messages passed from the ZCU104 to
the SECO+I&M platform through the TSN switch are:
(1) the objects detected by the neural network, which are
given to the path planning component; (2) the GPS infor-
mation; (3) the LiDAR point cloud to the localization
component; and 4) the LiDAR occupancy grid. On the
other hand, the information produced by the SECO+I&M
(i.e., the position of the car within the map) is sent to the GUI
to be displayed. The proposed partitioning allows establish-
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ing a prioritized data exchange. In particular, the data with
higher priority are those provided by the sensors, being the
point cloud, the detected objects, and the occupancy grid the
most critical ones (solid lines), whereas the GUI data are
those with the lowest priority (dashed lines).

The innermost partitioning level, inside the single SoC,
is managed by the hypervisor. The RTOS and Linux VMs
are hosted on different CPU core sets of the SECO+1&M
platform, where the hypervisor guarantees the isolation prop-
erties that are needed to obtain the real-time constraints
described above. Tasks with different criticality can thus
safely execute together without interference and without sac-
rificing performance.

VII. CONCLUSION

This work presented SPHERE, a framework to abstract the
hardware complexity of systems composed of multiple het-
erogeneous system-on-chips and simplify the management of
their computational resources. The paper discussed the use of
hypervisor technology to virtualize computational resources
and isolate the behavior of different subsystems running on
the same platform, and presented new techniques to enable
advanced isolation and virtualization capabilities. The man-
agement of time-sensitive networks in the presence of traffic
flow with different temporal constraints has also been dis-
cussed together with techniques to manage the FPGA. The
framework has been realized upon the Xilinx Ultrascale+
by Xilinx, employing a TSN switch by Soc-e. The paper
finally presented a case study focused on autonomous driving
used to validate the SPHERE framework. Future work will
report on the experimental evaluation of the framework, e.g.,
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by evaluating the system load for the presented task set,
its schedulability analysis, and measuring the delays due to
the framework. Furthermore, the consideration of additional
requirements, e.g., related to system dependability and fault
tolerance, is a research direction that will be addressed in the
future due to its relevance for the considered application.
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