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Abstract 27 

This paper presents a study on nonlinear asymmetric vibrations in shallow 28 

spherical caps under pressure loading. The Novozhilov’s nonlinear shell theory is 29 

used for modelling the structural strains. A reduced-order model is developed 30 

through the Rayleigh-Ritz method and Lagrange equations. The equations of 31 

motion are numerically integrated using an implicit solver. The bifurcation 32 

scenario is addressed by varying the external excitation frequency. The 33 

occurrence of asymmetric vibrations related to quasi-periodic and chaotic motion 34 

is shown through the analysis of time histories, spectra, Poincaré maps, and 35 

phase planes. 36 

 37 
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1. Introduction 41 

Thin-walled structures like plates, panels, shells, and caps are important structural 42 

elements in Engineering; their applications can be found in Civil Engineering 43 

(roofs, vaults, tensile structures), Aerospace (airplanes, missiles and rockets); 44 

Mechanics (membrane based microsensors and energy harvesters). 45 

These structures are strong and lightweight at the same time, but they are 46 

extremely sensitive to perturbations, present a complicated instability behaviors 47 

and are very difficult to model. They could buckle under the action of critical 48 

loads, following sub-critical post-buckling paths; moreover, they can exhibit non-49 

linear dynamic phenomena, such as chaotic vibrations, when the amplitude of 50 

vibration is moderately large. 51 

Nowadays, many theories and simplified models are available for studying shell 52 

systems, even in the presence of fluid-structure interaction or thermal fields. 53 

Nevertheless, new challenges come from the new frontiers of the Engineering, 54 

which asks for even more reliable models where complicating effects are taken 55 

into account for exploiting the nonlinearities: for example, phenomena such as 56 

multi-stability or the pull-in, can be desired features through which designers can 57 

achieve structural optimization and develop high performance devices. 58 

A short literature review is reported here for introducing the reader to the most 59 

important and recent scientific contributions to the study of thin walled structures, 60 

with a specific focus to spherical caps dynamics. 61 

Concerning the elastic stability of shells, buckling problems are classified into: 62 

Static buckling when loads are applied extremely slowly; Dynamic buckling when 63 

the loads are suddenly applied (step loads). 64 

From a literature review, there is a discrepancy between experimental data and 65 

theoretical results. The primary sources of inconsistencies, that lead to an 66 

experimental lower buckling load than the one theoretically predicted, are (i) the 67 

high sensitivity of shells to geometric imperfections and non-uniform material 68 

distribution, and (ii) the post-buckling behavior is strongly affected by 69 

nonlinearities. 70 

Let us first focus on the static instability of the spherical caps under an external 71 

pressure load. Krenze and Kiernan [1] showed the importance of producing high 72 

quality specimens for performing experimental tests. In the same period, Huang 73 
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[2] and Weinitsche [3] used Margurre’s theory with possibility of having non-74 

symmetric buckling. They showed how, for deeper caps, the wavelength of the 75 

buckling modes was higher compared to shallow caps, and numerical results 76 

agreed with the experimental ones available at that time. These results were 77 

experimentally confirmed by Yamada et al. [4] two decades later. 78 

The role of geometric imperfections on critical static loads of caps was 79 

investigated in Refs. [5,6]. Results pointed out how the shape of the geometric 80 

imperfection affects the decrement of the critical buckling load; often the snap-81 

through phenomenon disappeared due to imperfections, and continuous and stable 82 

buckling paths were shown by the pressure-deflection diagrams. 83 

Since the measurement of imperfections it is not always possible for large scale 84 

applications, NASA proposed an empirical formula based on the lower envelope 85 

of a series of experimental data [7]. Nowadays, the specimens quality is higher 86 

and other techniques have been proposed for improving the NASA empirical 87 

formula[8,9]. 88 

A further reduction of the load-carrying capacity can be observed when the time 89 

dependency of the load is considered, i.e. in the case of dynamic buckling. 90 

Lock et al. [10] experimentally analyzed the buckling of shallow domes under a 91 

pressure-step loading. They discussed the difference between “direct” and 92 

“indirect” snapping phenomena. The direct snapping is a catastrophic 93 

phenomenon and involves only symmetric vibrations; conversely, the indirect 94 

snapping occurs after a transient and the contribution of the non-symmetric modes 95 

is not negligible after the snapping. 96 

Stricklin et al. [11] used nonlinear Novozhilov’s theory for investigating the static 97 

stresses in shells of revolution and improved their model for studying the dynamic 98 

buckling in Ref. [12]. The equilibrium equations were obtained through 99 

Castigliano’s theorem. Numerical results were compared with experimental ones, 100 

and an excellent agreement was proved. The dynamic model was derived 101 

employing of the Lagrange equations by considering only axisymmetric modes, 102 

and the results confirmed the previous analyses [13,14]. 103 

Ball and Burt [15] numerically investigated the dynamic buckling of clamped 104 

shallow spherical caps under symmetric and nearly-symmetric step pressure loads. 105 

Asymmetric modes were considered, and the buckling load of geometrically 106 

perfect structures of different shallowness was given.  107 
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The asymmetric dynamic buckling of shallow spherical caps was investigated 108 

even by Akkas [16], who showed that the asymmetric buckling under step 109 

pressure load results in cusps in phase-plane diagrams. 110 

Further results concerning the dynamic buckling of imperfect caps can be found in 111 

Refs. [17–19], where the possibility of having plastic deformations was 112 

considered as well. 113 

In the framework of spherical caps under harmonic loads, the literature is not as 114 

vast as for the buckling. Reasons must be sought in the fact that: (i) spherical caps 115 

are a particular case of doubly curved shells, they are modeled through equations 116 

that are more complex with respect to plates and cylindrical shells; (ii) the high 117 

computational cost related to the numerical integration of the equations of motion 118 

limited for long time the analysis to low dimensional models and axisymmetric 119 

vibrations. 120 

Using a theory proposed by Yu [20], Grossman et al. [21] investigated the 121 

axisymmetric nonlinear vibrations of shallow spherical caps with different 122 

boundary conditions. This study compared flat plates to curved caps, and the 123 

results pointed out the transition from hardening to softening nonlinearity when 124 

the surface curvature is increased. 125 

Evensen and Iwanovsky [22] were the first to perform both analytically and 126 

experimental analyses on shallow spherical caps under a combination of static and 127 

sinusoidal external pressure loads. The analytical model was based on the 128 

Marguerre’s nonlinear shell theory. Axisymmetric deflections and uniform load 129 

distribution were considered. A detailed scheme of the experimental setup was 130 

reported and discussed. Numerical results concerning free vibrations were in 131 

excellent agreement with experiments. Unfortunately, differences were shown in 132 

several nonlinear forced cases. Such discrepancies were mainly attributed to the 133 

interaction between static and dynamic loads, and to the asymmetric vibrations 134 

observed during the experiments. 135 

Yasuda and Kushida [23] studied the forced vibration of caps under harmonic 136 

point loads. The activation of subharmonic motion due to internal resonances was 137 

observed. In order to validate the numerical model, experiments were performed 138 

on a bent circular plate clamped at its edges. The structure was loaded by a 139 

concentrated force induced by two electric magnets, and experimental results 140 

agreed with the numerical ones. 141 
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The axisymmetric vibrations of pre-loaded shallow spherical caps were 142 

investigated by Gonçalves [24,25] and Soliman and Gonçalves [26]. For obtaining 143 

a reduced-order model (ROM), the Galerkin method was considered. The 144 

displacement fields were expanded by using the Bessel functions, and the 145 

resulting equations of motion were solved through the Newton-Rapson method. 146 

Results showed a strong influence of geometric imperfections and their spatial 147 

shape. Softening nonlinearity can be turned to hardening by imposing a suitable 148 

initial imperfection of a given shape and amplitude, as shown by the reported 149 

backbone curves. Moreover, assuming the excitation frequency as a control 150 

parameter, the bifurcation analysis pointed out the existence of period-doubling 151 

cascades and chaotic oscillations. The onset of such phenomena is due to energy 152 

given by the harmonic pressure to the shell, which leads to multiple back-and-153 

forth jumps between potential wells. 154 

Thomas et al. [27,28] studied the response of a free-edge shallow spherical cap 155 

under harmonic excitation. Using the multiple-scale perturbation method, results 156 

showed that, having integer or quasi-integer ratio between natural frequencies is 157 

not a sufficient condition for having internal resonances activation. This is due to 158 

the body symmetry, which leads to the canceling of some nonlinear coefficient in 159 

the ODEs. Experiments were carried out by forcing the specimen using an 160 

electromagnetic coil. The occurrence of an internal resonance between two 161 

conjugate asymmetric modes and one axisymmetric mode (1:1:2) was proven, a 162 

good qualitative fitting between theory and experiments was shown for small 163 

forcing amplitude. 164 

Touzè et al.[29,30] used the nonlinear normal modes approach (NNMs) for 165 

predicting the trend of nonlinearity for each mode as a function of the spherical 166 

cap geometric aspect ratios. In particular, the transition from hardening to 167 

softening nonlinearity was addressed. 168 

Chaotic vibrations in shallow shells with circular planform were investigated by 169 

Krysko et al. [31]: the role of size-dependent parameters on vibrations of nano 170 

shells were analyzed. The system of PDE was reduced using a finite difference 171 

method (FDM), and the resulting system was solved through a Runge-Kutta 172 

scheme. By comparing Fourier’s spectra, Poincaré maps, Lyapunov exponents, 173 

and Morlet wavelet, the authors showed that, considering the size-effect shells 174 
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exhibit regular vibrations whereas with the same load conditions neglecting the 175 

size-effect one obtains chaotic vibrations. 176 

The present work aims to address to some questions arisen recently in Ref.[32] on 177 

pressure loaded spherical caps, where the limits of axisymmetric models were 178 

shown using continuation techniques. Here the Novozhilov’s geometrically 179 

nonlinear theory is considered. For the analysis of the linearized equations, the 180 

Rayleigh-Ritz approach is considered to obtain the mode shapes in a semi-181 

analytical way. Lagrange equations are used for reducing the system of nonlinear 182 

partial differential equations, PDEs, to a system of ordinary differential equations, 183 

ODEs. A bifurcation analysis of is carried out by directly integrating the equations 184 

of motion. Results are presented and discussed with the help of bifurcation 185 

diagrams and other useful tools, such as Poincaré maps and Fourier’s spectra. The 186 

superimposition of a static and a dynamic pressure yields to non-periodic and 187 

chaotic oscillation related to the activation of asymmetric modes. 188 

 189 

2. Problem Formulation 190 

A spherical cap having radius R , base radius a , cap height s , and thickness h , 191 

is considered, see Fig. 1(a-c). A spherical coordinate system ( ; , , )O z   is 192 

centered at the top of the cap O . The curvilinear coordinates ( , )   identify a 193 

point P of the shell middle surface, z  is the radial distance of a generic point of 194 

the shell from the middle surface. Three displacement fields, meridional 195 

( ), ,u t  , circumferential ( ), ,v t  , and radial ( ), ,w t  , describe the deformed 196 

configuration of the middle surface; t  is the time variable. 197 

Limiting the analysis to shallow spherical caps, the Lamé parameters of the 198 

undeformed middle surface are 1A R=  and 2 bA    ; where 
B  =  is the 199 

meridional non-dimensional coordinate. 200 

For describing the relationships between strains and displacements, the 201 

Novozhilov’s nonlinear shell theory [33] is considered. Such theory is based on 202 

the Kirchhoff-Love hypothesis, which states that: (i) the shell is thin h R and 203 

h a , (ii) strains, (iii) transverse normal stresses are small, and (iv) the normal to 204 

the undeformed middle surface remains normal after deformation, and no 205 
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thickness stretching occurs. The hypothesis of small displacements is relaxed in 206 

the nonlinear analysis. 207 

 208 

(a) 

 

(b) 

 

(c) 

 
Fig. 1. Spherical cap geometry and coordinate system: (a) cross-section view, (b) top view, 209 

and (c) breakout-section view. 210 

 211 

Because of the aforementioned hypothesis, the strains ˆ ˆ,
i ij
   at an arbitrary point 212 

of the cap linearly vary along the thickness; moreover, the plane-stress hypothesis 213 

is considered. The strains are given by: 214 

 215 

 ˆ ,z k   = + 
 

(1.a) 

 ˆ ,z k   = +   
(1.b) 

 ˆ ,z k   = +   (1.c) 

 216 

where  ,  ,   are the middle surface strains, k , k , and k  are the changes 217 

in curvatures and torsion of the middle surface of the shell, which depend on the 218 

middle surface displacement fields through the following relationships: 219 

 220 
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where the strain components ij
e are: 222 

 223 
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 224 

Considering an elastic linear, homogeneous and isotropic continuum, one can use 225 

the Hooke’s law, i.e. the following stress-strain relationships: 226 

 227 
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 228 

where E  and   are the Young’s modulus and the Poisson’s ratio, respectively. 229 

By considering the strains (1.a-d) and the stresses (4.a-b), the elastic strain energy 230 

SU  [34] of a thin shallow spherical cap is given by 231 

 232 
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 233 

while, the kinetic energy ST , under the hypothesis of negligible rotary inertia [34], 234 

is given by 235 

 236 

 ( )
0

1 2
2 2 2

1 2

0

1

2S S bT h u v w A A d d





   = + + 
 

(6) 

 237 

where S  is the material mass density, 0  is the half opening angle of a hole 238 

assumed a the cap pole for avoiding the singularity due to the spherical reference 239 

system [35]. 240 

 241 

2.1. Approximate eigenfunctions 242 

In order to develop a ROM for studying the cap nonlinear dynamics, in this 243 

section the eigenfunctions of the linearized operator are obtained through the 244 

Rayleigh-Ritz approach [36]. 245 
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In the present study, clamped boundary conditions are considered at the circular 246 

edge 247 

 0          1
w

u v w for 



= = = = =


 (7) 

while, no boundary conditions are considered at the cap pole. 248 

The Rayleigh-Ritz approach requires that a trial function set respects the 249 

geometric boundary conditions only [37]; on the other hand, the stress-free 250 

boundary conditions at the cap pole (where the small hole is present) are 251 

neglected. 252 

The generic mode of vibration can be described by considering three displacement 253 

fields ( , , ), ( , , ),u t v t     and ( , , )w t  , which obey to the same time law ( )f t , 254 

i.e. the variable separation can be considered: 255 

 256 

 ( , , ) ( , ) ( ),u t U f t   =   (8.a) 

 ( , , ) ( , ) ( ),v t V f t   =   (8.b) 

 ( , , ) ( , ) ( ).w t W f t   =   (8.c) 

 257 

( , ), ( , ),U V     and ( , )W    are spatial functions denoting the mode shapes i.e. 258 

eigenfunctions. 259 

The eigenfunctions are now discretized using a linear combination of functions. 260 

Legendre polynomials are considered in the meridional direction and 261 

trigonometric functions are assumed in the circular direction. 262 

 263 

 *
,0 0

( , ) ( ) cos( ),uM N

m n mm n
U U P n   

= =
=   (9.a) 

 

*
,00

*
,0 1
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                ( )sin( ),

v

v

M

m mm

M N

m n mm n

V V P

V P n

  

 
=

= =

= +
 

 (9.b) 

 *
,0 0

( , ) ( ) cos( ).wM N

m n mm n
W W P n   

= =
=   (9.c) 

 264 
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where *( ) (2 1)m mP P = −  is the m-th Legendre polynomial of the first kind 265 

shifted in the domain  0,1 ; m is related to the number of meridional 266 

wavelength; n is the number of nodal diameters. 267 

Because of the axial symmetry, spherical caps exhibit conjugate modes, called 268 

driven and companion mode shapes or conjugate modes [38,39]. These modes 269 

have the same natural frequency and shape, but the displacement fields are 270 

angularly shifted of 2n . Conjugate modes describe standing waves, but 271 

circumferential travelling waves could arise when nonlinear mode coupling 272 

occurs [40–42]. Therefore, companion modes should be considered when a 273 

nonlinear analysis is carried out. 274 

 275 

 *
,0 1

( , ) ( )sin( ),uM N

m n mm n
U U P n   

= =
=   

(10.a) 

 *
,0 1

( , ) ( ) cos( ),vM N

m n mm n
V V P n   

= =
=   

(10.b) 

 *
,0 1

( , ) ( )sin( ).wM N

m n mm n
W W P n   

= =
=   

(10.c) 

 276 

It is worth noting that asymmetric modes are not associated to multiple 277 

eigenvalues, therefore, they have not companion modes. 278 

By imposing the set of boundary conditions (7) to the discretized eigenfunctions, 279 

a system of algebraic equations is obtained: 280 

 281 
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( ) 0,uM

m n mm
U P 

=
=  

     =1for   

(12.a) 
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=
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(12.c) 
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,0
( ) 0,wM
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W P 

=


=
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(12.d) 

 282 

The solution of this linear system allows to express 0, 0, 0, 1,( , , , )n n n nU V W W  in terms 283 

of the remaining coefficients , , ,( , , )m n m n m nU V W ; the latter coefficients can be 284 
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reordered in a vector q  [43] with a number of elements equal to 285 

( 3 )( 1)max u v wN M M M b N= + + + − + , where b=4 for a clamped circular cap [32]. 286 

Considering only the linear terms in the strain-displacement relations (2.a-f), the 287 

eigenvalue problem for approximating the natural frequencies and mode shapes of 288 

the structure is obtained by imposing the stationarity of the Rayleigh’s quotient 289 

( ) ( ) ( )*
S SR U T=q q q , where ( )SU q  is the maximum potential energy during a 290 

“modal” oscillation, and ( ) ( )* 2/S ST T =q q . 291 

 292 

 
2( ) .− + =M K q 0   (13) 

 293 

  is the circular frequency of the harmonic motion; M  and K  are the mass 294 

matrix and the stiffness matrix of the discrete linearized system, respectively. 295 

The i-th solution of equation (13), ( )( ) ( ),i i q , gives the approximation of the i-th 296 

natural frequency and mode shape, respectively. 297 

To improve the results readability and the numerical accuracy, the approximated 298 

mode shapes are normalized using the approach of Ref.[43], and the following 299 

condition is sought ( ) ( ) ( )max abs ( , ) ,abs ( , ) ,abs ( , ) 1i i i
U V W            =       . 300 

 301 

2.2 Nonlinear vibrations 302 

Synchronous motion and small amplitude displacement hypotheses are now 303 

relaxed, as well as the absence of external excitation. 304 

In such conditions we cannot claim anymore that the vibration is harmonic or 305 

periodic. 306 

The approach used for analyzing the nonlinear dynamics of the cap is based on the 307 

spectral theorem, i.e., taking advantage from the completeness of the 308 

eigenfunctions calculated on the previous section, the displacement fields are 309 

expanded as follows: 310 

 311 

 
,1 ( ) ( ) ( ) ( )

, , , , , ,( , , ) [ ( , ) ( )  ( , ) ( )]u uM N d d c c

i j u i j i j u i ji j
u t U f t U f t     = +   

(14.a) 

 
,1 ( ) ( ) ( ) ( )

, , , , , ,( , , ) [ ( , ) ( )  ( , ) ( )]v vM N d d c c

i j v i j i j v i ji j
v t V f t V f t     = +   

(14.b) 
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,1 ( ) ( ) ( ) ( )

, , , , , ,( , , ) [ ( , ) ( )  ( , ) ( )]w wM N d d c c

i j w i j i j w i ji j
w t W f t W f t     = +   

(14.c) 

 312 

where d and c are related to the driven and companion modes, respectively; i and j 313 

identify the number of meridional and circumferential wavelengths; ( )
, ,k i jf
 are the 314 

time dependent unknown generalized coordinates. 315 

For thin-walled bodies under external pressure load, two assumptions are common 316 

in the literature: (i) the pressure is considered as a radial non-follower load; (ii) 317 

the load distribution is applied to the middle surface [33]. 318 

The former approximation simplifies the numerical calculations and reduces the 319 

numerical effort; however, it could underestimate the safety factor in structures 320 

that undergo to large deflections. The latter assumption is a valid approximation 321 

for thin shells and should be removed for thicker structures. 322 

Considering a configuration-dependent pressure distribution that always acts 323 

orthogonal to the surface (follower force distribution), the expression of the j-th 324 

generalized force is given by Amabili and Breslavsky, where only the linear strain 325 

terms are retained [44] 326 

 327 

 
0

1 2

12 23 11 22 1 2

0

( ) (1 ) ,p

b

j j j j

W u v w
p t e e e e A A d d

q q q q





  
    

 − − + − + + 
     

 
 

(15) 

 328 

The external pressure consists of a static and a dynamic component 329 

( ) cos( )s dp t p p t= +  is the external pressure. The pressure is positive when 330 

inflates the structure.  331 

Taking into account the full expression of the strains (2.a-f) and replacing them 332 

into the energies and virtual work formulae, the equations of motion are derived 333 

by the Lagrange equations 334 

 335 

 ,          1,2,...,pS S
dofs

j j j

WT Ud
for j N

dt q q q

   
+ = =     

 (16) 

 336 

dofs
N  indicates the number of degrees of freedom of the nonlinear ODEs. Such set 337 

could be rewritten into state-space form. 338 

The set of nonlinear ODEs could be rewritten into the following first-order form: 339 
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 340 

 1[ cos( )]NL s d t−

=
 = − − + + 

q y

y M Cy K q p p
 

(17) 

 341 

Note that 1 diag(2 )j j − =M C , where 
j

  and j
  are the damping ration and the 342 

natural frequencies of the jth generalized coordinate; sp  and 
dp  are the 343 

generalized force vectors due to the static and dynamic pressure, respectively;   344 

is the frequency of the external excitation; y  is the generalized velocity vector. 345 

In the following analysis, the equations of motion are reduced to a 346 

nondimensional form: the amplitudes are divided by the shell thickness; the time 347 

is divided by the period of the first axisymmetric resonant mode. 348 

 349 

 ˆ
h

= q
q

 
1,0 t =   (18) 

 350 

The pressure is normalized through to the Zoelly’s critical buckling pressure of a 351 

complete, isotropic, and homogeneous sphere, see Ref. [45] 352 

 353 

 ( )
2

2

2

3 1
cr

E h
p

R

 =  
 −

 

(19) 

 354 

For the sake of completeness, the expression of the parameter   is here reported 355 

due to its important meaning:   includes information on the thinness and the 356 

shallowness of the investigated structure.  357 

 358 

 
24 12(1 ) ,

a

Rh
 = − 

 
(20) 

 359 

3. Numerical Results 360 

Consider a clamped shallow spherical cap, having a uniform thickness, made of 361 

steel. Using the 38 dofs nonlinear model  developed in Ref [32], the nonlinear 362 

dynamic response of the cap under a time-varying harmonic pressure is 363 
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investigated. For the sake of clarity, the linear mode shapes retained into the 364 

nonlinear ROM are listed in Table 1:it must be noted that both driven and 365 

companion vibration modes have been included for the asymmetric mode shapes 366 

(n=0). 367 

 368 

Table 1 – Normalized natural frequencies and mode shapes considered into the nonlinear 369 

reduced-order model [32]. 370 

, 1,0m n
   m n Modal displacement field 

1.0000 1 0 w,u 

1.1052 1 2 w,v,u 

1.3030 2 0 w,u 

1.6838 1 4 v 

1.9650 2 2 w,v,u 

2.0695 3 0 w,u 

2.4869 2 4 v 

2.6661 3 2 w,v,u 

3.4519 4 0 w,u 

4.1146 3 4 v 

5.3040 5 0 w,u 

7.3148 4 4 v 

7.7524 6 0 w,u 

 371 

The geometrical and structural data are listed as follows: 0.8 R m= , / 300h R= , 372 

0.152 a m= , 0.0147 s m= , 11.0degb = , 9200 10  E Pa=  , 37800 /kg m = , 373 

0.3 = , 6 = . The natural frequency of the first axisymmetric mode, 1,0 , is 374 

considered for the time nondimensionalization, as already stated in (18), and a 375 

modal damping factor 0.012, 1, 2,...
j dofs

j N = =  is assumed. 376 

A static pressure load 0.40s crp p= −   (lower than the critical buckling pressure) 377 

acts on the shell while a dynamic component, of amplitude 0.020d crp p=  , is 378 

superimposed to the static one. 379 

The set of nonlinear ODEs (17) is numerically solved by using the Fortran routine 380 

for time integration RADAU5 [46]. This integrator was developed for solving stiff 381 

ODEs and is based on the implicit Runge-Kutta method of order 5, 3-stages, with 382 
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step-size control. To carry out the bifurcation analysis, the excitation frequency is 383 

varied forward and backward in the frequency range 1,0 [1.07400,1.10500]  , 384 

where the occurrence of dynamic instabilities were proven through a path-385 

following analysis in Ref. [32]. 386 

The parameters used for setting the time-response analysis are the following: 125 387 

excitation frequency steps with a step-size of 1,0 0.00025 =  ; a sampling 388 

frequency equal to 40 times the excitation frequency; 600 excitation periods of 389 

integration, where only 300 periods are retained for getting rid of the transient 390 

response. When the simulation starts, homogeneous initial conditions are 391 

considered, then, for further steps (different frequencies), the initial conditions are 392 

assumed to be the final state of the previous step, with a perturbation of amplitude 393 

0.01 (dimensionless) applied to every generalized coordinate. For the frequencies 394 

where the system is sensitive to small perturbations and prone to exhibits chaotic 395 

motion, the perturbation allows the system to leave an almost unstable orbit and 396 

find remote attractors. 397 

In Fig. 2(a,b), the frequency-response curves obtained by directly integrating the 398 

ODEs are compared to continuation method results [32]. Starting from 399 

1,0 1.0740 =  and considering an increasing forcing frequency (red asterisks), 400 

,1,0wf  follows the stable solution path 1 (continuous black line) and switch on 401 

branch 2 after the period-doubling (PD) at 1,0 1.08275 = , see Fig. 2(a), where 402 

the bifurcation leads to the onset of asymmetric oscillations, see Fig. 2(b). Large 403 

amplitude vibrations, with a discontinuous amplitude variation, occur for 404 

1,0 [1.08425,1.09375]  , where the path following analysis pointed out the 405 

coexistence of multiple unstable solution (dotted black line), i.e. one or more 406 

Floquet multipliers fall outside the unit circle. By considering 1,0 1.09500  , 407 

,1,0wf  lies again on a stable periodic solution, while ( )
,1,2
d

wf  follows a branch not 408 

shown in Ref. [32] and asymmetric oscillations persists until a second PD 409 

bifurcation at 1,0 1.10125 = . 410 

Considering now a backward frequency variation (blue circles), the frequency-411 

response curve trend is almost the same obtained by considering an upward 412 

frequency variation. However, when the harmonic pressure acts on the structure 413 

with a frequency 1,0 [1.07650,1.08400]  , both the coordinates ,1,0wf  and ( )
,1,2
d

wf  414 
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follows secondary solution branches not shown by the path following analysis 415 

[32]. A further reduction of the forcing frequency, leads to a sudden response 416 

jump that restores a purely axisymmetric overall motion of the cap. 417 

 418 

(a) 

 

(b) 

 
Fig. 2. Frequency-response curves: (a) first axisymmetric mode, (b) driven asymmetric mode 419 

(1,2). (­ Ref.[32], ⁎ upward frequency variation, ○ downward frequency variation, “PD” 420 

period-doubling). 421 

422 
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In order to provide further information for understanding the path-following 423 

analysis results, bifurcation diagrams of the Poincaré maps are here presented and 424 

discussed.  425 

In Fig. 3(a-d), the bifurcation diagrams obtained for an increasing excitation 426 

frequency are shown. The response is fully axisymmetric until 1,0 1.08275 = , 427 

where the activation of the asymmetric conjugate modes ( )
,1,2
d

wf  and ( )
,1,2
c

wf  is 428 

governed by 2-T subharmonic responses, see Fig. 3(c,d), although the 429 

axisymmetric generalized coordinates ,1,0wf  and ,2,0wf  retain 1-T periodic 430 

oscillations, Fig. 3(a, b). Nonperiodic vibrations arise for 1,0 1.08425 = , where 431 

a Neimark-Sacker bifurcation leads to amplitude-modulated oscillations. For 432 

1,0 1.08600 = , the quasi-periodic response collapse on a chaotic attractor. 433 

Chaotic region holds until 1,0 1.94250 = , where quasi-periodic motion is 434 

restored and the conjugated asymmetric coordinates ( )
,1,2
d

wf  and ( )
,1,2
c

wf  display 2-T 435 

periodic oscillations. An additional excitation frequency increment gives rise to a 436 

period-doubling bifurcation at 1,0 1.10125 = , in agreement with the finding of 437 

[32]. Beyond the period doubling, the response becomes periodic with the same 438 

frequency of the excitation and the contribution of the asymmetric modes on the 439 

overall oscillation becomes null, as already pointed out form the analysis of the 440 

frequency-response diagrams in Fig. 2(a,b). 441 

Bifurcation diagrams of the Poincaré sections are now analyzed by considering a 442 

decreasing excitation frequency, Fig. 4(a-d). 443 

Starting from 1,0 1.10500 = , the structural response undergoes sequentially to 444 

a period-doubling bifurcation at 1,0 1.10125 =  and a Neimark-Sacker 445 

bifurcation at 1,0 1.09450 = . The amplitude-modulated oscillations burst into a 446 

chaotic attractor at 1,0 1.09325 = . Inside the range 447 

1,0 [1.08500,1.09325]  , the response jumps from chaotic to quasi-periodic 448 

attractors. A further reduction of the control parameter leads to a complex 449 

dynamic behavior, where the solution alternates quasi-periodic to 5T-subharmonic 450 

vibrations. Then, when 1,0 1.07650  , only axisymmetric states exist. 451 

452 
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 453 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Fig. 3 - Bifurcation diagrams of the Poincaré section for an increasing excitation frequency: 454 

(a) first axisymmetric mode, (b) second axisymmetric mode, (c) driven, and (d) companion 455 

asymmetric modes (1,2).  456 

 457 

From the analysis of the bifurcation diagrams, an interesting phenomenon has 458 

been pointed out: for some values of the forcing frequency, axisymmetric 459 

vibrations are periodic with the same frequency of the harmonic pressure, while 460 

the asymmetric oscillations are 2-T subharmonic. By analyzing the set of the 461 

equations, one could see that a coupling between linear terms of the coordinate 462 

,1,0w
f  and ( )

,1,2
d

wf  is missing in the first equation of the ODEs (when a perfect 463 

structure is considered). On the other hand, only odd powers of ( )
,1,2
d

wf  and products 464 

between linear power of ,1,0w
f  and ( )

,1,2
d

wf  appear in the second equation; therefore, 465 

an autoparametric instability takes place when the axisymmetric mode (1,0) 466 
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vibrates at the same frequency of the asymmetric mode (1,2), indeed, from Fig.s 467 

3-4, a period-doubling occurs when 1,0 1.10125 = , i.e. 1,2 0.9964 = . 468 

 469 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Fig. 4. Bifurcation diagrams of the Poincaré section for a decreasing excitation frequency: 470 

(a) first axisymmetric mode, (b) second axisymmetric mode, (c) driven, and (d) companion 471 

asymmetric modes (1,2). 472 

 473 

As suggested by Moon [47], in order to detect non-periodic or chaotic oscillations 474 

it is not sufficient considering only frequency-response or bifurcation diagrams. 475 

To this end, other mathematical tools deserve to be simultaneously considered, 476 

e.g. time histories, Fourier’s spectra, Poincaré sections, and phase portraits. 477 

Without loss of generality, only the case of decreasing excitation frequency is 478 

here deeply investigated.479 
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 480 

(a) 

 

(b) 

 
Fig. 5 – Spectrograms of the modal coordinates for a decreasing excitation frequency: (a) 481 

first axisymmetric mode, (b) driven companion asymmetric modes (1,2). 482 

 483 

In Fig. 5(a) the spectrogram of ,1,0w
f  is shown. The energy content is localized at 484 

the same frequency of the excitation until the instability onset, where the energy 485 

spreads on a broad frequency range. On the other hand, the response of the 486 

asymmetric mode ( )
,1,2
d

wf  is mainly ½-subharmonic, see Fig. 5(b). When the 487 

frequency of the harmonic pressure is decreasing and crosses 1,0 1.0850 = , 488 

5T-subharmonic components of the response are clearly visible from both spectra. 489 

It is worthwhile to note that in the spectrum of ( )
,1,2
d

wf  the main 1T-harmonic is 490 

almost absent except in the frequency range of strong subharmonic vibrations. 491 

5T 

2T 
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In the following, the development of chaotic oscillations is shown and the 492 

behavior of the driven asymmetric mode ( )
,1,2
d

wf  is deeply addressed to complete the 493 

description of the dynamic scenario. 494 

In Fig. 6(a-d) the case 1,0 1.0970 =  is discussed. The driven asymmetric mode 495 

( )
,1,2
d

wf  shows a ½-subharmonic: only odd harmonics appear in the spectrum 496 

because of the symmetry of the time waveform, Fig. 6(a,b); two points are present 497 

in the Poincaré map, Fig. 6(c); the regular limit-cycle shown by the phase portrait 498 

confirms the periodicity of the vibration, Fig. 6(d). 499 

 500 

1,0 1.0970 =  

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Fig. 6. 2T subharmonic response of the driven modal coordinate (1,2). Decreasing excitation 501 

frequency. (a) Time history, (b) Fourier spectrum, (c) Poincaré map, and (d) phase portrait. 502 

 503 

The forcing frequency is now reduced to 1,0 1.09375 = , and the system is in 504 

the un-steady region, as depicted in Fig. 4. The Neimark-Sacker bifurcation gives 505 

rise to quasi-periodic oscillations, thus the response can be seen as a sum of many 506 

periodic functions, where two or more frequencies are incommensurate [48]: in 507 
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this case the time response is amplitude-modulated, Fig. 7(a); the carrier 508 

frequency is 1 2 =  and sidebands (modulation frequency / 0.11 = ) are 509 

present, Fig. 7(b); the Poincaré map displays two closed non-connected sets, 510 

therefore the response is 2-period quasiperiodic with modulation of the amplitude 511 

[49], and the orbit does not close on itself, Fig. 7(c,d). 512 

 513 

1,0 1.09375 =  

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 7. Amplitude-modulated response of the driven modal coordinate (1,2). Decreasing 514 

excitation frequency. (a) Time history, (b) Fourier spectrum, (c) Poincaré map, and (d) phase 515 

portrait.. 516 

517 
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 518 

The case at 1,0 1.0900 = , is now analyzed. Chaotic vibrations can be observed: 519 

the time history exhibits intermittency of the response bursts, Fig. 8(a); the 520 

spectrum is characterized by a spreading of energy over a broad-band around the 521 

carrier frequency (and multiples) 1 2 = , Fig. 8(b); the Poincare section 522 

shows a set of randomly distributed points, where the dimension of the set does 523 

not appear integer, Fig. 8(c), and the trajectory is completely irregular, Fig. 8(d). 524 

 525 

1,0 1.0900 =  

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 8. Chaotic response of the driven modal coordinate (1,2). Decreasing excitation 526 

frequency. (a) Time history, (b) Fourier spectrum, (c) Poincaré map, and (d) phase portrait. 527 

528 
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 529 

Maps of chaotic motion need a larger number of points. Therefore, an additional 530 

Poincaré section obtained by considering 10000 forcing periods is shown in Fig. 531 

9. This map clearly shows chaotically modulated oscillations (weak chaos): the 532 

central dense pattern is due to the high-frequency vibration, while the outer sparse 533 

region is caused by intermittent bursts governed by a slow dynamic. Such set 534 

distribution is justified by the Fourier spectrum where, despite its broad energy 535 

distribution, the subharmonic components and sidebands give a significant 536 

contribution to the overall dynamic of the asymmetric modal coordinate.  537 

 538 

 
Fig. 9 – Poincaré map of chaotically modulated oscillations. 539 

 540 

After a further reduction of the excitation frequency, the system exits form the 541 

chaotic region even though it is still inside the “instability region”, where an 542 

alternance of periodic and non-periodic regions is present. More specifically, the 543 

case 1,0 1.0827 =  is now analyzed. Here the cap response becomes 5-T 544 

subharmonic: the time history appears asymptotically stable, Fig. 10(a); the 545 

fundamental frequency is 1 5 = , Fig. 10(b); the Poincaré map shows five 546 

dots, Fig. 10(c); the solution follows a closed regular orbit, Fig. 10(d). 547 

548 
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 549 

1,0 1.0827 =  

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Fig. 10. 5T-subharmonic response of the driven modal coordinate (1,2). Decreasing 550 

excitation frequency. (a) Time history, (b) Fourier spectrum, (c) Poincaré map, and (d) phase 551 

portrait. 552 

 553 

The last case to be investigated is 1,0 1.07735 = . The coordinate ( )
,1,2
d

wf  exhibits 554 

quasi-periodic oscillations, where the superposition of several periodic functions 555 

can be noted by simply observing the time history, Fig. 11(a). The vibration is 556 

strongly characterized by a 1/5-subharmonic contribution Fig. 11(b); the phase 557 

portrait and the Poincaré section confirms the character of the response, Fig. 558 

11(c,d). As already shown by the frequency-response curves and the bifurcation 559 

diagrams, a further decrease in the excitation frequency restores a periodic 560 

oscillation with a null contribution of the non-symmetric modes. 561 

562 
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 563 

1,0 1.07735 =  

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Fig. 11. Quasi-periodic response of the driven modal coordinate (1,2). Decreasing excitation 564 

frequency. (a) Time history, (b) Fourier spectrum, (c) Poincaré map, and (d) phase portrait.. 565 

 566 

4. Conclusions 567 

The problem of a shallow spherical cap exhibiting asymmetric oscillations when 568 

subjected to a uniform harmonic pressure has been investigated. The 569 

Novozhilov’s nonlinear shell theory has been considered for defining the strain-570 

displacement relations. The partial differential equations are reduced to a finite 571 

dimension by using an energy formulation based on Rayleigh-Ritz approach and 572 

Lagrange equations. For describing the cap deformation, the set of displacement 573 

field trial functions have been expressed by means of Legendre polynomials and 574 

trigonometric functions. A static compressive pressure has been superimposed to 575 

a harmonic one. Bifurcation diagrams are investigated against the excitation 576 

frequency. The dynamic scenario shows that the spherical cap vibrations turned 577 
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out to be often asymmetric, non-periodic, with multiple jumps among 578 

subharmonic, quasi-periodic, and chaotic vibrations. 579 
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