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Abstract. Our aim in this paper is to analyze a model of glioma where oxygen

drives cancer diffusion and proliferation. We prove the global well-posedness of
the analytical problem and that, in the longtime, the illness does not disappear.

Besides, the tumor dynamics increase the oxygen levels.

1. Introduction. Glioma are tumors of glial cells. Due to their location, direct
approaches to the affected tissues are difficult; at the same time a large amount of
data is obtained by diagnostics, like MRI and PET-scan, but their interpretation is
not obvious. Two mechanisms are particularly relevant: illness invasion and prolif-
eration interacting with nutrients dynamics; indeed, a modified energy metabolism
is one of the hallmarks of cancer. In particular, low nutrient levels may starve the
tumor but, at the same time, they put at risk the cell survival. On the other side,
high nutrient levels feed healthy cells as well as the tumor. Analytical results may
help to understand this interaction. In this paper, in particular, we analyze a glioma
model proposed in [5]; there, the state variables are the tumor cells density u and
a nutrient (oxygen) concentration σ; their evolution in the brain, represented by a
bounded and smooth domain Ω ⊂ R3, is dictated by two parabolic equations: in
particular, the cancer rate of change is given by the net migration and proliferation
of tumor cells. The weights of these two effects are regulated by the oxygen concen-
tration: indeed, below an oxygen threshold, invasion prevails while it is surpassed
by proliferation above that threshold. Moreover, the migration mechanism is not
uniform in the brain: indeed, it is faster in white matter than in grey matter. As
a consequence, having normalized the carrying capacity, the tumor cells density
equation is

∂tu− div (D(x, σ)∇u) = h(σ)u(1− u), in Ω, t > 0. (1)
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2 S. GATTI

As anticipated, the diffusion coefficient of tumor cells depends on the anatomy
of the brain and on the oxygen concentration: it is

D(x, σ) = D(x)B(σ), where B(σ) =

[
σ

β
+ δ

(
1− σ

β

)]
, (2)

for constants δ, β > 0. In particular, β corresponds to the oxygen concentration
in blood vessels. The function D(x) is the diffusion coefficient of tumor cells in
normoxic conditions and satisfies

0 < D1 ≤ D(x) ≤ D2, for any x ∈ Ω,

where D1 and D2 are the diffusion coefficient in grey and white matter, respectively.
Therefore, owing to the different tumor invasiveness in grey and white matters,
D2 > D1. Biologically meaningful values are

δ = 10 and 5 ≤ D2

D1
≤ 50.

In general, δ > 1 since hypoxia increases migration and diffusion of tumor cells. At
the same time, hypoxia reduces the tumor proliferation rate (see, e.g., [13]): in [5],
oxygen’s influence on cancer proliferation is regulated by the function

h(σ) = a

[
σ

β
+ b

(
1− σ

β

)]
(3)

with a, b > 0 and b ∼ 0.6 < 1. Indeed, reasonable values of b reflect the reduced
proliferation rate under hypoxia, so the condition b < 1 is natural. The parameter
a corresponds to the proliferation rate in normoxic conditions.

The rate of change of oxygen depends on its diffusion, its uptake by tumor cells and
the oxygen entering from blood vessels: oxygen evolution obeys

∂tσ −∆σ = − uσ

1 + σ
+ γ(β − σ), in Ω, t > 0. (4)

Here, the oxygen consumed by tumor cells is modeled by Michaelis-Menten kinetics
(again some constants have been set equal to one), while the release rate of oxygen
from blood vessels γ > 0 depends on vascular permeability and density.

We assume no flux boundary conditions, meaning that no tumor cells nor oxygen
enter or exit the brain, namely,

∂nu = ∂nσ = 0, on ∂Ω, t > 0, (5)

being n the exterior normal vector to the boundary ∂Ω. Finally, we suppose that
the initial tumor and oxygen configurations are known, that is,

u(0) = u0, σ(0) = σ0, in Ω. (6)

This model, neglecting the dependence on the tumor diffusion coefficient on the
brain anatomy and the oxygen (that is, with constant D and δ = 1), has been stud-
ied in [4], where also homogeneous Dirichlet boundary conditions were considered.
In this setting and for both Dirichlet and Neumann boundary conditions, less regu-
lar data were required to obtain the existence and uniqueness of solutions than those
we are forced to consider here. An invariant region was devised for the dynamics,
corresponding to 0 ≤ u ≤ 1 and 0 ≤ σ ≤ β. Moreover, in [4], tumor extinction is
prevented with no flux boundary conditions, while it occurs with Dirichlet boundary
conditions when invasion dominates proliferation. Otherwise, cancer permanence is
shown with the same boundary conditions when proliferation prevails.
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When b = δ = 1, (1) amounts to the classical Fisher-Kolmogorov equation but the
interesting case is when b ∈ (0, 1) and δ > 1: indeed, this renders the competition
between the two effects (proliferation versus migration) dictated by the oxygen
concentration and accounting for cells phenotype changes. This also translates into
an analytical problem since one expects the oxygen concentration to stay below the
threshold giving a negative diffusion, provided that this is initially the case. Thus
the oxygen dependence on the diffusion coefficient introduces an analytical difficulty
as the following properties should be preserved by the evolution:

• if the initial data are biologically relevant (i.e. nonnegative), the corresponding
solutions stay the same; in particular,

• if the initial tumor concentration varies in the biological interval [0, 1], this
will happen for any time;

• if the initial oxygen concentration in the cells lies below that in blood vessels,
then this will be true forever.

Since the oxygen threshold for null diffusion, δ
δ−1β, is above the oxygen concentra-

tion in blood β, one should think that, if the initial data are good, it is trivial to
have migration for any time: still, from an analytical point of view, it is not obvious
to prove the existence of a solution by the Galerkin method. Indeed, the projections
used in this framework do not preserve the biological bounds. Thus, the existence
of a solution can not be obtained directly for the original problem, due to possible
singularities in the symport term and also to the possible lack of good estimates for
u on account of its oxygen dependent diffusion.

This obstacle is circumvented resorting to strong solutions (and, accordingly,
better initial data) and by analyzing an auxiliary problem where we tame the sin-
gularity, we use a suitable cut-off function for tumor concentration and we consider
a perturbation of our problem exhibiting a further dissipation, involving a second
cut-off function. Actually, a third cut-off function intervenes in tumor evolution
so to avoid the boundedness of the proliferation rate h, a condition not fulfilled
by (3). Galerkin method applies to this system for which the existence of a local
strong solution is then proved: since the viable domain of the cells is proved to be
an invariant region for the modified system, actually its solutions solve the origi-
nal problem as well. In fact, this solution is unique and global on any finite time
interval.

We then prove that tumor extinction does not occur, as happened with Neumann
boundary conditions in [4], where the normoxic diffusion D was constant and δ =
1. Actually, we can prove that the tumor grows in time and, if the minima of
oxygen and tumor concentrations are strictly positive, the tumor density u tends
exponentially to 1.

Moreover, as was pointed out in [5] on the base numerical simulations, the tumor
appears to normalize oxygen levels: in a sense, this is confirmed by our results, since
the oxygen level is proved to stay above a strictly positive trajectory, if initially this
is the case.

The plan of the paper is the following: in section 2, we make precise our notations,
assumptions and functional setting to be applied, in the next section, to the auxiliary
problem; this is proved to be well posed and to have the aforementioned invariant
region. Therefore, in section 4, we can assert the well posedness of the original
problem and, in the last section, conclude with some remarks on the longtime
behavior of both u and σ.
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We conclude the introduction with a short review of the related literature: recently
different points of view on the coupled glioma-oxygen dynamics were studied, e.g., in
[7], [9], [10] and [12]. Other nutrients beyond oxygen are considered to understand
metabolic changes in the tumor: in particular, essential energetic sources are glucose
and lactate (see, e.g., [1], [2], [3], [8], [11]). Indeed, even with plenty of oxygen,
sometimes the tumor prefers glucose as an energy source: this is the Warburg
effect. In this case, lactate is a glycolysis output but it is subsequently used as an
energy substrate as well. The role of lactate, and especially of lactate in the different
cellular compartments of the brain, in connection with the tumor evolution, is not
yet well understood.

2. The mathematical problem. As we motivated in the Introduction, we now
address the initial boundary value problem

∂tu− div (D(x)B(σ)∇u) = h(σ)u(1− u), in Ω, t > 0,

∂tσ −∆σ = − uσ

1 + σ
+ γ(β − σ), in Ω, t > 0,

∂nu = ∂nσ = 0, on ∂Ω, t > 0,

u(0) = u0, σ(0) = σ0, in Ω.

(7)

Here Ω ⊂ R3 is a connected and bounded domain with smooth boundary ∂Ω. The
functions D and h are those defined in (2) and (3). We also recall that the constants
a, b, α, β, γ, δ are positive.

In order to specify our assumptions, some notations are needed.

2.1. Analytical framework. We denote by Lp(Ω) the Lebesgue spaces endowed
with the usual norm ‖ · ‖Lp ; in particular, H = L2(Ω) is an Hilbert space equipped
with the scalar product (·, ·) and corresponding norm ‖ · ‖. The general Sobolev
spaces are W p,k(Ω): we will mostly deal with Hk(Ω) = W 2,k(Ω) whose norm is
‖ · ‖Hk . In the particular case k = 1, we set V = H1(Ω) with norm ‖ · ‖V . Then we
recall that (V,H, V ∗) is an Hilbert triplet, where V ∗ is the dual space of V and the
corresponding duality pairing is denoted as 〈·, ·〉. We also use the Hilbert spaces

W = H2
N (Ω) = {v ∈ H2(Ω) : ∂nv = 0 on ∂Ω}

and

Z = {v ∈ H3(Ω) ∩H2
N : ∇v ∈ [H2

N (Ω)]3},
whose norms are ‖ · ‖W and ‖ · ‖Z , respectively. The solution of our problem will be
time dependent with values in Banach spaces: more precisely, given a time interval I
and a Banach spaces X, we recall that Lp(I;X) is the space of measurable functions
f : I → X such that ‖f(·)‖X ∈ Lp(I).

In the subsequent computations, we will take advantage of the 3-D Gagliardo–
Nirenberg inequality:

‖v‖L3(Ω) ≤ c‖v‖
1
2 ‖v‖

1
2

V , ∀v ∈ V. (8)

Here c stands for a suitable positive constant; the same symbol will be used through-
out the paper for any positive constant, possibly depending on the time span T > 0
and the structural data of the system; this constant is allowed to vary also in the
same line.

Having these notations at our disposal, we can now make our assumptions precise.
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2.2. Assumptions.

(H1) D ∈W 1,6(Ω) such that 0 < D1 ≤ D(x) ≤ D2 in Ω;

(H2) δ > 1 and b ∈ (0, 1);

(H3) u0 ∈ V and σ0 ∈W verify also 0 ≤ u0 ≤ 1 and 0 ≤ σ0 ≤ β a.e. in Ω.

We adopted h and B as prescribed in [5] just for the sake of simplicity but our results
hold for h increasing and Lipschitz continuous with h(0) ≥ 0 and B decreasing and
Lipschitz continuous with B(β) > 0.

3. An auxiliary problem. We will prove the well-posedness of an auxiliary prob-
lem obtained from the original one introducing cut-off functions and making harm-
less the singular term σ

1+σ . Of course, the new problem should not be too different

from (7), so the changes should affect only regions ultimately escaped by biological
solutions. The function B in the diffusion coefficient of the tumor will be replaced
as follows: let B : R→ [0,+∞) be

B(σ) =


δ, if σ ≤ 0,

δ + (1− δ)σ
β
, if 0 ≤ σ ≤ β,

1, if σ ≥ β.

By definition, B ∈ W 1,∞(R) verifies also 1 ≤ B(≤ δ). Moreover, we see that
B(σ) = B(σ), whenever 0 ≤ σ ≤ β.

We further define the cut-off functions

h(σ) =


h(0), if σ ≤ 0,

h(σ), if 0 ≤ σ ≤ β,
h(β), if σ ≥ β,

and κ(u) =

{
u(1− u), if 0 ≤ u ≤ 1,

0, otherwise.

Finally, we set

g(σ) =
σ

1 + |σ|
.

Notice that h, κ ≥ 0, g are bounded and Lipschitz continuous. Moreover, as hap-

pended with B, if 0 ≤ σ ≤ β then h(σ) = h(σ) and g(σ) =
σ

1 + σ
. Analogously, if

0 ≤ u ≤ 1, we have κ(u) = u(1− u).

Replacing also h by h, u(1− u) by κ(u) and introducing g in the symport term, we
have our auxiliary problem as

∂tu− div (D(x)B(s)∇u) = h(s)κ(u), in Ω× (0, T ),

∂ts−∆s = −ug(s) + γ(β − s), in Ω× (0, T ),

∂nu = ∂ns = 0, on ∂Ω× (0, T ),

u(0) = u0, s(0) = σ0, in Ω,

(9)

on any finite interval (0, T ) for arbitrary T > 0.

We formally define the weak solution to the corresponding problem (9)

Definition 3.1. Given an initial datum (u0, σ0) ∈ H × V , the pair (u, s) is a weak
solution to (9) in (0, T ) if

u ∈ C([0, T ];H) ∩ L2(0, T ;V ) ∩H1(0, T ;V ∗),

s ∈ C([0, T ];V ) ∩ L2(0, T ;W ) ∩H1(0, T ;H),
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and if {
〈∂tu, v〉+ (D(x)B(s)∇u,∇v) = (h(s)κ(u), v),

〈∂ts, w〉+ (∇s,∇w) = −(ug(s), w) + γ((β − s), w),
(10)

for any v, w ∈ V , a.e. in (0, T ). Finally,

u(0) = u0, a.e. in Ω, and s(0) = σ0, a.e. in Ω.

Notice that the embedding W 1,6(Ω) ⊂ L∞(Ω) justifies the above functional setting.
Actually, we will be able to pass to the limit in the Galerkin scheme, and therefore
to prove the existence of strong solutions, only for regular enough initial data.

Definition 3.2. Given an initial datum (u0, σ0) ∈ V ×W , the pair (u, s) is a strong
solution to (9) in (0, T ) if

u ∈ C([0, T ];V ) ∩ L2(0, T ;W ) ∩H1(0, T ;H),

s ∈ C([0, T ];W ) ∩ L2(0, T ;Z) ∩H1(0, T ;V ),

and if {
∂tu− div (D(x)B(s)∇u) = h(s)κ(u), a.e. in Ω× (0, T ),

∂ts−∆s = −ug(s) + γ(β − s), a.e. in Ω× (0, T ).

Finally,
u(0) = u0, a.e. in Ω, and s(0) = σ0, in Ω.

The study of the auxiliary problem (9) is justified by the fact that any weak
solution to (9) originating from initial data (u0, σ0), with 0 ≤ u0 ≤ 1 and 0 ≤ σ0 ≤ β
a.e. in Ω, preserves these conditions in its evolution so that it is a weak solution to
(7) as well. Indeed,

Lemma 3.3. Let (u, s) be a weak solution to (9) originating from (u0, σ0) ∈ H ×V
satisfying 0 ≤ u0 ≤ 1 and 0 ≤ σ0 ≤ β a.e. in Ω. Then 0 ≤ u ≤ 1 and 0 ≤ s ≤ β
a.e. in Ω× [0, T ].

Proof. Testing the first equation in (10) by −u− ∈ V , where u− = max(0,−u), we
obtain

1

2

d

dt
‖u−‖2 +

∫
Ω

DB(s)|∇u−|2dx = −
∫

Ω

h(s)κ(u)u−dx = 0.

Since, by definition of B and (H1),∫
Ω

DB(s)|∇u−|2dx ≥ D1‖∇u−‖2 ≥ 0,

we are lead to
1

2

d

dt
‖u−‖2 ≤ 0.

Being ‖u−(0)‖2 = 0 owing to 0 ≤ u0 ≤ 1 a.e. in Ω, then ‖u−(t)‖2 = 0 follows for
every t so that u ≥ 0 a.e. in Ω× (0, T ).

Testing the second equation in (10) by −s− ∈ V and recalling the definition of g,
we get

1

2

d

dt
‖s−‖2 + ‖∇s−‖2 = −

∫
Ω

u|s−|2

1 + |s−|
+ γ

∫
Ω

(β + s−)(−s−).

Having already proved u ≥ 0, then the above right-hand side is less than or equal
to zero. Integrating over [0, t] the inequality d

dt‖s
−‖2 ≤ 0, we have

‖s−(t)‖2 ≤ ‖s−(0)‖2
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for all times, yielding s ≥ 0 a.e. in Ω× (0, T ).

In order to obtain the upper bounds, we write the equation for w = s− β, that is,

∂tw −∆w = − us

1 + |s|
− γw,

and we test it by w+ ∈ V , where w+ = max(w, 0):

1

2

d

dt
‖w+‖2 + ‖∇w+‖2 = −

∫
Ω

usw+

1 + |s|
+ γ

∫
Ω

−|w+|2.

Since the right-hand side is ≤ 0, we deduce from the Gronwall Lemma that, if
‖w+(0)‖ = 0, then ‖w+(t)‖ = 0 for every t, proving s ≤ β a.e. in Ω × (0, T ).
Similarly, v = u− 1 satisfies

∂tv − div (DB(s)∇v) = h(s)κ(u).

Testing this equation by v+ ∈ V and exploiting (H1), we find

1

2

d

dt
‖v+‖2 ≤ 1

2

d

dt
‖v+‖2 +D1‖∇v+‖2 ≤ 0.

Being v+(0) = (u0 − 1)+ = 0, it is straightforward to obtain that v+(t) = (u(t) −
1)+ = 0 for all t so that u ≤ 1 a.e. in Ω× (0, T ) is accomplished as well.

Lemma 3.4. For any (u0, σ0) satisfying (H3), there exists a local strong solution
to (9).

Proof. In order to prove the local existence of a weak solution to (9), we introduce
the Galerkin approximation of the problem. Thus, let 0 = λ1 < λ2 ≤ · · · be
the eigenvalues of the minus Laplace operator associated with Neumann boundary
conditions and e1, e2, · · · be associated eigenvectors such that {ej}∞j=1 forms an
orthonormal basis in H which is also orthogonal in V . We set Vn = Span{e1, . . . , en}
and denote by Pn the corresponding projection.

Now, for any fixed n ∈ N we consider the following approximated problem: Find
tn > 0 and aj , bj ∈ C1([0, tn)) such that

un(t) =

n∑
j=1

aj(t)ej and σn(t) =

n∑
j=1

bj(t)ej ∈ C1([0, tn), Vn)

satisfy{
〈∂tun, v〉+ (D(x)B(σn)∇un,∇v) = (h(σn)κ(un), v), ∀v ∈ Vn,

〈∂tσn, w〉+ (∇σn,∇w) = −(ung(σn), w) + γ((β − σn), w), ∀w ∈ Vn,
(11)

together with

un(0) = Pnu0, σn(0) = Pnσ0, in a.e. Ω.

The existence and uniqueness for any n ∈ N of (un, σn) ∈ C1([0, tn);Vn) follows
from Cauchy-Lipschitz Theorem, where the maximal existence time tn ∈ (0, T ]
depends on n.

In order to acquire estimates for (un, σn) uniform with respect to n, we multiply
the first equation in (11) by un and the second by σn, then adding the results we
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obtain

1

2

d

dt

(
‖un‖2 + ‖σn‖2

)
+

∫
Ω

DB(σn)|∇un|2dx+ ‖∇σn‖2 + γ‖σn‖2

=

∫
Ω

h(σn)κ(un)un dx−
∫

Ω

ung(σn)σn dx+ γβ

∫
Ω

σn dx.

Here h, κ and g are bounded functions hence the rhs is bounded by

c(1 + ‖un‖2 + ‖σn‖2),

where the constant c is independent of n ∈ N, although it may possibly be influenced
by T and the structural data of the problem. In turn, due to the definition of B
and the lower bound for D, the second term on the lefthand side is∫

Ω

DB(σn)|∇un|2dx ≥ D1‖∇un‖2

so that we are lead to the differential inequality

1

2

d

dt

(
‖un‖2 + ‖σn‖2

)
+D1‖∇un‖2 + ‖∇σn‖2 + γ‖σn‖2 ≤ c(1 + ‖un‖2 + ‖σn‖2).

By Gronwall’s lemma, we deduce that

‖un(t)‖+ ‖σn(t)‖ ≤ c, ∀t ∈ [0, tn], ∀n ∈ N,

therefore there exists τ > 0 independent of n such that

‖un‖L∞(0,τ ;H) + ‖σn‖L∞(0,τ ;H) + ‖un‖L2(0,τ ;V ) + ‖σn‖L2(0,τ ;V ) ≤ c. (12)

Next we take the product of the second equation in (11) with −∆σn, obtaining

1

2

d

dt
‖∇σn‖2 + ‖∆σn‖2 + γ‖∇σn‖2 = −γβ

∫
Ω

∆σndx+

∫
Ω

ung(σn)∆σndx

=

∫
Ω

ung(σn)∆σndx ≤
1

2
‖∆σn‖2 +

1

2
‖un‖2,

being |g(r)| < 1 for any r ∈ R. It is therefore straightforward to see that, by
Gronwall lemma and (12), we have

‖σn‖L∞(0,τ ;V ) + ‖σn‖L2(0,τ ;W ) ≤ c. (13)

Unfortunately, the estimates obtained so far do not allow to pass to the limit in
the Galerkin approximations (see the subsequent formula (17)), making necessary
further computations and to resort to strong solutions.

We test the second equation in (11) with ∆2σn, obtaining

1

2

d

dt
‖∆σn‖2 + ‖∇∆σn‖2 + γ‖∆σn‖2

=

∫
Ω

g(σn)∇un∇∆σndx+

∫
Ω

ung
′(σn)∇σn∇∆σndx.

Owing again to the bound |g(r)| < 1 for any r ∈ R, the first contribution is easily
dealt with as∫

Ω

g(σn)∇un∇∆σndx ≤ ‖∇un‖‖∇∆σn‖ ≤ ‖un‖V ‖∇∆σn‖.
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For the second addendum, we observe that |g′(r)| < 1 as well, then we use Hölder
inequality with exponents 6, 3 and 2∫

Ω

ung
′(σn)∇σn∇∆σndx ≤ ‖un‖L6‖∇σn‖L3‖∇∆σn‖

≤ ‖un‖V ‖∇σn‖
1
2 ‖σn‖

1
2

W ‖∇∆σn‖
≤ c‖un‖V (1 + ‖∆σn‖)‖∇∆σn‖,

in view of (8), (13) and Young’s inequality. Collecting these estimates, the above
righthand side is controlled as∫

Ω

g(σn)∇un∇∆σndx+

∫
Ω

ung
′(σn)∇σn∇∆σndx

≤ ‖un‖V ‖∇∆σn‖+ c‖un‖V (1 + ‖∆σn‖)‖∇∆σn‖

≤ 1

2
‖∇∆σn‖2 + ‖un‖2V + c‖un‖2V (1 + ‖∆σn‖2)

≤ 1

2
‖∇∆σn‖2 + c‖un‖2V (1 + ‖∆σn‖2),

in view of (8). Then the differential inequality turns into

1

2

d

dt
‖∆σn‖2 +

1

2
‖∇∆σn‖2 + γ‖∆σn‖2 ≤ c‖un‖2V + c‖un‖2V ‖∆σn‖2

so that, by (12), the Gronwall lemma gives

‖σn‖L∞(0,τ ;W ) + ‖σn‖L2(0,τ ;Z) ≤ c. (14)

Finally, we consider the product of the first equation in (11) by −∆un, obtaining

1

2

d

dt
‖∇un‖2 +

∫
Ω

DB(σn)|∆un|2 dx

= −
∫

Ω

B(σn)∇D∇un∆un dx−
∫

Ω

DB′(σn)∇σn∇un∆un dx−
∫

Ω

h(σn)κ(un)∆un dx.

Here, the first term on the rhs is controlled as

−
∫

Ω

B(σn)∇D∇un∆un dx ≤ c‖∇D‖L6‖∇un‖L3‖∆un‖

≤ c‖∇un‖
1
2 ‖un‖

3
2

H2

≤ D1

6
‖∆un‖2 + c(1 + ‖∇un‖2),

owing to (H1), (8), Young’s inequality with exponents 4 and 4/3 and (12). Recalling
B ∈W 1,∞(R), we deduce for the second term

−
∫

Ω

DB′(σn)∇σn∇un∆undx ≤ cD2‖∇σn‖L6‖∇un‖L3‖∆un‖

≤ c‖σn‖H2‖∇un‖
1
2 ‖un‖

3
2

H2

≤ c‖∇un‖
1
2 ‖un‖

3
2

H2

≤ D1

6
‖∆un‖2 + c(1 + ‖∇un‖2),
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having exploited also (8), (12), (14) and Young’s inequality with exponents 4 and
4/3. Being the last term easily controlled thanks to the boundedness of h and κ as

−
∫

Ω

h(σn)κ(un)∆undx ≤ c‖∆un‖ ≤
D1

6
‖∆un‖2 + c,

then, by (H1) and the definition of B, we are lead to

d

dt
‖∇un‖2 +D1‖∆un‖2 ≤ c‖∇un‖2 + c,

so that Gronwall’s lemma entails

‖un‖L∞(0,τ ;V ) + ‖un‖L2(0,τ ;W ) ≤ c. (15)

Finally, we read from the equations of (11) that

‖∂tun‖L2(0,τ ;H) + ‖∂tσn‖L2(0,τ ;H) ≤ c. (16)

In view of this last control together with (12)–(16), we deduce that, up to a subse-
quence,

un → u weakly-* in L∞(0, τ ;V ),

un → u weakly in L2(0, τ ;W ),

un → u strongly in L2(0, τ ;V ),

σn → s weakly-* in L∞(0, τ ;W ),

σn → s weakly in L2(0, τ ;Z),

σn → s strongly in L2(0, τ ;W ) and C([0, τ ];V ).

We now see that (u, s) is a weak solution to (9) on [0, τ ] since we can pass to the
limit in (11) as n → ∞. To prove this, it suffices to consider the three nonlinear
terms appearing in the equations. Indeed, for any w ∈ V , φ ∈ C∞0 (0, t) where t ≤ τ ,
we first examine∫ t

0

∫
Ω

D[B(σn)∇un − B(s)∇u]∇wφdx

=

∫ t

0

∫
Ω

D[B(σn)− B(s)]∇un∇wφdx+

∫ t

0

∫
Ω

DB(s)∇(un − u)∇wφdx.

Recalling that, by definition, B is Lipschitz continuous,∫ t

0

∫
Ω

D[B(σn)− B(s)]∇un∇wφdx

≤ c
∫ t

0

∫
Ω

|σn − s||∇un||∇w||φ| dxds

≤ c‖φ‖L∞(0,t)‖w‖V
∫ t

0

‖σn − s‖L∞‖un‖V ds

≤ c‖φ‖L∞(0,t)‖w‖V ‖σn − s‖L2(0,t;W )‖un‖L2(0,t;V ) → 0,
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having exploited also (H1) and the inclusion H2(Ω) ⊂ L∞(Ω). This embedding
with the definition of B and assumption (H1) yield∫ t

0

∫
Ω

DB(s)∇(un − u)∇wφdx (17)

≤ c
∫ t

0

∫
Ω

(1 + |s|)|∇(un − u)||∇w||φ| dxds

≤ c‖φ‖L∞(0,t)‖w‖V (1 + ‖s‖L2(0,T ;W ))‖un − u‖L2(0,T ;V ) → 0

as n → ∞. We now turn to the second nonlinear term that decomposes in the
following sum∫ t

0

∫
Ω

[h(σn)κ(un)− h(s)κ(u)]wφdxds

=

∫ t

0

∫
Ω

[h(σn)− h(s)]κ(un)wφdxds+

∫ t

0

∫
Ω

h(s)[κ(un)− κ(u)]wφdxds.

Here, due to the boundedness of κ and the Lipschitz continuity of h, we see that∫ t

0

∫
Ω

[h(σn)− h(s)]κ(un)wφdxds ≤ c‖φ‖L∞(0,t)

∫ t

0

∫
Ω

|σn − s||w|ds

≤ c
√
t‖φ‖L∞(0,t)‖w‖V ‖σn − s‖L2(0,t;H)

while, by the boundedness of h and the Lipschitz continuity of κ, it follows∫ t

0

∫
Ω

h(s)[κ(un)− κ(u)]wφdxds ≤ c‖φ‖L∞(0,t)

∫ t

0

∫
Ω

|un − u||w|ds

≤ c
√
t‖φ‖L∞(0,t)‖w‖V ‖un − u‖L2(0,t;H).

It is therefore straightforward to pass to the limit in the second nonlinear term. Fi-
nally, owing to the boundedness and Lipschitz continuity of g as well as ‖u‖L2(0,t;V ) ≤
c, we handle the last contribution as∫ t

0

∫
Ω

[ung(σn)− ug(s)]wφdxds

=

∫ t

0

∫
Ω

(un − u)g(σn)wφdxds+

∫ t

0

∫
Ω

u[g(σn)− g(s)]wφdxds

≤ c
∫ t

0

∫
Ω

|un − u||w||φ| dxds+ c

∫ t

0

∫
Ω

|u||σn − s||w||φ| dxds

≤ c‖φ‖L∞(0,t)‖w‖V
(√
t‖un − u‖L2(0,t;H) + ‖u‖L2(0,t;V )‖σn − s‖L2(0,t;H)

)
.

We can therefore conclude that (u, s) is indeed a local weak solution to (9) on [0, τ ].
Actually, the solution is strong on account of the regularity of the initial data and
of the above computations.

Another consequence of the bounds for any strong solution is their global existence,
namely,

Lemma 3.5. For any T > 0 and any (u0, σ0) verifying (H3), any strong solution
to (9) originating from (u0, σ0) is global in time on [0, T ].

Proof. This proof goes exactly as in [4]; we just report it for the reader’s convenience.
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Let us define

t = sup{t ≥ 0 : ∃(u, s) ∈ [0, 1]×[0, β] strong solution on [0, t) departing from (u0, σ0)}.

We know that there exists a solution (u, s) ∈ [0, 1] × [0, β] defined on [0, τ ], hence
t ≥ τ > 0 and

‖u(t)‖2 + ‖s(t)‖2 ≤ (1 + β)|Ω| ∀ t ∈ [0, t).

This implies that t = T : indeed, the uniform bounds of the H-norms tell that
limt→t u(t) and limt→t s(t) exist in H (at least for a subsequence). Now we can
consider a solution to the Cauchy problem with initial datum (u(t), s(t)), which is
defined on an interval [t, t+ η]), for some η > 0 (see also the extension theorem [6,
Lemma 3.1, p. 13]). In this way we contradict the definition of t.

4. Well posedness of the original problem.

Lemma 4.1. For any T > 0 and any (u0, σ0) verifying (H3), there exists a global
strong solution to (7) originating from (u0, σ0).

Indeed, owing to Lemma 3.4, a local strong solution (u, s) to (9) originating from
(u0, σ0) satisfying (H3) do exist. Actually, from Lemma 3.3, we learn that

0 ≤ u ≤ 1 and 0 ≤ s ≤ β, a.e. in Ω× [0, τ ].

Two consequences follow: first, (u, s) is global in time, thanks to Lemma 3.5. More-
over,

B(u) = B(u), h(u) = h(u), κ(u) = u(1− u) and g(s) =
s

1 + s
.

Thus (u, s) is in fact a strong global solution to (7).

Lemma 4.2. Given a pair of initial data (u0i, σ0i) satisfying (H3), denoting as
(ui, σi) a strong solution to (7) on (0, T ) originating from (u0i, σ0i) (i = 1, 2), there
exists a positive constant c, depending on T , such that

‖u1 − u2‖2C([0,T ];H)∩L2(0,T ;V ) + ‖σ1 − σ2‖2C([0,T ];V )∩L2(0,T ;W ) (18)

≤ c
(
‖u01 − u02‖2 + ‖σ01 − σ02‖2V

)
.

In particular, for any (u0, σ0) satisfying (H3), the corresponding strong solution to
(7) is unique.

Proof. The same arguments applied in the proof of Lemma 4.1 give

0 ≤ ui ≤ 1 and 0 ≤ σi ≤ β, a.e. in Ω× (0, T ),

therefore we may take advantage of the notations ui(ui − 1) = κ(ui) and
σi

1 + σi
=

g(σi). We also observe that h(ui) and κ(ui) are bounded and Lipschitz continuous
with respect to ui while the same is true for B(σi) and g(σi) with respect to σi.
Finally, we recall that

‖ui‖L∞(0,T ;V ) ≤ c, i = 1, 2. (19)

Then it is readily seen that the differences

u = u1 − u2 and σ = σ1 − σ2
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satisfy the equations

∂tu− div
(
DB(σ1)∇u1 −DB(σ2)∇u2

)
= h(σ1)κ(u1)− h(σ2)κ(u2), (20)

∂tσ −∆σ + γσ = −u1g(σ1) + u2g(σ2), (21)

supplemented with homogenous Neumann boundary conditions and with the initial
conditions

u(0) = u01 − u02 and σ(0) = σ01 − σ02.

We test (20) by u and (21) by σ −∆σ then we add the results, obtaining

1

2

d

dt

(
‖u‖2 + ‖σ‖2 + ‖∇σ‖2

)
+

∫
Ω

DB(σ1)|∇u|2dx+ ‖∆σ‖2 + (1 + γ)‖∇σ‖2 + γ‖σ‖2

= −
∫

Ω

D[B(σ1)−B(σ2)]∇u2∇udx+

∫
Ω

[h(σ1)− h(σ2)]κ(u1)udx

+

∫
Ω

h(σ2)[κ(u1)− κ(u2)]udx−
∫

Ω

ug(σ1)(σ −∆σ)dx−
∫

Ω

u2[g(σ1)− g(σ2)](σ −∆σ)dx.

By (H1) and the definition of B, the lhs is larger than

1

2

d

dt

(
‖u‖2 + ‖σ‖2 + ‖∇σ‖2

)
+D1‖∇u‖2 + ‖∆σ‖2 + (1 + γ)‖∇σ‖2 + γ‖σ‖2.

These same assumptions, together with Agmon’s inquality and (19), allow to control

−
∫

Ω

D[B(σ1)−B(σ2)]∇u2∇u dx ≤ c
∫

Ω

|σ||∇u2||∇u| dx

≤ c‖σ‖L∞‖∇u2‖‖∇u‖ dx

≤ c‖σ‖
1
2

V ‖σ‖
1
2

W ‖∇u‖

≤ 1

2
‖∇u‖2 +

1

4
‖∆σ‖2 + c‖σ‖2V .

Then the Lipschitz continuity and the boundedness on bounded intervals of h and
κ justify∫

Ω

[h(σ1)− h(σ2)]κ(u1)udx+

∫
Ω

h(σ2)[κ(u1)− κ(u2)]udx ≤ c
∫

Ω

(|u||σ|+ |u|2) dx

≤ c(‖u‖2 + ‖σ‖2).

Analogous arguments apply to g and we also recall 0 ≤ u2 ≤ 1, so that

−
∫

Ω

ug(σ1)(σ −∆σ)dx−
∫

Ω

u2[g(σ1)− g(σ2)](σ −∆σ)dx

≤
∫

Ω

(|u|+ |σ|) (|σ|+ |∆σ|) dx

≤ 1

4
‖∆σ‖2 + c(‖u‖2 + ‖σ‖2).

Having introduced Λ(t) = ‖u(t)‖2 + ‖σ(t)‖2V , the above computations lead to

d

dt
Λ +

(
‖∇u‖2 + ‖∆σ‖2

)
≤ cΛ,

hence, by Gronwall’s lemma and an integration in time, we obtain (18). In partic-
ular, when the initial data are the same, the uniqueness of the strong solution is
straightforward.
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Remark 1. We observe that, when (u0, σ0) ∈ H × H verify 0 ≤ u0 ≤ 1 and
0 ≤ σ0 ≤ β and the diffusion coefficient is constant (that is, when D(x) is constant
and δ = 1), the model is exactly that of [4]. Here we prove that the same results
on the global existence of a unique weak solution can be achieved without the
assumption that h is bounded but just under (H2).

5. Asymptotic behavior and further remarks. We now compare the longtime
tumor evolution in our model, where the diffusion coefficient depends on the position
and the oxygen concentration, with the particular case analyzed in [4] when this
coefficient is constant. The prognosis is still bad: this is not surprising in view of
the lower bound

D(x)B(σ) ≥ D1, (22)

following from (H1) and 0 ≤ σ ≤ β. Therefore, even in our more general case, no
illness extinction occurs. This can be seen as in [4]: fix an initial datum (u0, σ0)
satisfying (H3) together with 0 < u0 ≤ 1 and such that 0 < ‖u0 − 1‖ < ‖1‖.
Denoting as (u, σ) the corresponding strong solution to (7), we see that v = u − 1
solves 

∂tv − div(DB(σ)∇v) = −h(σ)uv, in Ω, t > 0,

∂nv = 0, in ∂Ω, t > 0,

v(0) = u0 − 1 ≤ 0, in Ω.

Testing the differential equation with v, from (22) we deduce

1

2

d

dt
‖v‖2 +D1‖∇v‖2 ≤ −

∫
Ω

h(σ)uv2 dx ≤ 0, (23)

so that

‖v(t)‖ = ‖u(t)− 1‖ ≤ ‖v(0)‖ = ‖u0 − 1‖.
Therefore, the inequality

‖1‖ − ‖u(t)− 1‖ ≥ ‖1‖ − ‖u0 − 1‖ > 0,

holding for any positive time, entails

‖u(t)‖ ≥ ‖1‖ − ‖u(t)− 1‖ > 0, ∀t > 0,

preventing the tumor extinction.

We are actually able to prove that the tumor tends to grow, in the sense that
the distance of the tumor density from 1 decreases in time. Indeed, if we go back
to (23), we see that

‖u(t)− 1‖ ≤ ‖u0 − 1‖, ∀t > 0,

for any u0 such that 0 ≤ u0 ≤ 1. Actually, if we assume that the minimum oxygen
level is σ > 0 and that u > 0 is the minimum tumor density, then (23) implies

1

2

d

dt
‖u− 1‖2 + h(σ)u‖u− 1‖2 ≤ 0,

leading to

‖u(t)− 1‖2 ≤ ‖u0 − 1‖2e−h(σ)u t, ∀t > 0.

Finally, we observe that the oxygen levels may not be too small. Indeed, if the
initial oxygen level σ0 is strictly positive, then in its evolution σ will be greater than
a strictly positive function ψ: more precisely, ψ is a spatially homogeneous solution
to the oxygen equation corresponding to u = 1. Indeed, assume that in the pair
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(u0, σ0) verifying (H3) the second component is such that 0 < σ0 ≤ β in Ω. Since
σ0 ∈ C(Ω), then ψ0 = minΩ σ0 ∈ (0, β]. We now consider the Cauchy problem{

ψ′ + γψ = γβ − g(ψ),

ψ(0) = ψ0,
(24)

whose solution ψ exists and is unique globally in time. Since ψ0 ∈ (0, β], we easily
see that 0 ≤ ψ(t) ≤ β for any t > 0. Actually, it is not possible that there exists
τ > 0 such that ψ(τ) = 0. Indeed, if this were the case, let

t̃ = sup{τ > 0 : ψ(t) > 0 in [0, τ)};

if t̃ ∈ (0,+∞) then we have ψ(t̃) = 0 while ψ(t) > 0 in [0, t̃). At the same time,
from the equation we read ψ′(t̃) = γβ > 0, contradicting the definition of t̃. Thus
ψ(t) > 0 for any positive time. We now can see that if σ is the oxygen component of
a solution (u, σ) originating from (u0, σ0) as above, then σ(t) ≥ ψ(t) for any t > 0.

Indeed, w = σ − ψ solves the problem
∂tw −∆w + γw = −ug(σ) + g(ψ), in Ω× R+,

∂nw = 0, on ∂Ω× R+,

w(0) = σ0 − ψ0, in Ω,

(25)

so that w(0) > 0 in Ω entails w−(0) = 0. We test the differential equation in (25)
with −w−, obtaining

1

2

d

dt
‖w−‖2 + ‖∇w−‖2 + γ‖w−‖2

=

∫
Ω

u[g(σ)− g(ψ)]w− dx−
∫

Ω

(1− u)g(ψ)w− dx ≤ 0

because, by definition of g and due to u ≥ 0,∫
Ω

u[g(σ)− g(ψ)]w− dx =

∫
Ω

u
σ − ψ

(1 + σ)(1 + ψ)
w− dx = −

∫
Ω

u
(w−)2

(1 + σ)(1 + ψ)
dx ≤ 0,

whereas u ≤ 1 and g(ψ) > 0 yield

−
∫

Ω

(1− u)g(ψ)w− dx ≤ 0.

Therefore

‖w−(t)‖2 ≤ ‖w−(0)‖2 = 0, ∀t > 0,

meaning that w(t) = σ(t)− ψ(t) ≥ 0 for any time.

This oxygen behavior complies with the observation made in [5] that the tumor
tends to normalize oxygen levels.
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