
28/04/2024 14:55

Symmetry breaking and chaos-induced imbalance in planetary gears / Masoumi, Asma; Pellicano,
Francesco; Samani, Farhad S.; Barbieri, Marco. - In: NONLINEAR DYNAMICS. - ISSN 0924-090X. - STAMPA. -
80:1(2015), pp. 561-582. [10.1007/s11071-014-1890-3]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:



22 

 

6. Nonlinear vibrations: bifurcation analysis 

The nonlinear response of the rotational-translational bulk model of planetary gear set 

is now analyzed in detail by means of bifurcation diagrams, Poincaré maps, phase 

portraits, time responses and spectra. The complex dynamics is analyzed via direct 

simulation. In order to obtain the Poincaré maps, time histories are sampled with the same 

frequency of the excitation. Poincaré sections are useful tools for analyzing chaotic 

responses. Moreover, bifurcation diagrams of the Poincaré maps can be drawn by varying 

one of the parameters, which govern the response of the system (the meshing frequency 

here). The equations of motion are integrated for a sufficiently long time in order to 

eliminate the transitory motion, then a certain number of periods are considered. This 

procedure is repeated for different values of the parameter, using the final state of the 

system in the previous analysis as initial condition. The procedure allows a particular, 

stable solution to be followed when a parameter is varied regularly. 

Numerical parameters of Tables 2, 3 and 5 are considered. Two different translational 

stiffnesses of planet bearings are investigated: Kp=2.19×10
9
N/m (from Ref. [2]) and 

Kp=2.19×10
8
N/m. Natural frequencies of each case are listed in Table 8. 

 

 

Table 8: Comparison of Natural frequencies for rotational-translational model 

Frequency mode 

number 

Natural frequency [Hz] 

case 1: Kp=2.19×10
9
N/m, Ref[2] 

Natural frequency [Hz] 

case 2: Kp=2.19×10
8
N/m 

1  1758 959 

2  1758 1445 

3  2100 1445 

4  3352 1921 

5  3352 2035 

6  5253 2035 

7  6384 3574 

8  6384 3574 

9  7190 5166 

10  7405 5166 

11  7405 5209 

12  8542 7067 

13  8572 7473 

14  8572 7473 

15  22378 22376 

16  22378 22376 

17  53264 53207 

18  149115 149115 
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The comparison between two cases in Table 8 shows that stiffness of the planet 

bearings has bigger influence on low natural frequencies. The higher natural frequencies 

are similar in both cases, while the fundamental frequency of the first case is more than 

two times the one of the second case. The symmetry of the system gives rise to double 

modes. 

The main excitation frequency of the system is the meshing frequency of the 

planetary gear. The amplitude of external excitation is related to the external torque on the 

sun gear. Behind the main excitation, there exist internal resonances due to the integer 

ratios between the natural frequencies of the system. We show the change of nonlinear 

phenomena between the systems with and without internal resonances. 

For the two cases the internal resonances are summarized below: 

Case 1 of Table 8: ω72×ω4, ω156×ω6 

Case 2 of Table 8: ω42×ω1, ω92×ω5 

In the case 2, the internal resonances involve the fundamental frequency, so that the 

resulting vibration is more significant. 

The bifurcation diagrams are extracted by varying the mesh frequency; 750 

frequencies (upward) are analyzed, for each one the integration is carried out for 1000 

periods, the last 50 periods are recorded and the initial 950 periods are disregarded in 

order to remove the transient vibrations; when the frequency is changed the new 

simulation is carried out using the final state of the previous simulation as initial condition 

with a small perturbation; the sampling frequency is equal to the excitation frequency in 

order to build the Poincaré maps. Figs. 7 and 8 show bifurcation diagrams vs. excitation 

mesh frequency for the case 1 and 2, respectively. Figs. 7(a) and 8(a) represent the 

bifurcation diagrams of sun rotation and Figs. 7(b) and 8(b) represent the bifurcation 

diagram of first planet rotation. Damping properties used for these two models are listed in  

the first row (low frequency range) of Table 3. 
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(a) 

 

(b) 

 

Fig. 7. Bifurcation diagram vs. mesh frequency for case 1: (a) sun rotation (b) first planet rotation 

 

  (a) 

 

(b) 

 
Fig. 8. Bifurcation diagram vs. mesh frequency for case 2 (a) sun rotation (b) first planet rotation 

In Figs. 7 and 8 periodic responses can be identified by a single line. For both cases, 

the responses for the mesh frequencies higher than 15000 Hz are periodic, this is 

reasonable because there are no frequencies between (8572-22378) Hz for case 1 and 

(7473-22376) Hz for case 2. From Fig. 7 (for case 1) it can be observed that the 

bifurcation diagram crosses a 2T region at ωm(10200-10700) Hz, where the period of 

response is twice the excitation period; this 2T region disappears for case 2. The route 

from 1T to 2T regimes is discontinuous, i.e. there is a jump, this is due to the presence of 
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piecewise linear spring combined with time varying stiffness, it is typical of gear 

dynamics; this appears both for sun rotation, Fig. 7(a), and first planet rotation, Fig. 7(b). 

In the mesh frequency range ωm(5750-7000) Hz, case 2, Fig. 8 indicates the onset of 

gear tooth separation and chaotic response; because ω4=2×ω1, the third harmonic of ω4 

and the 6
th

 harmonic of ω1, overlap with 4
th

 harmonic of ω2,3=1445 Hz, this is probably 

the reason of the chaotic region. Inside the interval ωm(7000-7200) Hz, close to a 

rotational mode resonance, a 2T region takes place for 1
st
 planet rotation although the 

motion is chaotic for sun rotation, see Fig. 8 and Table 9. Another chaotic region appears 

at ωm=ω12=7182 Hz. A sudden disappearance of a chaotic orbit is often called blue-sky 

catastrophe; however, another motivation for a sudden change of dynamics can be the 

presence of coexisting stable chaotic and regular orbits, Ref. [37]. 

At frequency range ωm(13400-13800) Hz, Fig. 6, there is another chaotic region 

which leads to 4T region at the frequency range ωm(13800-14200) Hz. A further 2T 

region, appears for ωm(14200-14800) Hz. 

 

(a) 

0 0.5 1 1.5 2

x 10
4

-3

-2

-1

0

1

2

3

Mesh Frequency [Hz]

S
u

n
 x

-t
ra

n
s
la

ti
o

n
 [
  

 m
]

 

(b) 

0.5 1 1.5 2

x 10
4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Mesh Frequency [Hz]

S
u

n
 y

-t
ra

n
s
la

ti
o

n
 [
  

 m
]

 
 

Fig. 9. Bifurcation diagram vs. mesh frequency for case 1 (a)Sun center x-translation [µm](b) Sun 

center y-translation [µm] 
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Fig. 10. Bifurcation diagram vs. mesh frequency for case 2 (a)Sun center x-translation 

[µm](b) Sun center y-translation [µm] 
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Fig. 11. Bifurcation diagram vs. mesh frequency for case 2 (a)first planet rotation[µm],(b) second 

planet rotation [µm], (c)third planet rotation [µm]. 
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Figs. 9 and 10 give additional and extremely important information about the system 

dynamics for the case 2. Fig. 10(a) corresponds to x-translation of sun gear center and Fig. 

10(b) corresponds to its y-translation. In linear field, the symmetry and the perfect 

balancing of the system implies that the sun is loaded with a self-equilibrate force system 

from the planets, therefore it should experience no displacement in x and y directions. This 

is particularly evident in the case 2 Fig. 10. For the ranges where complex phenomena 

appear, the system presents symmetry breaking and consequently sun imbalance. Fig. 11 

presents the bifurcation diagram for all planets rotations. All planets undergo to the same 

vibration except for the chaotic regions when the symmetry breaking is evident. 

Now the most interesting regimes found in the bifurcation diagrams are analyzed in 

detail. For each regime Poincaré maps, phase portraits, spectra and time histories are 

shown, see Table 9. 


