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Abstract 

The goal of the present paper is a complete analysis of the dynamic scenario of 

planetary gears. A lumped mass two dimensional model is adopted; the model takes into 

account: time varying stiffness; nonsmooth nonlinearity due to the backlash, i.e. teeth 

contact loosing; bearing compliance. The time varying meshing stiffness is evaluated by 

means of a nonlinear finite element model, which allows an accurate evaluation of global 

and local teeth deformation. The dynamic model is validated by comparisons with the 

most authoritative literature: linear natural frequencies and nonlinear response. 

The dynamic scenario is analyzed over a reasonable engineering range in terms of 

rotation speed and torque. The classical amplitude-frequency diagrams are accompanied 

by bifurcation diagrams and, for specific regimes, the spectral and topological properties 

of the response are discussed. Periodic, quasiperiodic and chaotic regimes are found, 

nonsmooth bifurcations lead period one to period two trajectories. It is found that the 

bearing compliance can influence the natural frequencies combination magnifying the 

modal interactions due to internal resonances and greatly enlarging the chaotic regions. 

It is evidenced that the chaotic response indices a symmetry breaking in the 

dynamical systems. The physical consequence is that the planetary gearbox under 

investigation, which is perfectly balanced for each position, can suffer of a big dynamic 

imbalance when chaotic regimes take place; such imbalance gives rise to alternate and 

unexpected high level stresses on bearings. 
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List of Symbols 

Notation Definition Unit 

x,y x, y- translational coordinate µm 

Θ Rotational coordinate rad 

ks Translational sun bearing-stiffness (equal for x,y) N/m 

Ψn Angular position of the n
th
-planet with respect to the x-axis rad 

αs Working pressure angle for sun-planet mesh rad 

αr Working pressure angle for planet-ring mesh rad 

rbs,rbn, rbr Base radii of (sun, n
th
-planet, ring) m 

ksn Mesh-stiffness of sun- n
th
-planet  N/m 

ksu Torsional sun bearing-stiffness  N×m/rad 

kr Translational ring bearing-stiffness (equal for x,y) N/m 

krn Mesh-stiffness of n
th
-planet-ring  N/m 

rc Carrier radius (sun-planet center distance) m 

kp Translational planet bearing-stiffness (equal for x,y) N/m 

kpu Rotational planet bearing-stiffness (In this paper kpu=0) N×m/rad 

kc Translational carrier bearing-stiffness (equal for x,y) N/m 

kcu Rotational carrier bearing-stiffness  N×m/rad 

Ms Sun mass kg 

θs Rotational coordinate of sun rad 

Cs Translational sun bearing-damping (equal for x,y) N×s/m 

Csn Mesh-damping of sun- n
th

-planet  N×s/m 

bs Sun-planet backlash m 

Is Sun moment of Inertia kg×m
2 

Csu Torsional sun bearing-damping N×m×s/rad 

Mr Ring mass kg 

θr Rotational coordinate of ring rad 

Cr Translational ring bearing-damping (equal for x,y) N×s/m 

Crn Mesh-damping of n
th
-planet-ring N×s/m 

ρi Dimensionless damping for the i-th mode  

br Planet-ring backlash m 

Ir Ring moment of Inertia kg×m
2 

Cru Torsional ring bearing-damping N×m×s/rad 

z Gear numbers of teeth  

Indices:   

S Sun  

N n
th
-planet  

C Carrier  

R Ring (Annulus)  
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1. Introduction 

Planetary or epicyclic gear trains are widely used in many automotive, aerospace and 

marine applications; they are effective power transmission systems when high torque to 

weight ratios, large speed reductions in compact volumes, co-axial shaft arrangements, 

high reliability and superior efficiency are required [1]. Gear vibrations are primary 

concerns in most planetary gear transmission applications, where the manifest problem 

may be noise or dynamic forces. The most important source of vibration in planetary gears 

is the parametric excitation due to the periodically time-varying mesh stiffness of each 

sun-planet and ring-planet gear, because the number of tooth pairs in contact changes 

during gear rotation. This mesh stiffness variation parametrically excites the planetary 

gear system, causing severe vibrations when a harmonic component approaches one of the 

natural frequencies (or their linear combinations). Under certain near resonant operating 

conditions, gear systems can experience a teeth separation that induces nonlinear effects 

such as jump phenomena and subharmonic and superharmonic resonances with dramatic 

effects on the dynamic response [2]. These phenomena have been deeply investigated in 

geared systems during the last 20 years [3-7]. 

Cunliffe et al. [8], Botman [9] and Kahraman [10–12] presented models to estimate 

the natural frequencies, vibration modes and dynamic forces of planetary gears. 

Ambarisha and Parker [1] validated the effectiveness of a lumped-parameter model to 

simulate the dynamics of planetary gears. In Ref. [1], responses from the dynamic analysis 

using analytical and finite element models are successfully compared qualitatively and 

quantitatively.  

Multiple degrees-of-freedom linear planetary gear models are investigated in [13-15]. 

In such models, the gear mesh stiffness is modeled as a linear time-varying spring, [16-

18].  

Parker and Lin [19] found that the mesh phasing has a dramatic influence on the static 

and dynamic behavior of planetary and epicyclic gears. Linear system analysis helps to 

understand resonances and parametric instabilities due to periodically varying gear mesh 

stiffness [20], mesh phasing [19,20], and properties of vibration modes [14,15,23,24].  
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Some researchers considered two stage planetary systems [24,25]. Guo and Parker 

[26] derived important relations among the relative phases between any two gear meshes 

in a compound planetary gear. 

Al-shyyab and Kahraman [27] solved the non-linear equations of planetary gear 

motion semi-analytically using multi-term harmonic balance method (HBM) in 

conjunction with inverse discrete Fourier transform and Newton–Rapson method. The 

nonlinear dynamics of planetary gears involving teeth wedging and bearing clearance was 

investigated by Guo and Parker [28]. Sun and Hu [29] investigated the nonlinear dynamics 

of a planetary gear system with multiple clearances; the theoretical results from HBM are 

verified by using the numerical integration. When the planetary gearbox operates under 

some inappropriate conditions, such as inadequate lubrication, poor specifications, 

material defects, and improper manufacturing or installation, it is likely to cause gear teeth 

faults. Once the tooth faults appear, the dynamic performances of the gearbox are bound 

to be affected, with undesirable changes in the dynamic behavior and serious reduction in 

the service life of the planetary system [30-33]. Recently, Gu and Velex developed a 

dynamic model including three dimensional effects and errors [34-35]; Li et al. proposed a 

deep investigation on chaotic effects in planetary gears [36]. 

This paper presents a dynamic model to simulate the dynamic behavior of a single-

stage planetary gear system with time varying mesh stiffness and backlash. The complex 

dynamic scenario of a three-planets gearbox is investigated in detail. A bifurcation 

analysis is performed to explore the dynamic scenario (periodic, quasiperiodic and 

chaotic), with a special attention to symmetry breaking phenomena that are extremely 

interesting in planetary gears as they can cause additional imbalance-induced-stresses. 

Numerical analyses are carried out over meaningful mesh frequency ranges. The analysis 

is completed with time histories, spectra, phase portraits and Poincaré maps of the most 

interesting regimes. 

2. Dynamical Model 

The physical model of a single-stage planetary gear set is shown in Fig. 1. The system 

is made of four types of elements: sun gear; ring gear; N planets; carrier. Here the 

modeling is plane, i.e. each element has three degrees of freedom: two displacements and 
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a rotation. The centers of the different elements of the system are free to move in the 

plane, each component has translational and rotational degrees of freedom. The total 

number of degrees of freedom is (3N + 9); the model includes time variation of gear mesh 

stiffness (depending on the reciprocal angular position of two meshing gears) ksn and krn 

(n=1, 2, ..., N), backlash nonlinearities of mating gears and bearing compliance (no 

clearance is considered for bearings). 
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Fig. 1. Physical planar model of the single stage planetary gearbox 

 

 

 

 

A single-stage planetary gear set 

In Fig. 1 the planar physical model for the planetary gearbox vibration analysis is 

presented. Each planet is mounted on a rigid carrier through a flexible bearing; sun, ring, 

and carrier bearings are connected to the ground, while the planet bearings are connected 
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to the carrier. The planets are free to rotate with respect to the carrier; the sun is the system 

power input, it is also free to rotate; the rotational degree of freedom of the ring is locked; 

the rotation of the carrier is the system power output, it is constrained by a rotational 

bearing stiffness. The gear-shaft bodies, the ring and the carrier are assumed rigid; the 

compliant elements of the meshing gear teeth and bearings are represented by suitable 

nonlinear time-variant springs. The origin of the global coordinate system is at the 

undeflected position of the center of the sun. Positive planet position angles ψi (i=1, 2, ..., 

N) are measured counter-clockwise from the first planet, i.e. ψ1=0, see Fig. 1. 

 

ψ2 Sun 

Planet1 

rbs   

ys , yp, yc, yr 

xs , xp , xc , xr 

rb2  

Planet2 

rb1 

2br 

rbr   

2bs 

ks2(t) 

cs2 
Cr2 

kr2(t) 

rc  

Carrier 

Ring 

Fig. 2. Details of the meshing modeling 

 

Details of the single-stage planetary gear set model 

The gear elements, S, R, and C, are constrained to the ground by means of 

translational and torsional linear springs of stiffness magnitude (ks,ksu), (kr,kru) and (kc,kcu) 

respectively. Each spring is associated with a linear viscous damper, proportional to the 

mean value of stiffness and inertia, in order to simulate energy dissipation of the system.  

The planets are connected to the carrier by means of translational stiffness and damping. A 

proper choice of the magnitudes of the stiffness constraints allows to represent any 

different power flow scheme. Each gear body i (i= S,R, C, P1, . . ., PN) is modeled as a 

rigid disc of mass Mi, mass moment of inertia Ii, base radius rbi and torsional displacement 

θi. Planets are located at radius rc angular positions ψi; here the planets are considered 

equally spaced circumferentially. Excitation torque Ts is applied to the sun gear. The mesh 
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of sun (or ring) gear with a planet Pi is represented by a periodically time-varying stiffness 

element ksn(t) (or krn(t)) subjected to a piecewise linear backlash function  fs (or fr) that 

includes a clearance of amplitude 2bs (or 2br).The vibrational dissipation of lubricated gear 

contacts is represented by constant viscous damper coefficients Csn (or Crn). 

These coefficients are proportional to the mean stiffness coefficients and also to the 

mass of gears such that C=αM+βK, where C, M and K are damping, mass and stiffness 

matrices respectively and α and β are coefficients given by natural frequencies and modal 

damping ratios of the system, such that the damping ratio is ρi=1/2(α/ωi+ βωi) for the 

generic i-th mode. 

3. Equations of Motion 

The basic dynamical equilibrium equations contain (3N+9) nonlinear ordinary 

differential equations, where N is the number of planets; e.g. when N=3 they will be 18 

coupled equations. The equations of motion of the model shown in Fig. 1 are written using 

Newton-Euler equations and they are placed in canonical form. 

 

Sun Gear Equations 

 

    

      
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sin cos sin 0

N

s s s s sn n s n s

n

sn n s n s n s

sn s bs n bn n s

N

s s sn sx n s

n

sn sy n s n s sn s n s

M x C x c x x

c y y

c r r

k x k f

k f k f 

 

   

   

 

     





     


      
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

    


       



 


 



             

(1a) 
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N
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N
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   




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    (1b) 
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N
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N
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n
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



      (1c) 

 

In these equations, x and y and θ are the translational and rotational degrees of 

freedom respectively. Ts is the constant input torque applied to the sun gear and fsx, fsy and 

fsθ are the piecewise-linear displacement functions for sun-planets meshing, which are 

defined as follows: 

 

 
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sin
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s
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

   

     
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            (2a) 
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
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0

s bs n bn s sn s

s sn s

s bs n bn s sn s

r r b b

f b

r r b b



 

 



 

     
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




 

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                    (2c) 

where, 

     sin( ) cos( )sn n s n s n s n s s bs n bnx x y y r r                      (3) 

When sn sb  the teeth are separated, when sn sb   backside contact occurs. 

Ring Gear Equations 
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where, frx, fry and frθ are the following: 
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and 

     sin( ) cos( )rn r n n r r n n r r br n bnx x y y r r                       (6) 
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In the equations (1-8), ksn(t) and krn(t) are the mesh stiffnesses between sun-planet and 

ring-planet gears, respectively; they are periodically time varying at the mesh frequency. 

As the number of teeth pairs in contact within the mesh cycle changes with the rotation of 

the gear, the mesh stiffness varies accordingly. The piecewise linear spring generates 

nonzero mesh force only for positive relative mesh deflection (teeth in contact). The 

combination of the static torque and time varying stiffness gives rise to the excitation of 

the system, the periodic stiffness has the fundamental frequency / ( )m s s r s rz z z z  
 

where ωs is the angular velocity of the sun gear and zs and zr are the teeth numbers of the 

sun and the ring gears. Periodically time-varying mesh stiffnesses are written in Fourier 

series form: 

      1 2 (2 1)

1

cos 2 sin 2
sh

n n

sn sp sp m sn sp m sn

n

k t k k t k t     



            (9a) 

 1 2 2 1

1

ˆ ˆ( ) cos( 2 ) sin( 2 )
rh

n n

rn rp rp m rn rp m rn

n

k t k k t k t     



            (9b) 

Where hs and hr are the number of harmonic terms used to describe the periodic 

functions ( )  snk t and ( )rnk t ; 
( )i

spk and
( )

r

i

pk are the harmonic coefficients of Fourier series.
(1)

spk  

and 
(1)

rpk  are the mean values of the coefficients; sn represents the phasing between sun-

planets, which means relative phase between n
th

 sun-planet mesh and first sun-planet 

mesh, i.e. 1 0s  ; the same definition applies to ˆ
rn , which is relative phase between n

th
 

ring-planet mesh and first ring-planet mesh, ˆ
rn = sn sr    represents the ring-planets 

phasing; γsr is the sun-ring phasing i.e. the phase angle between the n
th

 ring-planet mesh 

and the n
th

 sun-planet mesh. For the present study, γsr is independent from planet number; 
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so, γsr is phase angle between stiffnesses of meshes sun-first planet and ring-first planet. 

See Ref. [21] for a comprehensive description on mesh phase relations in planetary gears. 

4. Time-varying mesh stiffness evaluation 

The gear meshes are considered as linear springs with backlash (nonlinearity) and 

periodically varying stiffness, due to the variation of tooth contact conditions and position 

of contact points on each tooth. This time varying mesh stiffness is evaluated by 

HelicalPair software [11, 38]. HelicalPair is a software developed in the Centre 

Intermech MO.RE. (Aster, High Technology Network of the Emilia Romagna Region). 

Linearized gear mesh stiffness (without considering backlash effects) is evaluated 

separately both for external gears (sun-planets mesh) and internal gears (ring-planets 

mesh). HelicalPair acts as a preprocessor and postprocessor for a FE solver, namely MSC 

Marc software. Figs. 3a and 3b illustrate finite element model produced by HelicalPair 

software for external and internal gear meshes. Figs. 3c and 3d present details of gear 

tooth meshes; backlashes are observable in these figures. 

The mesh stiffnesses are dependent on the forcing condition (torque applied). For 

external gear meshes, the torque Ts=T/N is applied to the sun, where T is the sun torque of 

the planetary system, the transmission error is calculated using HelicalPair (us=rsθs), the 

mesh stiffness 1
ˆ

sk  at a particular mesh position is evaluated as 1
ˆ   / ( )s s s sk T r u . This 

calculation is repeated at multiple steps within a mesh cycle. A similar process is used for 

the ring–planet mesh; the torque /p s p szT T z
 
is applied to the planet. In each case, the 

center of the driven gear is fixed when the stiffness is evaluated.  

Note that the present calculations of the applied torques are valid when the load is 

uniformly distributed among different planets (balanced gearbox). In actual gearboxes, it 

is impossible to guarantee uniform loading when more than three planets are present, due 

to the quality accuracy of workmanship [33].  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 3 Finite element model gear meshes: a: external gears, b: internal gears, c: external gear teeth 

meshes, d: internal gear teeth meshes. 

 

 

 

5. Validation 

First Validation: Pure Rotational Model 

In this section, the results are validated by comparisons with Ref. [2], where a pure 

rotational nonlinear model was considered. The gear tooth flanks are pure involutes 

without tooth modification. The parameters of the gearbox are given in Table 1. The 

gearbox is made of three equally spaced planets, i.e. N=3 and ψi = 0, 2π/3, 4π/3. The half 

backlash values for both meshes are bs= br =0.3 mm [2]. A constant sun gear torque of 
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1130Nm is applied. The ring gear is fixed in the present study. The carrier rotational dof 

θc is constrained to be zero under the assumption that there is a large output inertia (as 

usual for many applications), so the rigid body motion is removed [2]. 

The average stiffness values of the sun–planet and ring–planet meshes are: 

(1)

spk =6.19710
8
N/m and (1)

spk =8.51210
8
N/m, see Ref.[2]. Stiffnesses are evaluated by 

Fourier coefficients given in Table 2. The values of the gear mesh damping constants 

Csn(t) (or Crn(t)) are estimated such that they correspond to the damping ratios given in 

Table 3. 

 

Table 1. Parameters of the case study planetary gear set (Rotational Model) 

Parameter Sun Planet Ring Carrier 

Number of teeth 27 35 99 - 

Module [mm] 2.8677   2.8677 2.7782 - 

Pressure angle [deg] 24.60 20.19  - 

Working Center Distance [mm]       88.89 - 

Root diameter [mm] 70.485 91.440 284.150 - 

Outer diameter [mm] 84.074 105.004 304.800 - 

Inner diameter [mm] 57.15 73.66 271.73 - 

Base diameter [mm] 70.40 91.26 258.130 177.80 

Translational bearing stiffness [N/m] - - - - 

Rotational bearing stiffness  

[N.m/rad] 

0 0 - 2.19e10 

I/r
2 
[kg] 3.11 4.89 - 24.80 

Mass [kg]  2.64   
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Table 2. Fourier coefficients of sun-planet and ring-planet mesh stiffnesses [N/m], see Eq. (9) 

Harmonics (n) ksn10
7
 krn10

7
 

2n

spk  
2 1n

spk 
 

2n

rpk  
2 1n

rpk 
 

1 -12.632 8.462 -0.192 2.342 

2 -0.634 2.634 0.15 0.022 

3 -0.702 -3.07 -0.326 0.306 

4 -1.63 -1.404 0.508 0.422 

5 0.392 0.04 0.446 -0.444 

 

Table 3. Damping ratios  

Low frequency range ρ1= 2.7%, ρ2= ρ3=1.1%, ρ4=1.92% 

High frequency range ρ1= 6%, ρ2= ρ3=1.1%, ρ4=5% 

 

All sun-planet meshes are in phase with each other, as well as all ring-planet meshes, 

i.e. γsn=γrn=0. This design can be realized when the summation of sun and ring teeth 

numbers is an integer multiple of the number of planets [2]. In the absence of chaotic 

responses, caused by nonlinear effects, this arrangment presents symmetric force 

distribution, i.e. perfect balancing on the sun (zero forces acting on the bearings). 

The natural frequencies of the present model (reduced to pure rotational motion by 

elimination of translational degrees of freedom) are presented in the Table 4. Good 

agreement between Ref. [2] and the present model is found.  

The nonlinear model is validated considering regimes where the amplitudes of 

vibration cause teeth separation, i.e. nonlinear behavior. Fig.4 shows the RMS (Root Mean 

Square) of sun rotational vibration (multiplied by sun base radius) vs. the meshing 

frequency; such results are obtained by numerical integrating Eqs.(1-8); the mean value of 

time histories is removed before calculating the RMS. The algorithm for numerical 

integration is RADAU5; the number of mesh periods considered for transient response is 

950 (initial response removed from the analysis), the number of substeps is 100 per each 

period and the number of mesh periods considered for evaluating the RMS is 50.  

The mesh frequency is dependent on the sun rotational speed by 

(/ )m s r s r sz z z z   . 
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Table 4. Comparison of Natural frequencies for pure rotational model 

Natural frequency Presentresults 

[Hz] 

Results of Ref. [2] 

[Hz] 

The difference 

[%] 

ω1 1847 1846 0.05 

ω2= ω3 2760 2744 0.5 

ω4 4387 4379 0.18 

 

Results for both increasing and decreasing speed sweeps are plotted in Fig. 4, only the 

sun rotational dof is represented for the sake of brevity. There are jump phenomena at the 

first (ω1) and the fourth (ω4) resonances. The resonance peaks lean-to the left, implying 

softening nonlinearity induced by tooth separation.There are additional resonance peaks 

around 8000 Hz,1800 Hz (the first distinct mode), and below 1600 Hz. These peaks are 

the combined effect of parametric instability from higher harmonics of mesh stiffness 

fluctuation and nonlinear subharmonic and superharmonic resonances of the first and 

second distinct modes, [2]. 

 

Fig. 4. RMS of sun rotation versus mesh frequency; ──: present results, ●●●: results of Ref.‎[2]. 
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Second Validation: Rotational – Translational Model 

  The full model for nonlinear dynamics of planetary gears is investigated here using 

all degrees of freedom for sun, planets, carrier and ring gears. Comparison between the 

rotational – translational bulk model with the results of Ref. [1] is presented. The natural 

frequencies of both models are listed in Table 6 (gearbox data are available in Tables 2, 3 

and 5) Fig 5 represents the RMS (mean removed) of sun compared for pure rotational and 

rotational-translational model. 

The eigenvectors correlated to the natural frequencies of Table 5 are plotted in Fig. 6. 

These eigenvectors are normalized by unity. Table 7 presents the description of each 

degree of freedom. The modes (1758Hz) and (3352Hz) are related to planets rotations, the 

amplitudes of the other degrees of freedom are almost zero.  

Table 5. Parameters of the case study planetary gear set (Rotational- translational Model) 

Parameter Sun Planet Ring Carrier 

Number of teeth 27 35 99 - 

Module [mm] 2.8677   2.8677 2.7782 - 

Pressure angle [deg] 24.60 20.19  - 

Working Center Distance [mm]       88.89 - 

Root diameter [mm] 70.485 91.440 284.150 - 

Outer diameter [mm] 84.074 105.004 304.800 - 

Inner diameter [mm] 57.15 73.66 271.73 - 

Base diameter [mm] 70.40 91.26 258.130 177.80 

Translational bearing stiffness [N/m] 2.19e9 2.19e9 2.19e10 2.19e10 

Rotational bearing stiffness  

[N.m/rad] 

0 0 2.19e10 2.19e10 

I/r
2 
[kg] 1.56 2.46 - 24.80 

Mass [kg] 1.64 1.33 - 21.82 

 

 

 

 

 

 

Table 6: Comparison of Natural frequencies for rotational-translational model 

Natural Freq. Present model[Hz] Ref. [2] [Hz] % difference 
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ω1= ω2 1758 1760 0.1 

ω3 2100 2095 0.19 

ω4= ω5 3352 3390 1.1 

ω6 5253 5249 0.07 

 

Table 7: Definition of each degree of freedoms 

1 Sun gear translation in x direction 10 2
nd

planet translation in x direction 

2 Sun gear translation in y direction 11 2
nd

 planet translation in y direction 

3 Sun gear rotation 12 2
nd

 planet gear rotation 

4 Ring gear translation in x direction 13 3
rd

planet translation in x direction 

5 Ring gear translation in y direction 14 3
rd

 planet translation in y direction 

6 Ring gear rotation 15 3
rd

 planet gear rotation 

7 1
st
 planet translation in x direction 16 Carrier translation in x direction 

8 1
st
 planet translation in y direction 17 Carrier translation in y direction 

9 1
st
 planet gear rotation 18 Carrier gear rotation 
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Fig.5. RMS of sun rotation;□: pure rotational model, ●: rotational translational model. 
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Fig.6. 6 first mode shapes of the system corresponding to Table 6. Definition of degrees of 

freedoms are in Table 7. 

 

 

 

 

 


