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Abstract

A pillar for the modern study of theoretical physics is certainly quantum field theory

(QFT), since an always increasing number of physical problems are formulated and

approached according to QFT. Indeed, the quantization of fields allows to study multi-

particle phenomena, both involving non-relativistic particles, as in condensed matter,

and relativistic particles, as in the study of fundamental interactions. Actually, more

than a theory it is thought as a paradigm on top of which different physical theories are

proposed and developed. The classic formulation of QFT is given as a "second quanti-

zation", i.e. quantizing fields which depend, parametrically, on spacetime coordinates.

The reason is two-fold. In doing so, one can treat space and time on equal footing, thus

circumventing the problem of unifying quantum mechanics and special relativity. On

the other hand, as already mentioned, QFT allows to describe multiparticle phenom-

ena. However, the aforementioned unification problem can as well be achieved treating

space and time both as dynamical fields and using the proper time as parameter. This

leads to a particle quantization, known as worldline formalism, which thus provides a

first-quantized approach to QFT. The worldline formulation of QFT is the main subject

of the present thesis. The worldline formalism allows to write QFT quantities of inter-

est (propagators, effective actions and scattering amplitudes) in terms of quantum me-

chanical path integrals which ultimately correlate such observables to the behaviour of

different quantum mechanical particles. These particle-models, called sigma-models,

have been extensively studied for years from an analytical perspective, providing valid

results, particularly when the particle is coupled to external fields, i.e. vector gauge

fields, gravity, etc. In the presence of gravitational couplings, i.e. in curved space-

times, the almost totality of analytic results has involved a perturbative approach. In

general, attempts to reach non-perturbative results, in flat and in curved space, have

led to the development of numerical interpretations of the worldline formalism. The

main candidate of these strategies is the so called Worldline Monte Carlo, for which

several numerical algorithms have been developed: the key idea is to approximate the
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path integral of a point particle with a discrete set of discretized paths sampled numer-

ically according to Monte Carlo based routines. In this thesis we will see this method

in action, providing first a series of analytical calculations of some QFT relevant quan-

tities, and then we will focus on the numerical part, that is computations based on the

WLMC approach in flat and curved spaces. In particular, numerical applications of

the worldline Monte Carlo theory in curved space represent and absolute novelty and

in this thesis we will provide an efficient construction which allows to possibly imple-

ment a large number of curved space configurations as backgrounds. The goal is to

obtain non-perturbative results which, analytically, can be investigated so far only by

means of perturbative techniques.

Un pilastro della fisica teorica moderna è senza dubbio la teoria quantistica dei campi

(QFT), poiché un numero sempre maggiore di problemi fisici sono formulati e af-

frontati in accordo con quest’ultima. Infatti, la quantizzazione dei campi permette di

studiare fenomeni riguardanti più particelle, sia non relativistiche, come in materia

condensata, sia relativistiche, come nello studio delle interazioni fondamentali. In re-

altà, più che una teoria, la QFT è pensata come un paradigma in base al quale diverse

teorie fisiche sono proposte e sviluppate. La formulazione classica della QFT è data in

"seconda quantizzazione", cioè quantizzando campi che dipendono in modo paramet-

rico dalle coordinate spaziotemporali. La ragione è duplice. Così facendo, è possibile

trattare spazio e tempo in modo analogo, aggirando quindi il problema di unificare

meccanica quantistica e relatività speciale. D’altro canto, come già accennato, la QFT

permette di descrivere sistemi multiparticellari. Ad ogni modo, il problema di unifi-

cazione menzionato sopra può essere affrontato anche trattando spazio e tempo come

campi dinamici e usando il tempo proprio come parametro. Questo porta ad una quan-

tizzazione della particella, conosciuta anche come formalismo a linea di mondo, che

quindi fornisce un approccio in prima quantizzazione alla QFT. Il formalismo a linea

di mondo della QFT è il soggetto principale di questa tesi. Esso permette di formu-

lare quantità di interesse per la QFT (propagatori, azioni efficaci, ampiezze d’urto) in

termini di integrali sui cammini quantomeccanici, che legano tali osservabili al com-

portamento di diverse particelle quantomeccaniche. Questi modelli particellari, chia-

mati modelli-sigma, sono stati studiati esaustivamente per anni da un punto di vista
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analitico, fornendo ottimi risultati in particolar modo quando la particella è accoppiata

a campi esterni, come campi di gauge, gravità, ecc. In presenza di accoppiamenti grav-

itazionali, come in spaziotempi curvi, la quasi totalità di risultati analitici coinvolge un

approccio perturbativo. In generale, alcuni tentativi di ottenere risultati non perturba-

tivi, in spazi piatti e curvi, hanno portato allo sviluppo di interpretazioni numeriche

del formalismo a linea di mondo. Il principale candidato di queste tecniche è il cosid-

detto formalismo a linea di mondo Monte Carlo (WLMC), rispetto al quale numerosi

algoritmi numerici sono stati sviluppati: l’idea centrale è di approssimare l’integrale

sui cammini di una particella puntuale con un insieme discreto di cammini discretiz-

zati, campionati numericamente secondo routine che adottano il metodo Monte Carlo.

In questa tesi vedremo questo metodo in azione, fornendo prima una serie di risultati

analitici su alcune grandezze della QFT, e poi ci concentreremo sulla parte numerica,

cioè calcoli basati sul metodo WLMC in spazio piatto e curvo. In particolare, le appli-

cazioni numeriche di questa teoria in spazio curvo rappresentano una novità assoluta

a in questa tesi mostreremo come ottenere una costruzione efficiente che permetta di

implementare un grande numero di configurazioni di spazio curvo in termini di back-

ground. Lo scopo è ottenere risultati non perturbativi che, dal punto di vista analitico,

possono essere studiare (fino ad ora) soltanto attraverso tecniche perturbative.
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Chapter 1

Introduction

Quantum Field Theory (QFT) is probably one of the most successful theories in physics

of all time. Its value is not merely factual, as it allows for the most accurate theoreti-

cal predictions ever made; the electron g-factor which parameterizes the (anomalous)

magnetic dipole moment [1, 2], is considered the most precise prediction in all hu-

man history. Rather its value is potential, since it laid the foundations of a large

number of theories on which modern physics is based, such as quantum electrody-

namics and chromodynamics, renormalization theory, gauge theories, supersymmetry,

the Standard Model and string theory. And it’s no wonder: QFT is the son of the two

most revolutionary and outstanding theories that humans came up with, i.e. quantum

mechanics and special relativity. Both they not only drastically changed the way of

making physics, but, even more important, generated an abyss between science and

intuitiveness. Furthermore, as scientists, we learn from quantum mechanics that what

we study is not actually what it is, but what appears to us, how we feel it. This is

the fundamental problem of the observation: anything which is observed changes and

this must be taken into account during experiments and calculations. Special relativity,

instead, teaches us that space and time are much more connected than we can notice

at ordinary (macroscopic) scales. They are not just coordinates to determine when and

where an event takes place, rather they are homogeneous quantities whose relation

determines whether the event can happen or not. One of the most counter-intuitive

consequences of the spacetime homogeneity is certainly the velocity cap: any physical

object1 can travel at a maximum speed limit, that is the speed of light. Close to this

limit, the more we push an object, the greater becomes its inertia to be accelerated,

as if nature doesn’t want objects to be arbitrary fast. This last sentence encodes our

subliminal mental misconception: more or less consciously, we always gave a great

1More precisely, any physical source of information.
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importance to intuitiveness for our experiments and theories, hence, we had been led

to believe that what we observe at common conditions should happen at all conditions.

Hence we feel the limit that nature imposes as a limit to our understanding of the nature

itself, and not one of its features.

Quantum mechanics and special relativity told us that when we study a phenomenon,

we are part of the experiment as observers, and that we must be ready to be contra-

dicted the more often we deviate from common scales.

This might appear as a scary scenario (and maybe it is), but it also teaches that

what actually is now important as never before is to trust the fact that a theory truly

describes the world if it agrees with measurements, regardless how far from intuition

its ideas are felt.

This is what leads most of the modern theories like string theory and supergravity,

to name two: if they bring good agreements with experiments, we can make the effort

of thinking that we live in eleven (or more) dimensions.

Quantum Field Theory is actually only one of the two main characters of modern

physics. The other is certainly General Relativity (GR), that is the physics at cosmo-

logical scales. As we did between quantum mechanics and special relativity, we would

like to combine a marriage between QFT and GR. This is felt as the greatest challenge

of all history of physics. Basically, we are dealing with two theories which work very

well in their regimes of applications, that are totally opposed: QFT describes the world

of elementary particle, thus at extremely small scales, whereas GR is the mother the-

ory of gravitation. It is a geometric classical theory which describes both gravitational

phenomena and the cosmological evolution of the universe. Thus, it naturally applies

to effects which occur at very large scales. The main issue is that an intermediate

point at which both theories (or at list part of them) may be combined cannot be found

since some characteristic features of QFT and GR start to conflict. On the other hand,

a consistent quantum theory of gravity is expected to exist. In fact, quantum effects

in gravity are expected to occur at the Planck scale, where the Compton wavelength

of a particle— which characterizes its quantum properties— and the Schwarzschild

radius— which characterizes its gravitational properties, are equal, i.e.

2GM
c2 =

h̄
Mc
→ ℓp =

…
h̄G
c3 . (1.1)

Starting from these difficulties, an increasing number of new theories have been arising
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over the past few years. The main goal is to formulate a theory which asymptotically

tends to GR for large scales, to QFT for small scales, and provides new predictions

at intermediate scales. Yet, the Planck scale, which is the scale where quantum grav-

itational phenomena are expected to be relevant, is way out of reach of terrestrial ex-

perimental devices. On the other hand these effects are certainly relevant in the very

early stages of the universe, and may have left their finger prints in the observable

gravitational waves— see e.g. [3]. The main difficulty met in the construction of a

quantum theory of gravity is self consistency. Firstly, the straightforward quantization

of Einstein’s GR theory, such as a perturbative theory about flat space, leads to a non-

renormalizable theory, i.e. a theory which, as the perturbative order increases, needs

an increasingly higher amount of external input to renormalize away the divergences

present in the scattering amplitudes. On the other hand, string theory— which to date

is the most promising scenario to quantize gravity— is a finite theory (no renormaliza-

tion needed), but is consistent only if the spacetime is higher-dimensional. The needed

extra-dimensions thus need to be suitably compactified: this process leaves an enor-

mous amount of solutions which are consistent with Standard Model and GR, as low

energy effective field theory. Hence, string theory, as a unifying scenario, has so far

shown to be a poorly predictive theory. We shall not address such issues in the present

thesis.

However, a lot can be said even without a new theory: for instance, it is possible

to somehow mitigate or just use some ingredients of a theory in the realm of another

theory. This is conceptually what happens when we try to include GR as a background

in QFT calculations, as an example. In fact, it turns out that the tools one acquires

in the study of QFT in curved spaces, can be applied to various scenarios, such as

the classical scattering of black holes [4] and the diffusion of nonrelativistic particles

(such as proteins) on curved substrates (such as cells), just to name a few. From a

more theoretical (and speculative) viewpoint, they have been used as a tool to compute

scattering amplitudes and effective actions involving gravitons, which allegedly are

the helicity-two elementary particles that mediate gravity.

An important tool for theoretical physics, as already mentioned, is Perturbation

Theory (PT). It can be formulated in various ways depending on the specific problem

it is applied to. From basic quantum mechanics to advance quantum field theory, it al-

lows to provide approximated solutions to problems which are analytically prohibitive

or even unsolved. Typically, the more accurate the solution the greater the effort. In the
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realm of QFT, perturbation theory is often applied to the (semi)analytical computation

of vacuum scattering amplitudes, whereas non-perturbative methods can treat strong

coupling theories, or models with external fields. In recent years, guided also by the

technological development and the increasing computer power, a lot of efforts have

been made in the formulation of QFT-problems which can be implemented in numer-

ical routines to provide more and more accurate estimate of the result. Even though

these numerical implementations can be useful for perturbative problems to count and

order an increasingly high number of terms from the pertubative series which repre-

sents the result of a calculation, the main gain we can get from computers is probably

when we deal with non-perturbative problems: this the case of the Worldline Monte

Carlo (WLMC) technique. In fact, it allows to approach non-perturbative problems,

including especially those defined in a background curved space, and provides re-

sults which reproduce the correct solutions up to a numerical degree of accuracy. The

WLMC technique is the core of this thesis and its extension to curved space config-

urations represents an absolute novelty: we will show how a non-trivial metric can

enter the WLMC algorithms and apply this method to a number of models includ-

ing scalar field propagators in maximally symmetric spaces, for which analytical and

perturbative solutions can be used as a benchmark.

This thesis is structured as follows: in chapter 2 we introduce the construction of

path integrals in flat space and their use in first quantization, defining then the so called

linear σ-models; in chapter 3 we see how such path integrals are defined (and regular-

ized) in curved space backgrounds, leading to non-linear σ-models; a first application

of the latter is given in chapter 4 and consists of an analytical computation of the trace

anomaly of a scalar field in maximally symmetric curved space using BRST quanti-

zation; in chapter 5 we focus on the dynamics of a scalar particle in a D-dimensional

curved space and prove the equivalence between two different regularization schemes

for path integrals in curved space, that is mode and dimensional regularization; in

chapter 6 we introduce the worldline Monte Carlo numerical approach, which is then

exploited in chapter 7 where curved space is considered; chapter 8 focuses on further

WLMC applications, including Casimir configurations and electromagnetic couplings;

chapter 9 is dedicated to a specific numerical algorithm (Creutz’s algorithms) which

allows to estimate Grassmannian path integrals, i.e. path integrals over anticommut-

ing scalar variables; we also suggest a possible application of a combination between

WLMC and Creutz’s algorithms to study non-linear σ-models, including then both
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commuting and anticommuting scalar fields; in chapter 10 we study the particular

case of a scalar field rotating on a ring in presence of a punctual defect, and solve

numerically the associated equations of motion; finally, in chapter 11 we draw our

conclusions and provide possible outlooks.
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Chapter 2

Path Integrals and σ-models

As we have anticipated in the previous chapter, Quantum Field Theory is considered

the most important framework on which modern particle physics is based, in par-

ticular when it is formulated using path integrals. In fact, it is not always stressed

enough that non-abelian gauge theories, upon which weak and strong interactions are

based, have only been consistently formulated at the full quantum level through field

path integrals, which are the natural, second-quantized, extension of particle path inte-

grals. This fundamental tool was introduced by R. P. Feynman [5] in the 1940’s after

some suggestions by Dirac of considering the action instead of the Hamiltonian as a

preferred quantity to encode the information of the dynamics. Actually a primordial

version of path integral was introduced previously by Wiener in the 1920’s to study

the Brownian motion of a particle, even though a complete and accurate formulation

of the framework is universally ascribed to Feynman.

This construction actually has constituted a milestone for quantum field theo-

ries in the following years: as an alternative to second quantized approaches to QFT

for the computation of anomalies [6–10] and for effective actions and Feynman dia-

grams [11–14] for instance. This method can be straightforwardly extended to curved

spacetime, as reviewed in [15], and direct applications involve one-loop effective ac-

tions [16–18], the one-loop graviton photon mixing in an electromagnetic field [19],

gravitational corrections to Euler-Heisenberg Lagrangians [20], worldline represen-

tations of quantum gravity [21, 22], supergravity [23], and higher spin field theo-

ries [24, 25] and simplified methods for anomaly computations [26, 27] as we’ll see

in detail.

Because of their importance in QFT and since they are directly involved in the

numerical Worldline Monte Carlo routines, it is worth to provide a quick sketch of

how a Feynman particle path integral can be constructed and what it represents for
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quantum mechanics and QFT.

The evolution of a quantum mechanical state of a scalar point-particle in n spacial

dimensions from an initial point (xi, ti) to a final point (xf, tf) in a time interval T is

governed by the so called transition amplitude and can be expressed by

K(xf, tf; xi, ti) = ⟨xf| e
−i(tf−ti)

h̄ H |xi⟩ , (2.1)

where the Hamiltonian reads

H(x) = − h̄2

2m
∂

∂xi

∂

∂xi + V(x), (2.2)

at any intermediate x ∈ [xi, xf]. Here and in the following we are using bold letters

to denote operators. Performing a Wick-rotation from Minkowskian time tM to Eu-

clidean time tE = itM and defining β = tE, f − tE,i, we can express the transition

amplitude as

K(xf, xi; β) = ⟨xf| e−
β
h̄ H |xi⟩ (2.3)

satisfying the heat equation

−h̄
∂

∂β
K(xf, xi; β) = H(xf)K(xf, xi; β) (2.4)

which can be regarded as the Wick-rotated version of the Schrödinger equation. So

far we have been using operators to express dynamical variables, as prescribed by

quantum mechanics. However, in most cases when a time evolution is present, this

imposes the need to consider a time ordering for such operators. To get rid of this

difficulty, it is useful to set a framework where only functions, instead of operators,

are used. This is one the most useful features of path integrals. To do that, let us

time-split the transition amplitude as follows,

K(xf, xi; β) = ⟨xf|
(

e−
β

h̄N H
)N
|xi⟩ = ⟨xf| e−

ϵ
h̄ H . . . e−

ϵ
h̄ H |xi⟩

=
∫ ÇN−1

∏
k=1

dnxk

å
N

∏
k=1
⟨xk| e−

ϵ
h̄ H |xk−1⟩ ,

(2.5)

where we have inserted N − 1 times the identity operator

∫
dnx |x⟩ ⟨x| = 1. (2.6)
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and have defined the quantities x0 = xi, xN = xf and ϵ = β
N . If we insert N times the

identity in momentum space ∫
dn p |p⟩ ⟨p| , (2.7)

we obtain

K(xf, x;β) =
∫ ÇN−1

∏
k=1

dnxk

åÇ
N

∏
k=1

dn pk

å
N

∏
k=1
⟨xk|pk⟩ ⟨pk|e−

ϵ
h̄ H|xk−1⟩ . (2.8)

To be more precise, the second equality in eq. (2.5) is allowed by Trotter’s formula in

the large N limit. Namely, if we rewrite the exponent of the evolution operator as

−β

h̄
H = −Nϵ

h̄
H = −λ(T + V), (2.9)

with parameter λ = Nϵ
h̄ and T, V being the kinetic and potential contributions to H

respectively, then we have

e−
λ
N (T+V) = e−

λ
N Te−

λ
N V +

λ2

2N2 [V, T] + . . . = e−
λ
N Te−

λ
N V + o

Ä
N−1
ä

, (2.10)

and Ä
e−

λ
N Te−

λ
N V
äN
−
Ä

e−
λ
N (T+V)

äN
= o
Ä

N−2
ä

, (2.11)

producing the limit

e−λ(T+V) = lim
N→∞

Ä
e−

λ
N Te−

λ
N V
äN

. (2.12)

This procedure allows us to break the full exponential into a chain N exponentials

(close to unity) whose order is irrelevant of the large N-limit. The last term in eq.

(2.8) can be written as

⟨p|e−
ϵ
h̄ H(x,p)|x⟩ = ⟨p|1− ϵ

h̄
H(x, p) + o(ϵ2)|x⟩

= ⟨p|x⟩ − ϵ

h̄
⟨p|H(x, p)|x⟩+ o(ϵ2)

= ⟨p|x⟩
[
1− ϵ

h̄
H(x, p) + o(ϵ2)

]
= ⟨p|x⟩ e−

ϵ
h̄ H(x,p),

(2.13)

for Hamiltonians of the kind of eq. (2.2), where x’s and p’s do not mix. In fact, in

curved space this is not the case and a more involved manipulation will be needed.
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Now, using plane waves

⟨x|p⟩ = 1

(2πh̄)
n
2

e
i
h̄ p·x, (2.14)

and eq. (2.13), we find

⟨xk|pk⟩ ⟨pk|e−
ϵ
h̄ H|xk−1⟩ =

1
(2πh̄)n e

i
h̄ pk ·(xk−xk−1)− ϵ

h̄ H(xk−1,pk), (2.15)

which can be inserted into the transition amplitude (2.8) to get

K(xf, xi; β) =

= lim
N→∞

∫ ÇN−1

∏
k=1

dnxk

åÇ
N

∏
k=1

dn pk

(2πh̄)n

å
e−

ϵ
h̄ ∑N

k=1[− i
ϵ pk ·(xk−xk−1)+H(xk−1,pk)]

=
∫
Dx Dp e−

1
h̄ S[x,p].

(2.16)

Eq. (2.16) identifies a path integral in phase space for the point-particle subjected to

H(x, p) and is governed by the corresponding action

ϵ
N

∑
k=1

ï
− i

ϵ
pk · (xk − xk−1) + H(xk−1, pk)

ò
→
∫ β

0
dτ
[
−ip · ẋ + H(x, p)

]
= S[x, p].

(2.17)

Furthermore, it is possible to perform the phase-space path integral via Gaussian inte-

gration, to get the associated path integral in configuration space

K(xf, xi; β) =

= lim
N→∞

∫ ÇN−1

∏
k=1

dnxk

å( m
2πh̄ϵ

) nN
2

e
− ϵ

h̄ ∑N
k=1

ï
m
2

( xk−xk−1
ϵ

)2
+V(xk−1)

ò
=
∫
Dx e−

1
h̄ S[x],

(2.18)

with action

ϵ
N

∑
k=1

ñ
m
2

Å
xk − xk−1

ϵ

ã2
+ V(xk−1)

ô
→
∫ β

0
dτ
[m

2
ẋ2 + V(x)

]
= S[x]. (2.19)

At this point we can also Wick-rotate back to Minkowski time, to get the quantum

mechanical transition amplitude

K(xf, xi T) =
∫
Dx e

i
h̄ S[x], (2.20)
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with

S[x] =
∫ T

0
dτ
[m

2
ẋ2 −V(x)

]
. (2.21)

The x-representation (2.21) actually encodes the theoretical recipe that one should

follow to compute the transition amplitude K(xf, xi; T): in principle, one should con-

struct all the possible (an infinite number) n-dimensional trajectories which join the

endpoints xi and xf in a propagation time T; to each path (here comes the name path

integral), one assigns a weight given by e
i
h̄ S[x] and then sums over all the paths to get

the final estimation of T.

A few comments are in order. Each path that contributes to K is weighted by e
i
h̄ S,

which is a unit-norm complex number, which can be obviously represented as a unit-

length arrow in a 2D plane. Hence, heuristically, it is easy to convince oneself that

the most important paths are those for which the action is stationary, i.e. the classical

trajectory: neighboring paths to it give rise to constructive interference. Thus, in the

limit when |S[xcl]| ≫ h̄ only the classical path counts. Moreover, by writing K as

K(xf, xi; T) = e
i
h̄ S[xcl]N(xf, xi; T) = e

i
h̄ Γ(xf,xi;T) (2.22)

it is easy to show that Γ satisfies a Hamilton-Jacobi like equation, which reduces to the

classical one when |S[xcl]| ≫ h̄.

The problem of computing a quantum mechanical transition amplitude has turned

into the computation of the propagation of a scalar point-particle through all possi-

ble trajectories in flat spacetime. The particle action involved in the flat space path

integral will be referred to as linear σ-model1. The idea that, at quantum scales, a

point-particle which is born at an initial point xi and dies at xf has to travel simulta-

neously all the possible trajectories between such points, has bothered physicists for

a long time. Actually, the complication comes when we try to use too much intuition

into our formulas: the interpretation process which we insert at each step of our the-

oretical derivation would ask us to introduce a bunch of stereotypes coming from our

macroscopic experience that unfortunately do not apply in the quantum world. Any-

way, where common sense fails, experiments come into play, and now more than ever

they must be the guiding lights to prove or disprove a theory, however absurd it may

seem. One of the most remarkable experiments which ultimately confirm the validity

of Feynman’s path integral construction is the double-slit experiment. Originally, the

1In the case of a curved space, we use to call the model nonlinear.
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double-slit experiment was first performed by Young in 1801 to demonstrate the wave

behaviour of light, which produces an interference pattern when it shines a double slit.

Later, in 1927, Davisson and Gerner showed that electrons produce the same type of

pattern if they are made to scatter a crystal surface. Young’s double-slit experiment was

thus re-proposed, for the case of quantum particle beams (electrons), as a gedanken ex-

periment, by Feynman, and it dubbed “Young-Feynman experiment”. Interestingly, a

true double-slit experiment for electron was realized only quite recently—see e.g. [28]

The Young-Feynman gedanken experiment can a posteriori also be seen as a guiding

principle for the construction of the Feynman path integral. His idea was to produce

FIGURE 2.1: Stylization of the Young-Feynman experiment: an elec-
tron beam generator emits electrons which propagate across two slits

on a plate and form a pattern on a screen. Image from Wikipedia.

a beam of electron from an electron beam gun, to be sent to a screen crossing a plate

with two parallel slits, as sketch in Fig. 2.1. Intuitively, one would have expected elec-

trons to arrive to only two separated portions of the screen, corresponding to the two

intermediate slits. Contrary, the experiment showed a pattern of interference produc-

ing multiple bands, just like if those electrons behaved like waves. And so they did.

And maybe a more astonishing version of the experiment was proposed after that some

questions arose: were some electrons favoured to be found in the middle of the screen,

with respect to those at the edges? What happens if a single electron is shot? For-

tunately, the technological means where sufficient to repeat the experiment with ultra

low intensity beams, that is one electron at a time. What was observed was that each

electron reached the screen at a position which seemed to be randomic. But, repeating

the single-electron experiment for a sufficient number of times, it was realized that the

same interference patterns emerged. If we want to look at the experiment in terms of

trajectories, each electron selects a particular path x(τ) joining the gun and a point on

the screen according to a probability which is essentially proportional to
∣∣∣e i

h̄ S[x(τ)]
∣∣∣2.

The total probability to reach the screen is obtained summing the probability ampli-

tudes of all the trajectories and squaring, and the path integral calculation for the final
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pattern confirms what was observed in the experiment. Thus, from a quantum mechan-

ical point of view, we conclude that the electron beam shows its wave nature, whereas

from a path integral perspective, each electron reaches the screen choosing a path but

interfering with the other, a priori possible, paths. Near to the maxima of interference

on the screen, there is a constructive interference as opposed to the points which are

closer to the minima.

Going back to eq. (2.18), only in some easier cases it is possible to compute the

path integral in closed form: in most interesting situations we can only approximate

the solution using perturbation theory. This technique is a powerful tool of quantum

mechanics and Quantum Field Theories, as it allows to express the solution for any

perturbative problem, in principles, with any order of precision. The downside is that

the greater the accuracy, the longest the calculation. This is the reason why an increas-

ing interest towards nonperturbative methods has been arising through recent years, in

particular for numerical techniques. Before introducing the numerical techniques on

which this thesis is based, let us see once how perturbation theory is used in theoretical

physics, in particular in σ-models.

First of all, it is convenient to split the path xi(τ) into background + quantum

fluctuation parts,

xi(τ) = xi
bg(τ) + qi(τ) (2.23)

where xi
bg solves the classical equation of motion for the free theory with endpoints

xi
bg(0) = xi

i, xi
bg(β) = xi

f, namely (for convenience here we consider the Euclidean

version)

xi
bg(τ) = xi

i + (xi
f − xi

i)
τ

β
(2.24)

and qi(τ) satisfies Dirichlet boundary conditions. With this construction, it is possible

to rewrite the transition amplitude (2.18) as

K(xf, xi; β) = Kfree(xf, xi; β)

∫ q(1)=0
q(0)=0 Dq e−

∫ 1
0 dτ
Ä

m
2β q̇2+βV(xbg+q)

ä
∫ q(1)=0

q(0)=0 Dq e−
m
2β

∫ 1
0 dτq̇2

(2.25)

where the time has been rescaled, τ → τ
β , we have set h̄ = 1 and multiplied and

divided by the free path integral, that is

Kfree(xf, xi; β) =
∫
Dxbg

∫ q(1)=0

q(0)=0
Dq e−

m
2β

∫ 1
0 dτq̇2

. (2.26)
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Now, the idea behind perturbation theory is to Taylor-expand the potential V(xbg + q)

about V(xbg) assuming that perturbations are “small” compared to the kinetic term,

Sint = β
∫ 1

0
dτ

ï
V(xbg(τ)) + V(1)(xbg(τ))q(τ) +

1
2!

V(2)(xbg(τ))q2(τ) + . . .
ò

.

(2.27)

At this point we can expand the exponential in the numerator of (2.25) and get terms

proportional to

∫ q(1)=0
q(0)=0 Dq e−

m
2β

∫ 1
0 dτ q̇2

q(τ1) . . . q(τk)∫ q(1)=0
q(0)=0 Dq e−

m
2β

∫ 1
0 dτ q̇2

= ⟨q(τ1) . . . q(τk)⟩ (2.28)

called correlation functions of the quantum fields q(τ). Hence the transition amplitude

(2.25) is written has

K(xf, xi; β) = Kfree(xf, xi; β)
〈

e−β
∫ 1

0 dτ V(xbg(τ)+q(τ))
〉

. (2.29)

An efficient way to compute perturbatively eq. (2.29) is by means of the so called gen-

erating functional Z[j], where j(τ) are source fields to be attached to q(τ) as follows

Z[j] =
∫ q(1)=0

q(0)=0
Dq e−

m
2β

∫ 1
0 dτ q̇2(τ)−

∫ 1
0 dτ q(τ)j(τ). (2.30)

The correlation function is then obtained as

⟨q(τ1) . . . q(τk)⟩ = (−1)k 1
Z(0)

δk

δj(τ1) . . . j(τk)
Z[j]|j=0. (2.31)

Partially integrating the square of fluctuations and completing the square leads to

Z[j] = e−
1
2

∫ 1
0 dτ

∫ 1
0 dτ′ j(τ)D−1(τ,τ′)j(τ′)

∫ q(1)=0

q(0)=0
Dq′ e−

m
2β

∫ 1
0 dτ q̇′2 (2.32)

with D−1(τ, τ′) being the inverse of the kinetic term D(τ, τ′) = m
β ∂2

τδ(τ − τ′) or

propagator. It is associated to the rescaled fields q′(τ) = q(τ)−
∫ 1

0 dτ′ j(τ′)D(τ′, τ)

and gives

D−1(τ, τ′) =
β

m
∆(τ, τ′) (2.33)
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satisfying ••∆(τ, τ′) = δ(τ, τ′)2. According also to the properties ∆(τ, τ′) = ∆(τ′, τ)

and ∆(τ, 0) = ∆(0, τ′) = 0, one realizes that the Green’s function has the form

∆(τ, τ′) =
|τ − τ′|

2
− τ + τ′

2
+ ττ′. (2.34)

At this point, the generating functional (2.32) contains a path integral which is source-

independent and can be performed obtaining exactly Z(0),

Z[j] = Z(0)e−
β

2m

∫ 1
0 dτ

∫ 1
0 dτ′ j(τ)∆(τ,τ′)j(τ′). (2.35)

Now, eq. (2.35) can be inserted into eq. (2.31) to compute correlation functions. Doing

that, we notice that:

1. correlations functions of an odd number of fields are null;

2. the 2-point correlation function is just proportional to the known propagator,

〈
q(τ)q(τ′)

〉
= − β

m
∆(τ, τ′); (2.36)

3. non-null correlation functions are built up from 2-point ones, for instance

⟨q(τ1)q(τ2)q(τ3)q(τ4)⟩ = ⟨q(τ1)q(τ2)⟩ ⟨q(τ3)q(τ4)⟩+

+ ⟨q(τ1)q(τ3)⟩ ⟨q(τ2)q(τ4)⟩+ ⟨q(τ1)q(τ4)⟩ ⟨q(τ2)q(τ3)⟩ ;
(2.37)

This last property is known as Wick’s theorem and can be applied to any even number

of quantum fields. The prescription is then to build all possible couples between the

involved fields and to sum all contributions. In this way, it is possible to compute the

transition amplitude (2.29) at any perturbation order, just by expanding the exponent

and computing correlation functions of fields q(τ). This is the basic machinery that one

exploits to compute perturbatively transition amplitudes in flat space. In the following

we will see what changes when we embed our theory in a curved space background.

2Dots on the left (right) mean derivatives taken with respect to the first (second) variable.
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Chapter 3

Curved space in σ-models

3.1 Generalities

An easy way to include curved space in our theory is to introduce a minimal coupling

with gravity by means of the metric tensor gµν(x) which models the free dynamics

of the point-particle. For a m = 1 particle, the associated Lagrangian in Euclidean

notation then reads

L(x) =
1
2

gµν(x)
∂xµ

∂τ

∂xν

∂τ
+ V(x) (3.1)

when a scalar potential V(x) can be included. If the point-particle, usually identified

directly with its coordinates x(τ), lives for a time-interval β that we call propagation

time, then its associated action reads

S[x] =
∫ β

0
dτ L(x) (3.2)

and identifies a nonlinear σ-model where the nonlinearity stems from the fact that

the free particle (V = 0) obeys a nonlinear equation of motion. Furthermore, this

model in particular is called one dimensional because the point-particle has only one

parameter, that is the proper time τ. The particle is then seen as moving on a line

parametrized by τ, whose shape follows the curved space where it lives. Such line

is named worldline1. The study of 1D nonlinear σ-models is per se non trivial even

though the only kinetic term is considered: from eq. (3.1) we see that is has double

derivatives coupled to a non flat metric which, in a perturbation expansion, imply

derivative interactions that lead to ultraviolet divergences. One then finds Feynman

diagrams which are separately divergent. However, once summed together, the final

1Actually it is possible to introduce further degrees of freedom: if another affine parameter σ is in-
cluded, then the particle x(τ, σ) lives on a sheet, called worldsheet. In such way strings may be described,
for instance.
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result must be finite, due to divergence cancellations. Thus, it is particularly important

in the perturbative derivation to define a technique to perform the emerging worldline

integrals, which usually include distributions. An example is

I =
∫ 0

−1
dτ1

∫ 0

−1
dτ2 δ(τ1 − τ2)θ2(τ1 − τ2). (3.3)

These integrals are definitely non trivial, as the result may change according to how

one treats the distributions. Historically there are three procedures to study the per-

turbation theory of worldline models in curved space, which are called regularization

schemes. They are time-slicing (TS), mode regularization (MR) and dimensional reg-

ularization (DR). TS essentially breaks the whole propagation time β into a large num-

ber of shorter intervals, for which a discretized definition of the propagators is guaran-

teed; MR achieves discretization by mode-expanding the fields in terms of convenient

functions and limiting its number with a cut-off; DR, finally, introduces a number of

extra-dimensions. Each of them provides different recipes to perform integrals like

(3.3). However, as one expects, the final result at each perturbative order is scheme

independent [15].

In the following, we briefly review these schemes, pointing out the main differ-

ences and features. In fact depending on the type of calculation that one performs,

some schemes turn out to be more convenient than others. As an example, for a pure

analytical perturbative computation, one may prefer DR or MR, whereas in the case of

numerical WLMC, the choice is TS.

3.2 Time-slicing

Let us start from the quantum Hamiltonian of a free scalar point-particle minimally

coupled to gravity and satisfying Einstein invariance2, i.e.

H(x, p) =
1
2

g−
1
4 (x)pµgµν(x)g

1
2 (x)pνg−

1
4 (x), (3.4)

with g(x) = det gµν(x). As done in flat space, we can define the transition amplitude

as

K(xf, xi; β) = ⟨xf| e−
β
h̄ H |xi⟩ (3.5)

2The requirement of Einstein inavriance allows us to study the dynamics in any coordinate system.
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with identity operators

∫
|x⟩
»

g(x) ⟨x| dnx = 1∫
|p⟩ ⟨p| dn p = 1

(3.6)

and

⟨x|x′⟩ = δn(x− x′)√
g(x)

⟨p|p′⟩ = δn(p− p′)

(3.7)

guaranteeing K to be a bi-scalar under Einstein transformations. A plane wave then

reads

⟨x|p⟩ = e
i
h̄ p·x

(2πh̄)
n
2 g

1
4 (x)

. (3.8)

Following what we did in flat space, we insert N p-space identities and N− 1 x-space

identities from (3.6) into the transition amplitude,

K(xf, xi; β) = ⟨xf|
Ä

e−
ϵ
h̄ H
äN
|xi⟩ =

=
∫

dn pN

∫
dn pN−1 . . .

∫
dn p1 ⟨xf| e−

ϵ
h̄ H |pN⟩ ⟨pN |xN−1⟩

∫ »
g(xN−1)dnxN−1×

× ⟨xN−1| e−
ϵ
h̄ H |pN−1⟩ ⟨pN−1|xN−2⟩

∫ »
g(xN−2)dnxN−2×

× . . .× ⟨x1| e−
ϵ
h̄ H |p1⟩ ⟨p1|xi⟩ ,

(3.9)

with xN = xf, x0 = xi, ϵ = β
N . Now, a key observation is that the infinitesimal evolu-

tion operator e−
ϵ
h̄ H(x,p) mixes the configuration space and momentum space operators

x, p as prescribed by eq. (3.4) in a non trivial way. For it to be applied within the

contractions of (3.9) in an easy way, such operators have to be Weyl-ordered, that is

symmetrized with respect to all x’s and p’s. To provide an example, we symmetrize

the operator xp as follows

xp =
1
2
{x, p}+ 1

2
[
x, p
]
=

1
2
{x, p}+ 1

2
ih̄. (3.10)
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For a Weyl-ordered operator OW(x, p) one then has

∫
⟨xk|OW(x, p) |pk⟩ ⟨pk|xk−1⟩ dn pk =

=
1
2

∫
⟨xk|OW(x, p) |pk⟩ ⟨pk|xk−1⟩ dn pk +

1
2

∫
⟨xk|pk⟩ ×

× ⟨pk|OW(x, p) |xk−1⟩ dn pk

=
∫
⟨xk|pk⟩OW

Å
xk + xk−1

2
, pk

ã
⟨pk|xk−1⟩ dn pk,

(3.11)

implying that for symmetrized operators, we can replace operators with numbers

OW(x, p)→ OW

Å
xk + xk−1

2
, pk

ã
(3.12)

using the so called midpoint rule. Hence in (3.9) we apply3

∫
⟨xk|
Ä

e−
ϵ
h̄ H
ä

W
|pk⟩ ⟨pk|xk−1⟩ dn pk

=
∫
⟨xk|pk⟩

Å
e−

ϵ
h̄ H
( xk−xk−1

2 ,pk

)ã
W
⟨pk|xk−1⟩ dn pk.

(3.13)

Now, the Weyl-ordered Hamiltonian reads

HW(x, p) =
Å

1
2

gµν(x)pµpν

ã
S
+

h̄2

8
[
R(x) + gµν(x)Γρ

µσ(x)Γσ
νρ(x)

]
(3.14)

with (. . .)S being the symmetrized part of (. . .), R(x) being the curvature scalar and

Γµ
νρ(x) being the torsionless Christoffel’s symbol. In our case, we have explicitlyÅ

1
2

gµν(x)pµpν

ã
S
=

1
8

gµν(x)pµpν +
1
4

pµgµν(x)pν +
1
8

pµpνgµν(x). (3.15)

Using (3.13) inside (3.9), we get

K(xf, xi; β) = lim
N→∞

[
g(xf)g(xi)

]− 1
4

∫ Ç N

∏
k=1

dn pk

(2πh̄)n

N−1

∏
l=1

dnxl

å
×

× exp

ñ
N

∑
k=1

ß
i
h̄

pk · (xk − xk−1)− ϵ

h̄
HW(x̄k− 1

2
, pk)
™ô (3.16)

where x̄k− 1
2
= 1

2 (xk + xk−1) and

HW

Ä
x̄k− 1

2
, pk

ä
=

1
2

gµν
Ä

x̄k− 1
2

ä
pk,µ pk,ν + VTS

Ä
x̄k− 1

2

ä
(3.17)

3We actually can exploit the replacement
Ä

e−
ϵ
h̄ H
ä

W
→ e−

ϵ
h̄ HW .
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VTS =
h̄2

8
(
R + gµνΓρ

µσΓσ
νρ

)
. (3.18)

VTS is the time-slicing counterterm which emerges from the specific previous treat-

ment of slicing the time interval to regularize the path integral, and constitutes a con-

tribution to the potential which encodes spacetime curvature information. However,

the most striking feature of VTS is the presence of noncovariant ΓΓ terms. This is

due to the fact that Hs, needed to obtain the time-sliced path integral, is not Einstein-

invariant.

If we now integrate (3.16) over momenta after completing the square in the expo-

nent, we obtain N determinantsî
det gµν

Ä
x̄k− 1

2

äó− 1
2 =
î
det gµν

Ä
x̄k− 1

2

äó 1
2 (3.19)

which are usually represented as ghost fields path integrals. These fields are called

ghosts as they are nonphysical, hence do not emerge as asymptotic states, rather are

mathematical tools which reproduce the path integral measure, and that we can exploit

at the perturbative level to produce those Feynman diagrams which cancel ultraviolet

divergences and make the final result finite. Ghost fields are denoted as a (commuting)

and b, c (anticommuting) [9], specifically,î
det gµν

Ä
x̄k− 1

2

äó 1
2 ∼

∫ ( N

∏
j=1

daν
k− 1

2
dbν

k− 1
2
dcν

k− 1
2

)
×

× exp
ï
− ϵ

2β2h̄
gµν

Ä
x̄k− 1

2

ä(
bµ

k− 1
2
cν

k− 1
2
+ aµ

k− 1
2
aν

k− 1
2

)ò
.

(3.20)

The standard procedure at this point is to split the fields xk into background fields xbg,k

plus quantum fluctuations qk and decompose the action S into a part S(0) quadratic

in q and an interaction part S(int). S(0) is used to build up propagators, whereas S(int)

provides interaction vertices. External sources F and G are then coupled to the com-

binations 1
2 (qk + qk−1) and qk − qk−1, whereas for the ghost sector we use the sources

A, B and C,

−1
h̄

S(sources, no-ghost) =
N

∑
k=1

Ç
Fk− 1

2 ,µ

qµ
k − qµ

k−1

ϵ/β
+ Gk− 1

2 ,µqµ

k− 1
2

å
−1

h̄
S(sources, ghost) =

N−1

∑
k=0

(
Ak+ 1

2 ,µaµ

k+ 1
2
+ bµ

k+ 1
2
Bk+ 1

2 ,µ + Ck+ 1
2 ,µcµ

k+ 1
2

)
.

(3.21)



22 Chapter 3. Curved space in σ-models

After diagonalizing S(0) + S(sources, no-ghost) + S(sources, ghost) with a convenient orthog-

onal variable transformation, one defines the generating functional Z(0)
N as the path in-

tegral with the quadratic parts of the action and the external sources. Replacing the

quantum fields in S(int) with the corresponding (derivatives with respect to the) sources,

one reconstructs the full generating functional by applying S(int) onto Z(0)
N ,

ZN(xf, xi; β) =
ï

g(xf)
g(xi)

ò 1
4 1

(2πh̄β)
n
2

Ä
e−

1
h̄ S(int)

e−
1
h̄ S[F,G,A,B,C]

ä
|0 (3.22)

where S[F, G, A, B, C] contains the terms bilinear in sources. Propagators are ex-

tracted by taking derivatives of e−
1
h̄ S[F,G,A,B,C] and then setting sources to zero. As an

example, the q̇q̇ propagator is given by

〈
q̇µ

k+ 1
2
q̇ν

k′+ 1
2

〉
=

∂

∂Fk+ 1
2 ,µ

∂

∂Fk′+ 1
2 ,ν

e−
1
h̄ S[F,G,A,B,C]|0 , (3.23)

where the discretized time-derivative of the coordinate is given by (for later conve-

nience we consider the derivative w.r.t. the rescaled time τ = t/β)

q̇µ

k+ 1
2

:=
β

ϵ
(qµ

k+1 − qµ
k ) . (3.24)

In this way we can find the discretized expressions for the propagators, that is

〈
qµ

k+ 1
2
qν

k′+ 1
2

〉
= ϵh̄gµν(xf)

î
− (k + 1/2)(k′ + 1/2)

N
+ (k′ + 1/2)θk,k′+

+ (k + 1/2)θk,k′ −
1
4

δk,k′
ó

〈
qµ

k+ 1
2
q̇ν

k′+ 1
2

〉
= βh̄gµν(xf)

Å
− k + 1/2

N
+ θk,k′

ã
〈

q̇µ

k+ 1
2
q̇ν

k′+ 1
2

〉
= βh̄gµν(xf)(−1 + Nδk,k′)〈

aµ

k+ 1
2
aν

k′+ 1
2

〉
=

h̄
ϵ

gµν(xf)δk,k′〈
bµ

k+ 1
2
cν

k′+ 1
2

〉
= −2

h̄
ϵ

gµν(xf)δk,k′ , (3.25)

where we used the discrete functions

θk,k′ =


1, k > k′

0, k < k′

1
2 , k = k′
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δk,k′ =

1, k = k′

0, k ̸= k′ ,
(3.26)

and the (rescaled) time discretization

τk = −1 +
kϵ

β
= −1 +

k
N

, k = 1, . . . , N , (3.27)

so that τ1 = −1 + 1
N → −1 and τN = 0.

In the continuum limit the propagators for the coordinates qµ (and derivatives

thereof), can be obtained from (2.36) by setting m = 1, whereas the ghost propagators

are simply (proportional to) the Dirac’s delta function, i.e.

⟨qµ(τ1)qν(τ2)⟩ = −βh̄gµν(xf)∆(τ1, τ2)

⟨qµ(τ1)q̇ν(τ2)⟩ = −βh̄gµν(xf) (τ1 + θ(τ2 − τ1))

⟨q̇µ(τ1)q̇ν(τ2)⟩ = −βh̄gµν(xf) (1− δ(τ2 − τ1))

⟨aµ(τ1)aν(τ2)⟩ = βh̄gµν(xf)δ(τ1 − τ2)

⟨bµ(τ1)cν(τ2)⟩ = −2βh̄gµν(xf)δ(τ1 − τ2)

(3.28)

with

∆(τ1, τ2) = τ1(τ2 + 1)θ(τ1 − τ2) + τ2(τ1 + 1)θ(τ2 − τ1) . (3.29)

In the perturbative calculation of the transitions amplitude, whenever ambiguous prod-

ucts of distributions occur, time slicing regularization can be used at the discretized

level. Basically, the discretized version of the propagators yield the “rules of thumb”

to unambiguously compute the integrals. Indeed, by comparing the propagators in the

continuum (3.28) to their discretized counterparts, we have that

Nδk,k′ = βϵδk,k′ ←→ βδ(t− t′) = δ(τ − τ′) (3.30)

θk,k′ ←→ θ(τ − τ′) (3.31)

k
N ←→ τ + 1 . (3.32)

For example it is easy at this point to compute the integral (3.3). Namely,

I −→ ∑
k,k′

1
N2 Nδk,k′θ

2
k,k′ =

1
N ∑

k
θ2

k,k =
1
4

, (3.33)
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i.e. one can treat the θ(τ) as a regular function with θ(0) = 1
2 , as the Dirac delta

function gets discretized as a Kronecker delta.

Such propagators can now be used when S(int) is expanded and Wick contractions

are applied to the fields of the interaction vertices.

As we have seen, the time-slicing regularization scheme is constructed from first

principles: indeed it is a generalization to curved space of the ideas that let Feynman

to introduce path integrals themselves. The approaches that we will sketch in the

following, that is mode and dimensional regularization, are not genuinely coming from

first principles, hence renormalization conditions have to be applied to the relative

counterterms.

3.3 Mode regularization

Let us here summarize how Mode Regularization works. Let us start from a generic

classical action in Euclidean time for a scalar point-particle (we set h̄ = 1),

S =
∫ tf

ti

dτ

ï
1
2

gµν(x)
∂xµ

∂τ

∂xν

∂τ
+ V(x)

ò
, (3.34)

which is used to define directly the transition amplitude as the path integral

⟨xk
f , tf|xk

i , ti⟩ =
∫

DBC
Dx e−S (3.35)

with Dirichlet boundary conditions xk(ti) = xk
i , xk(tf) = xk

f . The path integral mea-

sure itself includes curved space information and is given by

Dx = ∏
τ∈(ti,tf)

»
det gµν(x(τ)) dnx(τ). (3.36)

As the measure is general coordinate invariant but not translationally invariant under

xµ(τ) → xµ(τ) + ϵµ, ones prefers to use ghost fields as previously done in time-

slicing,

∏
τ∈(ti,tf)

»
det gµν(x(τ)) =

∫
DaDbDc e−Sgh (3.37)

with

Sgh =
∫ tf

ti
dτ

1
2

gµν(x) (aµaν + bµcν) , (3.38)
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Da = ∏
τ∈(ti,tf)

dna(τ), Db = ∏
τ∈(ti,tf)

dnb(τ), Dc = ∏
τ∈(ti,tf)

dnc(τ). (3.39)

Again using rescaled times β = tf − ti and τ → τ−tf
β , and writing the action as

S = 1
β S′, we find

S′ =
∫ 0

−1
dτ

ï
1
2

gµν(x)ẋµ ẋν + β2 (V(x) + VMR(x))
ò

, (3.40)

with ẋk = ∂xk

∂τ . Upon these rescalings, we can identify β as the loop-counting param-

eter, the role that is usually played by h̄. Thus, one solves the path integral perturba-

tively in β and in the displacements ξµ = xµ
i − xµ

f , helped by the usual quantum -

background splitting

xµ(τ) = xµ
bg(τ) + qµ(τ) . (3.41)

Now, the key point is to expand the fluctuations, which vanish at the boundaries of the

τ-line, in Fourier modes. Generalizing the fields as ϕµ(τ) = (qµ(τ), aµ(τ), bµ(τ), cµ(τ)),

we write their mode expansion as

ϕµ(τ) =
∞

∑
m=1

ϕ
µ
m sin(πmτ), (3.42)

ϕ
µ
m = (qµ

m, aµ
m, bµ

m, cµ
m) , (3.43)

and for the measure, we set

Dx = ∏
τ∈(−1,0)

»
det gµν(x(τ))Dx = Dq

∫
DaDbDc e−

1
β Sgh . (3.44)

In terms of the Fourier modes, we thus have

DqDaDbDc = lim
M→∞

A
M

∏
m=1

n

∏
µ=1

mdqµ
mdaµ

mdbµ
mdcµ

m (3.45)

where the normalization constant A is fixed later. The factor of m is nothing but

the square root of the inverse of kinetic term for mode qm, and it serves to suitably

normalize the q measure, leaving the overall β-dependent part of the normalization

inside A. As we can see, the regularization is actually achieved by limiting the number

M of expansion mode and, at the end, sending it to infinity. However, as sketched

below, practically this yields some specific rules of integration by parts, which allow
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to cast the integrand in an unambiguous form, that can be safely computed using the

continuum version of the propagators. At this point, in order to perform perturbative

calculations, one extracts the quadratic piece of action, S2 and the interacting part Sint:

the first defines propagators whereas the second produces vertices. Expressing the

xµ(τ) field as

xµ(τ) = xµ
f − ξµτ + qµ(τ) (3.46)

with qµ(τ) vanishing at the boundaries, we can use eq. (3.40) at the level of S2 where

gµν is evaluated at τf, so to get

S2 =
1
2

gµν(xf)ξµξν +
1
4

gµν(xf)
M

∑
m=1

Ä
π2m2qµ

mqν
m + aµ

maν
m + bµ

mcν
m

ä
. (3.47)

Eq. (3.47) is used within the path integral with sources and completing squares the

extract propagators, as previously done. As an example, the discretized version of the

qq propagator will read

⟨qµ(τ1)qν(τ2)⟩ = βgµν(xf)
M

∑
m=1

2
π2m2 sin(πmτ1) sin(πmτ2), (3.48)

where 2
π2m2 is just the inverse kinetic operator for the m-th mode. So, one has

⟨qµ(τ1)qν(τ2)⟩ = −βgµν(xf)∆(τ1, τ2)

⟨aµ(τ1)aν(τ2)⟩ = βgµν(xf)∆gh(τ1, τ2)

⟨bµ(τ1)cν(τ2)⟩ = −2βgµν(xf)∆gh(τ1, τ2)

(3.49)

where, in the continuum limit,

∆(τ1, τ2) =
M

∑
m=1

ï
− 2

π2m2 sin(πmτ1) sin(πmτ2)
ò

−−−→
M→∞

τ1(τ2 + 1)θ(τ1 − τ2) + (τ1 ↔ τ2)

∆gh(τ1, τ2) =
M

∑
m=1

2 sin(πmτ1) sin(πmτ2) −−−→
M→∞

δ(τ1 − τ2).

(3.50)

We emphasize that the dotted propagators

•∆(τ1, τ2) = ∂τ1 ∆(τ1, τ2)

∆•(τ1, τ2) = ∂τ2 ∆(τ1, τ2)

•∆•(τ1, τ2) = ∂τ1 ∂τ2 ∆(τ1, τ2)

(3.51)
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are obtained sending M→ ∞ after taking derivatives at the discretized level.

Actually, the formal expression of the propagators are the same as those of time-

slicing, but for finite M, their properties change. In particular there are different rules

for the computation of worldline integrals like

I =
∫ 0

−1

∫ 0

−1
dτ1dτ2

•∆(τ1, τ2)•∆•(τ1, τ2)∆•(τ1, τ2). (3.52)

In the time-slicing scheme, δ(τ1 − τ2) is used as a Kronecker’s delta function in the

sense that, also in presence of distributions θ’s, it sets τ1 = τ2. Hence, this ultimately

leads to

I(TS) = −1
6

. (3.53)

In the mode regularization scheme, a direct inspection of the discretized propagators

suggests the following treatment,

I(MR) =
∫ 0

−1

∫ 0

−1
dτ1dτ2 (•∆)(•∆•)(∆•)

=
∫ 0

−1

∫ 0

−1
dτ1dτ2

1
2

î
(•∆)2

ó•
(∆•)

=− 1
2

∫ 0

−1

∫ 0

−1
dτ1dτ2 (•∆)2(∆••)

=− 1
2

∫ 0

−1

∫ 0

−1
dτ1dτ2 (•∆)2(••∆)

=− 1
6

∫ 0

−1

∫ 0

−1
dτ1dτ2

•
î
(•∆)3

ó
=− 1

12
.

(3.54)

In the first pass we have used that, at finite M, ∆••∆• = 1
2

[
(•∆)2]•; in the second

pass we have integrated by parts in τ2, and picked up no boundary terms given that,

at finite M, (•∆)2 vanishes at the endpoints of τ2; in the third step we have used that
••∆ = ∆•• and have used again integration by parts. In the last pass we are left

with the boundary term − 1
6

∫ 0
−1 dτ2

[•∆3(0, τ2)− •∆3(−1, τ2)
]

which can be safely

computed in the continuum limit.

In this way, one can compute all the worldline integrals which are involved at each

perturbative level of the β-expansion of the transition amplitude. However, as antic-

ipated, also the counterterm results to be scheme - dependent. We see now how to

obtain an expression for VMR from renormalization conditions rather than first princi-

ples as done for time-slicing. One possible strategy is to use the Schrödinger equation
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for the transition amplitude. The wavefunction evolves as

Ψ(xf, tf) =
∫

dnxi

»
g(xi) ⟨xµ

f , tf|xµ
i , ti⟩Ψ(xi, ti) (3.55)

and one imposes that Ψ(xf, tf) satisfies the Schrödinger equation with Hamiltonian

H = −1
2
∇2 + V (3.56)

with ∇2 = gµν(∇µ)(∂ν) being the Einstein covariant laplacian. Expanding Ψ(xi, ti)

and
√

g(xi) around xf produces the normalization A = (2πβ)
n
2 for the order β0. For

the order β, one gets

∂tΨ +
1
2
∇2Ψ−

Å
V + VMR −

1
8

R +
1

24
gµνgρσgαβΓα

µρΓβ
νσ

ã
Ψ = 0, (3.57)

which satisfies the Schrödinger equation, provided that

VMR =
1
8

R− 1
24

gµνgρσgαβΓα
µρΓβ

νσ, (3.58)

constitutes the mode regularization counterterm. Once again, the striking feature of

VMR is the presence of a noncovariant ΓΓ term (different than the one present in VTS).

The noncovariance of VMR can be ascribed to the fact that the mode expansion, at

finite M, breaks Einstein invariance. Mode regularization counterterm was originally

found in [29].

3.4 Dimensional regularization

This scheme is probably the most preferable one for analytical perturbative computa-

tions because the associated counterterm VDR is particularly simple: as we will show

it is covariant. The name itself suggests the idea: one produces an analytical contin-

uation in the number of dimensions of the critical worldline integrals (namely, those

exhibiting divergences) and, once divergences are removed, extra-dimensions are sup-

pressed. Practically, once again, the method yields (new) integration by parts rules,

which can be employed to cast the integrands in an unambiguous form, which can be

safely computed at the unregularized level (extra dimensions removed). Hence, let us

consider a number D of extra-dimensions for the particle proper time, defining t =

(t1, . . . , tD). The full time interval is then given by tµ = (τ, t), with µ = 0, 1, . . . , D
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and dD+1t = dτ dt, so that the extended action now reads

S =
∫

Ω
dD+1t

ï
1
2

gαβ(∂µxα∂µxβ + aαaβ + bαcβ) + β2(V + VDR)
ò

(3.59)

where Ω is a (D + 1)-dimensional interval obtained by [−1, 0] and D infinitely ex-

tended intervals. In this way, derivatives are extended to ∂τ −−−−→
1→D+1

∂µ, with µ =

(0, . . . , D), and ∂0 = ∂τ. The propagators in this case read

∆(t1, t2) =
∫ dDk

(2π)D

∞

∑
m=1

−2
(πm)2 + k2 sin(πmτ1) sin(πmτ2)eik·(t1−t2)

∆gh(t1, t2) =
∫ dDk

(2π)D

∞

∑
m=1

2 sin(πmτ1) sin(πmτ2)eik·(t1−t2)

= δ(τ1 − τ2)δD(t1 − t2) = δD+1(t1 − t2).

(3.60)

and, for D → 0, they become the continuum limit propagators treated in the previous

sections, i.e.

∆(τ1, τ2) = τ1(τ2 + 1)θ(τ1 − τ2) + (τ1 ↔ τ2)

∆gh(τ1, τ2) = ••∆(τ1, τ2) = δ(τ1 − τ2).
(3.61)

The key advantage here is to use dimensionally-continued propagators to compute

worldline integrals using integrations by parts and neglecting all boundary terms, due

to momentum conservation in the D added dimensions and by direct vanishing of

the involved propagators at the endpoints of the compact direction. Once ambiguities

and divergences are removed, the initial compact time interval [−1, 0] can finally be

restored. Let us see this procedure in action with the integral already computed in MR

in (3.54),

I(DR) =
∫ 0

−1

∫ 0

−1
dτ1dτ2 (•∆)(•∆•)(∆•)

→
∫

dD+1t1

∫
dD+1t2 (µ∆)(∆ν)(µ∆ν)

=
1
2

∫
dD+1t1

∫
dD+1t2 (µ∆)

î
µ

Ä
∆2

ν

äó
= −1

2

∫
dD+1t1

∫
dD+1t2 (µµ∆)∆2

ν

= −1
2

∫
dD+1t1

∫
dD+1t2 δD+1(t1, t2)∆2

ν

= −1
2

∫
dD+1t1 ∆2

ν|t2=t1

→ −1
2

∫ 0

−1
dτ1 ∆•2|τ2=τ1 = −

1
24

,

(3.62)
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where we adopted the notation µ(. . .) = ∂µ(. . .) in analogy with the dot-notation of the

one dimensional case. The method is thus similar to MR. However, having promoted

∂τ to ∂µ does not allow to replace µµ∆ with ∆νν. Rather, here the Green’s function

µµ∆ = δ(D+1)(t, s) is used— the validity of such step was shown in [30]. The above

integral hence exhibits different values depending on the scheme,

I(TS) = −1
6

, I(MR) = − 1
12

, I(DR) = − 1
24

, (3.63)

but this does not have to compromise the agreement in the final result at each pertur-

bative order once all contributions are summed up. To evaluate the counterterm VDR,

we can exploit the work done for mode regularization and realize that what changes

is the value of some worldline integrals. The difference between the two schemes is

written as

∆ ⟨xk
f , tf|xk

i , ti⟩ = ⟨xk
f , tf|xk

i , ti⟩DR − ⟨xk
f , tf|xk

i , ti⟩MR (3.64)

and must cancel when counterterms are taken into account. This provides a relation

between VDR and VMR, namely

VDR −VMR =
1
24

gµνgρσgαβΓα
µρΓβ

νσ, (3.65)

which, using eq. (3.58), gives

VDR =
1
8

R. (3.66)

As anticipated, the counterterm from dimensional regularization is covariant and this

allows DR to preserve general covariance at intermediate steps of the computation.
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Chapter 4

A string-inspired method for trace

anomaly calculations

Without doubt, the first important application of quantum mechanical path integrals

in curved spaces, invented by Alvarez-Gaumé and Witten in Ref. [7], was the com-

putation of gravitational anomalies, both chiral and trace anomalies. It is well known

that the structure of trace anomalies becomes rapidly harder as the number of space

dimensions increases (see e.g. Ref. [31] for a detailed study of trace anomalies in six

dimensions), since the number of curvature invariants with the correct mass dimen-

sions fastly increases with the space dimension. Hence, it is helpful to find methods to

uncover (parts of) such anomalies.

In this section, we will precisely see a simplified method based on path integrals

in curved space to compute the trace anomaly of a scalar field theory, which is the part

of the anomaly proportional to the Euler density. To single out such term we consider

maximally symmetric (MS) spaces, since in such case the remaining part vanishes, as

it is made out of Weyl invariants (and trivial anomalies, i.e. total derivatives), which are

null in MS spaces. The calculation is performed using a Riemann normal coordinate

representation and BRST techniques to properly handle the zero modes on the 1d circle

path integrals, needed for the trace anomaly computation. The main point, in fact, is

that the trace anomaly can be expressed in terms of path integral consisting in a non

linear σ-model for a scalar point particle, which can then be computed perturbatively

exploiting the machinery which has been presented previously.

Let us start introducing the trace anomaly for a scalar quantum field theory in a D-

dimensional curved space, by considering an infinitesimal local scale transformation
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of the metric gµν(x) and the field ϕ(x)

δgµν(x) = σ(x)gµν(x),

δϕ(x) =
k
2

σ(x)ϕ(x)
(4.1)

where k = 1 − D
2 is (minus) the mass dimension of the scalar field. Here we are

assuming an Euclidean signature obtained by Wick-rotating the time coordinate ix0 →

xD and defining the Euclidean action SE = −iSM. Then
√−g→ √g.

With these changes, a Weyl-invariant classical action can be written as

S =
1
2

∫
dDx
√

g
Ä

gµν∂µϕ∂νϕ− ξRϕ2
ä

(4.2)

with ξ = D−2
4(D−1) being the so-called conformal coupling. Now we can define the path

integral functional

Z[gµν] =
∫
Dϕ e−S[ϕ,gµν] (4.3)

and then rescale the field ϕ(x) → ϕ̃(x) = g
1
4 (x)ϕ(x) to make the infinitesimally

transformed field D-independent,

δϕ̃ = δ
Ä

g
1
4 ϕ
ä
= δg

1
4 ϕ + g

1
4 δϕ =

1
4

g−
3
4 ggµνδgµνϕ + g

1
4 δϕ

=
1
4

g
1
4 gµνσgµνϕ + g

1
4

k
2

σϕ =
1
2

σϕ̃.
(4.4)

The new functional

Z[gµν] =
∫
Dϕ̃ e−S[ϕ̃,gµν] = eW[gµν] (4.5)

can now be used to extract the Fujikawa’s anomaly from the path integral measure.

Above, W is (minus) the gravitational effective action. The jacobian for the infinitesi-

mal transformation ϕ̃′(x) = ϕ̃(x) + δϕ̃(x) reads

J = det
∂ϕ̃′(x)
∂ϕ̃(y)

= 1 + tr
∂δϕ̃′(x)
∂ϕ̃(y)

(4.6)

and the Weyl anomaly can formally be expressed by

AnW = tr
∂δϕ̃′(x)
∂ϕ̃(y)

= tr
ï

1
2

σδD(x− y)
ò
= δσ J. (4.7)
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On the other hand, the anomaly can be identified with the functional variation of the

effective action W[gµν] = ln Z[gµν],

AnW = δσW =
∫

dDx
√

g
2

δσgµν 2
√

g
δσW
δgµν

=
1
2

∫
dDx
√

gσgµν
〈
Tµν

〉
(4.8)

where we defined 〈
Tµν(x)

〉
=

∫
Dϕ̃ e−S 2√

g
δS

δgµν∫
Dϕ̃ e−S (4.9)

vacuum expectation value of the stress tensor, computed from the effective action.

Hence, up to an x-integration, the trace anomaly is proportional to gµν(x)
〈
Tµν(x)

〉
=〈

Tµ
µ(x)

〉
, i.e. the averaged trace of the stress tensor. Classically such object is zero

on shell. In fact, for Weyl invariance, we have that

S[gµν, ϕ̃] = S[gµν + δgµν, ϕ̃ + δϕ̃] ≃ S[gµν, ϕ̃] + δgµν δS
δgµν

+ δϕ̃
δS
δϕ̃

(4.10)

where the last bit is zero, then

0 = δgµν(x)
δS

δgµν
(x) = −σ(x)gµν(x)

1
2

»
g(x)Tµν(x) ∝ Tµ

µ(x). (4.11)

Hence, the trace anomaly it due to the non-vanishing of the traced path integral aver-

age of the stress tensor associated to Weyl invariance. Now, to compute actually the

anomaly (4.7), the trace has to be regulated since it is a trace over an infinite dimen-

sional (Hilbert) space. One can then write it as

AnW = lim
β→0

tr
ï

1
2

σ(x)e−βR
ò

(4.12)

with β being a positive real parameter andR being the so-called consistent regulator1

R = H =
1
2

g−
1
4 pµg

1
2 gµνpνg−

1
4 − 1

2
ξR. (4.13)

Eq. (4.13) is in fact the field operator of ϕ̃ coming from the classical action (4.2).

The limit β → 0 in eq. (4.12) ensures the removal of the regulator once the trace is

taken and divergences are removed with local QFT counterterms. This construction

1Due to aesthetic reasons, we actually omitted bold notation for metric tensors and determinants even
though, here, they act as operators, being dependent on the operator x.
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in some way is the bridge from quantum field theory and the worldline formalism:

the quantum mechanical worldline particle xµ(τ) lives in a curved space preserving

Einstein invariance and corresponds to the coordinates xµ of the original quantum

field theory. With this identification in mind, we interpret the trace as a trace over

quantum mechanical ket states, as if the particles moves in closed loops for a proper

time interval β, i.e.

AnW = lim
β→0

tr
î
σ′e−βH

ó
= lim

β→0

∫
PBC

Dx σ′(x)e−S[x] (4.14)

with σ′ = 1
2 σ and action

S[x] =
1
β

0∫
−1

dτ

ï
1
2

gµν(x)ẋµ ẋν + β2(V(x) + VDR(x)),
ò

(4.15)

where V = − ξR
2 is a scalar potential and VDR is the counterterm for dimensional regu-

larization, as this scheme will be adopted in the following computation. A comparison

between equations (4.8) and (4.14) leads to the trace

〈
Tµ

µ(x)
〉
= lim

β→0

∫
x(−1)=x(0)=x

Dx e−S[x]. (4.16)

Defining the partition function density (an integral over x is factored out)

Z(β) =
∫

x(−1)=x(0)=x

Dx e−S[x], (4.17)

we have 〈
Tµ

µ(x)
〉
= lim

β→0
Z(β). (4.18)

Multiplying and dividing eq. (4.17) by the free path integral, we get

Z(β) =
1

(2πβ)
D
2

¨
e−Sint

∂
(4.19)

where Sint is the whole action except the kinetic term. This quantity was already

computed using Dirichlet boundary condition propagators for a maximally space and
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reads [26]

Z(β) =
1

(2πβ)
D
2

exp
î β

12
(6ξ − 1)R− β2

6!
(D− 3)

D(D− 1)
R2+

+
β3

8!
16(D + 2)(D− 3)

9D2(D− 1)2 R3 + o(β4)
ó
.

(4.20)

We would like to show the same result using another method based on a string-inspired

worldline approach, that we are going to describe. First of all, we notice that setting

gµν(x) = δµν and V + VDR = 0 in the action (4.15), it is invariant under translations

δxµ(τ) = ϵµ. This produces zero modes, that are constant eigenvectors of the kinetic

operator. They can be extracted from the path integral and produce a volume factor

of the manifold in which the theory is embedded. For nontrivial metric and potential,

the constant shift symmetry is in general broken. However it can be fictitious intro-

duced and then, via BRST technique, it can be fixed, and it corresponds to setting

some specific worldline propagators. Here we will choose the so-called string inspired

propagators, which are linked to fixing the zero modes as centers of mass of the closed

path, hence the name.

BRTS (after Becchi, Rouet, Stora and Tyutin) quantization was born in the context

of gauge theory as an alternative approach to represent the relic of gauge invariance

left by path integral quantization. We will apply this idea directly to our worldline

theory for the computation of the partition function Z(β). Let us split the worldline

closed path xµ(τ) into a constant path xµ
0 (the would be zero mode) plus a deviation

yµ(τ),

xµ(τ) = xµ
0 + yµ(τ). (4.21)

A symmetry for the action is then the shift symmetry

δxµ
0 = ϵµ

δyµ(τ) = −ϵµ.
(4.22)

If both variables xµ
0 and yµ(τ) are considered to be dynamical fields, one then pro-

motes the shift symmetry to a gauge symmetry, and then the associated path integral

has to be gauge-fixed by removing from the integration all those configurations that

are physically equivalent upon the gauge symmetry. In the BRST context, this is re-

alized by means of anticommuting ghost field ηµ and parameter Λ, entering the shift
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symmetry as

δxµ
0 = ηµΛ

δyµ(τ) = −ηµΛ

δηµ = 0,

(4.23)

and constant fields η̄µ, πµ such that

δη̄µ = iπµΛ

δπµ = 0.
(4.24)

To fix the gauge, i.e. set a specific propagator for yµ(τ), we consider the “gauge fixing

fermion”

Ψ = η̄µ

0∫
−1

dτ ρ(τ)yµ(τ) (4.25)

depending on an arbitrary distribution ρ(τ) normalized to 1,
0∫
−1

dτ ρ(τ) = 1. In

particular, if ρ(τ) = δ(τ) then DBC propagators are set, if ρ(τ) = 1 then string-

inspired (SI) propagators come into play. Keeping a generic ρ(τ), the generic gauge

fixed action is given by2

Sgf[x0, y, η, η̄, π] = S[x0 + y] +
δ

δΛ
Ψ = S[x0 + y] + iπµ

0∫
−1

dτ ρ(τ)yµ(τ)− η̄µηµ.

(4.26)

Using that

∫
dη̄dη e−η̄µηµ

=
∫

dη̄dη (1− η̄µηµ)

∫
dπ eiπµ

∫ 0
−1 dτ ρ(τ)yµ(τ) = δ

Ñ
0∫
−1

dτ ρ(τ)yµ(τ)

é
(4.27)

we get the constraint
0∫
−1

dτ ρ(τ)yµ(τ) = 0 (4.28)

which explains why the choice ρ(τ) = 1 determines SI propagators: in this case

2The derivative δ
δΛ with respect to the fermionic field Λ is here taken on the left.
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0∫
−1

dτ yµ(τ) = 0 imposes that the field yµ(τ) center of mass is fixed to zero as often

done for the center of mass of strings in string theory. Now, the partition function is

written as

Z(β) =
∫

dDx0

»
g(x0)Z(x0, β) (4.29)

with Z(x0, β) expressed as a power law in β. At this point let us specialize in a conve-

nient coordinate system, that is Riemann normal coordinates (RNC) ξµ(τ) centered in

xµ
0 . Fluctuations yµ(τ) are then given by

yµ = ξµ −
∞

∑
n=2

1
n!

Γµ
(µ1µ2;µ3...µn)(x0)ξµ1 . . . ξµn , (4.30)

where round brackets mean symmetrization and the semicolon stands for covariantiza-

tion. It is relevant to notice that a trivial shift symmetry for fluctuations yµ(τ) implies

a non trivial one for ξµ(τ),

δξµ(τ) = −Qµ
ν(x0, ξ(τ))ϵν. (4.31)

The specific form of the above Q-matrix is due to Friedan [32]. This non linear in-

finitesimal transformation stems from the fact that, by definition, xµ
0 is the origin of the

RNC coordinates, which are vectors on the tangent space Tx0 : such vectors are tangent

to the geodesics which link xµ
0 to generic points xµ on the manifold. Hence, if xµ

0 gets

shifted, so does the tangent space, and in turns this means that ξ ′µ = ξµ + δξµ is a

vector on the shifted tangent space. Thus, if the manifold is curved, the transformation

of the RNC coordinates is a non linear combination of the former RNC coordinates

ξµ. On the other hand, if the manifold is flat, the different tangent spaces coincide

and Qµ
ν(x0, 0) = δ

µ
ν . A compact and manageable formula for the Q-matrix has been

derived for the specific case of a MS space [27] and will be used for the calculation of

the partition function. Adopting a more friendly matrix notation

Q = Qµ
ν, (4.32)

Friedan showed that

Q = 1 + ∂ logV (4.33)
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where

∂ = ξµ

Å
∂

∂ξµ
−∇µ

ã
(4.34)

with ∇µ is covariant derivative satisfying ∇µξµ = 0 and

V =
∞

∑
n=0

1
(n + 1)!

V (n). (4.35)

The matrices V (n) are such that V (0) = 1, V (1) = 0, V (n) ∝ ξn. In the case of a space

with no torsion, the matrices V (n) satisfy

V (n) = 2∇V (n−1) −∇2V (n−2) + V (n−2)R, (4.36)

withR = Rµ
ρσνξρξσ. Since for MS spaces the curvature tensor reads

Rµνρσ ∝ (gµρgνσ − gµσgνρ) (4.37)

and ∇ρgµν = 0, then ∇αRµνρσ = 0, which makes eq. (4.35) much easier. In fact, it

can be written as

V =
∞

∑
n=0,2,4,...

1
(n + 1)!

R n
2 =

∞

∑
n=0

1
(2n + 1)!

Rn (4.38)

where

Rn = Rµ
α1β1µ1 Rµ1

α2β2µ2 · · · R
µn−1

αnβnνξα1 ξβ1 · · · ξαn ξβn

R0 = 1.
(4.39)

Eq. (4.38) can be easily proved by induction using eq. (4.36) and ∇Rn = 0. With a

closer look at (4.38), one realizes that

V =
sinh
√
R√
R

(4.40)

from which

∂ logV =

Ç
coth
√
R

2
√
R
− 1

2R

å
∂R. (4.41)

Since both the curvature tensor and the Riemann normal coordinates are covariantly

constant,

∂R = 2R, (4.42)
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so that

∂ logV =
√
R coth

√
R− 1. (4.43)

The final form of the Q-matrix for MS spaces is then

Q =
√
R coth

√
R. (4.44)

An expansion of the hyperbolic cotangent allows to find the first terms of the series,

giving

Q = 1 +
1
3
R− 1

45
R2 +

2
945
R3 + . . . . (4.45)

Eq. (4.45) can now be used in (4.31) to get the transformation for the RNC’s in MS

spaces.

Coming back to the BRST treatment, the gauge fixing fermion and the gauge fixed

action associated to RNC reads respectively

Ψ = η̄µ

0∫
−1

dτ ξµ(τ) (4.46)

and

Sgf[x0, ξ, η, η̄, π] = S[x0, ξ] + iπµ

0∫
−1

dτ ξµ(τ)− η̄µ

0∫
−1

dτ Qµ
ν(x0, ξ(τ))ην. (4.47)

As seen in the previous chapters, the
√

g-factor at the level of the path integral measure

can be exponentiated using ghost fields a, b and c and the relative ghost action Sgh,

Sgh[ξ, a, b, c] =
1
β

0∫
−1

dτ

ï
1
2

gµν(x0, ξ)(aµaν + bµcν)
ò

. (4.48)

Finally, we can define the transition amplitude as

Z(β) =
∫

dx0 dη̄ dη dπ
∫
Dξ Da Db Dc e−Sq (4.49)

in terms of the quantum action Sq = Sgf + Sgh. Propagators are calculated using the

quadratic form of the above action by setting gµν(x0, ξ)→ gµν(x0) and Qµ
ν(x0, ξ)→

δµ
ν, i.e.

S2 =
1
β

∫ 0

−1
dτ

ï
1
2

gµν(x0)(ξ̇µ ξ̇ν + aµaν + bµcν)
ò

. (4.50)
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We thus have

⟨ξµ(τ1)ξν(τ2)⟩ = −βgµν(x0)B(τ1, τ2)

⟨aµ(τ1)aν(τ2)⟩ = βgµν(x0)∆gh(τ1, τ2)

⟨bµ(τ1)cν(τ2)⟩ = −2βgµν(x0)∆gh(τ1, τ2)

⟨η̄µην⟩ = δµ
ν

(4.51)

with

B(τ1, τ2) =
|τ1 − τ2|

2
− (τ1 − τ2)2

2
− 1

12

∆gh(τ1, τ2) = δ(τ1 − τ2).
(4.52)

Feynman vertices emerge from the interacting part of the action S(int)
q , which is given

by

S(int)
q = Sq[gµν(x0, ξ)→ gµν(x0, ξ)− gµν(x0); Qµ

ν(x0, ξ)→ Qµ
ν(x0, ξ)− δµ

ν]

(4.53)

and the partition function reads

Z(β) =
∫

dDx0

√
g(x0)

(2πβ)
D
2

〈
e−S(int)

q
〉

, (4.54)

which is computed perturbatively expanding the exponent. Useful properties for the B

propagator are

B(τ1, τ2) = B(τ2, τ1)

•B(τ1, τ2) =
sgn(τ1 − τ2)

2
− τ1 + τ2 = −B•(τ1, τ2)

••B(τ1, τ2) = δ(τ1 − τ2)− 1 = B••(τ1, τ2)
0∫
−1

dτ B(τ1, τ2) = 0

(•B(τ1, τ2))|τ1=τ2 = 0

(••B(τ1, τ2))|τ1=τ2 = δ(0)− 1.

(4.55)

In the last line of (4.55), δ(0) is a singularity that is perturbatively removed by the

ghost sector. Another delicate object is •B•(τ1, τ2) = 1− δ(τ1 − τ2): it cannot be

directly implemented, rather it has to be partially integrated using the rules provided
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by the regularization to get regular forms like those in (4.55). The integral constraint

comes from setting ρ(τ) = 1m which in turn fixes the propagator to be that given in

(4.52).

From the partition function (4.54), we can extract the related density

Z(β) =

¨
e−S(int)

q
∂

(2πβ)
D
2

. (4.56)

Adopting dimensional regularization and extracting −β(V + VDR) from the quantum

action, we have

Z(β) =
e−β(1−4ξ) R

8

(2πβ)
D
2

〈
e−S̃(int)

q
〉

. (4.57)

Calling b the curvature constant defined as3

Rµνρσ = b(gµρgνσ − gµσgνρ)

b =
R

D(1− D)
,

(4.58)

the RNC-MS expansion of the metric around the origin reads [26]

gµν(ξ) = δµν + 2(ξµξν − δµνξαξα)
ï

b
6
− 16

6!
b2(ξαξα)2 +

8
7!

b3(ξαξα)4 + . . .
ò

(4.59)

and it can be inserted in the interacting quantum action to give

S̃(int)
q =

1
β

∫ 0

−1
dτ

ï
b
6
− 16

6!
b2(ξαξα)2 +

8
7!

b3(ξαξα)4 + . . .
ò
×

× [ξµ(τ)ξν(τ)− δµνξα(τ)ξα(τ)]
î
ξ̇µ(τ)ξ̇ν(τ) + aµ(τ)aν(τ)+

+ bµ(τ)cν(τ)
ó
− η̄µ

∫ 0

−1
dτ (Qµ

ν − δµ
ν) ην.

(4.60)

The expression of the matrix Qµ
ν is obtained from eqs. (4.45) and (4.39) and explicitly

reads

Qµ
ν = δµ

ν +
1
3

Rµ
ρσν(0)ξρξσ − 1

45
Rµ

ρσαRα
γδνξρξσξγξδ+

+
2

945
Rµ

αβγRγ
ρσθ Rθ

ηϵν(0)ξαξβξρξσξηξϵ + . . . .
(4.61)

Since the curvature is given by

Rµ
ρσν(0) = b(δµ

σδρν − δµ
νδρσ), (4.62)

3Here we adopt the convention introduced in Appendix A.
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eqs. (4.39) become

Rn = (−1)n+1bn[ξµξν − δµ
νξαξα](ξαξα)n−1

R0 = δµ
ν

(4.63)

and, as a consequence eq. (4.61), is rewritten as

Qµ
ν − δµ

ν =

ñ
b
3
+

b2

45
ξαξα +

2
945

b3(ξαξα)2 + . . .

ô
×

× (ξµξν − δµ
νξαξα),

(4.64)

obtaining

S̃(int)
q =

1
β

∫ 0

−1
dτ

ï
b
6
− 16

6!
b2(ξαξα)2 +

8
7!

b3(ξαξα)4 + . . .
ò
×

× [ξµ(τ)ξν(τ)− δµνξα(τ)ξα(τ)]
î
ξ̇µ(τ)ξ̇ν(τ) + aµ(τ)aν(τ)+

+ bµ(τ)cν(τ)
ó
− η̄µ

∫ 0

−1
dτ
îb

3
+

b2

45
ξα(τ)ξα(τ)+

+
2

945
b3(ξα(τ)ξα(τ))2 + . . .

ó [
ξµ(τ)ξν(τ)− δµ

νξα(τ)ξα(τ)
]

ην.

(4.65)

Finally eq. (4.65) can be used in eq. (4.57), which is computed perturbatively in β.

The interacting quantum action is then split up as4

S̃(int)
q = S′2︸︷︷︸

β

+ S4︸︷︷︸
β

+ S′4︸︷︷︸
β2

+ S6︸︷︷︸
β2

+ S′6︸︷︷︸
β3

+ S8︸︷︷︸
β3

+ . . . , (4.66)

4Under each term we report its overall β-power.
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with

S4 =
b

6β

∫ 0

−1
dτ
[
ξµ(τ)ξν(τ)− δµνξα(τ)ξα(τ)

] î
ξ̇µ(τ)ξ̇ν(τ) + aµ(τ)aν(τ)+

+ bµ(τ)cν(τ)
ó

S6 =
−16b2

6!β

∫ 0

−1
dτ ξα(τ)ξα(τ)

[
ξµ(τ)ξν(τ)− δµνξα(τ)ξα(τ)

]
×

×
[
ξ̇µ(τ)ξ̇ν(τ) + aµ(τ)aν(τ) + bµ(τ)cν(τ)

]
S8 =

8b3

7!β

∫ 0

−1
dτ ξα(τ)ξα(τ)ξβ(τ)ξβ(τ)

[
ξµ(τ)ξν(τ)− δµνξα(τ)ξα(τ)

]
×

×
[
ξ̇µ(τ)ξ̇ν(τ) + aµ(τ)aν(τ) + bµ(τ)cν(τ)

]
S′2 = η̄µ

b
3

∫ 0

−1
dτ
[
ξµ(τ)ξν(τ)− δµ

νξα(τ)ξα(τ)
]

ην

S′4 = −η̄µ
b2

45

∫ 0

−1
dτ ξα(τ)ξα(τ)

[
ξµ(τ)ξν(τ)− δµ

νξα(τ)ξα(τ)
]

ην

S′6 = −η̄µ
2b3

945

∫ 0

−1
dτ ξα(τ)ξα(τ)ξβ(τ)ξβ(τ)

[
ξµ(τ)ξν(τ)− δµ

νξα(τ)ξα(τ)
]

ην.

(4.67)

To compute efficiently the quantity
¨

e−S̃(int)
q
∂

, we bring the contraction inside the ex-

ponentiation paying attention to select only irreducible connected diagrams,

〈
e−S̃(int)

q
〉
= exp

Ä
− ⟨S4⟩︸︷︷︸

β

−
〈
S′2
〉︸︷︷︸

β

− ⟨S6⟩︸︷︷︸
β2

−
〈
S′4
〉︸︷︷︸

β2

+
1
2
〈
S′2
〉

C︸ ︷︷ ︸
β2

+
1
2

¨
S′2

2
∂

C︸ ︷︷ ︸
β2

+

+
〈
S′2S4

〉
C︸ ︷︷ ︸

β2

− ⟨S8⟩︸︷︷︸
β3

−
〈
S′6
〉︸︷︷︸

β3

+ ⟨S4S6⟩C︸ ︷︷ ︸
β3

− 1
3!

¨
S4

3
∂

C︸ ︷︷ ︸
β3

− 1
3!

¨
S′2

3
∂

C︸ ︷︷ ︸
β3

+

+
〈
S′2S6

〉
C︸ ︷︷ ︸

β3

+
〈
S′2S′4

〉
C︸ ︷︷ ︸

β3

+
〈
S′4S4

〉
C︸ ︷︷ ︸

β3

−1
2

¨
S′2

2S4

∂
C︸ ︷︷ ︸

β3

−1
2

¨
S′2S4

2
∂

C︸ ︷︷ ︸
β3

ä
.

(4.68)

For simplicity, here we report again the known result for the MS approximated

transition amplitude density [26]

Z(β) =
1

(2πβ)
D
2

exp
î β

4!
(12ξ − 2)R− β2

6!
(D− 3)

D(D− 1)
R2+

+
β3

8!
16(D + 2)(D− 3)

9D2(D− 1)2 R3 + o(β4)
ó
.

(4.69)
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computed with DBC. The contractions here involved are

⟨S4⟩DBC = − β

4!
R

⟨S6⟩DBC = −β2

5!
D + 2

9D(D− 1)
R2

⟨S8⟩DBC = −β3

7!
(D + 2)(D + 4)
15D2(D− 1)2 R3¨

S4
2
∂

C,DBC
= −β2

4!
1

9D
R2

⟨S4S6⟩C,DBC = −β3

6!
4(D + 2)

45D2(D− 1)
R3¨

S4
3
∂

C,DBC
= −β3

6!
2(D2 − 4)

3D2(D− 1)2 R3

(4.70)

and will be used, order by order, to check the validity of the calculation performed

using SI propagators (for which the SI subscript is omitted). To order β, the only DBC

contribution comes from

⟨S4⟩DBC = − 1
24

βR, (4.71)

whereas the SI integrals are

⟨S4⟩ =
b

6β

∫ 〈(
ξµξν − δµνξαξα

) (
ξ̇µ ξ̇ν + aµaν + bµcν

)〉
=

=
bβ

6

î
D(1− D)M1 + (D2 − D)M2

ó
= − 1

72
βR〈

S′2
〉
=

b
3

∫ 〈
η̄µην

〉
⟨ξµξν − δµ

νξαξα⟩ = βR
3
M1 = − 1

36
βR,

(4.72)

in terms ofM-wordline integrals reported at the end of this chapter. We notice that

⟨S4⟩+ ⟨S′2⟩ = ⟨S4⟩DBC.

To order β2 the DBC contributions are

⟨S6⟩ DBC = − D + 2
5! · 9D(D− 1)

β2R2¨
S4

2
∂

C,DBC
= − 1

4! · 9D
β2R2

(4.73)
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and SI ones are

⟨S6⟩ = −
16R2

6! · βD2(1− D)2

∫ ¨
ξαξα[ξµξν − δµνξαξα]×

[
ξ̇µ ξ̇ν + aµaν + bµcν

] ∂
=

=
16β2R2

6!D2(1− D)2 (−D3 − D2 + 2D)M4 =

= − 1
6480

D + 2
D(D− 1)

β2R2

〈
S′4
〉
= − R2

45D2(1− D)2

∫ 〈
η̄µην

〉 〈
ξαξα

[
ξµξν − δµ

νξαξα
]〉

=

= − β2R2

45D2(1− D)2 (−D3 − D2 + 2D)M5 =

=
1

6480
D + 2

D(D− 1)
β2R2¨

S4
2
∂

C
=

R2

36β2D2(1− D)2

∫ 0

−1
dτ
∫ 0

−1
dσ
¨

[ξµ(τ)ξν(τ)− δµνξα(τ)ξα(τ)]×

×
[
ξ̇µ(τ)ξ̇ν(τ) + aµ(τ)aν(τ) + bµ(τ)cν(τ)

]
[ξρ(σ)ξσ(σ)− δρσξα(σ)ξα(σ)]×

×
[
ξ̇ρ(σ)ξ̇σ(σ) + aρ(σ)aσ(σ) + bρ(σ)cσ(σ)

] ∂
C
=

=
β2R2

36D2(1− D)2

î
(4D3 − 8D2 + 4D)M6 + (2D3 − 4D2 + 2D)M7+

+ (2D3 − 4D2 − 2D)M8 + (6D2 − 6D)M9 + (−12D2 + 12D)M10+

= (6D2 − 6D)M11

ó
=

= − 1
6480

7D2 − 53D + 46
D(D− 1)2 β2R2¨

S′2
2
∂

C
=

R2

9D2(1− D)2

∫ 0

−1
dτ
∫ 0

−1
dσ
¨

η̄(τ)
µ η(τ)νη̄(σ)

ρ η(σ)σ
∂ ¨î

ξµ(τ)ξν(τ)+

− δµ
νξα(τ)ξα(τ)

ó
[ξρ(σ)ξσ(σ)− δρ

σξα(σ)ξα(σ)]
∂

C
=

= − β2R2

45D2(1− D)2 (3D3 − 3D2)M5 =

= − 1
2160

1
D− 1

β2R2

〈
S′2S4

〉
C = − R2

18βD2(1− D)2

∫ 0

−1
dτ
∫ 0

−1
dσ
〈
η̄µην

〉 ¨î
ξµ(τ)ξν(τ)+

− δµ
νξα(τ)ξα(τ)

ó
[ξρ(σ)ξσ(σ)− δρσξα(σ)ξα(σ)]

î
ξ̇ρ(σ)ξ̇σ(σ)+

+ aρ(σ)aσ(σ) + bρ(σ)cσ(σ)
ó∂

C
=

=
(D− 1)β2R2

18D2(1− D)2 [(2D2 − 2D)M12 + (2D2 − 2D)M13] =

= − 1
1620

1
D

β2R2.

(4.74)
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Summing up all together, the result gives precisely

− ⟨S6⟩ −
〈
S′4
〉
+

1
2

¨
S′2

2
∂

C
+

1
2

¨
S4

2
∂

C
+
〈
S′2S4

〉
C = − ⟨S6⟩DBC +

1
2

¨
S4

2
∂

C,DBC
.

(4.75)

The order β3 is the most complicated one as it involves a large number of fields. The

DBC terms are

⟨S8⟩DBC = − (D + 2)(D + 4)
7! · 15D2(D− 1)2 β3R3

⟨S4S6⟩C,DBC = − 4(D + 2)
6! · 45D2(D− 1)

β3R3¨
S4

3
∂

C,DBC
= −2(D + 2)(D− 2)

6! · 3D2(D− 1)2 β3R3

(4.76)

to be compared with the SI ones

⟨S8⟩ =
8R3

7!βD3(1− D)3

∫ 0

−1
dτ
¨

ξβ(τ)ξβ(τ)ξα(τ)ξα(τ)
[
ξµ(τ)ξν(τ)+

− δµνξα(τ)ξα(τ)
] [

ξ̇µ(τ)ξ̇ν(τ) + aµ(τ)aν(τ) + bµ(τ)cν(τ)
] ∂

=

=− 8β3R3

7!D3(1− D)3

Ä
D4 + 5D3 + 2D2 − 8D

ä
M14 =

=
8

7! · 1728
D4 + 5D3 + 2D2 − 8D

D3(1− D)3 β3R3

〈
S′6
〉
=− 2

945
R3

D3(1− D)3

∫ 0

−1
dτ

〈
η̄µην

〉 ¨
ξβ(τ)ξβ(τ)ξα(τ)ξα(τ)×

×
î
ξµ(τ)ξν(τ)− δµ

νξβ(τ)ξβ(τ)
ó ∂

=

=
2

945
β3R3

D3(1− D)2

Ä
D3 + 6D2 + 8D

ä
M15 =

=− 2
945 · 1728

D3 + 6D2 + 8D
D3(1− D)2 β3R3

⟨S4S6⟩C =− 16R3

6 · 6!β2D3(1− D)3

∫ 0

−1
dτ
∫ 0

−1
dσ
¨ î

ξµ(τ)ξν(τ)− δµνξβ(τ)ξβ(τ)
ó
×

×
[
ξ̇µ(τ)ξ̇ν(τ) + aµ(τ)aν(τ) + bµ(τ)cν(τ)

]
ξα(σ)ξα(σ)×

×
î
ξρ(σ)ξσ(σ)− δρσξβ(σ)ξβ(σ)

ó î
ξ̇ρ(σ)ξ̇σ(σ) + aρ(σ)aσ(σ)+

+ bρ(σ)cσ(σ)
ó∂

C
=

=− 16β3R3

6 · 6!D3(1− D)3

î Ä
−4D4 + 12D2 − 8D

ä
M16+

+
Ä
−2D4 + 6D2 − 4D

ä
M17 +

Ä
−10D3 − 10D2 + 20D

ä
M18+

+
Ä
−4D4 + 12D2 − 8D

ä
M19 +

Ä
20D3 + 20D2 − 40D

ä
M20+

+
Ä
−2D4 + 6D2 − 4D

ä
M21 +

Ä
−10D3 − 10D2 + 20D

ä
M22

ó
=
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=
16

6 · 6! · 2160
9D4 − 65D3 − 92D2 + 148D

D3(1− D)3 β3R3¨
S4

3
∂

C
=

R3

63β3D3(1− D)3

∫ 0

−1
dτ
∫ 0

−1
dσ
∫ 0

−1
dρ¨ î

ξµ(τ)ξν(τ)− δµνξβ(τ)ξβ(τ)
ó î

ξ̇µ(τ)ξ̇ν(τ) + aµ(τ)aν(τ)+

+ bµ(τ)cν(τ)
ó [

ξρ(σ)ξσ(σ)− δρσξα(σ)ξα(σ)
] î

ξ̇ρ(σ)ξ̇σ(σ)+

+ aρ(σ)aσ(σ) + bρ(σ)cσ(σ)
ó [

ξµ(ρ)ξν(ρ)− δµνξα(ρ)ξα(ρ)
]
×

×
î
ξ̇µ(ρ)ξ̇ν(ρ) + aµ(ρ)aν(ρ) + bµ(ρ)cν(ρ)

ó∂
C
=

=
R3

63β3D3(1− D)3

î Ä
24D− 72D2 + 72D3 − 24D4

ä
M23+

+
Ä

24D− 72D2 + 72D3 − 24D4
ä
M24+

+
Ä
−48D + 144D2 − 144D3 + 48D4

ä
M25+

+
Ä

24D− 72D2 + 72D3 − 24D4
ä
M26+

+
Ä
−72D + 144D2 − 72D3

ä
M27+

+
Ä

24D− 72D2 + 72D3 − 24D4
ä
M28+

+
Ä

24D− 72D2 + 72D3 − 24D4
ä
M29+

+
Ä

8D− 24D2 + 24D3 − 8D4
ä
M30+

+
Ä
−72D + 144D2 − 72D3

ä
M31+

+
Ä

24D− 72D2 + 72D3 − 24D4
ä
M32+

+
Ä
−72D + 144D2 − 72D3

ä
M33+

+
Ä
−120D + 168D2 − 48D3

ä
M34+

+
Ä
−24D + 72D2 − 72D3 + 24D4

ä
M35+

+
Ä

72D− 144D2 + 72D3
ä
M36+

+
Ä

144D− 288D2 + 144D3
ä
M37+

+
Ä

120D− 168D2 + 48D3
ä
M38+

+
Ä

8D− 24D2 + 24D3 − 8D4
ä
M39+

+
Ä
−72D + 144D2 − 72D3

ä
M40+

+
Ä

72D− 144D2 + 72D3
ä
M41+

+
Ä

128D− 136D2 + 8D3
ä
M42+

+
Ä
−144D + 288D2 − 144D3

ä
M43+

+
Ä
−24D + 72D2 − 72D3 + 24D4

ä
M44+
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+
Ä

72D− 144D2 + 72D3
ä
M45+

+
Ä

144D− 288D2 + 144D3
ä
M46+

+
Ä
−144D + 288D2 − 144D3

ä
M47+

+
Ä

72D− 144D2 + 72D3
ä
M48+

+
Ä

120D− 168D2 + 48D3
ä
M49+

+
Ä

240D− 336D2 + 96D3
ä
M50+

+
Ä
−240D + 336D2 − 96D3

ä
M51+

+
Ä
−240D + 336D2 − 96D3

ä
M52+

+
Ä
−264D + 240D2 + 24D3

ä
M53+

+
Ä

384D− 408D2 + 24D3
ä
M54+

+
Ä
−40D + 56D2 − 16D3

ä
M55+

+
Ä
−88D + 80D2 + 8D3

ä
M56

ó
=

=
1

63 · 7560
4068D− 1604D2 − 2753D3 + 289D4

D3(1− D)3 β3R3¨
S′2

3∂
C
=− R3

33D3(1− D)3

∫ 0

−1
dτ
∫ 0

−1
dσ
∫ 0

−1
dρ
¨

η̄(τ)
µ η(τ)νη̄(σ)

ρ η(σ)ση̄
(ρ)
α η(ρ)β

∂
×

×
¨ î

ξµ(τ)ξν(τ)− δµ
νξβ(τ)ξβ(τ)

ó [
ξρ(σ)ξσ(σ)− δρ

lξα(σ)ξα(σ)
]
×

×
[
ξα(ρ)ξβ(ρ)− δα

βξα(ρ)ξα(ρ)
] ∂∣∣∣

C
=

=
β3R3

33D3(1− D)3

î Ä
2D− 6D2 + 6D3 − 2D4

ä
M57+

+ 3
Ä
−10D + 24D2 − 18D3 + 4D4

ä
M58+

+
Ä

76D− 130D2 + 62D3 − 8D4
ä
M59

ó
=

=
1

33 · 30240
−6D− 17D2 + 22D3 + D4

D3(1− D)3 β3R3

〈
S′2S6

〉
C =

16R3

3 · 6!βD3(1− D)3

∫ 0

−1
dτ
∫ 0

−1
dσ

〈
η̄µην

〉 ¨ î
ξµ(τ)ξν(τ)− δµ

νξβ(τ)ξβ(τ)
ó
×

× ξq(σ)ξq(σ)
î
ξρ(σ)ξσ(σ)− δρσξβ(σ)ξβ(σ)

ó
×

×
[
ξ̇ρ(σ)ξ̇σ(σ) + aρ(σ)aσ(σ) + bρ(σ)cσ(σ)

] ∂
C
=

=
16β3R3

3 · 6!D3(1− D)2

î Ä
8D− 4D2 − 4D3

ä
M60+

+
Ä

4D− 2D2 − 2D3
ä
M61

ó
=

=− 16
3 · 6! · 1440

−2D + D2 + D3

D3(1− D)2 β3R3

〈
S′2S′4

〉
C =

R3

3 · 45D3(1− D)3

∫ 0

−1
dτ
∫ 0

−1
dσ
¨

η̄(τ)
µ η(τ)νη̄(σ)

ρ η(σ)σ
∂ ¨[

ξµ(τ)ξν(τ)+
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− δµ
νξβ(τ)ξβ(τ)

]
ξα(σ)ξα(σ)

î
ξρ(σ)ξσ(σ)− δρ

lξβ(σ)ξβ(σ)
ó ∂∣∣∣

C
=

=− β3R3

3 · 45D3(1− D)3

î
(1− D)2

Ä
8D + 4D2

ä
M62 −

Ä
2D + D2

ä
M63+

−
Ä

6D + 5D2 + D3
ä
M62 + (2− D)

Ä
2D2 + D3

ä
M63+

+ (2− D)
Ä

8D + 4D2
ä
M62

ó
=

=− 1
3 · 45 · 8640

−8D + 2D2 + 5D3 + D4

D3(1− D)3 β3R3

〈
S′4S4

〉
C =− R3

6 · 45βD3(1− D)3

∫ 0

−1
dτ
∫ 0

−1
dσ

〈
η̄µην

〉 ¨ î
ξµ(τ)ξν(τ)− δµνξβ(τ)ξβ(τ)

ó
×

×
[
ξ̇µ(τ)ξ̇ν(τ) + aµ(τ)aν(τ) + bµ(τ)cν(τ)

] [
ξρ(σ)ξσ(σ)− δρ

σξα(σ)ξα(σ)
]
×

× ξβ(σ)ξβ(σ)
∂

C
=

=− β3R3

6 · 45D3(1− D)2

î Ä
8D + 4D2

ä
M64 +

Ä
8D + 4D2

ä
M65+

+
Ä

16D + 8D2
ä
M66 −

Ä
8D2 + 4D3

ä
M64 −

Ä
8D2 + 4D3

ä
M65+

−
Ä

16D + 8D2
ä
M66

ó
=

=− 1
6 · 45 · 60480

224D− 112D2 − 112D3

D3(1− D)2 β3R3¨
S′2

2S4

∂
C
=

R3

6 · 32βD3(1− D)3

∫ 0

−1
dτ
∫ 0

−1
dσ
∫ 0

−1
dρ
¨

η̄(σ)
µ η(σ)νη̄

(ρ)
ρ η(ρ)σ

∂
×

×
¨ î

ξα(τ)ξβ(τ)− δαβξβ(τ)ξβ(τ)
ó î

ξ̇α(τ)ξ̇β(τ) + aα(τ)aβ(τ)+

+ bα(τ)cβ(τ)
ó [

ξµ(σ)ξν(σ)− δµ
νξα(σ)ξα(σ)

] î
ξρ(ρ)ξσ(ρ)+

− δρ
σξα(ρ)ξα(ρ)

ó∂∣∣∣
C
=

=
β3R3

6 · 32D3(1− D)3

î
8D(D− 1)2M67 + 4D(D− 1)2M68+

+ 8D(D− 1)2M69 +
Ä

8D + 8D2
ä

(D− 1)2M70+

+ 4D(D− 1)2M71 − 8D2(D− 1)2M67 − 4D2(D− 1)2M68+

− 8D2(D− 1)2M69 − 16D(D− 1)2M70+

− 4D2(D− 1)2M71 − 4DM72 −
Ä

4D + 4D2
ä
M67+

− 2DM73 −
Ä

2D + 2D2
ä
M68 −

Ä
4D + 4D2

ä
M69+

−
Ä

12D + 4D2
ä
M70 − 2DM73 −

Ä
2D + 2D2

ä
M71+

+ 2D2(2− D)M72 + 8D(2− D)M67 + 2D2(2− D)M72+

+ 2D2(2− D)M73 + 4D(2− D)M71 + 8D(2− D)M69+

+ (2− D)
Ä

8D + 8D2
ä
M70 + 2D2(2− D)M73 + 4D(2− D)M68+

+ 2D2M72 +
Ä

4D2 + 4D3
ä
M67 + 2D2M72+
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+ 2D2M73 + 4DM71 +
Ä

4D2 + 4D3
ä
M69+

+
Ä

8D + 8D2
ä
M70 + 2D2M73 + 4DM68+

+ 2D3(D− 2)M72 + 8D2(D− 2)M67 + 2D3(D− 2)M72+

+ 2D3(D− 2)M734D2(D− 2)M68 + 8D2(D− 2)M69+

+ 16D(D− 2)M70 + 2D3(D− 2)M73 + 4D2(D− 2)M68

ó
=

=
4

54 · 60480
46D− 67D2 + 17D3 + 4D4

D3(1− D)3 β3R3¨
S′2S4

2
∂

C
=− R3

3 · 62β2D3(1− D)3

∫ 0

−1
dτ
∫ 0

−1
dσ
∫ 0

−1
dρ
〈
η̄µην

〉
×

×
¨[

ξµ(τ)ξν(τ)− δµ
νξβ(τ)ξβ(τ)

]
×

×
[
ξα(σ)ξβ(σ)− δαβξβ(σ)ξβ(σ)

][
ξ̇α(σ)ξ̇β(σ) + aα(σ)aβ(σ)+

+ bα(σ)cβ(σ)
][

ξρ(ρ)ξσ(ρ)− δρσξρ(ρ)ξρ(ρ)
][

ξ̇ρ(ρ)ξ̇σ(ρ)+

+ aρ(ρ)aσ(ρ) + bρ(ρ)cσ(ρ)
]∂

C
=

=
β3R3

3 · 62D3(1− D)2

î Ä
8D− 16D2 + 8D3

ä
M74+

+
Ä

8D− 16D2 + 8D3
ä
M75 +

Ä
−16D + 32D2 − 16D3

ä
M76+

+
Ä
−16D + 32D2 − 16D3

ä
M77 +

Ä
8D− 16D2 + 8D3

ä
M78+

+
Ä
−24D + 24D2

ä
M79 +

Ä
24D− 24D2

ä
M80+

+
Ä

48D− 48D2
ä
M81 +

Ä
16D− 32D2 + 16D3

ä
M82+

+
Ä
−48D + 48D2

ä
M83 +

Ä
8D− 16D2 + 8D3

ä
M84+

+
Ä

8D− 16D2 + 8D3
ä
M85 +

Ä
8D− 16D2 + 8D3

ä
M86+

+
Ä
−24D + 24D2

ä
M87 +

Ä
24D− 24D2

ä
M88

ó
=

=
1

3 · 62 · 7560
158D− 121D2 − 37D3

D3(1− D)2 β3R3. (4.77)

Summing up all the above terms gives rise to

− ⟨S8⟩ −
〈
S′6
〉
+ ⟨S4S6⟩C −

1
6

¨
S4

3
∂

C
− 1

6

¨
S′2

3
∂

C
+
〈
S′2S6

〉
C +

+
〈
S′2S′4

〉
C +

〈
S′4S4

〉
C −

1
2

¨
S′22S4

∂
C
− 1

2

¨
S′2S4

2
∂

C
=

= − ⟨S8⟩DBC + ⟨S4S6⟩C,DBC −
1
6

¨
S4

3
∂

C,DBC
,

(4.78)

confirming a perfect agreement between the DBC and SI calculations. Summarizing,

the final result for the local trace anomaly computed in a maximally symmetric space
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is given by

〈
Tµ

µ(ξ)
〉
= lim

β→0
Z(β) =

1

(2πβ)
D
2

exp
î β

4!
(12ξ − 2)R+

− β2

6!
D− 3

D(D− 1)
R2 +

β3

8!
16(D + 2)(D− 3)

9D2(D− 1)2 R3 + o(β3)
ó
,

(4.79)

or, more explicitly,

〈
Tµ

µ(x)
〉

D=2 = − R
24π〈

Tµ
µ(x)

〉
D=4 = − R2

48 · 6!π2〈
Tµ

µ(x)
〉

D=6 = − R3

60 · 9!π3 ,

(4.80)

as DBC-computed in [26].

For completeness, here we report the list of M-integrals used for the previous

calculation.

M1 =
∫

dτ B|τ
(•B• + ∆gh

)
|τ = − 1

12
(4.81)

M2 =
∫

dτ B|τ = − 1
12

M3 =
∫

dτ B|τ2 (•B• + ∆gh
)
|τ =

1
144

M4 =
∫

dτ B|τ2 =
1

144

M5 =
∫

dτ1

∫
dτ2 B2 =

1
720

M6 =
∫

dτ1

∫
dτ2 B|1 •B2 (•B• + ∆gh

)
|2 = − 1

144

M7 =
∫

dτ1

∫
dτ2 B|1B|2

Ä
•B•2 − ∆gh

2
ä
= − 1

144

M8 =
∫

dτ1

∫
dτ2 B2 (•B• + ∆gh

)
|1
(•B• + ∆gh

)
|2 =

1
720

M9 =
∫

dτ1

∫
dτ2 B2

Ä
•B•2 − ∆gh

2
ä
=

1
120

M10 =
∫

dτ1

∫
dτ2 B B• •B •B• = −

11
1440

M11 =
∫

dτ1

∫
dτ2 B•2 •B2 =

1
80

M12 =
∫

dτ1

∫
dτ2 B2 (•B• + ∆gh

)
|2 =

1
720

M13 =
∫

dτ1

∫
dτ2 B•2B|2 = − 1

144
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M14 =
∫

dτ B|τ3 (•B• + ∆gh
)
|τ = − 1

1728

M15 =
∫

dτ B|τ3 = − 1
1728

M16 =
∫

dτ1

∫
dτ2 B|1B|2•B2 (•B• + ∆gh

)
|2 =

1
1728

M17 =
∫

dτ1

∫
dτ2 B|1B|22

Ä
•B•2 − ∆gh

2
ä
=

1
1728

M18 =
∫

dτ1

∫
dτ2 B2B|2

Ä
•B•2 − ∆gh

2
ä
= − 1

1440

M19 =
∫

dτ1

∫
dτ2 B2B|2

(•B• + ∆gh
)
|1
(•B• + ∆gh

)
|2 = − 1

8640

M20 =
∫

dτ1

∫
dτ2 B|2 B B• •B •B• =

11
17280

M21 =
∫

dτ1

∫
dτ2 B•2B|22 (•B• + ∆gh

)
|1 =

1
1728

M22 =
∫

dτ1

∫
dτ2 B•2 •B2B|2 = − 1

960

M23 =
∫

dτ1

∫
dτ2

∫
dτ3 B|1•B12

2 •B23
2 (•B• + ∆gh

)
|3 = − 1

1728

M24 =
∫

dτ1

∫
dτ2

∫
dτ3 B|12 •B12

2
Ä
•B•23

2 − ∆gh,23
2
ä
= − 1

1728

M25 =
∫

dτ1

∫
dτ2

∫
dτ3 B|1 •B12 B23

•B23
•B•12 = 0

M26 =
∫

dτ1

∫
dτ2

∫
dτ3 B|1 •B12

•B13 B23
(•B• + ∆gh

)
|2
(•B• + ∆gh

)
|3 =

1
8640

M27 =
∫

dτ1

∫
dτ2

∫
dτ3 B|1 •B12

•B13 B23

Ä
•B•23

2 − ∆gh,23
2
ä
=

1
1440

M28 =
∫

dτ1

∫
dτ2

∫
dτ3 B|12 •B12 B•23

•B•13
(•B• + ∆gh

)
|2 = − 1

1728

M29 =
∫

dτ1

∫
dτ2

∫
dτ3 B|1 B23

2
Ä
•B•12

2 − ∆gh,12
2
ä (•B• + ∆gh

)
|3 =

1
8640

M30 =
∫

dτ1

∫
dτ2

∫
dτ3 B|13 (•B•12

•B•23
•B•13 + ∆gh,12 ∆gh,23 ∆gh,13

)
= − 1

1728

M31 =
∫

dτ1

∫
dτ2

∫
dτ3 B|1 B23

2 (•B•12
•B•23

•B•13 + ∆gh,12 ∆gh,23 ∆gh,13
)
=

1
1440

M32 =
∫

dτ1

∫
dτ2

∫
dτ3 B12

2 •B23
2 (•B• + ∆gh

)
|1
(•B• + ∆gh

)
|3 =

1
8640

M33 =
∫

dτ1

∫
dτ2

∫
dτ3 B12

2 •B13
•B23

•B•12
(•B• + ∆gh

)
|3 = − 11

20160

M34 =
∫

dτ1

∫
dτ2

∫
dτ3 B12

2 •B13
2
Ä
•B•23

2 − ∆gh,23
2
ä
= − 1

4032

M35 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B•12 B23

•B23
(•B• + ∆gh

)
|1
(•B• + ∆gh

)
|3 = 0

M36 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B•12

•B12
•B13

•B23
(•B• + ∆gh

)
|3 =

11
60480

M37 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B•12

•B13 B23
•B•12

(•B• + ∆gh
)
|3 = − 1

60480

M38 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B•12 B23

•B23

Ä
•B•13

2 − ∆gh,13
2
ä
=

61
120960
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M39 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B23 B13

(•B• + ∆gh
)
|1
(•B• + ∆gh

)
|2
(•B• + ∆gh

)
|3 = − 1

30240

M40 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B23 B13

(•B• + ∆gh
)
|1
Ä
•B•23

2 − ∆gh,23
2
ä
=

1
40320

M41 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B13 B•23

•B23
•B•23

(•B• + ∆gh
)
|1 =

13
120960

M42 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B23 B13

(•B•12
•B•23

•B•13 + ∆gh,12 ∆gh,23 ∆gh,13
)
=

143
120960

M43 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B•13 B•23

•B23
2 (•B• + ∆gh

)
|1 = − 1

6720

M44 =
∫

dτ1

∫
dτ2

∫
dτ3 B|1 B|3 •B12 B•23

•B•12
•B•23 = 0

M45 =
∫

dτ1

∫
dτ2

∫
dτ3 B|1 •B12

•B13 B•23
•B23

•B•23 = − 11
17280

M46 =
∫

dτ1

∫
dτ2

∫
dτ3 B|1 •B12 B23

•B23
•B•13

•B•23 = − 11
17280

M47 =
∫

dτ1

∫
dτ2

∫
dτ3 B|1 •B12 B•23

•B23
2 •B•13 =

1
960

M48 =
∫

dτ1

∫
dτ2

∫
dτ3 B|1 B23 B•23

•B23
•B•12

•B•13 = − 11
17280

M49 =
∫

dτ1

∫
dτ2

∫
dτ3 B12

2 •B13
•B23

•B•13
•B•23 =

1
30240

M50 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B•12

•B13
2 B•23

•B•23 =
1

30240

M51 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B•12

•B13 B23
•B•13

•B•23 = − 79
120960

M52 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B•12

•B13
•B23 B•23

•B•13 = − 1
30240

M53 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B13

•B23 B•23
•B•12

•B•13 = − 19
40320

M54 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B•13

•B•12
•B13 B•23

•B23 =
11

12096

M55 =
∫

dτ1

∫
dτ2

∫
dτ3 B•12

2 •B13
2 B•23

2 =
17

20160

M56 =
∫

dτ1

∫
dτ2

∫
dτ3 B•12 B•13

•B12
•B13 B•23

•B23 = − 17
20160

M57 =
∫

dτ1

∫
dτ2

∫
dτ3 B|1 B|2 B|3 = − 1

1728

M58 =
∫

dτ1

∫
dτ2

∫
dτ3 B|1 B23

2 = − 1
8640

M59 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B23 B13 = − 1

30240

M60 =
∫

dτ1

∫
dτ2 B2 B|2

(•B• + ∆gh
)
|2 = − 1

8640

M61 =
∫

dτ1

∫
dτ2 B•2 B|2 =

1
1728

M62 =
∫

dτ1

∫
dτ2 B|2 B2 = − 1

8640

M63 =
∫

dτ1

∫
dτ2 B|1 B|22 = − 1

1728
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M64 =
∫

dτ1

∫
dτ2 B|1 B|2 •B2 =

1
1728

M65 =
∫

dτ1

∫
dτ2 B2 B|2

(•B• + ∆gh
)
|1 = − 1

8640

M66 =
∫

dτ1

∫
dτ2

∫
dτ3 B|1 •B12

•B13 B23 =
1

8640

M67 =
∫

dτ1

∫
dτ2

∫
dτ3 B12

2 •B13
2 =

1
8640

M68 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B23 B13

(•B• + ∆gh
)
|1 = − 1

30240

M69 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B13

•B12
•B13 = 0

M70 =
∫

dτ1

∫
dτ2

∫
dτ3 B13

2 •B12
2 =

1
8640

M71 =
∫

dτ1

∫
dτ2

∫
dτ3 B|1 B|3 •B12

2 =
1

1728

M72 =
∫

dτ1

∫
dτ2

∫
dτ3 B12

2 B|3
(•B• + ∆gh

)
|1 = − 1

8640

M73 =
∫

dτ1

∫
dτ2

∫
dτ3 B12

2 •B23
2 (•B• + ∆gh

)
|3 =

1
8640

M74 =
∫

dτ1

∫
dτ2

∫
dτ3 B|3 B12

2
Ä
•B•23

2 − ∆gh,23
2
ä
=

1
8640

M75 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B•12 B23

•B23
(•B• + ∆gh

)
|3 = 0

M76 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B•12 B•23

•B•23 B|3 = 0

M77 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B23 B13

(•B• + ∆gh
)
|2
(•B• + ∆gh

)
|3 = − 1

30240

M78 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B23 B13

Ä
•B•23

2 − ∆gh,23
2
ä
=

1
40320

M79 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B13

•B23 B•23
•B•23 =

13
120960

M80 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B•13 B23

•B23
•B•23 = − 1

60480

M81 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B•13 B•23 B|3

(•B• + ∆gh
)
|2 =

1
8640

M82 =
∫

dτ1

∫
dτ2

∫
dτ3 B12 B•13 B•23

•B23
2 = − 1

6720

M83 =
∫

dτ1

∫
dτ2

∫
dτ3 B•12

2 B23
2 (•B• + ∆gh

)
|3 =

1
8640

M84 =
∫

dτ1

∫
dτ2

∫
dτ3 B•12

2 B•23
2 B|3 = − 1

1728

M85 =
∫

dτ1

∫
dτ2

∫
dτ3 B|2 B|3 B•12 B•13

•B•23 = − 1
1728

M86 =
∫

dτ1

∫
dτ2

∫
dτ3 B23

2 B•12 B•13
•B•23 = − 11

20160

M87 =
∫

dτ1

∫
dτ2

∫
dτ3 B•12 B•13 B23 B•23

•B23 =
11

60480
.

This concludes this calculation of the trace anomaly in a maximally symmetric
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space using string inspired propagators in dimensional regularization, a BRST gauge

fixing of the worldline trajectories and Riemann normal coordinates. String inspired

propagators turned out to be quite efficient also because of their translationally invari-

ant nature, unlike the DBC ones. This implies that all diagrams involving equal time

propagators with one derivative, are vanishing. This simplification is compensated by

the introduction of further vertices, due to the non linear geodesic map, which we com-

puted in closed form for MS spaces. The string inspired formalism can be considered

a powerful tool to reduce complexity of standard Feynman diagrams computations, in

QFT and string theory: an example is given by the systematic computation of graviton

scattering amplitudes and gravitational effective actions.

In the next chapter we will see a direct comparison of calculations performed using

mode and dimensional regularization: MR was used in [33] to evaluate the transition

amplitude of a scalar particle moving in curved space and that result is taken as a test

to confirm the validity of DR for the same problem.
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Chapter 5

Dimensional regularization of the

particle transition amplitude in

curved spaces

As previously discussed, mode and dimensional regularization are two regularization

schemes used to operationally compute worldline path integrals. In some cases, DR is

preferable as its associated conterterm potential has a simpler (covariant) form (see eq.

(3.58) and (3.66)). In this chapter we will compare MR and DR on the same physical

problem which is the computation of the particle transition amplitude, proving the

equivalence of the two methods [34], thus checking the validity of DR in such context.

Actually, the MR calculation was already proven to be equivalent to the one involving

time slicing [33]. To complete the picture, we will carry on the calculation with DR.

Here we focus on the dynamics of a non relativistic point-particle in a D-dimensional

curved space where an arbitrary scalar potential is included. The associated minkowskian

action then reads

S[x] =
∫ t

0
dτ

ï
1
2

gµν(x)ẋµ ẋν −V(x)
ò

(5.1)

At the quantum level, the transition amplitude of such particle satisfies the Wick-

rotated Schrödinger equation

−∂βK(x, x′; β) =
ï
−1

2
∇2 + V(x)

ò
K(x, x′; β) (5.2)

where β = it is the Wick-rotated Euclidean propagation time and x, x′ are respectively

the initial and final points of the propagation. The Euclidean action is actually

S[x] =
∫ β

0
dτ

ï
1
2

gµν(x)ẋµ ẋν + V(x)
ò

. (5.3)
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An approximated short time solution to (5.2) is given by the so -called heat-kernel

expansion which reads

K(x, x′; β) =
1

(2πβ)
D
2

e−
σ(x,x′)

β

∞

∑
n=0

an(x, x′)βn (5.4)

in terms of the Seeley-De Witt coefficients and the Synge function σ(x, x′) (it mea-

sures half the geodesic distance between x and x′). On the other hand, a path integral

approach to the transition amplitude provides

K(x, x′; β) =
∫

DxDaDbDc e−
∫ 0
−1 dτ

î
1

2β gµν(x)(ẋµ ẋν+aµaν+bµcν)+β(V(x)+VDR(x))
ó

(5.5)

where we already included ghost fields a, b, c as done in the previous calculation to

account for the
√

g-factor characterizing path integrals’ measure in curved space.

Boundary conditions are xµ(−1) = xµ, xµ(0) = x′µ and vanishing for the ghosts.

Thus, in the present calculation, the path integral is performed on a line, as opposed

to the previous chapter. To the best of our knowledge, this is the first generalization of

DR to open line path integrals. In fact, so far DR was proposed and tested in the com-

putation of QFT one-loop effective actions, i.e. with periodic boundary conditions.

However, recent work on the study of classical black hole scattering [35, 36], and on

the computation of scattering amplitudes with gravitons [37], make use of particle path

integrals in curved space on the line. Thus, in order to make contact with such work,

we considered helpful to extend DR to open line path integrals, and we achieve it by

computing the short-time transition amplitude, at three loops, using RNC, which yields

the heat kernel expansion at quadratic order in the propagating time. As in most cases,

it is useful to adopt a quantum-background splitting of the path xµ(τ), namely

xµ(τ) = xµ
bg(τ) + qµ(τ), xµ

bg(τ) = x′µ − ξµτ, ξµ = xµ − x′µ (5.6)

with DBC for the quantum fluctuations qµ(τ), together with Riemann normal coor-

dinates zµ, which allows us to express perturbatively the metric around the origin

x′µ|RNC = 0 as

gµν(z) = δµν +
1
3

Rαµνβ(0)zαzβ +
1
6
∇γRαµνβ(0)zαzβzγ+

+

ï
1
20
∇δ∇γRαµνβ(0) +

2
45

RαµσβRγν
σ

δ(0)
ò

zαzβzγzδ + O(z5). (5.7)
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Here we stop the expansion at o(z4), since this is the needed order to obtain a three-

loop (order β2) amplitude.

As usual we find it convenient to split the action in (5.5) into a quadratic part

S2[ξ; q, a, b, c] =
1

2β
δµνξµξν +

1
2β

∫ 0

−1
dτ δµν

(
q̇µq̇ν + aµaν + bµcν

)
(5.8)

producing propagators for the fields q, a, b, c and an interaction part

Sint[ξ; q, a, b, c] = S4 + S5 + S6 + . . . , (5.9)

with

S4 =
∫ 0

−1
dτ

1
6β

Rαµνβ(0)(−ξατ + qα)(−ξβτ + qβ)
[
(−ξµ + q̇µ)(−ξν + q̇ν)+

+ aµaν + bµcν
]
+ βṼ(0),

S5 =
∫ 0

−1
dτ

1
12β
∇γRαµνβ(0)(−ξατ + qα)(−ξβτ + qβ)(−ξγτ + qγ)×

×
[
(−ξµ + q̇µ)(−ξν + q̇ν) + aµaν + bµcν

]
+ β

∫ 0

−1
dτ ∂αṼ(0)(−ξατ + qα)

S6 =
∫ 0

−1
dτ

Å
1

40β
∇δ∇γRαµνβ(0) +

1
45β

RαµσβRγν
σ

δ(0)
ã
×

× (−ξατ + qα)(−ξβτ + qβ)(−ξγτ + qγ)(−ξδτ + qδ)×

×
[
(−ξµ + q̇µ)(−ξν + q̇ν) + aµaν + bµcν

]
+

+
∫ 0

−1
dτ

β

2
∂α∂βṼ(0)(−ξατ + qα)(−ξβτ + qβ) (5.10)

and Ṽ = V + VDR. Propagators for the quantum fields read

⟨qµ(τ)qν(σ)⟩ = −βδµν∆(τ, σ)

⟨aµ(τ)aν(σ)⟩ = βδµν∆gh(τ, σ)

⟨bµ(τ)cν(σ)⟩ = −2βδµν∆gh(τ, σ) (5.11)

with

∆(τ, σ) = τ(σ + 1)θ(τ − σ) + σ(τ + 1)θ(σ− τ)

•∆(τ, σ) = σ + θ(τ − σ)

∆•(τ, σ) = τ + θ(σ− τ)
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••∆(τ, σ) = ∆gh(τ, σ) = δ(τ, σ)

∆|τ = τ(τ + 1)

•∆|τ = τ +
1
2

(5.12)

Dots on the left (right) refer to derivatives taken with respect to the first (second)

variable. Taking into account the free path integral normalization

∫ q(0)=0

q(−1)=0
DqDaDbDc e−

∫ 0
−1 dτ 1

2β δµν(q̇µ q̇ν+aµaν+bµcν) =
1

(2πβ)
D
2

, (5.13)

the transition amplitude can be written as

K(x, x′; β) =
e−

1
2β δµνξµξν

(2πβ)
D
2

¨
e−Sint

∂
=

e−
1

2β δµνξµξν

(2πβ)
D
2

e−(⟨S4⟩+⟨S5⟩+⟨S6⟩)− 1
2 ⟨S4

2⟩conn
+... (5.14)

=
e−

1
2β δµνξµξν

(2πβ)
D
2

ï
1− (⟨S4⟩+ ⟨S5⟩+ ⟨S6⟩) +

1
2

¨
S4

2
∂

conn
+ . . .

ò
. (5.15)

Vertices are given by

⟨S4⟩ = −
1
6

Rαβξαξβ I1 +
β

6
RI2 + βṼ

⟨S5⟩ =
1
12
∇γRαβξαξβξγ I3 −

β

6
∇αRξα I4 +

β

2
∇αṼξα

⟨S6⟩ = −
Å

1
40
∇δ∇γRαβ +

1
45

RαλσβRγ
λσ

δ

ã
ξαξβξγξδ I5+

+

Å
β

40
∇2Rαβ +

β

20
∇λ∇σRαλσβ +

β

45
RαλRβ

λ +
β

30
RαλσρRβ

λσρ

ã
ξαξβ I6+

+
Ä β

20
∇α∇βR +

2β

45
RαλσβRλσ +

β

20
∇λ∇αRβλ+

− β

20
∇λ∇σRαλσβ −

β

45
RαλRβ

λ +
β

30
RαλσρRβ

λσρ
ä

ξαξβ I7+

−
Ç

β2

20
∇2R +

β2

45
R2

λσ +
β2

30
R2

λσρτ

å
I8 −

β2

2
∇2Ṽ I9 +

β

6
∇α∇βṼξαξβ¨

S4
2
∂

conn
=

1
36

RαλσβRγ
λσ

δξαξβξγξδ I10 −
β

9
RαλRβ

λξαξβ I11 −
β

9
RαλσβRλσξαξβ I12+

− β

6
RαλρσRβ

λσρξαξβ I13 +
β2

12
R2

λσ I14 +
β2

12
R2

λσρξ I15 (5.16)

in terms of the worldline integrals Ii, i = 1, . . . , 15 computed using dimensional reg-

ularization. To be precise, we are adding D extra infinite dimensions to the compact

worldline direction −1 ≤ τ ≤ 0 so to have τ → ta = (τ, t), with t = (t1, . . . , tD).
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The kinetic action for the q-fields is then

S2[q] =
1

2β

∫
dD+1t δµν∂aqµ∂aqν (5.17)

with ∂a =
∂

∂ta . We apply this new derivative notation to ∆-functions as follows,

∂

∂ta ∆(t, s) = a∆(t, s)

∂

∂sa ∆(t, s) = ∆a(t, s)

∂2

∂ta∂sb ∆(t, s) = a∆b(t, s)

∂a∂a∆(t, s) = aa∆(t, s) = ∆gh(t, s) = δ(τ, σ)δD(t− s) (5.18)

where, in momentum space,

∆(t, s) =
∫ dDk

(2π)D

∞

∑
n=1

−2
(πn)2 + kD sin(πnτ) sin(πnσ)eik·(t−s). (5.19)

We point out the property

(a∆a + aa∆)|t = 0(0∆|t) = •(•∆|t), (5.20)

well analyzed in [30]. It will be important for the computation of the integrals Ii. We

also notice that, since the extra dimensions are infinite and translationally invariant,

we keep the same background of the compact interval, that is

xµ(t) = −ξµτ + qµ(t)

∂axµ(t) = −ξµδ0
a + ∂aqµ(t). (5.21)

The main advantage of using DR (besides the covariant counterterm potential VDR) is

the use of integrations by part (i.b.p.) within worldline integrals Ii. I.b.p.’s are guar-

anteed for the extra dimensions due to Poincaré invariance, whereas on the compact

dimension, more attention is needed: the propagator ∆(t, s) vanishes at the endpoints

of the compact direction for both τ and σ, so its presence in the integrand guarantees

that no boundary terms pop out from i.b.p. However, single dotted propagators •∆(t, s),

∆•(t, s) only vanish at the boundary of the compact interval of the variable not used

in the derivation. When t = s, the regulated time derivative vanishes at the endpoints,

whereas the unregulated one is discontinuous there. Moreover, the last property of
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the group (5.18) can be safely used at the regulated level. Relying on all the previous

properties and considerations, we show the list of the Ii worldline integrals used in the

expression of the transition amplitude (5.15).

I1 =
∫ 0

−1
dτ
î
τ2 (•∆• + ••∆) + ∆− 2τ•∆

ó
|τ →

→
∫

dt
î
τ2 (a∆a + aa∆) + ∆− 2τa∆

ó
|t = −

1
2

(5.22)

I2 =
∫ 0

−1
dτ
î
∆ (•∆• + ••∆)− (•∆)2

ó
|τ →

→
∫

dt
î
∆ (a∆a + aa∆)− (a∆)2

ó
|t = −

1
4

(5.23)

I3 =
∫ 0

−1
dτ
î
τ3 (•∆• + ••∆) + τ∆− 2τ2•∆

ó
|τ →

→
∫

dt
î
τ3 (a∆a + aa∆) + τ∆− 2τ2

a∆
ó
|t =

1
2

(5.24)

I4 =
∫ 0

−1
dτ
î
τ∆ (•∆• + ••∆)− τ(•∆)2

ó
|τ →

→
∫

dt
î
τ∆ (a∆a + aa∆)− τ(a∆)2

ó
|t =

1
8

(5.25)

I5 =
∫ 0

−1
dτ
î
τ4 (•∆• + ••∆) + τ2∆− 2τ3•∆

ó
|τ →

→
∫

dt
î
τ4 (a∆a + aa∆) + τ2∆− 2τ3

a∆
ó
|t = −

1
2

(5.26)

I6 =
∫ 0

−1
dτ
î
τ2∆ (•∆• + ••∆) + ∆2 − 2τ•∆∆

ó
|τ →

→
∫

dt
î
τ2∆ (a∆a + aa∆) + ∆2 − 2τa∆∆

ó
|t = 0 (5.27)

I7 =
∫ 0

−1
dτ
î
τ2∆ (•∆• + ••∆)− τ2(•∆)2

ó
|τ →

→
∫

dt
î
τ2∆ (a∆a + aa∆)− τ2(a∆)2

ó
|t = −

1
12

(5.28)

I8 =
∫ 0

−1
dτ
î
∆2 (•∆• + ••∆)− (•∆)2∆

ó
|τ →

→
∫

dt
î
∆2 (a∆a + aa∆)− (a∆)2∆

ó
|t =

1
24

(5.29)

I9 =
∫ 0

−1
dτ∆|τ = −1

6
(5.30)

I10 =
∫ 0

−1
dτ
∫ 0

−1
dσ
î
2τ2 (•∆• •∆• − ••∆∆••) σ2 + 4τ2(•∆)2+

− 8τ2•∆ •∆•σ + 2∆2 − 8∆∆•σ + 4τ∆ •∆•σ + 4τ•∆∆•σ
ó
→

→
∫

dt
∫

ds
î
2τ2 (a∆b a∆b − aa∆∆bb) σ2 + 4τ2(a∆)2+

− 8τ2
a∆ a∆bσ + 2∆2 − 8∆∆bσ + 4τ∆ a∆bσ + 4τa∆∆bσ

ó
= 1 (5.31)

I11 =
∫ 0

−1
dτ
∫ 0

−1
dσ
î
τ(•∆• + ••∆)|τ∆(•∆• + ••∆)|σσ + τ∆•|τ •∆• ∆•|σσ+
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− 2τ(•∆• + ••∆)|τ∆• ∆•|σσ + ∆|τ •∆• ∆|σ + ∆•|τ∆∆•|σ − 2∆|τ •∆∆•|σ+

+ 2τ(•∆• + ••∆)|τ∆• ∆|σ + 2τ∆•|τ •∆∆•|σ+

− 2τ(•∆• + ••∆)|τ∆∆•|σ − 2τ∆•|τ •∆• ∆|σσ
ó
→

→
∫

dt
∫

ds
î
τ(a∆b + aa∆)|t∆(a∆b + aa∆)|sσ + τ∆b|t a∆b ∆b|sσ+

− 2τ(a∆b + aa∆)|t∆b ∆b|sσ + ∆|t a∆b ∆|s + ∆b|t∆∆b|s − 2∆|t a∆∆b|s+

+ 2τ(a∆b + aa∆)|t∆b ∆|s + 2τ∆b|t a∆∆b|s+

− 2τ(a∆b + aa∆)|t∆∆b|s − 2τ∆b|t a∆b ∆|sσ
ó
= − 1

12
(5.32)

I12 =
∫ 0

−1
dτ
∫ 0

−1
dσ
î
τ2∆|σ (•∆• •∆• − ••∆∆••) + (∆•)2∆|σ+

− 2τ∆• •∆• ∆|σ + τ2(•∆)2 + ∆2 − 2τ∆ •∆− 2τ2•∆ •∆• ∆•|σ+

− 2∆∆• ∆•|σ + 2τ∆ •∆• ∆•|σ + 2τ•∆∆• ∆•|σ
ó
→

→
∫

dt
∫

ds
î
τ2∆|s (a∆b a∆b − aa∆∆bb) + (∆b)2∆|s+

− 2τ∆b a∆b ∆|s + τ2(a∆)2 + ∆2 − 2τ∆ a∆− 2τ2
a∆ a∆b ∆b|s+

− 2∆∆b ∆b|s + 2τ∆ a∆b ∆b|s + 2τa∆∆b ∆b|s
ó
=

1
6

(5.33)

I13 =
∫ 0

−1
dτ
∫ 0

−1
dσ
î
τσ∆ (•∆• •∆• − ••∆∆••)− τσ•∆∆• •∆•+

+ ∆2 •∆• − ∆ •∆∆• + 2τ∆• (•∆)2 − 2τ∆ •∆ •∆•
ó
→

→
∫

dt
∫

ds
î
τσ∆ (a∆b a∆b − aa∆∆bb)− τσa∆∆b a∆b+

+ ∆2
a∆b − ∆ a∆∆b + 2τ∆b (a∆)2 − 2τ∆ a∆ a∆b

ó
= 0 (5.34)

I14 =
∫ 0

−1
dτ
∫ 0

−1
dσ
î
∆|τ∆|σ (•∆• •∆• − ••∆∆••)+

− 4∆|τ •∆• •∆∆•|σ + 2∆|τ (•∆)2 + 2∆•|τ∆ •∆• ∆•|σ+

+ 2∆•|τ •∆∆• ∆•|σ − 4∆•|τ∆ •∆ + ∆2
ó
→

→
∫

dt
∫

ds
î
∆|t∆|s (a∆b a∆b − aa∆∆bb)+

− 4∆|t a∆b a∆∆b|s + 2∆|t (a∆)2 + 2∆b|t∆ a∆b ∆b|s+

+ 2∆b|t a∆∆b ∆b|s − 4∆b|t∆ a∆ + ∆2
ó
= − 1

12
(5.35)

I15 =
∫ 0

−1
dτ
∫ 0

−1
dσ
î
∆2 (•∆• •∆• − ••∆∆••) + (•∆)2(∆•)2 − 2∆ •∆∆• •∆•

ó
→

→
∫

dt
∫

ds
î
∆2 (a∆b a∆b − aa∆∆bb) + (a∆)2(∆b)2 − 2∆ a∆∆b a∆b

ó
= 0.

(5.36)
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The arrow means the passage from the unregulated compact time interval to the regu-

lated D + 1-dimensional one.

Putting things together, it is possible to reconstruct the transition amplitude (5.15)

in the DR scheme and notice that the result is the same as the MR one obtained in [33].

This calculation shows how dimensional regularization can be easily used to com-

pute path integrals on the line, that is with open boundary conditions. We stress that

one of the main advantages of using this regularization scheme is the simplicity of the

associated counterterm, which is covariant. This method is an optimal candidate to

obtain master formulas with an arbitrary number of graviton insertions, for instance.

However, one of the main complications for such application, comes from the fact that

the particle coordinates are coupled to the curved metric in a generic non linear way.

Moreover, the scalar potential may involve couplings to the scalar curvature which is

renormalized by a counterterm Ṽ = (α + 1
8 )R. Hence, graviton vertex operators get

more and more complicated as the number of gravitons grows. Anyway, a particu-

larly simple case occurs when the scalar potential compensates the counterterm, that is

α = − 1
8 , producing a linear coupling to gravity and making this method quite helpful.

Here we conclude our analytical studies of particle path integrals in curved space,

and from the next chapter on we will focus on numerical methods to evaluate such

quantities, firstly in flat space— whose theory is pretty well known— to get famil-

iar with the techniques, and then in curved space, where we present our new idea to

estimate worldline path integral on a non trivial (curved) background.
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Chapter 6

A numerical approach to

σ-models: Worldline Monte Carlo

6.1 Introduction

Given the established relations between classes of QFT observables and particle path

integrals, it is natural to explore methods which can provide results beyond perturba-

tion theory. These methods rely upon numerical approaches rather than (only) ana-

lytical ones. In particular, due to their quantum mechanical direct analogy, σ-models

are particularly suitable for numerical interpretation when expressed in terms of point-

particle path integrals. The idea at the basis of this construction is actually very in-

tuitive and dates back to the Feynman’s original quantum mechanical path integral

representation of particle propagation [5]. In this perspective, a point-particle trav-

elling through spacetime from an initial point xA to a final point xB actually moves

simultaneously along any possible allowed paths joining xA and xB with a probabil-

ity amplitude distribution assigned to each (quantum) trajectory, which is specifically

weighed according to how such path deviates from the classical one (the geodesic

linking xA and xB). In order to translate this idea to the numerical realm, one has to

simulate the spacetime trajectories as discrete collections of points on top of which the

action for a scalar particle is computed. The main issue, however, is the generation

of these numerical trajectories. In 2001, Gies and Langfeld [38] proposed a first algo-

rithm relying on a weighed Monte Carlo sampling of the paths as an improvement of a

previous work by Nieuwenhuis and Tjon [39]. Monte Carlo1 is a widespread method

to provide numerical estimates of mathematical quantities which has found more and

1This name is due to N. C. Metropolis and refers to the well-known casino.
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more approval through recent years. Its actual formalization dates back to the for-

ties by E. Fermi, J. von Neumann and S. M. Ulam in the context of the Manhattan

Project. This method relies on the use of random variables which are selected accord-

ing to some convenient probability distribution. A famous example of application of

the Monte Carlo idea is the estimate of the π-value: if we assume to know the rela-

tion between π and the area of a circle of radius 1, we can randomly extract couples

(x, y) such that 0 < x < 1 and 0 < y < 1 and take note of those couples for which

x2 + y2 ≤ 1, i.e. they lay inside a sector of the circle. All other points are outside the

sector and inside a square of side 1. Since the area of the sector is π/4 and that of the

square is 1, a ratio between the number of couples for which x2 + y2 ≤ 1 and the total

number of draws provides an estimate of π/4 (see Figure 6.1). As we can imagine, the

FIGURE 6.1: An estimate of π/4 can be performed by counting the
number Nπ points for which x2 + y2 ≤ 1 (red points), compared to
the total number N of draws (red and blue points). Hence, as N →

∞, Nπ
N →

π
4 . Image from Wikipedia.

larger the sample of draws, the more accurate the estimate. Other applications span a

lot of fields, from statistical physics, computational biology and computer graphics, to

artificial intelligence, finance and the study of climate change [40].

Here, we want to apply the Monte Carlo idea to the worldline realm of theoretical

physics: this combination goes under the name of Worldline Monte Carlo (WLMC)

method, and it has then been used for several QFT applications, such as the Casimir

effect [41, 42], Schwinger pair production in inhomogeneous fields [43], quantum ef-

fective actions [44] and strongly coupled large-N fermion models [45]. The sampling

routine for the worldlines has also been improved through the years and has been
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inspiration for other algorithms. The most popular ones are the VLOOPS [41], the

DLOOPS [44], the YLOOPS and LSOL [46]. All the above algorithms model the

worldline sampling according to the Brownian motion of the scalar particle, hence

considering only the kinetic contribution to the action at this stage. The potential con-

tribution is then evaluated once all worldline are produced, and determines the final

result for the particle propagation. One of the main goals of this thesis is to use the

WLMC machinery to numerically explore the realm of curved spacetime calculations,

relying on the algorithm previously introduced. No routine has ever been proposed

to directly sample trajectories on a curved manifold, however, with some shrewdness,

we will show that the flat space construction can be suitable also for curved space

problems [47].

6.2 Worldline Monte Carlo in flat space

To become familiar with the WLMC formalism, first it is useful to review how this

method works on simple flat space models in order to better understand how it can be

extended to more involved curved space problems. Let us consider a D-dimensional

heat kernel for a scalar particle moving from x to x′ in an Euclidean flat space and

subjected to a potential V(x). Its path integral representation is

I(x, x′; β) =

x(β)=x′∫
x(0)=x

Dx e−S[x] (6.1)

where β is the propagation time in Euclidean signature and

Dx = ∏
τ=0,...,β

dx(τ), (6.2)

S[x] =

β∫
0

dτ

Å
1
2

δµν ẋµ ẋν + V(x)
ã

. (6.3)

Eq. (6.1) can be interpreted as a sum over all possible worldlines x∗(τ) joining

the endpoints x and x′ in a time interval β, where each path is weighed according to

the factor e−S[x∗] (see Figure 6.2 for a visual representation). To numerically realize

this idea, we are restricted to consider only a finite set of NWL worldlines, each of

which contains a finite number N of spacetime points. We point out that this second
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FIGURE 6.2: Example of an ensamble of five discretized paths join-
ing x and x′ on a plane.

discretization involves the affine parameter τ parametrizing the worldline [46], rather

than blindly dividing the spacetime in a set of discrete points x(τ) (this construction is

commonly used in Lattice Field Theories). Moreover, WLMC approaches [38, 41, 43,

44, 46] aim to compute WLMC averages of the kind

¨
e−SPOT

∂
=

x(β)=x′∫
x(0)=x

Dx e−SKIN[x]−SPOT[x]

x(β)=x′∫
x(0)=x

Dx e−SKIN[x]

(6.4)

where SKIN[x] and SPOT[x] denote respectively the first and the second contributions

to the action (6.3). Looking at (6.4) we realize that e−SKIN[x] assumes the meaning of

a weight factor for each trajectory contributing with e−SPOT[x] to the average. More

in detail, this weighing is realized via one of the Monte Carlo algorithms which as-

signs a probability for each path to be realized according to the Brownian motion of

the associated scalar particle. Hence, once all trajectories have been produced (and

weights have then been considered), we are allowed to turn the above weighed aver-

age to an arithmetic one, i.e. to each selected worldline is assigned a weight 1. This

choice is due to a universality requirement [46] for worldlines, which are thus model-

independent, as the potential part of the action is not involved in their sampling. Let

us call
¶

x(s)
i

©
i=1,...,N

with s = 1, . . . , NWL the discrete set of spacetime points which

represents the worldline s. The potential part of the action then reads

S(s)
POT(β) =

β∫
0

dτ V
Ä

x(s)
ä
≃ β

N

N

∑
i=1

V
Ä

x(s)
i

ä
, s = 1, . . . , NWL. (6.5)
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Expression (6.4) is then written as

〈
I(x, x′; β)

〉
=

NWL

∑
s=1

e−S(s)
POT(β)

NWL
, NWL =

NWL

∑
s=1

1, (6.6)

where the larger N and NWL, the more accurate is the estimate. An important point is

the generation of closed worldlines, also denoted by loops, since each of them carries

probabilistic information for the particle to travel such worldline: here we review a

generalized version of the original YLOOPS algorithm [46], including a further mass-

like term which will turn out to be relevant for later calculations in curved spacetime.

We will refer to the original algorithm as YLOOPS(0) and to the generalized one as

YLOOPS(α). In order to diagonalize the kinetic term in (6.3), we define the backward

difference as

ẋµ ≃ N
β

(xµ
k − xµ

k−1), (6.7)

where the k-index discretizes the x-points in the same way as the affine parameter τ

parametrizes the continuous worldline x(τ). Note that k plays the same role as it does

in the TS regularization scheme. The full kinetic term will then be proportional to the

difference

Y(0) =
N

∑
k=2

(xk − xk−1)2, (6.8)

which we generalize to

Y(α) =
N

∑
k=2

î
(xk − xk−1)2 + αx2

k

ó
, α > 0. (6.9)

Following the same path as in [46]

Y(α) =
N

∑
k=2

î
(xk − xk−1)2 + αx2

k

ó
=

N−1

∑
k=3

î
(xk − xk−1)2 + αx2

k

ó
+ x2

2 + x2
N−1 + αx2

2

=
N−2

∑
k=1

(
xN−k −

1

C(α)
k

xN−k−1

)2

=
N−1

∑
K=2

C(α)
N−k x̄2

k (6.10)
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with

x̄k = xk −
1

C(α)
N−k

xk−1, (6.11)

and

C(α)
1 = 2 + α

C(α)
k = C(α)

1 −
1

C(α)
k−1

, k = 2, . . . , N − 2. (6.12)

Hence, the algorithm can be summarized as follows.

1. Produce N− 2 vectors ωi, i = 1, . . . , N− 2 (with Box-Muller algorithm [48]

for instance) distributed according to 1
(2π)D/2 e−ωi

2
.

2. Compute

x̄i =

√
2
N

1

C(α)
N−i

ωi−1, i = 2, . . . , N − 1. (6.13)

3. Build the loop according to

x1 = xN = 0

x2 = x̄2

xi = x̄i +
1

C(α)
N−1

xi−1, i = 3, . . . , N − 1. (6.14)

For a quick check, we notice that the coefficients C(α)
k coincide with those of [46] once

α is set to zero, that is C(0)
k = k+1

k . The above procedure allows to obtain discretized

loops whose points are distributed according to SKIN[x]; to get an open loop on can

simply linearly shift each point xi by a coefficient i
N , which idea is at the basis of the

algorithm LSOL.

To warm up, let us now apply the WLMC method to a simple case, i.e. the propaga-

tor of a bosonic harmonic oscillator with null endpoints in a D-dimensional Euclidean

space. Such quantity con be expressed by the following path integral

G̃(β) =

x(β)=0∫
x(0)=0

Dx e−
1
2

∫ β
0 dτ (ẋ2+x2), (6.15)
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where, for simplicity, we fixed ω = 1 = m. This propagator has a well-known

analytical result which reads

G̃(β) =

ñ
1

2π sinh
(
β
)ôD

2

. (6.16)

Multiplying and dividing by the potential-free theory

G̃(β) =
∮

0
Dx e−

1
2

∫ β
0 dτ ẋ2

∮
0 Dx e−

1
2

∫ β
0 dτ (ẋ2+x2)∮

0 Dx e−
1
2

∫ β
0 dτ ẋ2

(6.17)

with simplified notation
∮

0 =
∫ x(β)=0

x(0)=0 and using that

∮
0

Dx e−
1
2

∫ β
0 dτ ẋ2

=

ï
1

2πβ

òD
2

, (6.18)

we can express (6.17) as

G̃(β) =
ï

1
2πβ

òD
2 〈

e−
1
2

∫ β
0 dτ x2

〉
(6.19)

where we brought up the path integral average ⟨. . .⟩. Combining (6.16) and (6.19) we

get

G(β) =
〈

e−
1
2

∫ β
0 dτ x2

〉
=

ñ
β

sinh
(
β
)ôD

2

(6.20)

which we can estimate by means of WLMC simulations.

FIGURE 6.3: Comparison between a WLMC simulation and the
known result for a null endpoints bosonic harmonic oscillator
in a 4-dimensional Euclidean flat spacetime with (NWL, N) =

(1000, 1000).

Fig. 6.3 shows an optimal agreement between our data and the analytical curve



72 Chapter 6. A numerical approach to σ-models: Worldline Monte Carlo

over three orders of magnitude of the propagation time β. For this quite simple sim-

ple calculation we used a different set of worldlines for each β-value, which choice

removes correlation between points. We used the above discussed algorithm with co-

efficients C(α=0)
k to generate all the worldlines used here. Even though difficult to

notice, in fig. 6.3 we also reported error bars for each computed point; they have been

calculated—as it has been done for all WLMC error bars throughout this thesis—using

the standard error mean [46]

SEM =

Ã
NWL

∑
s=1

[
(. . .)s − ⟨(. . .)⟩

]2
NWL(NWL − 1)

(6.21)

which is commonly accepted as the maximum source of error for WLMC calculations.

The choice of parameters (NWL, N) = (1000, 1000) in this case has been made by

quality of life considerations: we noticed that by further increasing these two values—

which makes the calculation more accurate actually—the result doesn’t change appre-

ciably, but the machine-time cost can easily increase. Hence (NWL, N) = (1000, 1000)

is a good compromise between accuracy and sources involved for this specific case.

Even though relatively simple, this prototypical calculation shows all the main

features of the WLMC technique; in fact, it will be widely exploited for almost all the

subsequent computations, in particular for those in curved spacetime, which constitute

a novelty for numerical worldline applications. As we will see in the next chapter, the

apparatus is pretty much the same as the one in flat spacetime, with a deep complica-

tion emerging in the form of the potential, which ultimately encodes all the information

brought by curvature.
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Chapter 7

Worldline Monte Carlo in curved

space

7.1 Set-up

In the present chapter we move from flat space to curved space considering a non

trivial background. At the very first stage, a substantial change in the form of the

kinetic term of the theory, with the inclusion of the curved spacetime metric gµν(x),

needs to be taken into account. If we consider the classical Hamiltonian of a bosonic

scalar point particle moving in a D-dimensional Euclidean curved space, it can be

expressed in momentum space as

H(x, p) =
1
2

gµν(x)pµ pν + V(x). (7.1)

The associated Einstein invariant operator reads

Ĥ(x̂, p̂) =
1
2

g−
1
4 (x̂)p̂µg

1
2 (x̂)gµν(x̂)p̂νg−

1
4 (x̂) + V(x̂), (7.2)

where all operator symbols are expressed using hats and g(x) = det gµν(x). The

advantage of expressing the Hamiltonian as the operator (7.2) is that in this way it is

possible to apply the same procedure reviewed in Chapter 2 to define and regularize

by time-slicing the associated path integral. A complete treatment of this procedure

was extensively developed in [15]. Thus, the heat kernel of the Hamiltonian (7.2) can

be expressed in terms of the worldline path integral

I(x, x′; β) =

x(β)=x′∫
x(0)=x

Dx e−S[x] (7.3)



74 Chapter 7. Worldline Monte Carlo in curved space

with Einstein-invariant measure

Dx = ∏
τ=0,...,β

»
g(x(τ))dx(τ) (7.4)

and action

S[x] =

β∫
0

dτ

Å
1
2

gµν(x)ẋµ ẋν + VCT(x) + V(x)
ã

(7.5)

which results in a one-dimensional non-linear sigma model. We can easily detect

three main differences between the flat space case and the curved one: the
√

g measure

factor in (7.4), the metric tensor gµν(x) and the counterterm potential VCT(x) appearing

in (7.5). Whereas the first two ingredients are quite intuitive, the latter requires more

effort to be justified [15]; it naturally emerges from the time-slicing procedure which

leads to the construction of the action S[x] if we start from the Hamiltonian (7.2)

(where p̂- and x̂-operators are mixed) and extrapolate the kinetic term gµν(x)ẋµ ẋν.

VCT(x) hence contains curved space information as well as metric factors and its form

depends on the regularization scheme which is adopted. Nonetheless, this arbitrary

choice does not affect the result of the path integral (as discussed in Chapter 3), since

each specific choice of the regularization scheme implies a list of rules to compute

unambiguously all Feynman integrals emerging from a perturbative treatment. Some

of these perturbative contributions are divergent, but are remarkably compensated by

the ones which arise from
√

g, leading to a finite, unique result for I(x, x′; β). Our

WLMC numerical construction, however, will produce a non-perturbative result (so no

cancellations of divergences are explicitly expected), but a choice of the regularization

scheme has to be done anyway, and since the WLMC trajectory discretization reflects

a time-slicing procedure, this scheme will be chosen to shape VCT. Namely,

VCT(x) = VTS(x) = −1
8
[
R(x) + gµνΓρ

µσΓσ
νρ(x)

]
. (7.6)

Action (7.5) shows a non trivial kinetic term which is hard to envisage how to

directly implemented into numerical worldline generating algorithms1. In order to re-

conduct ourselves to the easier flat space treatment, the key idea is to split gµν(x)ẋµ ẋν

1A priori one could try to include the metric gµν(x) directly into the YLOOPS algorithm for instance;
however the diagonalization procedure which is then required makes this idea pretty much unaffordable.
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into a flat space part plus what remains, i.e.

gµν(x)ẋµ ẋν = δµν ẋµ ẋν + (gµν(x)− δµν)ẋµ ẋν. (7.7)

We will use the δẋẋ term to sample flat space worldlines and the rest of (7.7) is con-

sidered part of the interaction potential under the label VKIN . In this way we map the

curved space problem into a flat space one, once we also take into account the coun-

terterm potential and the measure factor. Precisely, the numerical path integral average

we will compute is given by

K(x, x′; β) ≃

NWL

∑
s=1

»
g(s)e−S(s)

POT(β)

NWL
, (7.8)

with »
g(s) =

N

∏
n=2

…
g
(

x̄(s)
n− 1

2

)
S(s)

POT(β) =
β

N − 1

N

∑
n=2

[
VKIN

(
x̄(s)

n− 1
2

)
+ VTS

(
x̄(s)

n− 1
2

)
+ V

(
x̄(s)

n− 1
2

)]
(7.9)

and

x̄(s)
n− 1

2
=

x(s)
n + x(s)

n−1

2
(7.10)

being the middle point between consecutive points on the worldline s. The first term

of the series of potentials in (7.9) reads

VKIN

(
x̄(s)

n− 1
2

)
=

(N − 1)2

β2

(
gµν

(
x̄(s)

n− 1
2

)
− δµν

) Ä
x(s)

n
µ − x(s)

n−1
µ
ä Ä

x(s)
n

ν − x(s)
n−1

ν
ä

(7.11)

whereas the counterterm potential is

VTS

(
x̄(s)

n− 1
2

)
= −1

8

[
R
(

x̄(s)
n− 1

2

)
+ gµνΓρ

µσΓσ
νρ

(
x̄(s)

n− 1
2

)]
. (7.12)

In the following we will apply this construction to numerically study a model which

perfectly adapts to this treatment: it is the case of the free heat kernel of a scalar point

particle constrained on maximally symmetric spaces. We will adopt Riemann Normal

Coordinates (RNC) since, as it was shown in [49] (see also [50]), it is possible to

map this problem into the one of a flat space heat kernel with an effective potential

which encodes maximally symmetric space effects. It was also shown in [26] that,
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for such a curved space, the RNC expression for the metric tensor can be expressed

in closed form as the flat space contribution plus a correction due to curvature. Thus,

our numerical problem can be analyzed from a pure flat space point of view, using

the potential deduced in [49] and the numerical machinery presented in 6, and using

the WLMC in curved space shown here. The effective flat space set-up will be a

benchmark to test our curved space construction.

7.2 Free scalar heat kernel on a sphere

The model we are focusing on is deeply discussed in [51] and here quickly reviewed,

before being numerically studied with WLMC techniques [47]. Let us consider the

Hamiltonian operator of a free scalar particle in a background curved space,

Ĥ0(x̂, p̂) =
1
2

g−
1
4 (x̂)p̂µg

1
2 (x̂)gµν(x̂)p̂νg−

1
4 (x̂), (7.13)

which is used to build the associated heat kernel

Î(β) = e−βĤ0 (7.14)

satisfying the equation of motion

−∂ Î(β)
∂β

= Ĥ0 Î(β). (7.15)

Our curved space conventions are

[
∇µ,∇ν

]
Vλ = Rµν

λ
σVσ

Rµν = Rµ
ρ

νρ. (7.16)

The configuration space representation of the heat kernel is given by the matrix ele-

ments

I(x, x′; β) = ⟨x| Î |x′⟩ (7.17)

satisfying
∂I(x, x′; β)

∂β
=

1
2
∇x

2 I(x, x′; β). (7.18)

If we define

Ī(x, x′; β) = g
1
4 (x)I(x, x′; β)g

1
4 (x′) (7.19)
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and apply Riemann Normal Coordinates (RNC) for maximally symmetric (MS) spaces,

equation (7.18) turns into the flat space heat equation

−∂ Ī(x, x′; β)
∂β

=

ï
−1

2
δµν∂µ∂ν + Ve f f (x)

ò
Ī(x, x′; β). (7.20)

To be precise, the MS space we are considering here is the one of a D-dimensional

sphere for which

Rµνρσ = M2 (gµρgνσ − gµσgνρ

)
(7.21)

where M is the sectional curvature of the sphere2. If this is the case, in [51] authors

proved the following properties,

gµν(x) = δµν + f (x)Pµν(x), x =
»

δµνxµxν

f (x) =
1− 2M2x2 − cos(2Mx)

2M2x2 , Pµν(x) = δµν −
xµxν

x2

g(x) =
[
1 + f (x)

]D−1

Ve f f (x) =
D(1− D)

12
M2 +

(D− 1)(D− 3)
48

5M2x2 − 3 + (M2x2 + 3) cos(2Mx)
x2 sin2(Mx)

.

(7.22)

The first equation of (7.22), in particular, allows to split the full metric gµν(x) into a flat

space part plus a curved space correction, exactly what we needed for the construction

(7.7). However, in the heat kernel Ī above the curvature effects are entirely taken care

of by the effective potential. At this point we can provide a path integral representation

of the heat kernel (7.19), namely

Ī(x, x′; β) =

x(β)=x′∫
x(0)=x

Dx e−S[x], S[x] =
∫ β

0
dτ

ï
1
2

δµν ẋµ ẋν + Ve f f (x)
ò

, (7.23)

which represents a curved space problem in terms of a flat space computation where

curvature effects are hidden in the effective potential Ve f f . We will perform this cal-

culation from two different perspectives:

1. we refer to “Effective Potential Method” (EPM) for the pure flat space evaluation

of the heat kernel (7.23) making use of the last expression of (7.22) for Ve f f ;

2. we refer to “Non-linear Sigma Model Method” (NSMM) and compute the same

quantity by using the discretized potentials (7.11) and (7.12) and the first three
2In our conventions, R = gνρgµσRµνρσ = −D(D− 1)M2.
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lines of (7.22). In appendix C we report an example of the MATLAB code we

used for curved space applications of the WLMC theory.

Point 1 is a benchmark to test point 2. We also found it convenient to use different

versions of the YLOOPS routine: we use YLOOPS(0) for EPM and YLOOPS(α) for

NSMM. The use of YLOOPS(α) in EPM would be irrelevant, whereas, as we will see,

it is an important ingredient in the NSMM case. The reasons for these choices will be

detailed later.

Eff. Pot. Method (EPM) Non-linear σ-Model Method (NSMM)

WL algo. YLOOPS(0) YLOOPS(α), 0 < α≪ 1

quantity ⟨I(0, 0; β)⟩ ≃

NWL

∑
s=1

e−S(s)
POT(β)

NWL
⟨I(0, 0; β)⟩ ≃

NWL

∑
s=1

»
g(s) e−S(s)

POT(β)

NWL

WL action S(s)
POT(β) = β

N

N

∑
n=1

Ve f f (x
(s)
n ) S(s)

POT(β) = β
N−1

N

∑
n=2

[
VKIN(x̄(s)

n− 1
2
) + VTS(x̄(s)

n− 1
2
)
]

potential eq. (7.22) eqs. (7.11) and (7.12)

TABLE 7.1: Details of the two types of computation performed for
the same heat kernel expansion, with a linear sigma model and with

a non-linear sigma model respectively.

In Table 7.1 we summarize the details of the two calculations, both computed at

null endpoints for simplicity.

In Figure 7.1 we report the results of two calculations with fixed parameters D = 4

and M = 1. In the following, we have adopted the notations K̄ = ⟨I⟩. Both figures

show a comparison between the data of NSMM (blue), of EPM (green) and an overall

control curve (red) (we refer to it as “analytical”) with the theoretical, pertubative and

analytical solution obtained in [51]. In particular Figure 7.1(a) and Figure 7.1(b) refer

to couples of discretization parameters (NWL, N) = (100, 100) and (1000, 3000). We

notice that, as expected, EPM is a lot more precise than NSMM, surely because of the

form of the associated potential: in the first case, it is expressed by the regular form

(7.22) (last line), whereas NSMM makes use of numerical derivatives (7.11). On the

other hand EPM requires a knowledge of Ve f f which is not always affordable for more

complicated cases, whilst NSMM could be straightforwardly applied to such cases. In
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(a) (b)

FIGURE 7.1: Calculations of the heat kernel of a free scalar particle
in a D=4 sphere with endpoints x = x′ = 0 for various parameters
(NWL, N) both using the effective potential method (green data) with
known potential and using the non-linear sigma model method (blue
data). The red curve is the analytical and perturbative computation

for small β performed in [51].

other words, the applicability of EPM seems to be tightly linked to MS spaces, for

which the effectively flat heat kernel Ī can be constructed. On the other hand, NSMM

is certainly less efficient than EPM, in MS spaces, but there is a priori no obstruction to

extend its applicability to more generic geometries. We will return to this issue in the

subsequent sections. For the moment let us stick to MS spaces. Assuming the green

points as benchmarks for the blue ones, we point out that the agreement between the

two calculations improves as the discretized approximation does, i.e. when NWL and

N get large. Indeed the absolute value of the maximum relative discrepancy between

them passes from ∼ 35% with (NWL, N) = (100, 100) (Fig. 7.1(a)) to ∼ 4% with

(NWL, N) = (3000, 3000) (Fig. 7.1(b)). We also recognize the overall undersampling

numerical phenomenon detected and studied in [46], which manifests at large β-values

as a result of the difficulty for extended worldlines to interact with localized potentials

(at the origin). Even though the benchmark solution always falls within the data er-

rorbars, for large β-values we denote a systematic discrepancy between the data and

the theory, which we ascribe to the aforementioned undersampling phenomenon. An-

other possible source of error which could explain such discrepancy is due to the level

of precision we use to represent derivatives. The whole numerical construction we

presented (including YLOOPS(α)) makes use of simple backward derivatives: maybe,

adopting a more accurate discretization could improve the results, even though new

algorithms based on it should be found.

Figure 7.2 shows a calculation with higher precision with respect to the ones of

Figures 7.1, namely with (NWL, N) = (3000, 10000) for values β ∈ (0.3, 1), that
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FIGURE 7.2: High precision calculation of the heat kernel for the free
scalar particle on the sphere with (NWL, N) = (3000, 10000).

is the tail of Figures 7.1. Here an appreciable suppression of WLMC fluctuations

are noticeable due to the increasing values of NWL and N. At this point it is also

interesting to see the effect of the α-parameter (which we can refer to as a “fictitious

mass”) on the latter high precision case.

FIGURE 7.3: Calculations of the heat kernel for the free scalar par-
ticle on the sphere with (NWL, N) = (3000, 10000) and or different

values of the fictitious mass.

Figure 7.3 shows the comparison between NSMM calculations for three different

values of α, i.e. αmin = 0.0064, α− = 0.0002 and α+ = 0.2031. The choice of αmin

is actually explained in Appendix B: it is given by the α-value which minimizes the

average discrepancy between NSMM and EPM. In Figure 7.3, α− and α+ lie on the

left and on right respectively of αmin on a logarithmic scale.

We studied this model also for different curvature parameters M. In Figures 7.4

we fixed M = 1 and M = 0.1, reporting also the relative errors between NSMM

and EPM. This is to point out that when the curvature of the sphere decreases, the

relative error decreases too, due to the fact the we are locally moving from a more

curved geometry to a flatter one, where discrepancies arising from curvature effects
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(a) (b)

(c) (d)

FIGURE 7.4: Calculations of the heat kernel for the free scalar par-
ticle on the sphere with M = 1 (top) and M = 0.1 (bottom). The
relative errors between the blue and the green data have been shown

in the figures on the right. All other parameters are kept fixed.

(hidden in the discretized representation of derivative in curvature potential terms) are

less relevant. In fact, the maximum relative error between NSMM and EPM passes

from ∼ 2% to ∼ 0.04% going from M = 1 to M = 0.1.

7.3 Free scalar heat kernel on a hyperboloid

The very same calculation described above can be performed in the case of a positive

curvature MS space, in our case a 4-hyperboloid. Following [51], we thus consider

M2 < 0 and, defining |M| =
√
−M2, we write the metric as

gµν(x) = δµν + f̃ (x)Pµν(x) (7.24)

with

f̃ (x) =
−1− 2(|M|x)2 + cosh

(
2|M|x

)
2(|M|x)2 . (7.25)

All other quantities in (7.22) are defined analogously, whereas for the potential Ve f f

the replacement M→ iM has to be performed.

Figure 7.5 shows a very good agreement between NSMM and EPM for (NWL, N) =

(1000, 1000) and β ∈ (0.01, 10).
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FIGURE 7.5: Calculations of the heat kernel for the free scalar parti-
cle on a hyperboloid with D = 4 and |M| = 1.

7.4 An extension to open worldlines

So far we studied the heat kernel of a point-particle looping around the origin, that is

x(0) = x(β) = 0. It is however possible to extend the WLMC method to the open-line

case, where x(0) ̸= x(β). Let us call x(0) = y and x(β) = z. The expression for the

path integral representing the heat kernel is then

I(y, z; β) =

x(β)=z∫
x(0)=y

Dx e−S[x], (7.26)

with

Dx = ∏
τ=0,...,β

»
g(x(τ))dx(τ), S[x] =

∫ β

0
dτ

Å
1
2

gµν(x)ẋµ ẋν + Ṽ(x).
ã

(7.27)

Ṽ(x) includes the counterterm potential VTS(x) and a possible external potential. We

now split the worldline into the classical path xcl(τ) (it is the straight line joining y

and z) plus quantum fluctuations q(τ),

xµ(τ) = xµ
cl(τ) + qµ(τ), xµ

cl(τ) = yµ +
τ

β
(zµ − yµ), (7.28)

where q(0) = q(β) = 0. The average path integral assumes the form

⟨I(y, z; β)⟩ = e−
(y−z)2

2β

±
q(β)=0∫

q(0)=0

Dq e−SKIN[xcl ,q]−SPOT[xcl ,q]

ª
(7.29)
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with

Dq = ∏
τ=0,...,β

»
g(xcl(τ) + q(τ))dq(τ), (7.30)

SKIN[xcl , q] =
∫ β

0
dτ

ï
1
2

(gµν(xcl + q)− δµν)
Å

1
β

(zµ − yµ) + q̇µ

ãÅ
1
β

(zν − yν) + q̇ν

ãò
,

(7.31)

SPOT[xcl , q] =
∫ β

0
dτṼ(xcl + q). (7.32)

Equations (7.29)-(7.32) show that it is possible to express the averaged path integral

⟨I(y, z; β)⟩ having non-vanishing boundary conditions in terms of another one with

null boundaries, like those studied all through this chapter. The price to pay is just a

few displacements with respect of the classical trajectory and an overall factor in front

of the average.

FIGURE 7.6: Calculations of the heat kernel for the free scalar par-
ticle propagating from y = (0, 0, 0, 0) to z = (5, 5, 5, 5) on a hyper-
boloid with D = 4 and |M| = 1. The blue points show a calcula-
tion performed with the non-linear sigma model method, whereas the
green points are referred to a benchmark calculation obtained with

the flat space setup.

Figure 7.6 shows the calculation of the heat kernel of a free scalar point-particle

propagating on a 4-hyperboloid from y = (0, 0, 0, 0) to z = (5, 5, 5, 5) using NSMM

and EPM. Also in this case, the agreement is quite positive.

7.5 Conclusions

In this chapter we saw how a method to implement the WLMC formalism to the case

of a maximally symmetric curved space, for which analytical perturbative results al-

ready known from literature have been used to test our method. It amounts to separate
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the curved metric tensor into a flat part and a curvature correction: the first one is used

to generate flat space worldlines according to the generalized algorithm YLOOPS(α),

whereas the correction is considered as part of the potential, as well as the associated

time-slicing counterterm. Considering positive and negative curvature spaces, such

method proves to be effective and easy to implement. There can be further possible

applications beyond scalar theories in MS spaces: QFT effective actions can be numer-

ically studied without treating gravity perturbatively, as for instance in the derivation

of gravitational corrections to the Euler-Heisenberg Lagrangians [20]. Another exam-

ple is the effect of curvatures in strongly-coupled fermionic models, such as the Gross

Neveu model, which describes the low-energy limit of different physical systems. In

fact, flat space worldline Monte Carlo studies for large N fermionic models where al-

ready successfully taken into consideration [45], whilst, at the perturbative level, the

heat kernel expansion of the Gross-Neveu model in 3d curved spaces at fixed curvature

was studied in [52]. A desirable extension of the present method certainly involves the

inclusion of spinorial degrees of freedom: this problem can be tackled either with the

inclusion of suitable matrix-valued potentials (spin factors) or in terms of spinning

particle models, which involve Grassmann odd coordinates. In Chapter 9 we will see

this last possibility in action, whereas, in the next chapter, we will consider a bunch

of physical problems and review how to extend the WLMC in curved space machin-

ery to them. We will consider the calculation of Casimir energies [41, 42] for specific

geometries and the case of a scalar particle in presence of a magnetic field [38, 43].
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Chapter 8

Further applications of the WLMC

technique

In this chapter we study a few scenarios where the new worldline Monte Carlo tools

described above can be fruitfully employed. We will study the application of the

WLMC formalism to numerically study Casimir energies for different geometries and

the scalar propagator in presence of a Maxwell background.

8.1 Casimir energies

The study of Casimir configurations energies was the primary reason why H. Gies and

collaborators introduced Monte Carlo techniques in the worldline formalism [41, 42].

The main important advantage of the model is its independence in the shape (and

number) of boundaries. The main drawback is that the model, so far, has only been

introduced for scalar field with DBC. Here we review the basics of their construction

and possible developments.

Let us consider a scalar field ϕ(x) in a D-dimensional Euclidean space subjected

to a potential V(x) which models the Casimir configuration geometry, i.e. the set of

points x where V(x) is not zero is occupied by rigid bodies whose interaction via ϕ

gives the associated Casimir energy. The scalar field vanishes (DBC) at the location of

these boundaries. The Lagrangian of this system is given by

L =
1
2

∂µϕ∂µϕ +
1
2

m2ϕ2 +
1
2

V(x)ϕ2 (8.1)

which is used to get the effective action

Γ[V] =
1
2

Tr ln
−∂2 + m2 + V(x)
−∂2 + m2
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= −1
2

∫ ∞

0+

dβ

β

∫
dDx

ñ
⟨x| e−β(−∂2+m2+V(x)) |x⟩ − 1

(4πβ)D/2
e−m2β

ô
. (8.2)

Eq. (8.2) contains a contraction which is represented by a worldline path integral,

∫
dDx ⟨x| e−β(−∂2+m2+V(x)) |x⟩ =

=
∫

dDxCM
1

(4πβ)D/2

∫
x(0)=x(β)

Dx e−
∫ β

0 dτ ẋ2/4−
∫ β

0 dτ V(xCM+x(τ)) (8.3)

where we have extracted from all trajectories their centers of mass xCM and then path

integrated over closed loops of length β. Now, rescaling the proper time parameter τ

so that it ranges in [0, 1] rather than [0, β], we introduce new unit loop trajectories y(τ)

satisfying ∫ β

0
dτ ẋ2(τ) =

∫ 1

0
dτ ẏ2(τ) (8.4)

which we can use to compute the effective action1

Γ[V] = −1
2

1
(4π)D/2

∫ ∞

0+

dβ

β1+D/2
e−m2β

∫
dDx
î
⟨WV[y(τ); x]⟩y − 1

ó
(8.5)

where

WV[y(τ); x] = e−β
∫ 1

0 dτ V(x+
√

βy(τ)). (8.6)

In case of time independent Casimir configuration we also divide by the time volume

Lx0 =
∫

dx0, and obtain the Casimir energy

EV =
Γ[V]
Lx0

. (8.7)

Most of the interesting Casimir problems involve the computation of the interaction

between rigid bodies, each of which here we can model by a certain potential Vk(x).

The full Casimir interaction energy between such bodies will be then2

E = E∑k Vk −∑
k
EVk . (8.8)

Formula (8.8) will be used to compute the Casimir energy of interaction between rigid

bodies. For such a purpose, we now focus on the potential V(x) which geometrically

1Here we drop the notation xCM in place of x, for simplicity.
2A more detailed discussion about this point can be found in [41].
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defines the rigid bodies. A smart choice is the use of δ-function,

V(x) = λ
∫

Σ
dσ δD−1(x− xσ) (8.9)

where Σ represents the body surface, xσ are its space points and the positive coupling

λ can be seen as a plasma frequency of the body: smaller values of λ make the body

transparent whereas larger ones identify a conducting object, hence DBC for the field

ϕ at the body surface. Integrating this potential over the proper time, we end up with

IV[y(τ); β, x] =
∫ 1

0
dτ V(x +

√
βy(τ))

= λ
∫ 1

0

∫
Σ

dσ δ(
√

βy(τ) + x− xσ)

=
λ√

β

∫
Σ

dσ ∑
{τi |
√

βy(τi)+x=xσ}

1
|ẏ(τi)|

. (8.10)

Eq. (8.10) prescribes to consider all worldline points parametrized by τi which inter-

cept the Casimir body Σ at xσ, compute the modulus of the inverse derivative of the

unit loop at that point, sum over all these contributions and over all the volume Σ. A

remarkable property of the above construction is that we have to consider only those

worldlines which intercept all the bodies of the Casimir configuration, since all other

trajectories give a null contribution to the energy (8.8).

An easy example of application of this numerical Casimir construction is the one

of two parallel plates spaced by a transverse distance a. Let’s locate them at z = ± a
2

orthogonal to the z-axis, as depicted in Fig. 8.1.

FIGURE 8.1: Graphical representation of the parallel plates Casimir
configuration. The two vertical lines at z = ± δ

2 are the intersections
between the two plates and the yz-plane.
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Thus, the associated potential will be

V(x) = V(z) = λ
[
δ
(

z +
a
2

)
+ δ

(
z− a

2

)]
. (8.11)

Reference [53] provides an analytical computation of the Casimir interaction energy

between parallel plates versus the product λa and it is a perfect benchmark for this

numerical calculation.

FIGURE 8.2: Numerical calculation of the (rescaled) Casmir inter-
acting energy between two parallel plates separated by a with m = 1
in terms of the product between a and the potential coupling λ. As

λa→ ∞, the rescaled Casimir energy tends to −π4

45 .

Figure 8.2 shows a replica of the calculation presented in [41] of the rescaled

Casimir interacting energy between parallel plates in terms of the product λa and with

m = 1. The asymptotic value to which the curves tend as λa → ∞ is −π4

45 ≃

−2.16. We see an optimal agreement between the numerical estimate (blue points)

and the analytical reference (red line) even for relatively small numerical parameters

(NWL, N) = (1000, 1000). Here the limit λa → 0 corresponds to transparent plates

(no plates), whereas λa→ ∞ corresponds to perfectly conducting plates.

Let us stress that the little offset between the blue data and the reference curve

which slightly increases as λa increases, is due to numerical reasons: further optimiz-

ing the values N, NWL, the β-integral and the grid of centers of mass, would make the

two curve coincide. Clearly, greater the effort, better the result. In fact, we point out

that Casimir calculations like this one are much more involved and time-consuming

than those of the previous chapter: looking back at equation (8.5) we notice that to

obtain an estimate of the effective action we need to numerically integrate over all the
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centers of mass x considered (those which a priori are considered relevant for the spe-

cific Casimir configuration) and over the total proper time length β (over a numerically

significant range). Typically, for m = 1, β is ranged in (0+,∼ 5), whereas the centers

of mass are sampled obviously according to the geometry of the system: in the case of

parallel plates we took advantage of the cylindrical symmetry and chose to consider

centers of mass with z ∈ (−a, a). In fact, although some loops have a center of mass

which is at the left (right) of the left (right) plate, they can put in contact both plates, as

long as they are not too far from them. We checked that expanding the center of mass

interval (−a, a) brings no significant contribution for the Casimir energy.

An, a priori, simple setup which combines Casimir effect with a curved spacetime

can be the following. We take on a 4-sphere like the one considered in Chapter 7 and

insert two parallel plates on its surface, distanced by a. They are positioned symmet-

rically with respect to the north pole (assumed as the origin). Thus we end up with a

configuration that resembles that of a baseball, as it is sketched in Fig. 8.3.

FIGURE 8.3: Geometry of two parallel plates defined on the surface
a sphere.

Now, we fix the curvature of the sphere and study the Casimir interaction energy

versus a, expecting to recover asymptotically the flat space result for small a, that is

−π4

45 in these units.

Figure 8.4 shows how numerical data (blue points) approach the flat space theoret-

ical value (in these rescaled units it is ≃ −2.16), which is represented by the red line

being meaningful for small a. We fixed the curvature of the sphere at M = r−1 = 0.01

to see this locally flat behaviour increased at the origin of the RNC system (the north

pole of the sphere). Even though data error bars do not get close enough to intersect

the analytical reference (as one should expect to recover the flat space limit), the trend



90 Chapter 8. Further applications of the WLMC technique

FIGURE 8.4: Numerical calculation of the (rescaled) Casimir inter-
acting energy between two parallel plates on a 4-sphere separated by
a with m = 1 versus a. As the plates get closer, the Casimir energy

tends to the one computed in flat space, that is −π4

45 .

is quite clear3. To see in a more direct way the effect of the curvature on the Casimir

energy, we can define a function

g(a) =
ESPHERE(a)
EPLANE(a)

, (8.12)

where ESPHERE(a) and EPLAN(a) are the Casimir energies of interaction between the

two plates in curved and in flat space respectively, versus a. We can then plot g(a)

for the points of Fig. 8.4. The result in Fig. 8.5 shows how g(a) increases with

a, suggesting that curvature effects tend to increase the associated force between the

plates.

FIGURE 8.5: Plot of the function g(a) = ESPHERE(a)
EPLAN (a) . g(a) increases

as the curvature effects increase (this occurs at large values of a).

3As previously pointed out, due to multiple numerical integrations, Casimir WLMC calculations are
a lot more expensive than other WLMC estimates, hence in most cases large values of both NWL and N
may be prohibitive.
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8.2 Magnetic field background

In the present section we instead apply the worldline representation of the open line

particle path integral introduced in section 7.4. Here we show how the numerical

method correctly reproduces the particle transition amplitude in the presence of a

Maxwell background. We consider the case of a constant magnetic field. The gen-

eral Euclidean field strength tensor associated to electromagnetism is given by

Fij =


0 B3 −B2 iE1

−B3 0 B1 iE2

B2 −B1 0 iE3

−iE1 −iE2 −iE3 0

 , (8.13)

which, setting B⃗ = B(0, 0, 1) and E⃗ = 0, reduces to

Fij =


0 B 0 0

−B 0 0 0

0 0 0 0

0 0 0 0

 . (8.14)

Let us now consider a D = 4 Euclidean massive scalar field theory coupled to electro-

magnetism as a constant background without quantum radiation and in particular let

us focus on its propagator on an open line. This is expressed by

Dxx′[A] =
∫ ∞

0
dβ e−m2β

x(β)=x∫
x(0)=x′

Dx e−
∫ β

0 dτ [ 1
4 ẋ2+ieẋ·A(x)], (8.15)

where for A we choose the gauge potential in the covariant Fock-Schwinger gauge

Aµ(y) = −1
2

Fµν

(
y− x′

)ν . (8.16)

Decomposing the arbitrary trajectory into a straight line and a fluctuation part q(τ)

with q(0) = q(β) = 0

x(τ) = x′ +
τ

β
(x− x′) + q(τ), (8.17)
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we get to

Dxx′(F) =
∫ ∞

0
dβ e−m2Te−

(x−x′)2
4β ×

×
∮

0
Dq(τ) e−

∫ β
0 dτ

q̇2
4 + ie

2

∫ β
0 dτ q̇µFµνqν+ ie

β (x−x′)µ Fµν

∫ β
0 dτ qµ(τ) (8.18)

with ∮
0

Dq(τ) e−
∫ β

0 dτ 1
4 q̇2

=
(
4πβ

)− D
2 . (8.19)

Expression (8.18) can then be written as

Dxx′(F) =
∫ ∞

0
dβ e−m2βe−

(x−x′)2
4β

(
4πβ

)− D
2
¨

Wxx′(β, F)
∂

(8.20)

with¨
Wxx′(β, F)

∂
=

∮
0 Dq(τ) e−

∫ β
0 dτ

q̇2
4 + ie

2

∫ β
0 dτ q̇µFµνqν+ ie

β (x−x′)µ Fµν

∫ β
0 dτ qµ(τ)∮

0 Dq(τ) e−
∫ β

0 dτ
q̇2
4

. (8.21)

A known result for Dxx′[F] can be found in [55] and reads

Dxx′[F] =
∫ ∞

0
dβ e−m2β

(
4πβ

)− D
2

 
det
Å

Z
sin Z

ã
e−

(x−x′)·Z·cot Z·(x−x′)
4β (8.22)

where Zµν = eβFµν. Comparing equations (8.20) and (8.22) we have¨
Wxx′(β, F)

∂
=

 
det
Å

Z
sin Z

ã
e−

(x−x′)·(Z·cot Z−1)·(x−x′)
4β (8.23)

which we can express with our WLMC method in the case of a pure magnetic field

background.

Figure 8.6 shows a WLMC calculation of the scalar averaged propagator in pres-

ence of a magnetic field as a background. Parameters values are specified in the figure.

We notice a very satisfactory agreement between the reference analytical result and

our numerical computation. Given the previous very satisfactory result, it would be in-

teresting to include the coupling to gravity, i.e. embed the previous model in a curved

space. We leave it for future work.

In this chapter we studied a few applications of the worldline Monte Carlo method,

namely: the Casimir interaction energy between two parallel plates in flat space (re-

covering known results) and in curved space (applying the machinery presented in the
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FIGURE 8.6: WLMC calculation of the propagator for a scalar parti-
cle in presence of a background magnetic field.

previous chapter); a magnetic field background coupled to a scalar field. The WLMC

technique proved to be able to describe accurately the behaviour of the computed quan-

tities in all these cases. However, an important point which often has emerged is the

need of reaching the best numerical optimization possible to get a result which re-

produces the correct solution. In some cases, like flat space calculations, estimates of

propagators, the numerical parameters which control the calculation can be chosen rel-

atively high; for what concerns more involved calculations, like those in curved space

and the ones involving effective actions, multiple integrals have to be performed on top

of the particle path integrals (β-integration, center of mass integration), and this mas-

sively contributes to slow down the computation. An important future challenge for

the applications of WLMC method in curved space is certainly optimizing the known

algorithms to be able to perform demanding calculations (like the last ones cited) in a

reasonable amount of time.

Here we conclude the pure WLMC part of this thesis and, in the next chapter, we

move to the study of Grassmannian particle path integrals, in particular we will focus

on a numerical method to evaluate such quantities.
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Chapter 9

A numerical approach to

supersymmetric nonlinear

σ-models: Creutz algorithm

9.1 Introduction

So far, we focused our efforts on the numerical study of scalar σ-models, i.e. world-

line path integrals representing the propagation of scalar particles. Besides the fact

that scalar theories are often easier than spinorial ones and that for them a consistent

number of theoretical result are known and can be taken as a reference for numerical

simulations, the main advantage of numerical implementation of such models lies in

the fact that we can provide an intuitive geometrical interpretation to path integrals

of scalar particles. As already pointed out, they can be seen as a sum of spacetime

trajectories defined on a specific background and the WLMC formalism exactly uses

this intuition (apart from subtleties due to the paths sampling and the curved space

treatment previously seen). However, a brunch of interesting physical problems can

as well be expressed in terms of path integrals which (also) involve anticommuting

coordinates, for which a numerical implementation is a lot more involved.

An example is given by the effective action of a massless fermion in curved space-

time, for which a path integral representation can be written in terms of the following

supersymmetric non-linear σ-model [15]— this formalism, upon dimensional reduc-

tion, can also be applied to a massive spinning particle—

Γ ∼
∫ β

0

dβ

β

∫
PBC

Dx
»

g(x)
∫

ABC

Dψ e−
∫ β

0 dτ( 1
2 gµν(x)ẋµ ẋν+ 1

2 ψa(δab∂τ+ẋµωµab(x))ψb+VCT(x)).

(9.1)
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In eq. (9.1) we identify:

• a curved space bosonic kinetic term gẋẋ, which we already know;

• a flat space fermionic kinetic term ψψ̇ expressed using Grassmann variables ψ,

with tangent space (flat) indices;

• a term which couples bosonic and fermionic coordinates x and ψ through a

spacetime-dependent 1-form spin connection ωµab(x), which encodes curvature

information;

• a PBC integration for the x-coordinates and an ABC for ψ, denoting periodic

and antiperiodic boundary coordinates respectively.

Hence a whole new dynamics involving anticommuting variables emerges in this sce-

nario and it can be studied regardless of the x-sector. In this chapter we will try to

provide a numerical implementation of the Euclideanized path integral

Z̃(β) =
∫

ABC

Dψ e
∫ β

0 dτ 1
2 ψaψ̇a+V(ψ), (9.2)

where an irrelevant minus sign has been removed from the fermionic action. A first

comment is the following. In the case of bosonic scalar particles we used to identify the

particle x(τ) directly with its spacetime coordinate representation xµ(τ) having a clear

and intuitive geometrical meaning: assuming a 4-dimensional Euclidean space, the

particle x at proper time τ has coordinates (x0, x1, x2, x3) which can be simulated on

the computer for each τ. The ordered succession of these vectors gives the trajectory of

the bosonic scalar particle. However, if the particle has fermionic nature, we don’t have

an intuitive geometrical space on which trajectories can be simulated, mainly due to the

anticommutativity property of each coordinate. Thus, the WLMC machinery which

we studied for bosonic particles cannot be straightforwardly extended to Grassmann

variables.

Nonetheless, the path integral (9.2) can be given a discrete approximation by using

a numerical algorithm first developed by M.J. Creutz [56] in 1998. We will review his

idea and apply it on a simple prototypical case.

Let us then focus on the quantity

Z̃ =
∫

ABC

Dψ eS[ψ] ≃
∫

ABC

dψ1 . . . dψN eS[ψ1,...ψN] (9.3)
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where the continuous ψ(τ) variable is discretized in terms of N variables {ψi}1≤i≤N .

Now we move to Fock space where we assume a vacuum state |0⟩, a 1-particle state

|1⟩ and assign to each ψi a creation-annihilation pair (a†
i , ai) with properties

a |0⟩ = 0

a† |0⟩ = |1⟩¶
a†

i , aj

©
= δij¶

a†
i , a†

j

©
=
{

ai, aj
}
= 0∫

dψψ = 1∫
dψ = 0

e f (a) = 1 + f (a) (9.4)

with f linear in a. If we want to fill an empty state with different anticommuting par-

ticles ψi we proceed caring about their ordering because of the anticommuting proper-

ties of (9.4)

|F⟩ = a†
1a†

2 . . . a†
N−1a†

N |0⟩ = |11, 12, . . . , 1N−1, 1N⟩ . (9.5)

For example, if we want to remove the particle ψN from the full state, we act as follows

aN |F⟩ = aNa†
1a†

2 . . . a†
N−1a†

N |0⟩ = (−1)N−1a†
1a†

2 . . . a†
N−1aNa†

N |0⟩ =

= (−1)N−1a†
1a†

2 . . . a†
N−1(1− a†

NaN) |0⟩ = (−1)N−1a†
1a†

2 . . . a†
N−1 |0⟩ =

= (−1)N−1 |11, 12, . . . , 1N−1, 0N⟩ . (9.6)

where a negative sign pops out for even N.

A Fock-representation of the path integral (9.3) that Creutz proposed is

Z̃ ∼ ⟨0| eS(a1,...,aN) |F⟩ (9.7)

where S(a1, . . . , aN) = S(ψ1 → a1, . . . , ψN → aN) (without ordering issues, as there

are no creation operators.) and arises directly from the integration rules in (9.4). The

latter can be easily understood by considering simple example, such as N = 2, for

which S(ψ1, ψ2; α1, α2, β) = α1ψ1 + α2ψ2 + βψ1ψ2 where αi are Grassmann-odd and
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β Grassmann-even. Thus,

Z̃(α1, α2, β) =
∫

dψ1dψ2 eS = −β + α1α2. (9.8)

On the other hand,¨
0|eS|1112

∂
= ⟨0|(βa1a2 + α1a1α2a2)|1112⟩ = −β + α1α2. (9.9)

The main goal now is to expand the exponential in (9.7) to get an easier formula to

be numerical implemented. Let’s define Si as all the contributions to S having one ai

within. The complementary part is denoted by S̃i. Hence for each i, S = Si + S̃i and

since all the S are Grassmann-even and only involve a’s (no a†’s!) we have [S̃i, Si] =

0,

Z̃ = ⟨0| eS̃i eSi |F⟩ = ⟨0| eS̃i (1− ni)eSi |F⟩ , ni = a†
i ai. (9.10)

In the second step we used ⟨0|eS̃i (1− ni) = ⟨0|(1− ni)eS̃i = ⟨0|eS̃i . Since 1− ni

projects in the 0i occupation part of eSi |F⟩, in (9.10) we can make the replacement

S̃i → S to restore the original full action,

Z̃ = ⟨0| eS(1− ni)eSi |F⟩ . (9.11)

Repeating this process for all other Grassmann variables and applying for each the last

property of (9.4), we finally get to

Z̃ = ⟨0|
N

∏
i=1

(1− ni)(1 + Si) |F⟩ (9.12)

which can be implemented numerically. In fact what we will do is to start from a fully

occupied state |F⟩ and apply the operators (1− ni)(1 + Si) for each i until the state

gets empty. Assuming normalization ⟨0|0⟩ = 1, the numerical coefficient in front

of the contraction will be our estimate for the path integral Z. Let us get more into

detail by focusing on a specific problem, that is the calculation of the propagator of the

1-dimensional fermionic harmonic oscillator.
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9.2 The fermionic harmonic oscillator

Fixing ω = 1 = h̄, the quantum Hamiltonian operator of the fermionic harmonic

oscillator is

Ĥ = a†a− 1
2

(9.13)

having eigenstates |0⟩ and |1⟩ with energies ± 1
2 . Let us call β the transition time as

usual. The partition function is then

Z(β) = ∑
n=1,2

eβEn = e−
β
2 + e

β
2 = 2 cosh

β

2
(9.14)

which, on the other hand, can be expressed with Grassmannian path integrals

Z̃(β) = Tr e−βĤ =
∫

dψ∗dψ
¨
−ψ|e−βĤ |ψ

∂
e−ψ∗ψ. (9.15)

In order to operate a time-slicing of the exponential propagation operator with N in-

termediate steps, we make use of the exponential property

e−βĤ = lim
N→∞

Å
1− βH

N

ãN
(9.16)

which we use inside (9.15) together with identities
∫

dψ∗i dψi e−ψ∗i ψi |ψi⟩ ⟨ψi| at inter-

mediate steps,

Z̃(β) = lim
N→∞

∫
dψ∗dψe−ψ∗ψ

N−1

∏
k=1

dψ∗k ψke−∑N−1
n=1 ψ∗nψn

× ⟨−ψ|1− β

N
Ĥ|ψN−1⟩ ⟨ψN−1|1−

β

N
Ĥ|ψN−2⟩ . . . ⟨ψ1|1−

β

N
Ĥ|ψ⟩ =

= lim
N→∞

∫
dψ∗dψe−ψ∗ψ

N−1

∏
k=1

dψ∗k ψke−∑N−1
n=1 ψ∗nψn

× ⟨ψN |1−
β

N
Ĥ|ψN−1⟩ ⟨ψN−1|1−

β

N
Ĥ|ψN−2⟩ . . . ⟨ψ1|1−

β

N
Ĥ|−ψN⟩

(9.17)

with ψ = −ψN = ψ0 and ψ∗ = −ψ∗N = ψ∗0 . Each contraction can be expressed as

⟨ψk|1−
β

N
Ĥ|ψk−1⟩ = ⟨ψk|ψk−1⟩

Ç
1− β

N
⟨ψk|Ĥ|ψk−1⟩
⟨ψk|ψk−1⟩

å
=

≃ ⟨ψk|ψk−1⟩ e
− β

N
⟨ψk |Ĥ|ψk−1⟩
⟨ψk |ψk−1⟩ = eψ∗k ψk−1 e−

β
N (ψ∗k ψk−1− 1

2 ) = e
β

2N e
Ä

1− β
N

ä
ψ∗k ψk−1 . (9.18)
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Hence the partition function reads

Z̃(β) = e
β
2 lim

N→∞

N

∏
k=1

∫
dψ∗k dψk e−∑N

n=1 ψ∗nψn e
Ä

1− β
N

ä
∑N

n=1 ψ∗nψn−1 =

= e
β
2 lim

N→∞

N

∏
k=1

∫
dψ∗k dψk e−∑N

n=1

î
ψ∗n(ψn−ψn−1)+ β

N ψ∗nψn−1

ó
(9.19)

which has the desired form of (9.3) with N → 2N, and we can apply Creutz’s formula

(9.12). More to the numerical perspective, we fix a (possibly large) value N and a

value β. Then we start from a full state |F⟩ where all N Grassmannian particles ψi are

present and apply Oi = (1− ni)(1+ Si) for each i and get to the vacuum |0⟩. Thus we

need to keep track of the current Fock state and its numerical coefficient which change

each time we apply Oi. We can represent it by the (N + 1)-row in Figure 9.1.

FIGURE 9.1: Graphical representation of each N-Fock state with its
numerical coefficient in front.

It is important to notice that the main difficulty that this algorithm imposes is to

deal with superpositions of Fock states in general. Each application of Oi on a state

may in principles produce a combination of more than one state, each of which is then

object of the following application Oi+1. In Figure 9.2 we show the diagrammatic ap-

plication of the Creutz’s algorithm for the case of the harmonic oscillator with reduced

parameters N = 4 and β = 1, just to sketch the mechanism. The output is actually

the rescaled partition function

Z(β) = e−
β
2 Z̃(β) (9.20)

with outcome Z(β = 1, N = 4) = 1.56 ⟨0|0⟩ = 1.56.

As we may figure out from figure 9.2, the repeated application of operators Oi

contributes to generate a tree-structure which of course gets more and more compli-

cated as N grows. For simplicity, in the figure all N-tuples with null coefficients have

been removed. This situation happens when an annihilation operator ai hits a state

|. . . 0i . . .⟩ and this can occur also for different values of the current iteration i. What

makes a tree complicated to be calculated (hence a flourishing tree, with a low number

of cut branches) is essentially the form of the discretized action S and the number N: a
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FIGURE 9.2: Diagrammatic representation of the Creutz’s algorithm
to numerically estimate the value of the reduced partition function

Z(β) for illustrative values β = 1 and N = 4.

large value N increases the length of the tree’s trunk, whereas a complicated structure

of the interactions Si causes each tree’s level to produce increasing non-null branches.

FIGURE 9.3: Calculation of the reduced partition function z(β) for
the fermionic harmonic oscillator with ω = 1 = h̄ and with fixed

discretization value N = 200.

Figure 9.3 shows the calculation of the rescaled partition function z(β) for the

fermionic harmonic oscillator with fixed discretization value N = 200 within a range

of total proper time lengths β ∈ [0, 50] (blue data), compared with the theoretical

curve (red line). In Appendix D we report the MATLAB code we used to generate

this calculation. This calculation has been performed using a self-consistent routine
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which cumulatively accounts for the coefficient of each branch by exploring all the

tree. We notice an excellent agreement between the data and the analytical result

even for a N-value which is smaller compared to the ones usually taken in WLMC

calculation. However the main downside of this construction lies in the tree structure

itself, which produces an exponential growing of branches as N increases. The rate

of growing is determined by the form of the interactions Si, which as pointed out,

rules how flourished the tree expands at each iteration i ∈ [1, N]. The length of

the tree (N) can be controlled by the user, rather its flourishing rate (Si structure)

cannot, as it substantially is part of the physical model we are dealing with. This makes

this method a bit difficult to be adopted when the form of the interaction gets more

complicated. A good idea could be to focus a priori only on those branches which are

known to give non-null contribution to the final result, based on the knowledge of each

Si interaction. This could save a lot of calculation time for arid trees, but the problem

remains an exponential one. Anyway, this simple algorithm is promising and allows

for numerical Grassmannian calculations which otherwise would be unaffordable. In

the next section we will concentrate on a physical model which, in theory, could be

studied by matching the consolidated WLMC machinery and the Creutz’s method for

fermionic degrees of freedom, namely the Gross-Neveu model. Even though for the

current state of numerical routine optimization a full significant numerical calculation

cannot be brought on, we highlight the procedural path.

9.3 The Gross-Neveu model

In this section we present a possible recipe to study (analytically and numerically)

a specific example of a supersymmetric nonlinear σ-model, the Gross-Neveu model

[57]. It can be used to study strongly coupled fermions on a non-planar surface when

a curved space geometry is implemented into the theory by analyzing its chiral phase

structure [58].

Let us then consider a D-dimensional Gross-Neveu model

L = Ψ̄i /∇Ψ + G(Ψ̄Ψ)2 (9.21)
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which is chirally symmetric, i.e. invariant under transformation

Ψ→ γ5Ψ

Ψ̄→ Ψ̄γ5,
(9.22)

which induces Ψ̄Ψ→ −Ψ̄Ψ

Ψ̄γµΨ→ Ψ̄γµΨ,
(9.23)

with γ5 satisfying 
γ†

5 = γ5

{γµ, γ5} = 0

γ5
2 = 1.

(9.24)

Here, a explicit mass term of the kind mΨ̄Ψ is not allowed as it would formally break

the aforementioned chirality conditions. However, the four fermion interaction in

(9.21) can break dynamically the chiral symmetry allowing for a non-null vacuum

expectation value

⟨Ψ̄Ψ⟩ ̸= 0. (9.25)

With this trick, fermions dynamically acquire a mass. A possible way to show that is by

means of a Hubbard-Stratonovich transformation of Lagrangian (9.21): let’s introduce

the Gaussian path integral

C =
∫

DM′(x) ei
∫

dDx
√

g(− 1
4G M′(x)2) (9.26)

and shift the field M′(x)

M′(x)→ M(x) = M′(x)− 2GΨ̄Ψ (9.27)

to get

C =
∫

DM(x) ei
∫

dDx
√

g[− 1
4G (M+2GΨ̄Ψ)2]. (9.28)

Now we can introduce the partition function in Minkowski space

Z =
∫

DΨDΨ̄ eiS (9.29)



104
Chapter 9. A numerical approach to supersymmetric nonlinear σ-models: Creutz

algorithm

with

S =
∫

dDx
√

gL. (9.30)

Plugging (9.28) into (9.29) we obtain

Z =
1
C

∫
DΨDΨ̄DM eiSy (9.31)

where

Sy =
∫

dDx
√

g
ï

Ψ̄(i /∇−M)Ψ− 1
4G

M2
ò

. (9.32)

We notice that the fermion has acquired a mass expressed by a spacetime-dependent

scalar field M(x). Such field is quantized under the path integral in (9.31), but, if we

want to treat M(x) as an ordinary parameter to study the chiral symmetry breaking, we

have to remove such path integration. A possibility, which is also considered in [58] is

to ultimately treat M in the mean field approach. Hence, up to an irrelevant constant,

we move to Euclidean space and define a mean field effective action associated to

(9.32), defined by

e−Γ =
∫

DΨDΨ̄ e−Sy , (9.33)

where the covariant derivative

∇µ = ∂µ +
1
4

ωµab(x)γaγb (9.34)

includes curvature information via the spin connection 2-form ωµab(x). Isolating the

effective action in (9.33) and performing the integration over fermion fields, we get

[13]

Γ[M] = − Log Det( /∇+ M(x)) +
1

4G

∫
dDx
√

gM2(x)

− Log[Det( /∇+ M(x))(− /∇+ M(x))]1/2 +
1

4G

∫
dDx
√

g M2(x)

− 1
2

Tr Log
[
− /∇2

+ M2(x) + /∇M(x)
]
+

1
4G

∫
dDx
√

g M2(x)

− 1
2

Tr Log
[
−∇2 +

1
4

R + M2(x) + /∇M(x)
]
+

1
4G

∫
dDx
√

g M2(x).

(9.35)

Note that, in the classical action, the equation of motion for M(x) gives M(x) =

−2GΨ̄Ψ. Therefore, the equation of motion in (9.35) yields M(x) = −2G ⟨Ψ̄Ψ⟩.

The first term in the last line of (9.35) is now written as the worldline of a point-particle
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in curved spacetime, namely

Γ[M] =
1
2

∞∫
0

dβ

β

∫
PBC

Dxµ
∫

ABC

Dψa e−S[xµ,ψa,ωµab] +
1

4G

∫
dDx
√

g M2(x) (9.36)

with

S[xµ, ψa, ωµab] =
1∫

0

dτ

ï
1

4β
gµν(x)ẋµ ẋν +

1
4β

ψa
Ä

δab∂τ + ẋµωµab(x)
ä

ψb +

+ β
Ä

M2(x) +
√

2ψa∇a M(x)
ä ò

, (9.37)

where the gamma-matrix in /∇M has been written in terms of the spinning variables.

We notice that, upon choosing dimensional regularization to regularize the worldline

path integral as done in [15], there is a perfect cancellation of the term 1
4 R in (9.35)

due to the DR-counterterm which has to be included in the action. Eq. (9.36) is the

worldline representation of the effective action where the path integrals over bosonic

coordinates xµ and the fermionic supercoordinates ψa are taken with periodic and

antiperiodic boundary conditions respectively. This theory can be studied in the same

way as done in chapter 4, that is introducing Riemann normal coordinates ξµ,

xµ(τ) = xµ
0 + ξµ(τ) (9.38)

and using BRST transformations. The effective action gets the form

Γ[M] =
1
2

∞∫
0

dβ

β

∫
dx0 dη̄ dη dπ

∮
PBC

Dξ Da Db Dc
∮

ABC

Dψ Dψ̄ e−Sq +

+
1

4G

∫
dx0

»
g(x0)M2(x0) (9.39)

with

Sq = Sg f + Sgh

Sg f = S[ξµ, ψa, ωµab] + iπµ

1∫
0

dτ ξµ(τ)− η̄µην

1∫
0

dτ Qµν(x0, ξ(τ))

Sgh =

1∫
0

dτ
1

4β
gµν(x)

(
aµaν + bµcν

)
. (9.40)
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Here we report what we obtain for the effective action,

Γ[M] =
1
2

∫
dDx0

∫ ∞

0+

dβ

β

√
g(x0)

(4πβ)
D
2

2
D
2

≠
e−S(

∫
)

q

∑
+

1
4G

∫
dDx0

»
g(x0)M2(x0),

(9.41)

where ⟨. . .⟩ is a Wick-contraction with respect to all quantum fields involved and

S(int)
q = Sq

[
gµν(x0, ξ)→ gµν(x0, ξ)− gµν(x0), Qµν(x0, ξ)→ Qµν(x0, ξ)− δµν

]
.

(9.42)

Moreover, field contributions come also from the massive term of (9.36) when M(x)

is RNC-expanded,

M(x0, ξ) = M(x0) +∇µ M(x0)ξµ +
1
2
∇ν∇µ M(x0)ξνξµ + . . . . (9.43)

Expansion (9.43) is correct up to quadratic term: from the cubic term on, covariant

derivatives start acting non trivially among themselves, producing further contributions

which can be non-null at the origin x0.

An effective Lagrangian can be defined from

Γ =
∫

dDx0

»
g(x0)L(x0) (9.44)

reading

L(x0) =
∫ ∞

0+

dβ

2β

1

(4πβ)
D
2

〈
e−S(int)

q
〉
+

1
4G

M2(x0). (9.45)

All the interacting terms are obtained by RNC-expanding the metric tensor, the Jaco-

bian Q [8] and the spin-connection about x0 [59],

gµν(x0, ξ) = gµν(x0) +
1
3

Rµαβν(x0)ξαξβ +
1
6
∇γRµαβν(x0)ξαξβξγ +

+

Å
1
20
∇δ∇γRµαβν(x0) +

2
45

Rµαβ
ρRργδν(x0)

ã
ξαξβξγξδ + . . .

Qµν(x0, ξ) = δµν +
1
3

Rµαβν(x0)ξαξβ +
1

12
∇γRµαβν(x0)ξαξβξγ +

+

Å
1
60
∇δ∇γRµαβν(x0)− 1

45
Rµαβ

ρRργδν(x0)
ã

ξαξβξγξδ + . . .

ωµab(x0, ξ) =
1
2

ξνRabνµ(x0) +
1
3

ξνξρ∇ρRabνµ(x0) +

+
1
8

ξνξρξσ∇ρ∇σRabνµ(x0) + . . . (9.46)
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from which we use the constant pieces to build up the SI-Green’s functions, namely

⟨ξµ(τ)ξν(σ)⟩ = − 2βδµν∆(τ − σ)

⟨aµ(τ)aν(σ)⟩ = 2βδµν∆gh(τ − σ)

⟨bµ(τ)cν(σ)⟩ = − 4βδµν∆gh(τ − σ)

⟨ψa(τ)ψb(σ)⟩ = 2βδab∆AF(τ − σ) (9.47)

where

∆(τ − σ) =
1
2
|τ − σ| − 1

2
(τ − σ)2 − 1

12

∆gh(τ − σ) = δP(τ − σ)

∆AF =
1
2

ϵ(τ − σ) (9.48)

with properties

••∆(τ − σ) = δP(τ − σ)− 1

•∆AF(τ − σ) = δA(τ − σ)

•∆(0) = 0. (9.49)

δP and δA are 1D-Dirac delta functions on the spaces of periodic and antiperiodic

functions in [0, 1] respectively, while a left (right) dot on a ∆-propagator indicates a

derivative taken on the first (second) variable. The worldline integrals are computing

using dimensional regularization.

Defining

S̄(int)
q = S(int)

q − βM2(x0), (9.50)

it’s worth reporting its explicit form, so to better organize the calculation,

S̄(int)
q =

1∫
0

dτ

®
1

4β

ï
1
3

Rµαβνξαξβ +
1
6
∇γRµαβνξαξβξγ +

+

Å
1
20
∇δ∇γRµαβν +

2
45

Rµαβ
ρRργδν

ã
ξαξβξγξδ + . . .

ò(
ξ̇µ ξ̇ν + aµaν + bµcν

)
+

+
1

4β
ξ̇µ

ï
1
2

ξνRabνµ +
1
3

ξνξρ∇ρRabνµ +
1
8

ξνξρξσ∇ρ∇σRabνµ + . . .
ò

ψaψb +

− η̄µην

ï
δµν +

1
3

Rµαβνξαξβ +
1
12
∇γRµαβνξαξβξγ +
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+

Å
1
60
∇δ∇γRµαβν −

1
45

Rµαβ
ρRργδν

ã
ξαξβξγξδ + . . .

ò
+

+ β

ï
2M∇µ Mξµ +

√
2∇a Mψa +

+

Å
M∇µ∇ν M +∇µ M∇ν M

ã
ξµξν +

√
2∇a∇µ Mψaξµ + . . .

ò´
,

(9.51)

where Riemann tensors and the order parameter M are evaluated at x0. In the last line

of (9.51) we used that RNC satisfy ∇ξ = 0 in the expansion of ∇a M(x0, ξ).

Now, the effective Lagrangian

L(x0) =
∞∫

0

dβ

4β

1

(2πβ)
D
2

e−βM2(x0)
¨

e−S̄(int)
q
∂
+

1
4G

M2(x0). (9.52)

can be computed in two steps:

1. by evaluating ¨
e−S̄(int)

q
∂

(9.53)

as a polynomial in β with coefficients depending on curvature’s and M’s invari-

ants;

2. performing the β-integral as an Euler’s Γ-function.

Thus, we have¨
e−S̄(int)

q
∂
= 1−

¨
S̄(int)

q

∂
+

1
2

¨
S̄(int)

q
2
∂
− 1

3!

¨
S̄(int)

q
3
∂
+ . . . . (9.54)

At this point, some names to the various terms in (9.51) can be provided,

S̄(int)
q = S1−1 + S1−1.5 + S1−2 + . . .

+ S2−1 + S2−1.5 + S2−2 + . . .

+ S3−1 + S3−1.5 + S3−2 + . . .

+ S4−1.5 + S4−2 + . . . , (9.55)

in particular:

• S1−... are terms of lines 1 and 2 of (9.51);

• S2−... are terms of line 3 of (9.51);
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• S3−... are terms of lines 4 and 5 of (9.51);

• S4−... are terms of lines 6 and 7 of (9.51).

The second index (where the dots are) indicates the β-order brought by that piece of

action, remembering that (just by looking at the propagators (9.47))

ξ ∼ a ∼ b ∼ c ∼ ψ ∼ β1

η ∼ β0. (9.56)

For instance, the first term is

S1−1 =
1

12β
Rµαβν

1∫
0

dτ ξαξβ
Ä

ξ̇µ ξ̇ν + aµaν + bµcν
ä

, (9.57)

which is linear in β. Here we report the values of the contractions needed up to β2,¨
S1−1

∂
=

1
36

Rβ¨
S2−1

∂
= 0¨

S3−1

∂
=

1
18

Rβ¨
S1−2

∂
=

1
360

ï
1
2
∇2R− 2

9
Rµν

2 − 1
3

Rµνρσ
2
ò

β2¨
S2−2

∂
= 0¨

S3−2

∂
=

1
540

ï
1
2
∇2R− 1

3
Rµν

2 +
1
2

Rµνρσ
2
ò

β2¨
S4−2

∂
=

1
6

î
M∇2M +

(
∇µ M

)2ó
β2¨

S1−1
2
∂
|conn =

1
216

ï
1
6

R2 − 19
90

Rµν
2 +

13
5

Rµνρσ
2
ò

β2¨
S2−1

2
∂
|conn = − 1

48
Rµνρσ

2β2¨
S3−1

2
∂
|conn =

1
108

ï
1
3

R2 − 1
5

Rµν
2 − 1

10
Rµνρσ

2
ò

β2¨
S1−1S2−1

∂
|conn = 0¨

S1−1S3−1

∂
|conn =

1
324

ï
1
2

R2 +
1
5

Rµν
2
ò

β2¨
S2−1S3−1

∂
|conn = 0, (9.58)
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where, again, all quantities are evaluated at x0. Putting everything together, we have

L(x0) =
M2

4G
+

1

2(4π)
D
2

∞∫
0

dβ β−
D
2 −1e−βM2 î

1 +A1β +A2β2 + . . .
ó

, (9.59)

with

A1 = − 1
12

R

A2 =
1

288
R2 +

17
38880

Rµν
2 − 7

1440
Rµνρσ

2 − 1
432
∇2R− 1

6
M∇2M− 1

6
(
∇µ M

)2 .

(9.60)

Integrating out β we get

Γ̄(x0) =
M2

4G
+

1

2(4π)
D
2

ï Ä
M2
äD

2 Γ
Å
−D

2

ã
+A1

Ä
M2
äD

2 −1
Γ
Å
−D

2
+ 1
ã

+

+A2

Ä
M2
äD

2 −2
Γ
Å
−D

2
+ 2
ã
+ . . .

ò
. (9.61)

It’s possible to see that the expansion (9.61), to the lowest order, reduces to equation

(31) of [57] in flat space and to equations (69-70) therein in weakly curved spacetime,

confirming the validity of the method. Hence, the discussion about spontaneous chiral

symmetry breaking follows the same steps, for instance, of [57]. A clear advantage of

the WL method is that it allows for a quite easy computation of the terms appearing in

(9.61) when one wants to go beyond the linear contribution in the scalar curvature R,

and/or consider inhomogeneous condensates M(x). Obviously the evaluation of the

mean field, i.e. the solution of
∫

dDx
√

gL ought to be done numerically.

However one may also tackle the problem from a fully numerical view point, using

a combination of WLMC and Creutz’s algorithms. Focusing on equations (9.36) and

(9.37), which we report here for simplicity

Γ[M] =
1
2

∞∫
0

dβ

β

∫
PBC

Dxµ
∫

ABC

Dψa e−S[xµ,ψa,ωµab] +
1

4G

∫
dDx
√

g M2(x)

S[xµ, ψa, ωµab] =
1∫

0

dτ

ï
1

4β
gµν(x)ẋµ ẋν +

1
4β

ψa
Ä

δab∂τ + ẋµωµab(x)
ä

ψb +

+ β
Ä

M2(x) +
√

2ψa∇a M(x)
ä
+ VCT(x)

ò
, (9.62)
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we can get rid of a volume integration over x0 and consider the effective action density

L(x0) at fixed x0 = 0 for instance. Now we can act as follows.

1. Sample WLMC points with the YLOOPS(α) algorithm (with α ̸= 0 if needed) to

generate loops with coinciding endpoints at zero.

2. For each point x, compute the spin-connection ωµab(x) and perform a Gaussian

integration ∫
ABC

Dψa e−
∫ 1

0 dτ 1
4β ψa(δab∂τ+ẋµωµab(x))ψb

. (9.63)

3. Perform the WLMC average.

Even restricting on a single point x0, this calculation is huge: each point x of each

worldline s requires a complete Creutz’s integration and finally a global β-integration

over the proper time length has to be done. With the actual means, an acceptably opti-

mized numerical calculation for the effective action density of this model is not viable

in reasonable times, hence we keep here this idea for possible future work, possibly

after that the algorithms involved (in particular Creutz’s one) finds a better and faster

numerical optimization. Note also that, as pointed in Chapter 7, the suitable regular-

ization to be adopted in WLMC is the time-slicing. Thus, the counterterm does not

completely cancel against the R/4 term: there remains the ΓΓ part, which is followed

by a similar ωω contribution, associated to the regularization of the fermionic sector,

in curved space (see [15]).





113

Chapter 10

A perturbative method for a

particle on a rotating ring

In the present chapter we describe a project we collaborated on, where several of the

ingredients discussed previously, such as effective actions and numerical approaches,

are applied to a scalar QFT model representation of a cold atom system. Specifically

we present a perturbative calculation for the effective action associated to a scalar

particle living on a one-dimensional rotating ring in presence of a cut (constituting a

barrier for the particle itself). This theoretical study [60] is motivated by the growing

interest towards systems which involve confining optical traps. The scalar model setup

that we will consider can be in principle adapted to study in an alternative way inter-

acting atoms at very low temperatures, in presence of a spacial confinement inducing

boundary conditions.

The starting point is to consider a scalar quantum field living on a ring. In this

simple case it is quite obvious that a reciprocal rotation between the field and the ring

does not produce any physical effect due to gauge invariance. The situation is substan-

tially different when this invariance is broken by adding a defect (a barrier) along the

ring, producing physical boundary conditions for the field. In this case, it is possible

for a laboratory observer to detect an effective rotation of the ring, in opposition to a

co-rotating observer who can’t, by definition. Physically, this genuine rotation induces

an artificial gauge field that can lead to the appearance of a persistent current along

the ring. Examples of this phenomena involve the creation of Josephson junctions on

toroidal Bose-Einstein condensates [61], toroidal Bose-Einstein condensate stirred by

a rotating optical barrier [62], and spinor (87Rb) condensates [63]. A similar study

has been performed in [64] for an interacting non-relativistic scalar field on a ring in

presence of a delta-function defect, and shows how the persistent current gets affected
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by the barrier strength. Here we adopt a different strategy: firstly we focus on the field

ground state rather than the current; secondly, interaction effects are imposed by a con-

straint on the field and the delta-function potential is replaced by boundary conditions.

To do that, we make use of O(N) nonlinear sigma models and employ zeta-function

regularization on the effective action.

Let us now introduce the setup by defining a non-relativistic complex Schrödinger

field Φ,

Φ =
1√
2

(
ϕ1 + iϕ2

)
(10.1)

for real fields ϕ1 and ϕ2. Its dynamics is given by the action

S0 =
∫

dt
∫

dx
î i

2

Ä
Φ†Φ̇−ΦΦ̇†

ä
− 1

2mR2

∣∣∣∣∂Φ
∂φ

∣∣∣∣2 −V(x) |Φ|2 +

+
iΩ
2R

Ä
Φ†Φ′ −ΦΦ′†

ä
− m

2
Ω2 |Φ|2

ó
(10.2)

with x = φR and m, R, V, Ω and φ being the mass, the ring radius, a generic scalar

potential, the ring angular rotation velocity and the field angular velocity respectively.

Such action is obtained starting from the one at Ω = 0 and performing a coordinates

change from the co-rotating frame (Ω = 0) to the lab frame (Ω ̸= 0), (t0, φ0) →

(t, φ),

t = t0, φ = φ0 + Ωt0 (10.3)

and
∂

∂t0
=

∂

∂t
+ Ω

∂

∂φ
,

∂

∂φ0
=

∂

∂φ
(10.4)

together with

Φ→ ei m
2 Ω2tΦ. (10.5)

Already from eq. (10.2), we can assign to the rotation the role of a constant gauge (syn-

thetic) field Aφ = mΩR. Before proceeding with the interacting theory, we briefly

study the simpler non interacting case in absence of scalar potential. The equation of

motion for the field Φ is given by

i
∂Φ
∂t

+ i
Ω
R

∂Φ
∂φ

+
1
ρ

∂2Φ
∂φ2 −

mΩ2

2
Φ = 0 (10.6)
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where we introduced ρ = 2mR2. The time-independent version of (10.6) provides an

equation for the eigenfunction fp(φ),

1
ρ

∂2 fp(φ)
∂φ2 + i

Ω
R

∂ fp(φ)
∂φ

=

Ç
mΩ2

2
− λp

å
fp(φ) (10.7)

with solution

fp(φ) = Npe−i ρΩ
2R φ sin

(
φ∆
)
, ∆2 = λpρ. (10.8)

where we imposed fp(0) = 0. The continuity condition fp(2π) = 0 sets

∆ =
p
2

, p ∈N (10.9)

and consequently

λp =
p2

4ρ
. (10.10)

The one-loop effective action may be obtained moving to Euclidean time, t → −iτ

and integrating over quantum fluctuations δΦ. In fact, the full field can be written as

Φ = Φ̄ + δΦ, where Φ̄ is a background field. In such way, the effective action reads

Γ[Φ̄] =
∫ β

0
dτ
∫

dx Φ̄†

ñ
∂

∂τ
− 1

ρ

∂2

∂φ2 −
iΩ
R

∂

∂φ
+

mΩ2

2

ô
Φ̄ + δΓ (10.11)

where

δΓ = log det

Ç
∂

∂τ
− 1

ρ

∂2

∂φ2 −
iΩ
R

∂

∂φ
+

mΩ2

2

å
. (10.12)

We notice that the background field Φ̄ does not appear in δΓ whereas it does in the

interacting case as we will see. Assuming periodic boundary conditions in Euclidean

time, the complete eigenfunctions read e−iωnτ fp(φ) with frequencies given by ωn =

2πn/β, n ∈ Z. Physically, the quantity β is intended as the inverse temperature of

the system or as the size of the box in the Euclidean time direction, which ultimately is

set to infinity according to the zero temperature limit. The eigenvalues of the operator

(10.12) can be written as

εnp = iωn + λp (10.13)

and used within the zeta-regularization for the action,

ζ(s) =
∞

∑
n=−∞

∑
p

ε−s
np, (10.14)
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so that

δΓ = 2πRβ
(
ζ(0) log ℓ− ζ ′(0)

)
, (10.15)

where ℓ indicates a renormalization scale with dimension of a length. Rewriting the

zeta-function as the zero-temperature plus all the rest, gives

ζ(s) = ∑
p>0

λ−s
p + σ(s), σ(s) =

β2

Γ(s)

∞

∑
n=1

∑
λp>0

e−nβλp

n1−s , (10.16)

where, as we said, limT→0 σ = 0. Thus only the first term in (10.16) contributes

for zero temperatures. The vacuum energy contribution can be expressed in terms of

Riemann zeta functions ζR,

ξ(s) = (4ρ)s
∞

∑
p=1

p−2s = (4ρ)sζR(2s) (10.17)

yielding

δΓ = 2πRβ
1
2

log

Ç
16π2ρ

ℓ

å
. (10.18)

We point out that imposing Dirichlet boundary conditions leads to a Ω-independent

vacuum energy and thus a null persistent current. This comes with no surprise as

DBCs suppress any flux through the boundary, as also found in [64].

The simplest way to introduce interactions is by enforcing a constraint on the field.

We thus consider the action

Sλ = S0 −
∫

dt
∫

dx λ(x)
Ä
|Φ|2 − z2

ä
(10.19)

for a positive constant z. Extremizing with respect to the Lagrange multiplier, we have

0 =
δSλ

δλ
= |Φ|2 − z2 (10.20)

which enforces interaction between the components of the multiplet Φ. Since the norm

is kept fixed, any change in , say, ϕ1 is reflected upon ϕ2. Proceeding as before the

one-loop Euclidean effective action reads

Γ =
∫ β

0
dτ
∫

dx Φ̄†
ï

∂

∂τ
− 1

ρ
D2
ò

Φ̄ + λ(x)
Ä
|Φ|2 − z2

ä
+ δΓ (10.21)
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where now

δΓ = log det
Å

∂

∂τ
− 1

ρ
D2 + λ(x)

ã
, D =

∂

∂φ
+ i

ρ

2R
Ω. (10.22)

What prevents us from straightforwardly apply the same derivation of the non-interacting

case is the fact that we don’t know the form of the Lagrange multiplier function λ(x),

which plays the role of a fake mass (function), and does not correspond to any dynam-

ical degree of freedom. We will use a mean field approximation. Hence, we express

the determinant in (10.22) as

δΓ = − lim
s→0

d
ds

1
Γ(s)

∞

∑
n=−∞

∫ ∞

0

dt
t1−s e−iωntTr e−

t
ρ D (10.23)

with a new differential operator

D = −D2 + ρλ(x). (10.24)

Setting t = ρu, η = β
ρ and ω̄ = 2πn

η , we have

δΓ = − lim
s→0

d
ds

ρ2

Γ(s)

∞

∑
n=−∞

∫ ∞

0

du
u1−s e−iω̄nuTr e−uD. (10.25)

The functional trace can then be written in terms of the eigenvalues of D,

Tr e−uD = ∑
ξp>0

e−ξpu. (10.26)

Assuming non-negative eigenvalues, we perform a heat-kernel expansion

Tr e−uD ≃ K(u) =

…
1

2πu ∑
k∈N

ak(λ)uk + boundary terms (10.27)

and consider only bulk terms. Boundary terms can be added later. The one-loop

effective action hence reads

δΓ = − lim
s→0

d
ds

ρs

Γ(s)

∞

∑
n=−∞

∫ ∞

0

du
u1−s e−iω̄nuK(u). (10.28)

It turns out to be useful to rewrite the exponential term using the following identity

∞

∑
n=−∞

einu = η
∞

∑
n=−∞

δ(u− ηn) (10.29)
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to get

δΓ = − lim
s→0

d
ds

ηρs

Γ(s)

∞

∑
n=−∞

∫ ∞

0

du
u1−s δ(u− ηn)K(u)θreg(u), (10.30)

where a regularizing θreg-function (θreg → θ) is included in order to perform the inte-

gration over u will keeping the integrand continuous at u = 0. Proceeding with the

calculation, we get

δΓ =− lim
s→0

lim
n→0

d
ds

(ρη)s

Γ(s)
ns−1K(ηn)θreg(ηn)+

− lim
s→0

d
ds

(ρη)s

Γ(s)

∞

∑
n=1

ns−1K(ηn) (10.31)

where the first term (n = 0) is independent on λ and Φ̄. We then get

δΓ =− lim
n→0

ï
a0

n3/2
+ η

a1√
n

ò
θreg(0)√

2πη
+

− 1√
2πη

lim
s→0

d
ds

(ρη)s

Γ(s) ∑
k∈N

ζR

Å
3
2
− k− s

ã
ηkak

=−
…

η

2π
a1 lim

n→0

θreg(0)√
n
− 1√

2πn

∞

∑
k=1

ζ

Å
3
2
− k
ã

ηkak (10.32)

where, in the last line, the a0-term has been dropped since it does not depend on the

background field or λ and disappears from the equation of motion. The first four

coefficients are given by

a0 =β
∫

dx 1

a1 =β
∫

dx (−λ)

a2 =β
∫

dx
Å

1
2

λ2 − 1
6
D2λ

ã
a3 =β

∫
dx
Å
−1

6
λ3 +

1
12

(Dλ)2 +
1
6

λDλ− 1
60
D6λ

ã
(10.33)

and can be used inside (10.32) to have en explicit expression for δΓ which can be used

to derive the equations of motion for Φ̄, its conjugate and λ. As a result, we have a

system of nonlinear coupled differential equations,

X′1 =X2

X′2 =
mρΩ2

2
X1 + ρZ1X1 +

ρΩ
R

Y2
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Y′1 =Y2

Y′2 =
mρΩ2

2
Y1 + ρZ1Y1 −

ρΩ
R

X2

Z′1 =Z2

Z′2 =3Z2
1 −MZ1 −U (10.34)

where

X1 =Re Φ̄, Y1 = Im Φ̄, Z1 = λ,

X2 =Re Φ̄′, Y2 = Im Φ̄′, Z2 = λ′,

U =
πρ3Ω2ζ(3/2)
3R2βζ(5/2)

− 6ρ2ζ(1/2)
β2ζ(−3/2)

+

− 6

 
2πρ5

β5

(
X2

1 + X2
2 − z2

ren
)

ζ(−3/2)
− 1

10

Å
ρΩ
2R

ã4
,

M =8π
ζ(3/2)ρ
ζ(5/2)β

− 3
Å

ρΩ
2R

ã2
, (10.35)

with zren being the renormalized coupling. The above equations have been solved us-

ing Python routines by fixing left boundary conditions at φ = 0 and shooting to the

right. A tolerance of ϵ = 10−2 is kept for the right boundary condition. The left

boundary values have been varied according to the intervals: 10−3 ≤ Re Φ̄φ=0 ≤ 1.4,

10−3 ≤ Im Φ̄φ=0 ≤ 1.4, −10−3 ≤ Re Φ̄′φ=0 ≤ 1.1, −10−3 ≤ Im Φ̄′φ=0 ≤ 1.1,

−1.90 ≤ λ′φ=0 ≤ 0.81. The value of λφ=0 has been rescaled to 1. For the boundary

conditions on the right we have aimed at solutions satisfying continuity and (anti-) pe-

riodicity for the real and imaginary part, so that the squared modulus Φ2 was periodic.

This was done with a tolerance of 1%. Physical parameters have been set as follows:

mR = 0.3, β/R = 10, z = 0.1. In our simulations we also set R = 1. These choices

where made in order to keep mass and temperature at small values, accordingly to our

theoretical assumptions. Fig. 10.1 shows illustrative results for numerical solutions of

Φ2 and λ for values of Ω = 0, 0.5, 1. Attempts for intermediate values of Ω have been

explored without finding any satisfying solution. We remark that our system, within

our approximations, is analogous to a second order equation with a delta-potential rep-

resenting the boundary. Upon integration across the left boundary, we get the jump on

the first derivative; if the field is continuous, we have ∂Φ|φ=0+ − ∂Φ|φ=0− ∝ ξΦ(0),

where ξ encodes the height of the barrier. To sum up, the jump of the first derivative

gives a measure of the strength of the barrier. We finally point out that our solutions of
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Fig. 10.1 show a behaviour which is similar to those of [64]: solutions are peaked at

φ = π and slowly descend towards boundaries. We also found out-of-phase solutions

having larger amplitudes and peaked at φ = π/2: they are continuous at the boundary

and are dephased with respect to the ones peaked at φ = π. Both kinds of solutions

have to be intended as ground state solutions, not excited levels: they just obey differ-

ent boundary conditions. Moreover, some solutions clearly show a behaviour which

is similar to those of [64], namely the ones which are peaked at φ = π and decrease

smoothly towards the boundaries. The out-of-phase solutions with larger amplitude

(peaked at φ = π
2 ) join continuously at the boundaries and are dephased with the

previous set of solutions. We also point out a similarity between the amount of de-

phasing and the detuning of the boundary conditions; if these ones deviate from those

producing the solutions symmetric with respect to the center of the interval, hence the

resulting solution gets a phase. This is mathematically trivial (let us just think about

plane waves), but it suggests a way to measure a deviations from specified boundary

conditions.

This study we showed in this chapter is based upon heat kernel techniques, and

can be seen as a complementary part rather than an alternative to worldline techniques,

which are being extensively studied throughout this thesis. In fact, in principles, the

problem of a scalar field defined on a ring with a cut could be also studied as a 1-

dimensional linear σ-model, mapping the circle onto a segment where the extrema are

the two sides of the cut. However, some difficulties can arise when trying to represent

the rotation in this new setup, and when building worldlines which satisfy continuity

on the boundaries.
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Ω = 0 Ω = 0.5 Ω = 1

φ φ φ

Φ2

λ

FIGURE 10.1: The figure shows the numerical solutions for Φ2 and
λ for illustrative values of the rotational velocity Ω. We have selected
the parameters as follows: m× R = 0.3, β/R = 10, and z = 0.1.
The curves correspond to the following solutions: for Ω = 0, or-
ange ⇒ (Φ̄φ=0 = 1.121, Φ̄′φ=0 = 0.95, λ′φ=0 = −1.66), cyan
⇒ (0.001, 0.60,−1.19), black⇒ (0.001, 0.44,−0.76); for Ω = 0.5,
orange ⇒ (1.011, 0.96,−1.57), cyan ⇒ (0.001, 0.60,−1.23), black
⇒ (0.001, 0.44,−0.80); for Ω = 1, orange⇒ (1.001, 0.58,−1.37),

cyan⇒ (0.001, 0.61,−1.37), black⇒ (0.001, 0.47,−0.92).
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Chapter 11

Conclusions

In this thesis we have seen how first quantization path integrals can be used to represent

and calculate relevant quantities from quantum field theory, such as particle propaga-

tors, trace anomalies and effective actions. We have considered both analytical and

numerical approaches. After building the general theory for flat spaces, defining then

σ-models, we moved to the more general case of curved spaces, where gravity enters

as a background. We realized that a lot of subtle points have to be treated carefully, in

particular when we consider a non-trivial metric as a source for the space curvature,

each perturbative term of the expansion of the path integral gets affected by diver-

gences which bring infinities and ambiguities. Knowing that the result must be finite

(and unambiguous), these divergences have to be cancelled properly, and the rule for

that is given by three known regularization schemes which are time-slicing, mode reg-

ularization and dimensional regularization. In particular we applied the latter to the

calculation of the (perturbatively approximated) trace anomaly of a scalar particle liv-

ing in a maximally symmetric space, adopting a string-inspired BRST quantization

of the associated path integral. We also proved the direct equivalence between MR

and DR for the particle transition amplitude on a more general space, checking order

by order that, although the two techniques give rise to different valued Feynman dia-

grams, the result doesn’t change. We then moved to the numerical part of the thesis:

we defined the worldline Monte Carlo (WLMC) method to represent numerically a

sample of some of the worldline trajectories which we can imagine the scalar particle

travels when a scalar path integral in flat space is considered. In particular we gen-

eralized the YLOOPS algorithm (one of the most famous ones) to the case of little

quadratic term insertion, i.e. the YLOOPS(α) algorithm. Next, we adapted the WLMC

machinery to the case of curved spaces, finding then a new way of treating curved

space problems using a numerical technique. We tested this new method using the
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YLOOPS(α) algorithm and computing the scalar propagator of a particle moving in a

maximally symmetric space, for which the previous analytical (perturbative) solutions

can be used as a comparison. This numerical method provides a non-perturbative so-

lution to a problem which has always been treated perturbatively. We then addressed

numerically other models, including Casimir configurations and electromagnetic back-

grounds. Next, we moved to the more (numerically) complicated problem of Grass-

mannian path integrals, i.e. path integrals involving anticommuting variables. We

presented an algorithm originally developed by Creutz and tested its validity on a toy

model, the fermionic harmonic oscillator. At this point we have all the ingredients to

aim to a numerical treatment of bosonic and spinning non-linear σ-models, an example

of which is the Gross-Neveu model. This path integral could be done numerically cou-

pling the WLMC technique in curved space with the Creutz’s algorithm, however an

actual computation would require more computer power than affordable by us. Finally

we ended up with a numerical calculation of the lowest order energies of a system

constituted by a scalar field rotating on a one-dimensional ring having a punctual de-

fect on it. We obtained the associated field equations for this model and solved them

numerically.

The biggest effort in this work was to find a strategy which was as general as

possible to numerically represent and solve σ-models embedded in curved space by

using non-perturbative methods. We proved the WLMC formalism, born for flat space

worldline path integrals, can be profitably used even with curved space. Our tech-

nique may find several interesting fields of applications, including strong curvature-

problems, instanton calculations and Schwinger’s pair creation.
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Appendix A

Curvature tensors conventions

In this brief appendix we fix the conventions involving the curvature tensors used in

the present thesis. The Riemann curvature tensor is obtained, as usual, by acting on a

vector Vρ with the commutator of covariant derivatives [∇µ,∇ν], i.e.

[∇µ,∇ν]Vρ = Rµν
ρ

σVσ, (A.1)

which, in turn, gives

Rµν
ρ

σ = ∂µΓρ
νσ + Γρ

µλΓλ
νσ − ∂νΓρ

µσ − Γρ
νλΓλ

µσ. (A.2)

The Ricci tensor is here defined by contracting the central indices,

Rµν = Rµσ
σ

ν, (A.3)

whereas the curvature scalar is given by

R = Rµ
µ, (A.4)

which is negative for spheres.
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Appendix B

WLMC convergence with tiny

mass term

Adding a tiny mass whose role is played by the parameter α implies a relevant im-

provement for our heat kernel numerical evaluation. We actually point out that this

trick is used only at the stage of the worldline generation, namely when we imple-

ment the YLOOPS(α) algorithm instead of YLOOPS(0). Hence, only the shape of the

worldlines gets affected, leaving the form of the potential untouched. The latter is

calculated on spacetime points whose position depends also on the parameter α. The

reason for this choice is that the introduction of α helps the point-particle to explore

more accurately the region which is closer to the endpoints (the origin in the case the

heat kernel reads I(0, 0; β)), which is optimal for localized potentials like those we are

treating mostly. This strategy can be seen as a counterforce (partially at least) against

the undersampling issue, which forces the particle to move away from the region when

the localized potential is relevant at large β.

(a) (b)

FIGURE B.1: Two calculations of the heat kernel of a free scalar
particle on a 4-sphere with (NWL, N) = (1000, 1000) and M = 1.
For the left figure, a tiny fictitious mass has been introduced (α =
0.0025) in the WL sampling. The right figure is obtained with (α =

0), i.e. no fictitious mass term.
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In Figures B.1 we show two calculation of the heat kernel on a sphere where the

algorithms YLOOPS(α) and YLOOPS(0) have been used respectively. In the first case

we used the value α = 0.0025, whereas all other parameters are shared among the

two computations (M = 1, D = 4 and (NWL, N) = (1000, 1000)). Figure B.1(b)

clearly does not well reproduces the behaviour of the heat kernel, whilst B.1(a) does

since we chose α ̸= 0. Hence, a little change in the value of α is capable of shrinking

the worldline cloud around the origin so that it can reproduce the expected behaviour

satisfactorily.

We also investigated a possible dependence of αmin (the value which minimizes on

average the error between NSMM and EPM) with respect to curvature of the MS space.

To such a purpose, we considered hyperboloids with sectional curvatures |M| = 0.01

and 1.

(a) (b)

FIGURE B.2: Comparison between heat kernel calculations of a free
scalar particle on the hyperboloid for |M| = 1, 0.01. Each point
denotes a single simulation: on the horizontal axis we have the value
of the fictitious mass parameter α adopted, whereas vertically we have
reported an arithmetic average of distance between the data of the
non-linear sigma model method and the ones of the effective potential
method (assumed as a benchmark). The α-value which minimizes the

error does not qualitatively depend on the curvature of the space.

In Figure B.2 we see the numerical dependence of the average error between

NSMM and EPM on α for |M| = 1 and 0.01. The two parabolas allow to detect

an optimal value αmin which minimizes such error for the two curvatures and what we

notice is that this value is substantially independent of |M| over two orders of magni-

tude (intermediate values of |M| exhibit similar results). To see the minimized average

error directly at work, let us consider Figure B.2(a) and extrapolate the minimum via

a quadratic fitting (still on log-scale), obtaining αmin = 10ᾱ. Then we take two loga-

rithmically equally space points around αmin, that is α− = 10ᾱ−∆ and α+ = 10ᾱ+∆,

with ∆ > 0.



Appendix B. WLMC convergence with tiny mass term 129

FIGURE B.3: Calculations of the heat kernel for the free scalar par-
ticle on a hyperboloid with D = 4 and |M| = 1, for a window of
β-values. The plot shows the comparison of the calculation when
different values of α are implemented, in particular αmin = 0.0064,

α− = 0.0002 and α+ = 0.2031.

In Figure B.3 we fixed ∆ = 1.5 (arbitrary) and ᾱ = 2.1923 (from the fitting), and

computed a portion of the heat kernel for the point-particle on the hyperboloid. As

expected, the red points (which correspond to αmin) are those which better reproduce

the behaviour of the heat kernel.
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Appendix C

MATLAB code for WLMC in

curved space

In Figure C.1 we show an example of the MATLAB code we used to compute the heat

kernel of the free scalar particle on a sphere with EPM and NSMM method.

• lines 1-15. Initialization of the main variables including: number of points per

WL, number of WLs, α-parameter, number of Euclidean spacetime dimensions,

sectional radius of the sphere, total propertime β-range of values, variables to

memorize the results, WL endpoints.

• lines 52-166. Creation of flat and curved space coefficients for the YLOOPS(0)

and YLOOPS(α) algorithms respectively. Construction of the worldlines. Com-

putation of the flat and curved space potentials. Computation of the heat kernels

for flat and curved spaces with associated errors.

• lines 167-176. Construction of the analytical curve for the heat kernel.

• lines 177-188. Figure production.

• lines 190-223. Declaration of the functions used in the script.
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FIGURE C.1: MATLAB code for the WLMC in curved space calcu-
lation of the heat kernel of a scalar point particle on a sphere.
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Appendix D

MATLAB code for Grassmann

path integrals

Here we report the MATLAB code we use to compute the fermionic harmonic oscilla-

tor propagator using Creutz’s algorithm.
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FIGURE D.1: MATLAB code the evaluation of the fermionic har-
monic oscillator propagator using Creutz’s algorithm.
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